stouputils 1.12.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (138) hide show
  1. stouputils/__init__.py +40 -0
  2. stouputils/__init__.pyi +14 -0
  3. stouputils/__main__.py +81 -0
  4. stouputils/_deprecated.py +37 -0
  5. stouputils/_deprecated.pyi +12 -0
  6. stouputils/all_doctests.py +160 -0
  7. stouputils/all_doctests.pyi +46 -0
  8. stouputils/applications/__init__.py +22 -0
  9. stouputils/applications/__init__.pyi +2 -0
  10. stouputils/applications/automatic_docs.py +634 -0
  11. stouputils/applications/automatic_docs.pyi +106 -0
  12. stouputils/applications/upscaler/__init__.py +39 -0
  13. stouputils/applications/upscaler/__init__.pyi +3 -0
  14. stouputils/applications/upscaler/config.py +128 -0
  15. stouputils/applications/upscaler/config.pyi +18 -0
  16. stouputils/applications/upscaler/image.py +247 -0
  17. stouputils/applications/upscaler/image.pyi +109 -0
  18. stouputils/applications/upscaler/video.py +287 -0
  19. stouputils/applications/upscaler/video.pyi +60 -0
  20. stouputils/archive.py +344 -0
  21. stouputils/archive.pyi +67 -0
  22. stouputils/backup.py +488 -0
  23. stouputils/backup.pyi +109 -0
  24. stouputils/collections.py +244 -0
  25. stouputils/collections.pyi +86 -0
  26. stouputils/continuous_delivery/__init__.py +27 -0
  27. stouputils/continuous_delivery/__init__.pyi +5 -0
  28. stouputils/continuous_delivery/cd_utils.py +243 -0
  29. stouputils/continuous_delivery/cd_utils.pyi +129 -0
  30. stouputils/continuous_delivery/github.py +522 -0
  31. stouputils/continuous_delivery/github.pyi +162 -0
  32. stouputils/continuous_delivery/pypi.py +91 -0
  33. stouputils/continuous_delivery/pypi.pyi +43 -0
  34. stouputils/continuous_delivery/pyproject.py +147 -0
  35. stouputils/continuous_delivery/pyproject.pyi +67 -0
  36. stouputils/continuous_delivery/stubs.py +86 -0
  37. stouputils/continuous_delivery/stubs.pyi +39 -0
  38. stouputils/ctx.py +408 -0
  39. stouputils/ctx.pyi +211 -0
  40. stouputils/data_science/config/get.py +51 -0
  41. stouputils/data_science/config/set.py +125 -0
  42. stouputils/data_science/data_processing/image/__init__.py +66 -0
  43. stouputils/data_science/data_processing/image/auto_contrast.py +79 -0
  44. stouputils/data_science/data_processing/image/axis_flip.py +58 -0
  45. stouputils/data_science/data_processing/image/bias_field_correction.py +74 -0
  46. stouputils/data_science/data_processing/image/binary_threshold.py +73 -0
  47. stouputils/data_science/data_processing/image/blur.py +59 -0
  48. stouputils/data_science/data_processing/image/brightness.py +54 -0
  49. stouputils/data_science/data_processing/image/canny.py +110 -0
  50. stouputils/data_science/data_processing/image/clahe.py +92 -0
  51. stouputils/data_science/data_processing/image/common.py +30 -0
  52. stouputils/data_science/data_processing/image/contrast.py +53 -0
  53. stouputils/data_science/data_processing/image/curvature_flow_filter.py +74 -0
  54. stouputils/data_science/data_processing/image/denoise.py +378 -0
  55. stouputils/data_science/data_processing/image/histogram_equalization.py +123 -0
  56. stouputils/data_science/data_processing/image/invert.py +64 -0
  57. stouputils/data_science/data_processing/image/laplacian.py +60 -0
  58. stouputils/data_science/data_processing/image/median_blur.py +52 -0
  59. stouputils/data_science/data_processing/image/noise.py +59 -0
  60. stouputils/data_science/data_processing/image/normalize.py +65 -0
  61. stouputils/data_science/data_processing/image/random_erase.py +66 -0
  62. stouputils/data_science/data_processing/image/resize.py +69 -0
  63. stouputils/data_science/data_processing/image/rotation.py +80 -0
  64. stouputils/data_science/data_processing/image/salt_pepper.py +68 -0
  65. stouputils/data_science/data_processing/image/sharpening.py +55 -0
  66. stouputils/data_science/data_processing/image/shearing.py +64 -0
  67. stouputils/data_science/data_processing/image/threshold.py +64 -0
  68. stouputils/data_science/data_processing/image/translation.py +71 -0
  69. stouputils/data_science/data_processing/image/zoom.py +83 -0
  70. stouputils/data_science/data_processing/image_augmentation.py +118 -0
  71. stouputils/data_science/data_processing/image_preprocess.py +183 -0
  72. stouputils/data_science/data_processing/prosthesis_detection.py +359 -0
  73. stouputils/data_science/data_processing/technique.py +481 -0
  74. stouputils/data_science/dataset/__init__.py +45 -0
  75. stouputils/data_science/dataset/dataset.py +292 -0
  76. stouputils/data_science/dataset/dataset_loader.py +135 -0
  77. stouputils/data_science/dataset/grouping_strategy.py +296 -0
  78. stouputils/data_science/dataset/image_loader.py +100 -0
  79. stouputils/data_science/dataset/xy_tuple.py +696 -0
  80. stouputils/data_science/metric_dictionnary.py +106 -0
  81. stouputils/data_science/metric_utils.py +847 -0
  82. stouputils/data_science/mlflow_utils.py +206 -0
  83. stouputils/data_science/models/abstract_model.py +149 -0
  84. stouputils/data_science/models/all.py +85 -0
  85. stouputils/data_science/models/base_keras.py +765 -0
  86. stouputils/data_science/models/keras/all.py +38 -0
  87. stouputils/data_science/models/keras/convnext.py +62 -0
  88. stouputils/data_science/models/keras/densenet.py +50 -0
  89. stouputils/data_science/models/keras/efficientnet.py +60 -0
  90. stouputils/data_science/models/keras/mobilenet.py +56 -0
  91. stouputils/data_science/models/keras/resnet.py +52 -0
  92. stouputils/data_science/models/keras/squeezenet.py +233 -0
  93. stouputils/data_science/models/keras/vgg.py +42 -0
  94. stouputils/data_science/models/keras/xception.py +38 -0
  95. stouputils/data_science/models/keras_utils/callbacks/__init__.py +20 -0
  96. stouputils/data_science/models/keras_utils/callbacks/colored_progress_bar.py +219 -0
  97. stouputils/data_science/models/keras_utils/callbacks/learning_rate_finder.py +148 -0
  98. stouputils/data_science/models/keras_utils/callbacks/model_checkpoint_v2.py +31 -0
  99. stouputils/data_science/models/keras_utils/callbacks/progressive_unfreezing.py +249 -0
  100. stouputils/data_science/models/keras_utils/callbacks/warmup_scheduler.py +66 -0
  101. stouputils/data_science/models/keras_utils/losses/__init__.py +12 -0
  102. stouputils/data_science/models/keras_utils/losses/next_generation_loss.py +56 -0
  103. stouputils/data_science/models/keras_utils/visualizations.py +416 -0
  104. stouputils/data_science/models/model_interface.py +939 -0
  105. stouputils/data_science/models/sandbox.py +116 -0
  106. stouputils/data_science/range_tuple.py +234 -0
  107. stouputils/data_science/scripts/augment_dataset.py +77 -0
  108. stouputils/data_science/scripts/exhaustive_process.py +133 -0
  109. stouputils/data_science/scripts/preprocess_dataset.py +70 -0
  110. stouputils/data_science/scripts/routine.py +168 -0
  111. stouputils/data_science/utils.py +285 -0
  112. stouputils/decorators.py +595 -0
  113. stouputils/decorators.pyi +242 -0
  114. stouputils/image.py +441 -0
  115. stouputils/image.pyi +172 -0
  116. stouputils/installer/__init__.py +18 -0
  117. stouputils/installer/__init__.pyi +5 -0
  118. stouputils/installer/common.py +67 -0
  119. stouputils/installer/common.pyi +39 -0
  120. stouputils/installer/downloader.py +101 -0
  121. stouputils/installer/downloader.pyi +24 -0
  122. stouputils/installer/linux.py +144 -0
  123. stouputils/installer/linux.pyi +39 -0
  124. stouputils/installer/main.py +223 -0
  125. stouputils/installer/main.pyi +57 -0
  126. stouputils/installer/windows.py +136 -0
  127. stouputils/installer/windows.pyi +31 -0
  128. stouputils/io.py +486 -0
  129. stouputils/io.pyi +213 -0
  130. stouputils/parallel.py +453 -0
  131. stouputils/parallel.pyi +211 -0
  132. stouputils/print.py +527 -0
  133. stouputils/print.pyi +146 -0
  134. stouputils/py.typed +1 -0
  135. stouputils-1.12.1.dist-info/METADATA +179 -0
  136. stouputils-1.12.1.dist-info/RECORD +138 -0
  137. stouputils-1.12.1.dist-info/WHEEL +4 -0
  138. stouputils-1.12.1.dist-info/entry_points.txt +3 -0
@@ -0,0 +1,242 @@
1
+ from .ctx import MeasureTime as MeasureTime, Muffle as Muffle
2
+ from .print import error as error, progress as progress, warning as warning
3
+ from collections.abc import Callable as Callable
4
+ from enum import Enum
5
+ from typing import Any, Literal
6
+
7
+ def measure_time(func: Callable[..., Any] | None = None, *, printer: Callable[..., None] = ..., message: str = '', perf_counter: bool = True, is_generator: bool = False) -> Callable[..., Any]:
8
+ ''' Decorator that will measure the execution time of a function and print it with the given print function
9
+
10
+ \tArgs:
11
+ \t\tfunc\t\t\t(Callable[..., Any] | None): Function to decorate
12
+ \t\tprinter\t\t\t(Callable):\tFunction to use to print the execution time (e.g. debug, info, warning, error, etc.)
13
+ \t\tmessage\t\t\t(str):\t\tMessage to display with the execution time (e.g. "Execution time of Something"),
14
+ \t\t\tdefaults to "Execution time of {func.__name__}"
15
+ \t\tperf_counter\t(bool):\t\tWhether to use time.perf_counter_ns or time.time_ns
16
+ \t\t\tdefaults to True (use time.perf_counter_ns)
17
+ \t\tis_generator\t(bool):\t\tWhether the function is a generator or not (default: False)
18
+ \t\t\tWhen True, the decorator will yield from the function instead of returning it.
19
+
20
+ \tReturns:
21
+ \t\tCallable: Decorator to measure the time of the function.
22
+
23
+ \tExamples:
24
+ \t\t.. code-block:: python
25
+
26
+ \t\t\t> @measure_time(printer=info)
27
+ \t\t\t> def test():
28
+ \t\t\t> pass
29
+ \t\t\t> test() # [INFO HH:MM:SS] Execution time of test: 0.000ms (400ns)
30
+ \t'''
31
+
32
+ class LogLevels(Enum):
33
+ """ Log level for the errors in the decorator handle_error() """
34
+ NONE = 0
35
+ WARNING = 1
36
+ WARNING_TRACEBACK = 2
37
+ ERROR_TRACEBACK = 3
38
+ RAISE_EXCEPTION = 4
39
+
40
+ force_raise_exception: bool
41
+
42
+ def handle_error(func: Callable[..., Any] | None = None, *, exceptions: tuple[type[BaseException], ...] | type[BaseException] = ..., message: str = '', error_log: LogLevels = ..., sleep_time: float = 0.0) -> Callable[..., Any]:
43
+ ''' Decorator that handle an error with different log levels.
44
+
45
+ \tArgs:
46
+ \t\tfunc (Callable[..., Any] | None): \tFunction to decorate
47
+ \t\texceptions\t(tuple[type[BaseException]], ...):\tExceptions to handle
48
+ \t\tmessage\t\t(str):\t\t\t\t\t\t\t\tMessage to display with the error. (e.g. "Error during something")
49
+ \t\terror_log\t(LogLevels):\t\t\t\t\t\tLog level for the errors
50
+ \t\t\tLogLevels.NONE:\t\t\t\t\tNone
51
+ \t\t\tLogLevels.WARNING:\t\t\t\tShow as warning
52
+ \t\t\tLogLevels.WARNING_TRACEBACK:\tShow as warning with traceback
53
+ \t\t\tLogLevels.ERROR_TRACEBACK:\t\tShow as error with traceback
54
+ \t\t\tLogLevels.RAISE_EXCEPTION:\t\tRaise exception
55
+ \t\tsleep_time\t(float):\t\t\t\t\t\t\tTime to sleep after the error (e.g. 0.0 to not sleep, 1.0 to sleep for 1 second)
56
+
57
+ \tExamples:
58
+ \t\t>>> @handle_error
59
+ \t\t... def might_fail():
60
+ \t\t... raise ValueError("Let\'s fail")
61
+
62
+ \t\t>>> @handle_error(error_log=LogLevels.WARNING)
63
+ \t\t... def test():
64
+ \t\t... raise ValueError("Let\'s fail")
65
+ \t\t>>> # test()\t# [WARNING HH:MM:SS] Error during test: (ValueError) Let\'s fail
66
+ \t'''
67
+ def timeout(func: Callable[..., Any] | None = None, *, seconds: float = 60.0, message: str = '') -> Callable[..., Any]:
68
+ ''' Decorator that raises a TimeoutError if the function runs longer than the specified timeout.
69
+
70
+ \tNote: This decorator uses SIGALRM on Unix systems, which only works in the main thread.
71
+ \tOn Windows or in non-main threads, it will fall back to a polling-based approach.
72
+
73
+ \tArgs:
74
+ \t\tfunc\t\t(Callable[..., Any] | None):\tFunction to apply timeout to
75
+ \t\tseconds\t\t(float):\t\t\t\t\t\tTimeout duration in seconds (default: 60.0)
76
+ \t\tmessage\t\t(str):\t\t\t\t\t\t\tCustom timeout message (default: "Function \'{func_name}\' timed out after {seconds} seconds")
77
+
78
+ \tReturns:
79
+ \t\tCallable[..., Any]: Decorator that enforces timeout on the function
80
+
81
+ \tRaises:
82
+ \t\tTimeoutError: If the function execution exceeds the timeout duration
83
+
84
+ \tExamples:
85
+ \t\t>>> @timeout(seconds=2.0)
86
+ \t\t... def slow_function():
87
+ \t\t... time.sleep(5)
88
+ \t\t>>> slow_function() # Raises TimeoutError after 2 seconds
89
+ \t\tTraceback (most recent call last):
90
+ \t\t\t...
91
+ \t\tTimeoutError: Function \'slow_function\' timed out after 2.0 seconds
92
+
93
+ \t\t>>> @timeout(seconds=1.0, message="Custom timeout message")
94
+ \t\t... def another_slow_function():
95
+ \t\t... time.sleep(3)
96
+ \t\t>>> another_slow_function() # Raises TimeoutError after 1 second
97
+ \t\tTraceback (most recent call last):
98
+ \t\t\t...
99
+ \t\tTimeoutError: Custom timeout message
100
+ \t'''
101
+ def retry(func: Callable[..., Any] | None = None, *, exceptions: tuple[type[BaseException], ...] | type[BaseException] = ..., max_attempts: int = 10, delay: float = 1.0, backoff: float = 1.0, message: str = '') -> Callable[..., Any]:
102
+ ''' Decorator that retries a function when specific exceptions are raised.
103
+
104
+ \tArgs:
105
+ \t\tfunc\t\t\t(Callable[..., Any] | None):\t\tFunction to retry
106
+ \t\texceptions\t\t(tuple[type[BaseException], ...]):\tExceptions to catch and retry on
107
+ \t\tmax_attempts\t(int | None):\t\t\t\t\t\tMaximum number of attempts (None for infinite retries)
108
+ \t\tdelay\t\t\t(float):\t\t\t\t\t\t\tInitial delay in seconds between retries (default: 1.0)
109
+ \t\tbackoff\t\t\t(float):\t\t\t\t\t\t\tMultiplier for delay after each retry (default: 1.0 for constant delay)
110
+ \t\tmessage\t\t\t(str):\t\t\t\t\t\t\t\tCustom message to display before ", retrying" (default: "{ExceptionName} encountered while running {func_name}")
111
+
112
+ \tReturns:
113
+ \t\tCallable[..., Any]: Decorator that retries the function on specified exceptions
114
+
115
+ \tExamples:
116
+ \t\t>>> import os
117
+ \t\t>>> @retry(exceptions=PermissionError, max_attempts=3, delay=0.1)
118
+ \t\t... def write_file():
119
+ \t\t... with open("test.txt", "w") as f:
120
+ \t\t... f.write("test")
121
+
122
+ \t\t>>> @retry(exceptions=(OSError, IOError), delay=0.5, backoff=2.0)
123
+ \t\t... def network_call():
124
+ \t\t... pass
125
+
126
+ \t\t>>> @retry(max_attempts=5, delay=1.0)
127
+ \t\t... def might_fail():
128
+ \t\t... pass
129
+ \t'''
130
+ def simple_cache(func: Callable[..., Any] | None = None, *, method: Literal['str', 'pickle'] = 'str') -> Callable[..., Any]:
131
+ ''' Decorator that caches the result of a function based on its arguments.
132
+
133
+ \tThe str method is often faster than the pickle method (by a little) but not as accurate with complex objects.
134
+
135
+ \tArgs:
136
+ \t\tfunc (Callable[..., Any] | None): Function to cache
137
+ \t\tmethod (Literal["str", "pickle"]): The method to use for caching.
138
+ \tReturns:
139
+ \t\tCallable[..., Any]: A decorator that caches the result of a function.
140
+ \tExamples:
141
+ \t\t>>> @simple_cache
142
+ \t\t... def test1(a: int, b: int) -> int:
143
+ \t\t... return a + b
144
+
145
+ \t\t>>> @simple_cache(method="str")
146
+ \t\t... def test2(a: int, b: int) -> int:
147
+ \t\t... return a + b
148
+ \t\t>>> test2(1, 2)
149
+ \t\t3
150
+ \t\t>>> test2(1, 2)
151
+ \t\t3
152
+ \t\t>>> test2(3, 4)
153
+ \t\t7
154
+ \t'''
155
+ def abstract(func: Callable[..., Any] | None = None, *, error_log: LogLevels = ...) -> Callable[..., Any]:
156
+ """ Decorator that marks a function as abstract.
157
+
158
+ \tContrary to the abstractmethod decorator from the abc module that raises a TypeError
159
+ \twhen you try to instantiate a class that has abstract methods, this decorator raises
160
+ \ta NotImplementedError ONLY when the decorated function is called, indicating that the function
161
+ \tmust be implemented by a subclass.
162
+
163
+ \tArgs:
164
+ \t\tfunc (Callable[..., Any] | None): The function to mark as abstract
165
+ \t\terror_log (LogLevels): Log level for the error handling
166
+ \t\t\tLogLevels.NONE: None
167
+ \t\t\tLogLevels.WARNING: Show as warning
168
+ \t\t\tLogLevels.WARNING_TRACEBACK: Show as warning with traceback
169
+ \t\t\tLogLevels.ERROR_TRACEBACK: Show as error with traceback
170
+ \t\t\tLogLevels.RAISE_EXCEPTION: Raise exception
171
+
172
+ \tReturns:
173
+ \t\tCallable[..., Any]: Decorator that raises NotImplementedError when called
174
+
175
+ \tExamples:
176
+ \t\t>>> class Base:
177
+ \t\t... @abstract
178
+ \t\t... def method(self):
179
+ \t\t... pass
180
+ \t\t>>> Base().method()
181
+ \t\tTraceback (most recent call last):
182
+ \t\t\t...
183
+ \t\tNotImplementedError: Function 'method' is abstract and must be implemented by a subclass
184
+ \t"""
185
+ def deprecated(func: Callable[..., Any] | None = None, *, message: str = '', version: str = '', error_log: LogLevels = ...) -> Callable[..., Any]:
186
+ ''' Decorator that marks a function as deprecated.
187
+
188
+ \tArgs:
189
+ \t\tfunc (Callable[..., Any] | None): Function to mark as deprecated
190
+ \t\tmessage (str): Additional message to display with the deprecation warning
191
+ \t\tversion (str): Version since when the function is deprecated (e.g. "v1.2.0")
192
+ \t\terror_log (LogLevels): Log level for the deprecation warning
193
+ \t\t\tLogLevels.NONE: None
194
+ \t\t\tLogLevels.WARNING: Show as warning
195
+ \t\t\tLogLevels.WARNING_TRACEBACK: Show as warning with traceback
196
+ \t\t\tLogLevels.ERROR_TRACEBACK: Show as error with traceback
197
+ \t\t\tLogLevels.RAISE_EXCEPTION: Raise exception
198
+ \tReturns:
199
+ \t\tCallable[..., Any]: Decorator that marks a function as deprecated
200
+
201
+ \tExamples:
202
+ \t\t>>> @deprecated
203
+ \t\t... def old_function():
204
+ \t\t... pass
205
+
206
+ \t\t>>> @deprecated(message="Use \'new_function()\' instead", error_log=LogLevels.WARNING)
207
+ \t\t... def another_old_function():
208
+ \t\t... pass
209
+ \t'''
210
+ def silent(func: Callable[..., Any] | None = None, *, mute_stderr: bool = False) -> Callable[..., Any]:
211
+ ''' Decorator that makes a function silent (disable stdout, and stderr if specified).
212
+
213
+ \tAlternative to stouputils.ctx.Muffle.
214
+
215
+ \tArgs:
216
+ \t\tfunc\t\t\t(Callable[..., Any] | None):\tFunction to make silent
217
+ \t\tmute_stderr\t\t(bool):\t\t\t\t\t\t\tWhether to mute stderr or not
218
+
219
+ \tExamples:
220
+ \t\t>>> @silent
221
+ \t\t... def test():
222
+ \t\t... print("Hello, world!")
223
+ \t\t>>> test()
224
+
225
+ \t\t>>> @silent(mute_stderr=True)
226
+ \t\t... def test2():
227
+ \t\t... print("Hello, world!")
228
+ \t\t>>> test2()
229
+
230
+ \t\t>>> silent(print)("Hello, world!")
231
+ \t'''
232
+ def _get_func_name(func: Callable[..., Any]) -> str:
233
+ ''' Get the name of a function, returns "<unknown>" if the name cannot be retrieved. '''
234
+ def _get_wrapper_name(decorator_name: str, func: Callable[..., Any]) -> str:
235
+ ''' Get a descriptive name for a wrapper function.
236
+
237
+ \tArgs:
238
+ \t\tdecorator_name\t(str):\t\t\t\t\tName of the decorator
239
+ \t\tfunc\t\t\t(Callable[..., Any]):\tFunction being decorated
240
+ \tReturns:
241
+ \t\tstr: Combined name for the wrapper function (e.g., "stouputils.decorators.handle_error@function_name")
242
+ \t'''
stouputils/image.py ADDED
@@ -0,0 +1,441 @@
1
+ """
2
+ This module provides little utilities for image processing.
3
+
4
+ - image_resize: Resize an image while preserving its aspect ratio by default.
5
+ - auto_crop: Automatically crop an image to remove zero/uniform regions.
6
+ - numpy_to_gif: Generate a '.gif' file from a 3D numpy array for visualization.
7
+ - numpy_to_obj: Generate a '.obj' file from a 3D numpy array using marching cubes.
8
+
9
+ See stouputils.data_science.data_processing for lots more image processing utilities.
10
+ """
11
+
12
+ # Imports
13
+ import os
14
+ from collections.abc import Callable
15
+ from typing import TYPE_CHECKING, Any, TypeVar, cast
16
+
17
+ from .io import super_open
18
+ from .print import debug, info
19
+
20
+ if TYPE_CHECKING:
21
+ import numpy as np
22
+ from numpy.typing import NDArray
23
+ from PIL import Image
24
+
25
+ PIL_Image_or_NDArray = TypeVar("PIL_Image_or_NDArray", bound="Image.Image | NDArray[np.number]")
26
+
27
+ # Functions
28
+ def image_resize[PIL_Image_or_NDArray](
29
+ image: PIL_Image_or_NDArray,
30
+ max_result_size: int,
31
+ resampling: "Image.Resampling | None" = None,
32
+ min_or_max: Callable[[int, int], int] = max,
33
+ return_type: type[PIL_Image_or_NDArray] | str = "same",
34
+ keep_aspect_ratio: bool = True,
35
+ ) -> Any:
36
+ """ Resize an image while preserving its aspect ratio by default.
37
+ Scales the image so that its largest dimension equals max_result_size.
38
+
39
+ Args:
40
+ image (Image.Image | np.ndarray): The image to resize.
41
+ max_result_size (int): Maximum size for the largest dimension.
42
+ resampling (Image.Resampling | None): PIL resampling filter to use (default: Image.Resampling.LANCZOS).
43
+ min_or_max (Callable): Function to use to get the minimum or maximum of the two ratios.
44
+ return_type (type | str): Type of the return value (Image.Image, np.ndarray, or "same" to match input type).
45
+ keep_aspect_ratio (bool): Whether to keep the aspect ratio.
46
+ Returns:
47
+ Image.Image | NDArray[np.number]: The resized image with preserved aspect ratio.
48
+ Examples:
49
+ >>> # Test with (height x width x channels) numpy array
50
+ >>> import numpy as np
51
+ >>> array = np.random.randint(0, 255, (100, 50, 3), dtype=np.uint8)
52
+ >>> image_resize(array, 100).shape
53
+ (100, 50, 3)
54
+ >>> image_resize(array, 100, min_or_max=max).shape
55
+ (100, 50, 3)
56
+ >>> image_resize(array, 100, min_or_max=min).shape
57
+ (200, 100, 3)
58
+
59
+ >>> # Test with PIL Image
60
+ >>> from PIL import Image
61
+ >>> pil_image: Image.Image = Image.new('RGB', (200, 100))
62
+ >>> image_resize(pil_image, 50).size
63
+ (50, 25)
64
+ >>> # Test with different return types
65
+ >>> resized_array = image_resize(array, 50, return_type=np.ndarray)
66
+ >>> isinstance(resized_array, np.ndarray)
67
+ True
68
+ >>> resized_array.shape
69
+ (50, 25, 3)
70
+ >>> # Test with different resampling methods
71
+ >>> image_resize(pil_image, 50, resampling=Image.Resampling.NEAREST).size
72
+ (50, 25)
73
+ """
74
+ # Imports
75
+ import numpy as np
76
+ from PIL import Image
77
+
78
+ # Set default resampling method if not provided
79
+ if resampling is None:
80
+ resampling = Image.Resampling.LANCZOS
81
+
82
+ # Store original type for later conversion
83
+ original_was_pil: bool = isinstance(image, Image.Image)
84
+
85
+ # Convert numpy array to PIL Image if needed
86
+ if not original_was_pil:
87
+ image = Image.fromarray(image)
88
+
89
+ if keep_aspect_ratio:
90
+
91
+ # Get original image dimensions
92
+ width: int = image.size[0]
93
+ height: int = image.size[1]
94
+
95
+ # Determine which dimension to use for scaling based on min_or_max function
96
+ max_dimension: int = min_or_max(width, height)
97
+
98
+ # Calculate scaling factor
99
+ scale: float = max_result_size / max_dimension
100
+
101
+ # Calculate new dimensions while preserving aspect ratio
102
+ new_width: int = int(width * scale)
103
+ new_height: int = int(height * scale)
104
+
105
+ # Resize the image with the calculated dimensions
106
+ new_image: Image.Image = image.resize((new_width, new_height), resampling)
107
+ else:
108
+ # If not keeping aspect ratio, resize to square with max_result_size
109
+ new_image: Image.Image = image.resize((max_result_size, max_result_size), resampling)
110
+
111
+ # Return the image in the requested format
112
+ if return_type == "same":
113
+ # Return same type as input
114
+ if original_was_pil:
115
+ return new_image
116
+ else:
117
+ return np.array(new_image)
118
+ elif return_type != Image.Image:
119
+ return np.array(new_image)
120
+ else:
121
+ return new_image
122
+
123
+
124
+ def auto_crop[PIL_Image_or_NDArray](
125
+ image: PIL_Image_or_NDArray,
126
+ mask: "NDArray[np.bool_] | None" = None,
127
+ threshold: int | float | Callable[["NDArray[np.number]"], int | float] | None = None,
128
+ return_type: type[PIL_Image_or_NDArray] | str = "same",
129
+ contiguous: bool = True,
130
+ ) -> Any:
131
+ """ Automatically crop an image to remove zero or uniform regions.
132
+
133
+ This function crops the image to keep only the region where pixels are non-zero
134
+ (or above a threshold). It can work with a mask or directly analyze the image.
135
+
136
+ Args:
137
+ image (Image.Image | NDArray): The image to crop.
138
+ mask (NDArray[bool] | None): Optional binary mask indicating regions to keep.
139
+ threshold (int | float | Callable): Threshold value or function (default: np.min).
140
+ return_type (type | str): Type of the return value (Image.Image, NDArray[np.number], or "same" to match input type).
141
+ contiguous (bool): If True (default), crop to bounding box. If False, remove entire rows/columns with no content.
142
+ Returns:
143
+ Image.Image | NDArray[np.number]: The cropped image.
144
+
145
+ Examples:
146
+ >>> # Test with numpy array with zeros on edges
147
+ >>> import numpy as np
148
+ >>> array = np.zeros((100, 100, 3), dtype=np.uint8)
149
+ >>> array[20:80, 30:70] = 255 # White rectangle in center
150
+ >>> cropped = auto_crop(array, return_type=np.ndarray)
151
+ >>> cropped.shape
152
+ (60, 40, 3)
153
+
154
+ >>> # Test with custom mask
155
+ >>> mask = np.zeros((100, 100), dtype=bool)
156
+ >>> mask[10:90, 10:90] = True
157
+ >>> cropped_with_mask = auto_crop(array, mask=mask, return_type=np.ndarray)
158
+ >>> cropped_with_mask.shape
159
+ (80, 80, 3)
160
+
161
+ >>> # Test with PIL Image
162
+ >>> from PIL import Image
163
+ >>> pil_image = Image.new('RGB', (100, 100), (0, 0, 0))
164
+ >>> from PIL import ImageDraw
165
+ >>> draw = ImageDraw.Draw(pil_image)
166
+ >>> draw.rectangle([25, 25, 75, 75], fill=(255, 255, 255))
167
+ >>> cropped_pil = auto_crop(pil_image)
168
+ >>> cropped_pil.size
169
+ (51, 51)
170
+
171
+ >>> # Test with threshold
172
+ >>> array_gray = np.ones((100, 100), dtype=np.uint8) * 10
173
+ >>> array_gray[20:80, 30:70] = 255
174
+ >>> cropped_threshold = auto_crop(array_gray, threshold=50, return_type=np.ndarray)
175
+ >>> cropped_threshold.shape
176
+ (60, 40)
177
+
178
+ >>> # Test with callable threshold (using lambda to avoid min value)
179
+ >>> array_gray2 = np.ones((100, 100), dtype=np.uint8) * 10
180
+ >>> array_gray2[20:80, 30:70] = 255
181
+ >>> cropped_max = auto_crop(array_gray2, threshold=lambda x: 50, return_type=np.ndarray)
182
+ >>> cropped_max.shape
183
+ (60, 40)
184
+
185
+ >>> # Test with non-contiguous crop
186
+ >>> array_sparse = np.zeros((100, 100, 3), dtype=np.uint8)
187
+ >>> array_sparse[10, 10] = 255
188
+ >>> array_sparse[50, 50] = 255
189
+ >>> array_sparse[90, 90] = 255
190
+ >>> cropped_contiguous = auto_crop(array_sparse, contiguous=True, return_type=np.ndarray)
191
+ >>> cropped_contiguous.shape # Bounding box from (10,10) to (90,90)
192
+ (81, 81, 3)
193
+ >>> cropped_non_contiguous = auto_crop(array_sparse, contiguous=False, return_type=np.ndarray)
194
+ >>> cropped_non_contiguous.shape # Only rows/cols 10, 50, 90
195
+ (3, 3, 3)
196
+
197
+ >>> # Test with 3D crop on depth dimension
198
+ >>> array_3d = np.zeros((50, 50, 10), dtype=np.uint8)
199
+ >>> array_3d[10:40, 10:40, 2:8] = 255 # Content only in depth slices 2-7
200
+ >>> cropped_3d = auto_crop(array_3d, contiguous=True, return_type=np.ndarray)
201
+ >>> cropped_3d.shape # Should crop all 3 dimensions
202
+ (30, 30, 6)
203
+ """
204
+ # Imports
205
+ import numpy as np
206
+ from PIL import Image
207
+
208
+ # Convert to numpy array and store original type
209
+ original_was_pil: bool = isinstance(image, Image.Image)
210
+ image_array: NDArray[np.number] = np.array(image) if original_was_pil else image
211
+
212
+ # Create mask if not provided
213
+ if mask is None:
214
+ if threshold is None:
215
+ threshold = cast(Callable[["NDArray[np.number]"], int | float], np.min)
216
+ threshold_value: int | float = threshold(image_array) if callable(threshold) else threshold
217
+ # Create a 2D mask for both 2D and 3D arrays
218
+ if image_array.ndim == 2:
219
+ mask = image_array > threshold_value
220
+ else: # 3D array
221
+ mask = np.any(image_array > threshold_value, axis=2)
222
+
223
+ # Find rows, columns, and depth with content
224
+ rows_with_content: NDArray[np.bool_] = np.any(mask, axis=1)
225
+ cols_with_content: NDArray[np.bool_] = np.any(mask, axis=0)
226
+
227
+ # For 3D arrays, also find which depth slices have content
228
+ depth_with_content: NDArray[np.bool_] | None = None
229
+ if image_array.ndim == 3:
230
+ # Create a 1D mask for depth dimension
231
+ depth_with_content = np.any(image_array > (threshold(image_array) if callable(threshold) else threshold if threshold is not None else np.min(image_array)), axis=(0, 1))
232
+
233
+ # Return original if no content found
234
+ if not (np.any(rows_with_content) and np.any(cols_with_content)):
235
+ return image_array if return_type != Image.Image else (image if original_was_pil else Image.fromarray(image_array))
236
+
237
+ # Crop based on contiguous parameter
238
+ if contiguous:
239
+ row_idx, col_idx = np.where(rows_with_content)[0], np.where(cols_with_content)[0]
240
+ if image_array.ndim == 3 and depth_with_content is not None and np.any(depth_with_content):
241
+ depth_idx = np.where(depth_with_content)[0]
242
+ cropped_array: NDArray[np.number] = image_array[row_idx[0]:row_idx[-1]+1, col_idx[0]:col_idx[-1]+1, depth_idx[0]:depth_idx[-1]+1]
243
+ else:
244
+ cropped_array: NDArray[np.number] = image_array[row_idx[0]:row_idx[-1]+1, col_idx[0]:col_idx[-1]+1]
245
+ else:
246
+ if image_array.ndim == 3 and depth_with_content is not None:
247
+ # np.ix_ needs index arrays, not boolean arrays
248
+ row_indices = np.where(rows_with_content)[0]
249
+ col_indices = np.where(cols_with_content)[0]
250
+ depth_indices = np.where(depth_with_content)[0]
251
+ ix = np.ix_(row_indices, col_indices, depth_indices)
252
+ else:
253
+ row_indices = np.where(rows_with_content)[0]
254
+ col_indices = np.where(cols_with_content)[0]
255
+ ix = np.ix_(row_indices, col_indices)
256
+ cropped_array = image_array[ix]
257
+
258
+ # Return in requested format
259
+ if return_type == "same":
260
+ return Image.fromarray(cropped_array) if original_was_pil else cropped_array
261
+ return cropped_array if return_type != Image.Image else Image.fromarray(cropped_array)
262
+
263
+
264
+ def numpy_to_gif(
265
+ path: str,
266
+ array: "NDArray[np.integer | np.floating | np.bool_]",
267
+ duration: int = 100,
268
+ loop: int = 0,
269
+ mkdir: bool = True,
270
+ **kwargs: Any
271
+ ) -> None:
272
+ """ Generate a '.gif' file from a numpy array for 3D/4D visualization.
273
+
274
+ Args:
275
+ path (str): Path to the output .gif file.
276
+ array (NDArray): Numpy array to be dumped (must be 3D or 4D).
277
+ 3D: (depth, height, width) - e.g. (64, 1024, 1024)
278
+ 4D: (depth, height, width, channels) - e.g. (50, 64, 1024, 3)
279
+ duration (int): Duration between frames in milliseconds.
280
+ loop (int): Number of loops (0 = infinite).
281
+ mkdir (bool): Create the directory if it does not exist.
282
+ **kwargs (Any): Additional keyword arguments for PIL.Image.save().
283
+
284
+ Examples:
285
+
286
+ .. code-block:: python
287
+
288
+ > # 3D array example
289
+ > array = np.random.randint(0, 256, (10, 100, 100), dtype=np.uint8)
290
+ > numpy_to_gif("output_10_frames_100x100.gif", array, duration=200, loop=0)
291
+
292
+ > # 4D array example (batch of 3D images)
293
+ > array_4d = np.random.randint(0, 256, (5, 10, 100, 3), dtype=np.uint8)
294
+ > numpy_to_gif("output_50_frames_100x100.gif", array_4d, duration=200)
295
+
296
+ > total_duration = 1000 # 1 second
297
+ > numpy_to_gif("output_1s.gif", array, duration=total_duration // len(array))
298
+ """
299
+ # Imports
300
+ import numpy as np
301
+ from PIL import Image
302
+
303
+ # Assertions
304
+ assert array.ndim in (3, 4), f"The input array must be 3D or 4D, got shape {array.shape} instead."
305
+ if array.ndim == 4:
306
+ assert array.shape[-1] in (1, 3), f"For 4D arrays, the last dimension must be 1 or 3 (channels), got shape {array.shape} instead."
307
+
308
+ # Create directory if needed
309
+ if mkdir:
310
+ dirname: str = os.path.dirname(path)
311
+ if dirname != "":
312
+ os.makedirs(dirname, exist_ok=True)
313
+
314
+ # Normalize array if outside [0-255] range to [0-1]
315
+ array = array.astype(np.float32)
316
+ mini, maxi = np.min(array), np.max(array)
317
+ if mini < 0 or maxi > 255:
318
+ array = ((array - mini) / (maxi - mini + 1e-8))
319
+
320
+ # Scale to [0-255] if in [0-1] range
321
+ mini, maxi = np.min(array), np.max(array)
322
+ if mini >= 0.0 and maxi <= 1.0:
323
+ array = (array * 255)
324
+
325
+ # Ensure array is uint8 for PIL compatibility
326
+ array = array.astype(np.uint8)
327
+
328
+ # Convert each slice to PIL Image
329
+ pil_images: list[Image.Image] = [
330
+ Image.fromarray(z_slice)
331
+ for z_slice in array
332
+ ]
333
+
334
+ # Save as GIF
335
+ pil_images[0].save(
336
+ path,
337
+ save_all=True,
338
+ append_images=pil_images[1:],
339
+ duration=duration,
340
+ loop=loop,
341
+ **kwargs
342
+ )
343
+
344
+
345
+ def numpy_to_obj(
346
+ path: str,
347
+ array: "NDArray[np.integer | np.floating | np.bool_]",
348
+ threshold: float = 0.5,
349
+ step_size: int = 1,
350
+ pad_array: bool = True,
351
+ verbose: int = 0
352
+ ) -> None:
353
+ """ Generate a '.obj' file from a numpy array for 3D visualization using marching cubes.
354
+
355
+ Args:
356
+ path (str): Path to the output .obj file.
357
+ array (NDArray): Numpy array to be dumped (must be 3D).
358
+ threshold (float): Threshold level for marching cubes (0.5 for binary data).
359
+ step_size (int): Step size for marching cubes (higher = simpler mesh, faster generation).
360
+ pad_array (bool): If True, pad array with zeros to ensure closed volumes for border cells.
361
+ verbose (int): Verbosity level (0 = no output, 1 = some output, 2 = full output).
362
+
363
+ Examples:
364
+
365
+ .. code-block:: python
366
+
367
+ > array = np.random.rand(64, 64, 64) > 0.5 # Binary volume
368
+ > numpy_to_obj("output_mesh.obj", array, threshold=0.5, step_size=2, pad_array=True, verbose=1)
369
+
370
+ > array = my_3d_data # Some 3D numpy array (e.g. human lung scan)
371
+ > numpy_to_obj("output_mesh.obj", array, threshold=0.3)
372
+ """
373
+ # Imports
374
+ import numpy as np
375
+ from numpy.typing import NDArray
376
+ from skimage import measure
377
+
378
+ # Assertions
379
+ assert array.ndim == 3, f"The input array must be 3D, got shape {array.shape} instead."
380
+ assert step_size > 0, f"Step size must be positive, got {step_size}."
381
+ if verbose > 1:
382
+ debug(
383
+ f"Generating 3D mesh from array of shape {array.shape}, "
384
+ f"threshold={threshold}, step_size={step_size}, pad_array={pad_array}, "
385
+ f"non-zero voxels={np.count_nonzero(array):,}"
386
+ )
387
+
388
+ # Convert to float for marching cubes, if needed
389
+ volume: NDArray[np.floating] = array.astype(np.float32)
390
+ if np.issubdtype(array.dtype, np.bool_):
391
+ threshold = 0.5
392
+ elif np.issubdtype(array.dtype, np.integer):
393
+ # For integer arrays, normalize to 0-1 range
394
+ array = array.astype(np.float32)
395
+ min_val, max_val = np.min(array), np.max(array)
396
+ if min_val != max_val:
397
+ volume = (array - min_val) / (max_val - min_val)
398
+
399
+ # Pad array with zeros to ensure closed volumes for border cells
400
+ if pad_array:
401
+ volume = np.pad(volume, pad_width=step_size, mode='constant', constant_values=0.0)
402
+
403
+ # Apply marching cubes algorithm to extract mesh
404
+ verts, faces, _, _ = cast(
405
+ tuple[NDArray[np.floating], NDArray[np.integer], NDArray[np.floating], NDArray[np.floating]],
406
+ measure.marching_cubes(volume, level=threshold, step_size=step_size, allow_degenerate=False) # type: ignore
407
+ )
408
+
409
+ # Shift vertices back by step_size to account for padding
410
+ if pad_array:
411
+ verts = verts - step_size
412
+
413
+ if verbose > 1:
414
+ debug(f"Generated mesh with {len(verts):,} vertices and {len(faces):,} faces")
415
+ if step_size > 1:
416
+ debug(f"Mesh complexity reduced by ~{step_size ** 3}x compared to step_size=1")
417
+
418
+ # Build content using list for better performance
419
+ content_lines: list[str] = [
420
+ "# OBJ file generated from 3D numpy array",
421
+ f"# Array shape: {array.shape}",
422
+ f"# Threshold: {threshold}",
423
+ f"# Step size: {step_size}",
424
+ f"# Vertices: {len(verts)}",
425
+ f"# Faces: {len(faces)}",
426
+ ""
427
+ ]
428
+
429
+ # Add vertices
430
+ content_lines.extend(f"v {a:.6f} {b:.6f} {c:.6f}" for a, b, c in verts)
431
+
432
+ # Add faces (OBJ format is 1-indexed, simple format without normals)
433
+ content_lines.extend(f"f {a+1} {b+1} {c+1}" for a, b, c in faces)
434
+
435
+ # Write to .obj file
436
+ with super_open(path, "w") as f:
437
+ f.write("\n".join(content_lines) + "\n")
438
+
439
+ if verbose > 0:
440
+ info(f"Successfully exported 3D mesh to: '{path}'")
441
+