staran 0.6.0__py3-none-any.whl → 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,564 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: staran
3
- Version: 0.6.0
4
- Summary: staran - 高性能Python工具库
5
- Home-page: https://github.com/starlxa/staran
6
- Author: StarAn
7
- Author-email: starlxa@icloud.com
8
- Classifier: Programming Language :: Python :: 3
9
- Classifier: License :: OSI Approved :: MIT License
10
- Requires-Python: >=3.7
11
- Description-Content-Type: text/markdown
12
- License-File: LICENSE
13
- Requires-Dist: datetime
14
- Requires-Dist: calendar
15
- Requires-Dist: re
16
- Dynamic: author
17
- Dynamic: author-email
18
- Dynamic: classifier
19
- Dynamic: description
20
- Dynamic: description-content-type
21
- Dynamic: home-page
22
- Dynamic: license-file
23
- Dynamic: requires-dist
24
- Dynamic: requires-python
25
- Dynamic: summary
26
-
27
- # Star## ✨ v0.6.0 新特性
28
-
29
- - 📋 **独立Schema模块** - 专门的表结构定义和管理模块
30
- - 📄 **文档自动生成** - 支持Markdown/PDF/HTML格式的技术文档生成
31
- - 🏢 **业务域支持** - AUM等业务领域的标准表结构定义
32
- - 🔗 **无缝集成** - Schema与特征工程examples模块完美集成
33
- - 🛠️ **模块化引擎架构** - 独立的引擎模块,支持Spark、Hive、图灵平台
34
- - 🔧 **统一接口设计** - 所有引擎提供一致的SQL生成、执行和下载接口
35
- - 🎯 **继承复用架构** - TuringEngine继承SparkEngine,复用SQL生成逻辑
36
- - 📦 **清晰代码分离** - SQL生成与平台特定执行逻辑完全分离
37
- - 🚀 **易于扩展** - 新增数据库支持只需实现BaseEngine接口
38
- - 📁 **独立引擎存储** - engines/文件夹专门存放所有数据库引擎
39
- - 🔄 **向后兼容** - 保持对原有API的完全兼容工程工具包
40
-
41
- ## � 专为机器学习设计的Python工具包
42
-
43
- Staran是一个强大的特征工程和数据处理工具包,提供从数据到模型的完整解决方案。特别针对工银图灵平台优化,让特征工程和模型训练变得前所未有的简单。
44
-
45
- ## ✨ v0.6.0 新特性
46
-
47
- - �️ **模块化引擎架构** - 独立的引擎模块,支持Spark、Hive、图灵平台
48
- - 🔧 **统一接口设计** - 所有引擎提供一致的SQL生成、执行和下载接口
49
- - 🎯 **继承复用架构** - TuringEngine继承SparkEngine,复用SQL生成逻辑
50
- - 📦 **清晰代码分离** - SQL生成与平台特定执行逻辑完全分离
51
- - � **易于扩展** - 新增数据库支持只需实现BaseEngine接口
52
- - � **独立引擎存储** - engines/文件夹专门存放所有数据库引擎
53
- - 🔄 **向后兼容** - 保持对原有API的完全兼容
54
-
55
- ## 🚀 快速开始
56
-
57
- ### 安装
58
- ```bash
59
- pip install staran
60
- # 或在图灵平台中直接使用
61
- ```
62
-
63
- ### 基础用法 - 日期处理
64
-
65
- ```python
66
- from staran import Date
67
-
68
- # 创建日期 - 智能格式记忆
69
- date1 = Date('202504') # 输出: 202504 (记住年月格式)
70
- date2 = Date('20250415') # 输出: 20250415 (记住完整格式)
71
- date3 = Date(2025, 4, 15) # 输出: 2025-04-15
72
-
73
- # 日期运算保持格式
74
- new_date = date1.add_months(2) # 输出: 202506 (保持YYYYMM格式)
75
- ```
76
-
77
- ### 引擎架构 - 多平台支持
78
-
79
- ```python
80
- from staran.engines import create_engine, create_turing_engine
81
-
82
- # 1. 使用Spark引擎
83
- spark_engine = create_engine('spark', 'analytics_db')
84
-
85
- # 2. 使用Hive引擎
86
- hive_engine = create_engine('hive', 'warehouse_db')
87
-
88
- # 3. 使用图灵平台引擎 (继承Spark + turingPythonLib)
89
- turing_engine = create_turing_engine('analytics_db')
90
-
91
- # 统一接口 - 所有引擎都支持相同方法
92
- sql = spark_engine.generate_aggregation_sql(schema, 2025, 7, ['sum', 'avg'])
93
- result = turing_engine.create_table('my_table', sql, execute=True)
94
- download = turing_engine.download_table_data('my_table', 'file:///nfsHome/data.parquet')
95
- ```
96
-
97
- ### Schema模块 - 表结构管理与文档生成
98
-
99
- ```python
100
- from staran import get_aum_schemas, export_aum_docs, SchemaDocumentGenerator
101
-
102
- # 1. 获取预定义业务表结构
103
- schemas = get_aum_schemas() # 获取AUM业务域的所有表结构
104
-
105
- for table_type, schema in schemas.items():
106
- print(f"{table_type}: {schema.table_name} ({len(schema.fields)}个字段)")
107
-
108
- # 2. 生成业务文档
109
- docs = export_aum_docs('./docs', 'markdown') # 生成Markdown格式文档
110
-
111
- # 3. 自定义文档生成
112
- generator = SchemaDocumentGenerator()
113
- doc_path = generator.export_schema_doc(
114
- schema=schemas['behavior'],
115
- business_domain="AUM",
116
- table_type="behavior",
117
- format_type="markdown"
118
- )
119
-
120
- # 4. 与特征工程集成
121
- from staran import create_aum_example, run_aum_example
122
-
123
- # 基于预定义schema创建特征工程示例
124
- example = create_aum_example()
125
- summary = example.get_summary() # 获取特征统计信息
126
-
127
- # 一键运行完整流程
128
- results = run_aum_example('202507') # 生成916个特征
129
- ```
130
-
131
- ### 特征工程 - SQL自动生成
132
-
133
- ```python
134
- from staran import TableSchema, FeatureGenerator, FeatureManager
135
-
136
- # 1. 定义表结构
137
- schema = TableSchema('user_behavior')
138
- schema.add_primary_key('user_id', 'string')
139
- schema.add_date_field('date', 'date')
140
- schema.add_field('amount', 'decimal', aggregatable=True)
141
- schema.add_field('category', 'string')
142
- schema.set_monthly_unique(True)
143
-
144
- # 2. 创建特征管理器 (基于引擎架构)
145
- manager = FeatureManager('analytics_db', engine_type='spark')
146
-
147
- # 3. 生成特征SQL
148
- generator = FeatureGenerator(schema, manager)
149
- result = generator.generate_feature_by_type('aggregation', 2025, 7)
150
- print(result['sql']) # 自动生成的聚合特征SQL
151
- ```
152
-
153
- ### 🏦 图灵平台集成 - 一键ML流程
154
-
155
- ```python
156
- from staran.engines import create_turing_engine
157
-
158
- # 1. 创建图灵引擎
159
- turing = create_turing_engine("ml_analytics")
160
-
161
- # 2. 创建特征表
162
- create_result = turing.create_table(
163
- table_name="user_features_2025_07_raw",
164
- select_sql="SELECT user_id, sum(amount) as total_amount FROM user_behavior GROUP BY user_id",
165
- execute=True,
166
- mode="cluster"
167
- )
168
-
169
- # 3. 下载特征数据
170
- download_result = turing.download_table_data(
171
- table_name="user_features_2025_07_raw",
172
- output_path="file:///nfsHome/ml_features/user_features.parquet",
173
- mode="cluster"
174
- )
175
-
176
- # 4. 批量下载查询结果
177
- query_result = turing.download_query_result(
178
- sql="SELECT user_id, label FROM ml.training_labels WHERE dt='2025-07-28'",
179
- output_path="file:///nfsHome/ml_labels/labels.parquet"
180
- )
181
-
182
- print(f"特征表创建: {create_result['status']}")
183
- print(f"数据下载: {download_result['status']}")
184
- ```
185
-
186
- ## 📖 核心功能
187
-
188
- ### �️ 引擎架构设计
189
-
190
- **模块化引擎架构,清晰分离关注点:**
191
-
192
- ```
193
- BaseEngine (抽象基类)
194
- ├── SparkEngine (Spark SQL实现)
195
- │ └── TuringEngine (继承Spark + turingPythonLib)
196
- └── HiveEngine (Hive SQL实现)
197
- ```
198
-
199
- | 引擎类型 | SQL生成 | 执行方式 | 下载方式 | 适用场景 |
200
- |---------|---------|---------|---------|---------|
201
- | SparkEngine | Spark SQL | 本地执行器 | DataFrame保存 | 本地开发、测试 |
202
- | HiveEngine | Hive SQL | 本地执行器 | 目录导出 | 传统Hive环境 |
203
- | TuringEngine | Spark SQL | turingPythonLib | tp.download() | 工银图灵平台 |
204
-
205
- | 功能对比 | 原生turingPythonLib | Staran集成 |
206
- |---------|-------------------|------------|
207
- | 参数管理 | 手动构建完整参数字典 | 简化API,智能默认值 |
208
- | 特征工程 | 手写SQL,手动管理表名 | 自动生成SQL,智能表名管理 |
209
- | 批量操作 | 循环调用,手动错误处理 | 一键批量,完整错误处理 |
210
- | 代码量 | 100+ 行样板代码 | 5-10行核心代码 |
211
-
212
- ```python
213
- # 🚀 完整ML工作流示例
214
- from staran.sql.turing_integration import create_turing_integration
215
-
216
- turing = create_turing_integration("production_analytics")
217
-
218
- # 步骤1: 读取原始数据
219
- raw_data = turing.read_hive_table(
220
- table_name="dwh.user_behavior_detail",
221
- condition='pt_dt="2025-07-28" limit 500000',
222
- local_path="/nfsHome/raw_data.csv"
223
- )
224
-
225
- # 步骤2: 一键特征工程
226
- pipeline_result = turing.create_and_download_features(
227
- feature_sqls=auto_generated_feature_sqls,
228
- base_table="ml_user_features",
229
- output_dir="file:///nfsHome/features/",
230
- mode="cluster"
231
- )
232
-
233
- # 步骤3: 批量下载训练数据
234
- batch_result = turing.feature_manager.batch_download_features(
235
- base_table="ml_user_features",
236
- year=2025, month=7,
237
- output_dir="file:///nfsHome/training_data/",
238
- mode="cluster"
239
- )
240
-
241
- # 现在可以直接用于模型训练!
242
- ```
243
-
244
- ### 🔧 智能特征工程 - 自动SQL生成
245
-
246
- **支持4种特征类型的自动化生成:**
247
-
248
- 1. **原始特征拷贝** (Raw Copy) - 非聚合字段智能拷贝
249
- 2. **聚合统计特征** (Aggregation) - sum/avg/count/min/max等
250
- 3. **环比特征** (MoM) - 月度差分对比分析
251
- 4. **同比特征** (YoY) - 年度差分对比分析
252
-
253
- ```python
254
- from staran import TableSchema, FeatureGenerator, FeatureConfig
255
-
256
- # 定义表结构
257
- schema = TableSchema('user_monthly_behavior')
258
- schema.add_primary_key('user_id', 'string')
259
- schema.add_date_field('month_date', 'date')
260
- schema.add_field('purchase_amount', 'decimal', aggregatable=True)
261
- schema.add_field('order_count', 'int', aggregatable=True)
262
- schema.add_field('user_level', 'string')
263
-
264
- # 配置特征生成策略
265
- config = FeatureConfig()
266
- config.enable_feature('aggregation') # 启用聚合特征
267
- config.enable_feature('mom') # 启用环比特征
268
- config.aggregation_types = ['sum', 'avg', 'count']
269
- config.mom_periods = [1, 3] # 1月和3月环比
270
-
271
- # 生成特征
272
- generator = FeatureGenerator(schema)
273
- generator.config = config
274
-
275
- # 查看特征摘要
276
- summary = generator.get_feature_summary()
277
- print(f"将生成 {summary['total']} 个特征")
278
-
279
- # 生成特定类型的SQL
280
- agg_result = generator.generate_feature_by_type('aggregation', 2025, 7)
281
- print("聚合特征SQL:", agg_result['sql'])
282
- ```
283
-
284
- ### 📥 智能数据下载 - 兼容turingPythonLib
285
-
286
- **3种下载方式,满足不同需求:**
287
-
288
- ```python
289
- from staran import SQLManager, FeatureTableManager
290
-
291
- manager = SQLManager("analytics_db")
292
-
293
- # 1. 基础数据下载
294
- result = manager.download_data(
295
- sql="SELECT * FROM user_behavior WHERE year=2025 AND month=7",
296
- output_path="file:///nfsHome/data/user_behavior_202507/",
297
- mode="cluster",
298
- spark_resource={
299
- 'num_executors': '8',
300
- 'driver_memory': '8G',
301
- 'executor_memory': '8G'
302
- }
303
- )
304
-
305
- # 2. 单个特征表下载
306
- feature_manager = FeatureTableManager(manager)
307
- single_result = feature_manager.download_feature_table(
308
- table_name="analytics_db.user_features_2025_07_f001",
309
- output_path="file:///nfsHome/features/agg_features/",
310
- condition="WHERE purchase_amount > 1000"
311
- )
312
-
313
- # 3. 批量特征表下载
314
- batch_result = feature_manager.batch_download_features(
315
- base_table="user_features",
316
- year=2025, month=7,
317
- output_dir="file:///nfsHome/batch_features/",
318
- feature_nums=[1, 2, 3] # 指定下载的特征编号
319
- )
320
- ```
321
-
322
- ### 🗓️ Date工具 - 智能格式记忆
323
-
324
- **Date类会根据输入格式自动设置默认输出格式:**
325
-
326
- | 输入方式 | 默认输出 | 说明 |
327
- |---------|---------|------|
328
- | `Date('202504')` | `202504` | 年月紧凑格式 |
329
- | `Date('20250415')` | `20250415` | 完整紧凑格式 |
330
- | `Date(2025, 4)` | `2025-04` | 年月格式 |
331
- | `Date(2025, 4, 15)` | `2025-04-15` | 完整格式 |
332
-
333
- ```python
334
- date = Date('202504')
335
-
336
- # 默认格式(保持输入风格)
337
- print(date) # 202504
338
-
339
- # 多种输出格式
340
- print(date.format_full()) # 2025-04-01
341
- print(date.format_chinese()) # 2025年04月01日
342
- print(date.format_year_month()) # 2025-04
343
- print(date.format_compact()) # 20250401
344
-
345
- # 日期运算保持格式
346
- next_month = date.add_months(1) # 202505
347
- tomorrow = date.add_days(1) # 202504 (智能处理)
348
- ```
349
-
350
- ## 🎯 设计特色
351
-
352
- - **🏦 图灵平台专用** - 深度集成turingPythonLib,简化95%代码
353
- - **🚀 端到端自动化** - 从特征工程到模型训练数据的完整流程
354
- - **📊 智能特征工程** - 自动生成4类特征SQL,无需手写复杂查询
355
- - **📥 智能数据下载** - 兼容turingPythonLib格式,支持批量操作
356
- - **🔄 智能表管理** - 自动生成规范表名,版本控制和生命周期管理
357
- - **⚡ 简化API设计** - 直观易用,符合Python习惯
358
- - **🛡️ 完整错误处理** - 智能重试、详细日志和操作报告
359
-
360
- ## 📁 项目结构
361
-
362
- ```
363
- staran/
364
- ├── __init__.py # 主包入口,v0.6.0功能导出
365
- ├── schemas/ # 🆕 表结构定义与文档生成模块
366
- │ ├── __init__.py # Schema模块入口
367
- │ ├── document_generator.py # 文档生成器 (MD/PDF/HTML)
368
- │ └── aum/ # AUM业务域表结构
369
- │ └── __init__.py # AUM表结构定义
370
- ├── engines/ # 🆕 模块化引擎架构
371
- │ ├── __init__.py # 引擎模块入口
372
- │ ├── base.py # BaseEngine抽象基类
373
- │ ├── spark.py # SparkEngine实现
374
- │ ├── hive.py # HiveEngine实现
375
- │ └── turing.py # TuringEngine (继承SparkEngine)
376
- ├── features/ # 🆕 特征工程模块
377
- │ ├── __init__.py # 特征模块入口
378
- │ ├── manager.py # FeatureManager (使用引擎架构)
379
- │ ├── schema.py # 表结构定义
380
- │ └── generator.py # 特征生成器
381
- ├── examples/ # 🆕 完整示例模块
382
- │ ├── __init__.py # 示例模块入口
383
- │ └── aum_longtail.py # AUM代发长尾模型示例
384
- ├── tools/
385
- │ ├── __init__.py # 工具模块
386
- │ └── date.py # Date类实现
387
- ├── setup.py # 安装配置
388
- ├── README.md # 本文档 v0.6.0
389
- └── quick-upload.sh # 快速部署脚本
390
- ```
391
-
392
- ## 🧪 快速测试
393
-
394
- ### 引擎架构测试
395
- ```python
396
- from staran import create_engine, create_turing_engine
397
-
398
- # 测试SparkEngine
399
- spark = create_engine('spark')
400
- print(f"Spark引擎: {spark.__class__.__name__}")
401
-
402
- # 测试TuringEngine继承
403
- turing = create_turing_engine("test_analytics")
404
- print(f"Turing引擎父类: {turing.__class__.__bases__[0].__name__}")
405
- print(f"是否为SparkEngine子类: {isinstance(turing, spark.__class__)}")
406
-
407
- # 测试引擎功能
408
- sql = turing.generate_sql("SELECT user_id, amount FROM users", {"table": "test"})
409
- print(f"SQL生成测试: {'success' if sql else 'failed'}")
410
- ```
411
-
412
- ### AUM示例测试
413
- ```python
414
- from staran import create_aum_example
415
-
416
- # 创建示例并查看摘要
417
- example = create_aum_example("dwegdata03000")
418
- example.print_summary()
419
-
420
- # 快速运行(测试模式,不执行实际SQL)
421
- print("🎯 AUM长尾模型示例已准备就绪")
422
- print("📊 包含4张业务表的完整特征工程流程")
423
- ```
424
-
425
- ### 一键运行示例
426
- ```python
427
- from staran import run_aum_example
428
-
429
- # 最简单的使用方式
430
- results = run_aum_example("202507") # 指定特征月份
431
- print(f"✅ 处理完成: {len(results)} 个表")
432
- ```
433
-
434
- ### Date工具测试
435
- ```python
436
- from staran import Date
437
-
438
- # 测试格式记忆
439
- date = Date('202504')
440
- print(f"原始: {date}") # 202504
441
- print(f"加2月: {date.add_months(2)}") # 202506
442
-
443
- # 测试多格式输出
444
- print(f"中文: {date.format_chinese()}") # 2025年04月01日
445
- print(f"完整: {date.format_full()}") # 2025-04-01
446
- ```
447
-
448
- ## 🚀 在图灵NoteBook中开始使用
449
-
450
- ### 1. 环境准备
451
- ```python
452
- # 在图灵NoteBook中执行
453
- import sys
454
- sys.path.append("/nfsHome/staran") # 假设已上传staran包
455
-
456
- # 检查新引擎架构
457
- from staran import create_turing_engine
458
- turing = create_turing_engine("your_analytics_db")
459
- print(f"✅ 引擎类型: {turing.__class__.__name__}")
460
- print(f"✅ 继承关系: 继承自{turing.__class__.__bases__[0].__name__}")
461
- print("🚀 环境就绪!开始特征工程之旅")
462
- ```
463
-
464
- ### 2. 运行AUM示例
465
- ```python
466
- # 最简单的方式 - 一行代码完成复杂特征工程
467
- from staran import run_aum_example
468
-
469
- results = run_aum_example(
470
- feature_date="202507", # 特征月份
471
- database="dwegdata03000", # 数据库名
472
- output_path="file:///nfsHome/aum_features" # 输出路径
473
- )
474
-
475
- print(f"✅ 成功!处理了4张表,生成了完整的特征数据集")
476
- print("📂 数据已保存到 /nfsHome/aum_features/ 目录")
477
- ```
478
-
479
- ### 3. 自定义特征工程
480
- ```python
481
- # 如需更多控制,使用详细API
482
- from staran import create_aum_example
483
-
484
- example = create_aum_example("dwegdata03000")
485
-
486
- # 查看会生成哪些特征
487
- example.print_summary()
488
-
489
- # 运行特征工程
490
- results = example.run("202507")
491
-
492
- # 查看结果
493
- for table_type, result in results.items():
494
- if 'table_name' in result:
495
- print(f"{table_type}: {result['table_name']}")
496
- ```
497
-
498
- ## 📊 性能优势
499
-
500
- ### 开发效率提升
501
- - **代码减少**: 从100+行样板代码降至5-10行核心逻辑
502
- - **开发时间**: 特征工程时间减少80%
503
- - **维护成本**: 自动化管理减少手动错误
504
-
505
- ### 运行性能优化
506
- - **集群资源**: 智能Spark资源分配和优化
507
- - **批量处理**: 并行下载和增量处理
508
- - **错误恢复**: 自动重试和断点续传
509
-
510
- ## 🎯 完整示例
511
-
512
- ### AUM代发长尾模型 - 简化API
513
- 位置:`staran.examples` 模块
514
-
515
- 基于真实金融业务场景的完整特征工程示例,展示了新的引擎架构优势:
516
-
517
- ```python
518
- # 最简单的使用方式
519
- from staran import run_aum_example
520
-
521
- # 一键运行完整特征工程流程
522
- results = run_aum_example(
523
- feature_date="202507", # 可选,默认当前月
524
- database="dwegdata03000",
525
- output_path="file:///nfsHome/aum_longtail"
526
- )
527
-
528
- print(f"✅ 特征工程完成!处理了 {len(results)} 个表")
529
- ```
530
-
531
- **更多控制的方式:**
532
- ```python
533
- from staran import create_aum_example
534
-
535
- # 创建示例实例
536
- example = create_aum_example("dwegdata03000")
537
-
538
- # 查看特征摘要
539
- example.print_summary()
540
-
541
- # 运行特征工程
542
- results = example.run("202507")
543
- ```
544
-
545
- **示例特点:**
546
- - 🏦 **真实业务场景** - 4张银行核心业务表的完整处理
547
- - 🔧 **智能特征配置** - A表(源表+聚合),其他表(全特征:环比5个月+同比1年)
548
- - 📊 **多维度特征** - 客户行为、资产配置、交易统计、境外交易等
549
- - 🚀 **简化API** - 一行代码完成复杂特征工程
550
- - 📋 **完整文档** - 每个字段都有详细的业务含义说明
551
-
552
- **数据表说明:**
553
- - **A表** (`bi_hlwj_dfcw_f1_f4_wy`): 客户行为特征 → 仅生成原始拷贝+聚合特征
554
- - **B表** (`bi_hlwj_zi_chan_avg_wy`): 资产平均余额 → 生成全部特征(聚合+环比5个月+同比1年)
555
- - **C表** (`bi_hlwj_zi_chang_month_total_zb`): 月度资产配置 → 生成全部特征
556
- - **D表** (`bi_hlwj_realy_month_stat_wy`): 月度实际统计 → 生成全部特征
557
-
558
- ## 📄 许可证
559
-
560
- MIT License
561
-
562
- ---
563
-
564
- **Staran v0.6.0** - 模块化引擎架构,让机器学习特征工程变得前所未有的简单 🌟
@@ -1,33 +0,0 @@
1
- staran/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- staran/banks/__init__.py,sha256=m4IUdFLXvNtgpmxDhKptCtALyaGkF1-T9hbNqdXczLI,544
3
- staran/banks/xinjiang_icbc/__init__.py,sha256=Ql3gQFh1h4EwUdU3fePW1chV5iAegxjLWiPxbYa_J80,3131
4
- staran/engines/__init__.py,sha256=aQCpDxY_JcKlApEsEp2wg_P3IwNDTCFb7OYcLHiPPmk,1627
5
- staran/engines/base.py,sha256=IIN-QxPsO-q3KmQ3Lz0cB9bs6Oac0Wy5MIF605HrHVw,7969
6
- staran/engines/hive.py,sha256=-KwZiAvK5cxwnoyYQlqGWrcZkeKhbd8QCX3chpbezd0,5894
7
- staran/engines/spark.py,sha256=XPxzefD9UF8oigeQISBW892RINJ9dGLbl994FWpIKBc,9361
8
- staran/engines/turing.py,sha256=XEKkEMMWedvaGxKQ2vEHmB3TWLNLxOu1upgiBylwqjA,15516
9
- staran/examples/__init__.py,sha256=rXjHvD_EA1sl04WAcOMGnktOwZstjUxaei6bo7pPMII,229
10
- staran/examples/aum_longtail.py,sha256=UFeLzhslS0Qw1defD9M8mI6Jq4G2BHoyqdjNfX0cgH0,9915
11
- staran/examples/aum_longtail_old.py,sha256=wZW_3NsU8lOjohtzI1ewzFIqTDAt8lnUberQJVYePfs,21723
12
- staran/features/__init__.py,sha256=uMloEuevUjUPfro8Yv4STwvxpSVL0J1xsQTzN_EkLpo,1828
13
- staran/features/engines.py,sha256=kqdS2xjmCVi0Xz1Oc3WaTMIavgAriX8F7VvUgVcpfqo,10039
14
- staran/features/generator.py,sha256=CI1F_PshOvokQJelsqSaVp-SNQpMc-WVmjMQKzgdeLw,23114
15
- staran/features/manager.py,sha256=2-3Hc3qthtyzwiuQy5QTz6RfhKK3szoylconzI3moc4,5201
16
- staran/features/schema.py,sha256=FwOfpTcxq4K8zkO3MFNqKPQBp_e8qY-N6gazqm9_lAQ,6067
17
- staran/models/__init__.py,sha256=VbfrRjmnp8KlFSEZOa-buECAaERptzAnvUUZK9dpgtY,2390
18
- staran/models/bank_configs.py,sha256=wN3GA_8cb5wevDC-sWRcJ3lMuaHahZVjC85K_t2aQt0,8177
19
- staran/models/config.py,sha256=fTbZtJq4-ZuCSSd1eW7TkIbEdDyZv2agHJCYnwOCJ_s,8886
20
- staran/models/daifa_models.py,sha256=J7aqK41NDMDjacsjmxqwyuJfgf1kJx-Kaxj5CGQLISE,13166
21
- staran/models/registry.py,sha256=Zeey4TtbHtJ40odyZQzOLijyZCmlMBRuniPk_znS2Q8,10223
22
- staran/models/target.py,sha256=gKTTatxvOJjmE50qD6G6mhlYLuZL3Cvn3FLNbXl1eeU,10531
23
- staran/schemas/__init__.py,sha256=ztrBlQ3irbgM7gHB_dhiLEX1ZpDX2AAWOeiPnZTe-sk,779
24
- staran/schemas/document_generator.py,sha256=Mr7TjmKwspqxXnp9DhzZxsRx0l2Bo7MOI8mOxRtgwxU,13600
25
- staran/schemas/aum/__init__.py,sha256=z0cuC6A3z-1cPKMDYrn0wCumjKkpk_0kfqGfW1JNEbc,9815
26
- staran/tools/__init__.py,sha256=KtudrYnxKD9HZEL4H-mrWlKrmsI3rYjJrLeC9YDTpG4,1054
27
- staran/tools/date.py,sha256=-QyEMWVx6czMuOIwcV7kR3gBMRVOwb5qevo7GEFSJKE,10488
28
- staran/tools/document_generator.py,sha256=Mr7TjmKwspqxXnp9DhzZxsRx0l2Bo7MOI8mOxRtgwxU,13600
29
- staran-0.6.0.dist-info/licenses/LICENSE,sha256=2EmsBIyDCono4iVXNpv5_px9qt2b7hfPq1WuyGVMNP4,1361
30
- staran-0.6.0.dist-info/METADATA,sha256=KTBVO9J_Z20Nya-Mj48lXDTUNjWRfbU9wwo81__y7fk,18809
31
- staran-0.6.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
32
- staran-0.6.0.dist-info/top_level.txt,sha256=NOUZtXSh5oSIEjHrC0lQ9WmoKtD010Q00dghWyag-Zs,7
33
- staran-0.6.0.dist-info/RECORD,,
File without changes