staran 0.4.1__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,81 @@
1
+ """
2
+ Staran Models Module - v0.5.0
3
+
4
+ 专业的机器学习模型配置和管理模块,提供:
5
+ - 模型配置管理 (ModelConfig)
6
+ - 目标变量定义 (TargetDefinition)
7
+ - 银行特定配置支持
8
+ - SQL驱动的target生成
9
+ - 模型部署和版本管理
10
+
11
+ 支持的模型类型:
12
+ - 分类模型 (Classification)
13
+ - 回归模型 (Regression)
14
+ - 聚类模型 (Clustering)
15
+ - 时间序列模型 (TimeSeries)
16
+
17
+ 支持的银行:
18
+ - 工商银行 (ICBC)
19
+ - 通用配置 (Generic)
20
+ """
21
+
22
+ from .config import ModelConfig, ModelType, create_model_config
23
+ from .target import TargetDefinition, TargetType, create_target_definition
24
+ from .registry import ModelRegistry, register_model, get_model_config, save_model_registry
25
+ from .bank_configs import BankConfig, get_bank_config, register_bank_config
26
+
27
+ # 版本信息
28
+ __version__ = "0.5.0"
29
+
30
+ # 主要导出
31
+ __all__ = [
32
+ # 模型配置
33
+ 'ModelConfig',
34
+ 'ModelType',
35
+ 'create_model_config',
36
+
37
+ # 目标定义
38
+ 'TargetDefinition',
39
+ 'TargetType',
40
+ 'create_target_definition',
41
+
42
+ # 模型注册
43
+ 'ModelRegistry',
44
+ 'register_model',
45
+ 'get_model_config',
46
+ 'save_model_registry',
47
+
48
+ # 银行配置
49
+ 'BankConfig',
50
+ 'get_bank_config',
51
+ 'register_bank_config',
52
+ ]
53
+
54
+ # 便捷函数
55
+ def create_icbc_model(model_name: str, model_type: str, target_sql: str, algorithm: str = "random_forest", **kwargs):
56
+ """创建工商银行专用模型配置的便捷函数"""
57
+ bank_config = get_bank_config('icbc')
58
+ model_config = create_model_config(
59
+ name=model_name,
60
+ model_type=model_type,
61
+ algorithm=algorithm,
62
+ bank_code="icbc",
63
+ **kwargs
64
+ )
65
+
66
+ target_config = create_target_definition(
67
+ name=f"{model_name}_target",
68
+ target_type="sql_based",
69
+ sql_query=target_sql,
70
+ bank_code="icbc"
71
+ )
72
+
73
+ return register_model(model_config, target_config)
74
+
75
+ def list_available_models():
76
+ """列出所有可用的模型配置"""
77
+ return ModelRegistry.list_models()
78
+
79
+ def get_model_summary(model_name: str):
80
+ """获取模型配置摘要"""
81
+ return ModelRegistry.get_model_summary(model_name)
@@ -0,0 +1,269 @@
1
+ """
2
+ 银行特定配置模块
3
+
4
+ 为不同银行提供定制化的配置和业务规则
5
+ """
6
+
7
+ from enum import Enum
8
+ from typing import Dict, Any, List, Optional
9
+ from dataclasses import dataclass, field
10
+
11
+
12
+ class BankCode(Enum):
13
+ """银行代码枚举"""
14
+ ICBC = "icbc" # 工商银行
15
+ CCB = "ccb" # 建设银行
16
+ BOC = "boc" # 中国银行
17
+ ABC = "abc" # 农业银行
18
+ CMB = "cmb" # 招商银行
19
+ GENERIC = "generic" # 通用配置
20
+
21
+
22
+ @dataclass
23
+ class BankConfig:
24
+ """银行配置类"""
25
+ # 基本信息
26
+ bank_code: str # 银行代码
27
+ bank_name: str # 银行名称
28
+ region: str = "cn" # 地区代码
29
+
30
+ # 数据库配置
31
+ database_config: Dict[str, Any] = field(default_factory=dict)
32
+
33
+ # 表名映射 (不同银行的表名可能不同)
34
+ table_mappings: Dict[str, str] = field(default_factory=dict)
35
+
36
+ # 字段映射 (不同银行的字段名可能不同)
37
+ field_mappings: Dict[str, Dict[str, str]] = field(default_factory=dict)
38
+
39
+ # 业务规则
40
+ business_rules: Dict[str, Any] = field(default_factory=dict)
41
+
42
+ # 合规要求
43
+ compliance_rules: Dict[str, Any] = field(default_factory=dict)
44
+
45
+ # 数据处理规则
46
+ data_processing_rules: Dict[str, Any] = field(default_factory=dict)
47
+
48
+ # 模型部署配置
49
+ deployment_config: Dict[str, Any] = field(default_factory=dict)
50
+
51
+ # 特征工程配置
52
+ feature_engineering_config: Dict[str, Any] = field(default_factory=dict)
53
+
54
+ def get_table_name(self, standard_table: str) -> str:
55
+ """获取银行特定的表名"""
56
+ return self.table_mappings.get(standard_table, standard_table)
57
+
58
+ def get_field_name(self, table: str, standard_field: str) -> str:
59
+ """获取银行特定的字段名"""
60
+ table_fields = self.field_mappings.get(table, {})
61
+ return table_fields.get(standard_field, standard_field)
62
+
63
+ def get_business_rule(self, rule_name: str, default=None):
64
+ """获取业务规则"""
65
+ return self.business_rules.get(rule_name, default)
66
+
67
+ def validate_compliance(self, operation: str) -> bool:
68
+ """验证操作是否符合合规要求"""
69
+ compliance_checks = self.compliance_rules.get(operation, {})
70
+ # 这里可以实现具体的合规检查逻辑
71
+ return compliance_checks.get('enabled', True)
72
+
73
+
74
+ # 银行配置注册表
75
+ _BANK_CONFIGS: Dict[str, BankConfig] = {}
76
+
77
+
78
+ def register_bank_config(config: BankConfig):
79
+ """注册银行配置"""
80
+ _BANK_CONFIGS[config.bank_code] = config
81
+ print(f"✅ 银行配置 {config.bank_code} ({config.bank_name}) 注册成功")
82
+
83
+
84
+ def get_bank_config(bank_code: str) -> Optional[BankConfig]:
85
+ """获取银行配置"""
86
+ return _BANK_CONFIGS.get(bank_code)
87
+
88
+
89
+ def list_bank_configs() -> List[Dict[str, str]]:
90
+ """列出所有银行配置"""
91
+ return [
92
+ {
93
+ 'bank_code': config.bank_code,
94
+ 'bank_name': config.bank_name,
95
+ 'region': config.region
96
+ }
97
+ for config in _BANK_CONFIGS.values()
98
+ ]
99
+
100
+
101
+ # 预定义银行配置
102
+ def create_icbc_config() -> BankConfig:
103
+ """创建工商银行配置"""
104
+ return BankConfig(
105
+ bank_code="icbc",
106
+ bank_name="中国工商银行",
107
+ region="cn",
108
+
109
+ database_config={
110
+ "default_database": "dwegdata03000",
111
+ "connection_pool_size": 10,
112
+ "query_timeout": 300
113
+ },
114
+
115
+ table_mappings={
116
+ "behavior_table": "bi_hlwj_dfcw_f1_f4_wy",
117
+ "asset_avg_table": "bi_hlwj_zi_chan_avg_wy",
118
+ "asset_config_table": "bi_hlwj_zi_chang_month_total_zb",
119
+ "monthly_stat_table": "bi_hlwj_realy_month_stat_wy"
120
+ },
121
+
122
+ field_mappings={
123
+ "behavior_table": {
124
+ "customer_id": "party_id",
125
+ "date_field": "data_dt"
126
+ }
127
+ },
128
+
129
+ business_rules={
130
+ "data_retention_days": 90,
131
+ "min_sample_size": 1000,
132
+ "max_features": 500,
133
+ "risk_threshold": 0.8,
134
+ "aum_threshold": 100000,
135
+ "longtail_definition": {
136
+ "asset_threshold": 50000,
137
+ "activity_threshold": 0.3
138
+ }
139
+ },
140
+
141
+ compliance_rules={
142
+ "data_export": {
143
+ "enabled": True,
144
+ "approval_required": True,
145
+ "encryption_required": True
146
+ },
147
+ "model_deployment": {
148
+ "enabled": True,
149
+ "testing_required": True,
150
+ "documentation_required": True
151
+ },
152
+ "feature_selection": {
153
+ "enabled": True,
154
+ "sensitive_data_allowed": False,
155
+ "audit_trail_required": True
156
+ }
157
+ },
158
+
159
+ data_processing_rules={
160
+ "missing_value_strategy": "median",
161
+ "outlier_detection": True,
162
+ "outlier_threshold": 3.0,
163
+ "feature_scaling": "standard",
164
+ "categorical_encoding": "one_hot"
165
+ },
166
+
167
+ deployment_config={
168
+ "platform": "turing",
169
+ "environment": "production",
170
+ "monitoring_enabled": True,
171
+ "auto_scaling": True,
172
+ "backup_required": True
173
+ },
174
+
175
+ feature_engineering_config={
176
+ "time_windows": ["1_month", "3_months", "6_months", "1_year"],
177
+ "aggregation_functions": ["sum", "avg", "max", "min", "std"],
178
+ "interaction_features": True,
179
+ "polynomial_features": False,
180
+ "target_encoding": True
181
+ }
182
+ )
183
+
184
+
185
+ def create_generic_config() -> BankConfig:
186
+ """创建通用银行配置"""
187
+ return BankConfig(
188
+ bank_code="generic",
189
+ bank_name="通用银行配置",
190
+ region="generic",
191
+
192
+ database_config={
193
+ "default_database": "default_db",
194
+ "connection_pool_size": 5,
195
+ "query_timeout": 180
196
+ },
197
+
198
+ table_mappings={
199
+ "behavior_table": "customer_behavior",
200
+ "asset_avg_table": "customer_assets",
201
+ "asset_config_table": "asset_config",
202
+ "monthly_stat_table": "monthly_stats"
203
+ },
204
+
205
+ business_rules={
206
+ "data_retention_days": 30,
207
+ "min_sample_size": 100,
208
+ "max_features": 100
209
+ },
210
+
211
+ compliance_rules={
212
+ "data_export": {"enabled": True},
213
+ "model_deployment": {"enabled": True}
214
+ },
215
+
216
+ data_processing_rules={
217
+ "missing_value_strategy": "mean",
218
+ "outlier_detection": False,
219
+ "feature_scaling": "none"
220
+ }
221
+ )
222
+
223
+
224
+ # 初始化默认银行配置
225
+ def initialize_default_configs():
226
+ """初始化默认银行配置"""
227
+ # 注册工商银行配置
228
+ register_bank_config(create_icbc_config())
229
+
230
+ # 注册通用配置
231
+ register_bank_config(create_generic_config())
232
+
233
+
234
+ # 自动初始化
235
+ initialize_default_configs()
236
+
237
+
238
+ # 新疆工行特定配置
239
+ def create_xinjiang_icbc_config() -> BankConfig:
240
+ """创建新疆工商银行配置"""
241
+ base_config = create_icbc_config()
242
+
243
+ # 基于基础工行配置进行定制
244
+ base_config.bank_code = "xinjiang_icbc"
245
+ base_config.bank_name = "新疆工商银行"
246
+ base_config.region = "xinjiang"
247
+
248
+ # 新疆特定的业务规则
249
+ base_config.business_rules.update({
250
+ "regional_compliance": True,
251
+ "minority_customer_support": True,
252
+ "language_support": ["zh", "ug"], # 中文和维吾尔语
253
+ "timezone": "Asia/Urumqi",
254
+ "currency_support": ["CNY"],
255
+ "cross_border_transaction": True
256
+ })
257
+
258
+ # 新疆特定的数据处理规则
259
+ base_config.data_processing_rules.update({
260
+ "character_encoding": "utf-8",
261
+ "regional_holidays": True,
262
+ "time_zone_conversion": True
263
+ })
264
+
265
+ return base_config
266
+
267
+
268
+ # 注册新疆工行配置
269
+ register_bank_config(create_xinjiang_icbc_config())
@@ -0,0 +1,271 @@
1
+ """
2
+ 模型配置管理模块
3
+
4
+ 定义模型的核心配置信息,包括模型类型、参数、特征配置等
5
+ """
6
+
7
+ from enum import Enum
8
+ from typing import Dict, Any, List, Optional
9
+ from dataclasses import dataclass, field
10
+ from datetime import datetime
11
+
12
+
13
+ class ModelType(Enum):
14
+ """模型类型枚举"""
15
+ CLASSIFICATION = "classification"
16
+ REGRESSION = "regression"
17
+ CLUSTERING = "clustering"
18
+ TIME_SERIES = "time_series"
19
+ ANOMALY_DETECTION = "anomaly_detection"
20
+ RECOMMENDATION = "recommendation"
21
+
22
+
23
+ class ModelAlgorithm(Enum):
24
+ """模型算法枚举"""
25
+ # 分类算法
26
+ LOGISTIC_REGRESSION = "logistic_regression"
27
+ RANDOM_FOREST = "random_forest"
28
+ GRADIENT_BOOSTING = "gradient_boosting"
29
+ SVM = "svm"
30
+ NEURAL_NETWORK = "neural_network"
31
+
32
+ # 回归算法
33
+ LINEAR_REGRESSION = "linear_regression"
34
+ RIDGE_REGRESSION = "ridge_regression"
35
+ LASSO_REGRESSION = "lasso_regression"
36
+
37
+ # 聚类算法
38
+ KMEANS = "kmeans"
39
+ DBSCAN = "dbscan"
40
+ HIERARCHICAL = "hierarchical"
41
+
42
+ # 时间序列
43
+ ARIMA = "arima"
44
+ LSTM = "lstm"
45
+ PROPHET = "prophet"
46
+
47
+
48
+ @dataclass
49
+ class FeatureConfig:
50
+ """特征配置"""
51
+ schema_name: str # 使用的schema名称 (如 'aum')
52
+ table_types: List[str] # 使用的表类型列表 (如 ['behavior', 'asset_avg'])
53
+ feature_selection: bool = True # 是否启用特征选择
54
+ feature_engineering: bool = True # 是否启用特征工程
55
+ scaling: bool = True # 是否启用特征缩放
56
+ encoding: Dict[str, str] = field(default_factory=dict) # 编码配置
57
+
58
+
59
+ @dataclass
60
+ class ModelConfig:
61
+ """模型配置类"""
62
+ # 基本信息
63
+ name: str # 模型名称
64
+ model_type: ModelType # 模型类型
65
+ algorithm: ModelAlgorithm # 使用的算法
66
+ version: str = "1.0.0" # 模型版本
67
+
68
+ # 特征配置
69
+ feature_config: FeatureConfig = None
70
+
71
+ # 模型参数
72
+ hyperparameters: Dict[str, Any] = field(default_factory=dict)
73
+
74
+ # 训练配置
75
+ training_config: Dict[str, Any] = field(default_factory=lambda: {
76
+ 'test_size': 0.2,
77
+ 'random_state': 42,
78
+ 'cross_validation': True,
79
+ 'cv_folds': 5
80
+ })
81
+
82
+ # 评估配置
83
+ evaluation_metrics: List[str] = field(default_factory=list)
84
+
85
+ # 银行特定配置
86
+ bank_code: str = "generic" # 银行代码
87
+ business_domain: str = "generic" # 业务领域
88
+
89
+ # 元数据
90
+ description: str = "" # 模型描述
91
+ created_at: datetime = field(default_factory=datetime.now)
92
+ created_by: str = "system" # 创建者
93
+ tags: List[str] = field(default_factory=list)
94
+
95
+ # 部署配置
96
+ deployment_config: Dict[str, Any] = field(default_factory=dict)
97
+
98
+ def __post_init__(self):
99
+ """初始化后处理"""
100
+ if self.feature_config is None:
101
+ self.feature_config = FeatureConfig(
102
+ schema_name="generic",
103
+ table_types=["base"]
104
+ )
105
+
106
+ # 根据模型类型设置默认评估指标
107
+ if not self.evaluation_metrics:
108
+ self.evaluation_metrics = self._get_default_metrics()
109
+
110
+ def _get_default_metrics(self) -> List[str]:
111
+ """根据模型类型获取默认评估指标"""
112
+ if self.model_type == ModelType.CLASSIFICATION:
113
+ return ['accuracy', 'precision', 'recall', 'f1_score', 'auc']
114
+ elif self.model_type == ModelType.REGRESSION:
115
+ return ['mae', 'mse', 'rmse', 'r2_score']
116
+ elif self.model_type == ModelType.CLUSTERING:
117
+ return ['silhouette_score', 'calinski_harabasz_score']
118
+ else:
119
+ return ['custom_metric']
120
+
121
+ def to_dict(self) -> Dict[str, Any]:
122
+ """转换为字典格式"""
123
+ return {
124
+ 'name': self.name,
125
+ 'model_type': self.model_type.value,
126
+ 'algorithm': self.algorithm.value,
127
+ 'version': self.version,
128
+ 'feature_config': {
129
+ 'schema_name': self.feature_config.schema_name,
130
+ 'table_types': self.feature_config.table_types,
131
+ 'feature_selection': self.feature_config.feature_selection,
132
+ 'feature_engineering': self.feature_config.feature_engineering,
133
+ 'scaling': self.feature_config.scaling,
134
+ 'encoding': self.feature_config.encoding
135
+ },
136
+ 'hyperparameters': self.hyperparameters,
137
+ 'training_config': self.training_config,
138
+ 'evaluation_metrics': self.evaluation_metrics,
139
+ 'bank_code': self.bank_code,
140
+ 'business_domain': self.business_domain,
141
+ 'description': self.description,
142
+ 'created_at': self.created_at.isoformat(),
143
+ 'created_by': self.created_by,
144
+ 'tags': self.tags,
145
+ 'deployment_config': self.deployment_config
146
+ }
147
+
148
+ @classmethod
149
+ def from_dict(cls, data: Dict[str, Any]) -> 'ModelConfig':
150
+ """从字典创建ModelConfig实例"""
151
+ feature_config_data = data.get('feature_config', {})
152
+ feature_config = FeatureConfig(
153
+ schema_name=feature_config_data.get('schema_name', 'generic'),
154
+ table_types=feature_config_data.get('table_types', ['base']),
155
+ feature_selection=feature_config_data.get('feature_selection', True),
156
+ feature_engineering=feature_config_data.get('feature_engineering', True),
157
+ scaling=feature_config_data.get('scaling', True),
158
+ encoding=feature_config_data.get('encoding', {})
159
+ )
160
+
161
+ return cls(
162
+ name=data['name'],
163
+ model_type=ModelType(data['model_type']),
164
+ algorithm=ModelAlgorithm(data['algorithm']),
165
+ version=data.get('version', '1.0.0'),
166
+ feature_config=feature_config,
167
+ hyperparameters=data.get('hyperparameters', {}),
168
+ training_config=data.get('training_config', {}),
169
+ evaluation_metrics=data.get('evaluation_metrics', []),
170
+ bank_code=data.get('bank_code', 'generic'),
171
+ business_domain=data.get('business_domain', 'generic'),
172
+ description=data.get('description', ''),
173
+ created_by=data.get('created_by', 'system'),
174
+ tags=data.get('tags', []),
175
+ deployment_config=data.get('deployment_config', {})
176
+ )
177
+
178
+
179
+ def create_model_config(
180
+ name: str,
181
+ model_type: str,
182
+ algorithm: str,
183
+ schema_name: str = "generic",
184
+ table_types: List[str] = None,
185
+ bank_code: str = "generic",
186
+ **kwargs
187
+ ) -> ModelConfig:
188
+ """
189
+ 创建模型配置的便捷函数
190
+
191
+ Args:
192
+ name: 模型名称
193
+ model_type: 模型类型
194
+ algorithm: 算法名称
195
+ schema_name: 使用的schema名称
196
+ table_types: 使用的表类型列表
197
+ bank_code: 银行代码
198
+ **kwargs: 其他配置参数
199
+
200
+ Returns:
201
+ ModelConfig实例
202
+ """
203
+ if table_types is None:
204
+ table_types = ["base"]
205
+
206
+ feature_config = FeatureConfig(
207
+ schema_name=schema_name,
208
+ table_types=table_types
209
+ )
210
+
211
+ return ModelConfig(
212
+ name=name,
213
+ model_type=ModelType(model_type),
214
+ algorithm=ModelAlgorithm(algorithm),
215
+ feature_config=feature_config,
216
+ bank_code=bank_code,
217
+ **kwargs
218
+ )
219
+
220
+
221
+ # 预定义的模型配置模板
222
+ PRESET_CONFIGS = {
223
+ "aum_longtail_classification": {
224
+ "model_type": "classification",
225
+ "algorithm": "random_forest",
226
+ "schema_name": "aum",
227
+ "table_types": ["behavior", "asset_avg", "asset_config", "monthly_stat"],
228
+ "hyperparameters": {
229
+ "n_estimators": 100,
230
+ "max_depth": 10,
231
+ "random_state": 42
232
+ },
233
+ "description": "AUM长尾客户分类模型"
234
+ },
235
+
236
+ "customer_value_regression": {
237
+ "model_type": "regression",
238
+ "algorithm": "gradient_boosting",
239
+ "schema_name": "aum",
240
+ "table_types": ["behavior", "asset_avg"],
241
+ "hyperparameters": {
242
+ "n_estimators": 150,
243
+ "learning_rate": 0.1,
244
+ "max_depth": 8
245
+ },
246
+ "description": "客户价值预测回归模型"
247
+ }
248
+ }
249
+
250
+
251
+ def create_preset_config(preset_name: str, **overrides) -> ModelConfig:
252
+ """
253
+ 基于预设模板创建模型配置
254
+
255
+ Args:
256
+ preset_name: 预设模板名称
257
+ **overrides: 覆盖的配置参数
258
+
259
+ Returns:
260
+ ModelConfig实例
261
+ """
262
+ if preset_name not in PRESET_CONFIGS:
263
+ raise ValueError(f"未知的预设配置: {preset_name}")
264
+
265
+ config = PRESET_CONFIGS[preset_name].copy()
266
+ config.update(overrides)
267
+
268
+ return create_model_config(
269
+ name=preset_name,
270
+ **config
271
+ )