ssb-sgis 0.1.5__py3-none-any.whl → 0.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -70,11 +70,11 @@ class NetworkAnalysisRules:
70
70
  ... )
71
71
  >>> rules = sg.NetworkAnalysisRules(weight="minutes")
72
72
  >>> nwa = sg.NetworkAnalysis(network=nw, rules=rules)
73
-
74
73
  >>> nwa
75
74
  NetworkAnalysis(
76
75
  network=DirectedNetwork(6364 km, percent_bidirectional=87),
77
- rules=NetworkAnalysisRules(weight=minutes, search_tolerance=250, search_factor=0, split_lines=False, ...)
76
+ rules=NetworkAnalysisRules(weight=minutes, search_tolerance=250, search_factor=0, split_lines=False, ...),
77
+ log=True, detailed_log=True,
78
78
  )
79
79
 
80
80
  Setting 'split_lines' to True, means the points will be connected to the closest
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ssb-sgis
3
- Version: 0.1.5
3
+ Version: 0.1.6
4
4
  Summary: GIS functions used at Statistics Norway.
5
5
  Home-page: https://github.com/statisticsnorway/ssb-sgis
6
6
  License: MIT
@@ -68,7 +68,7 @@ Preparing for network analysis:
68
68
 
69
69
  ```python
70
70
  import sgis as sg
71
-
71
+ import pandas as pd
72
72
 
73
73
  roads = sg.read_parquet_url(
74
74
  "https://media.githubusercontent.com/media/statisticsnorway/ssb-sgis/main/tests/testdata/roads_oslo_2022.parquet"
@@ -97,14 +97,23 @@ nwa
97
97
  log=True, detailed_log=True,
98
98
  )
99
99
 
100
- Get number of times each line segment was visited.
100
+ Get number of times each line segment was visited, with optional weighting.
101
101
 
102
102
  ```python
103
- frequencies = nwa.get_route_frequencies(points.sample(75), points.sample(75))
103
+ origins = points.iloc[:75]
104
+ destinations = points.iloc[75:150]
105
+
106
+ # creating uniform weights of 10
107
+ od_pairs = pd.MultiIndex.from_product([origins.index, destinations.index])
108
+ weights = pd.DataFrame(index=od_pairs)
109
+ weights["weight"] = 10
104
110
 
111
+ frequencies = nwa.get_route_frequencies(origins, destinations, weight_df=weights)
112
+
113
+ # plot the results
105
114
  m = sg.ThematicMap(sg.buff(frequencies, 15), column="frequency", black=True)
106
115
  m.cmap = "plasma"
107
- m.title = "Number of times each road was used."
116
+ m.title = "Number of times each road was used,\nweighted * 10"
108
117
  m.plot()
109
118
  ```
110
119
 
@@ -141,6 +150,7 @@ service_areas = nwa.service_area(
141
150
  breaks=np.arange(1, 11),
142
151
  )
143
152
 
153
+ # plot the results
144
154
  m = sg.ThematicMap(service_areas, column="minutes", black=True, size=10)
145
155
  m.k = 10
146
156
  m.title = "Roads that can be reached within 1 to 10 minutes"
@@ -164,8 +174,6 @@ m.plot()
164
174
 
165
175
  ![png](docs/examples/network_analysis_examples_files/network_analysis_examples_11_0.png)
166
176
 
167
- More network analysis examples can be found here: https://github.com/statisticsnorway/ssb-sgis/blob/main/docs/network_analysis_demo_template.md
168
-
169
177
  Road data for Norway can be downloaded here: https://kartkatalog.geonorge.no/metadata/nvdb-ruteplan-nettverksdatasett/8d0f9066-34f9-4423-be12-8e8523089313
170
178
 
171
179
  ## Developer information
@@ -0,0 +1,35 @@
1
+ sgis/__init__.py,sha256=p_xsyOsVLVoTT7-4oE2nP86SJtQYr72rUbCxKkqJgUM,1651
2
+ sgis/dapla.py,sha256=5akve2IMDYcSbeR6jXzvDFkwaULQ1oMefmChM75v3lk,2634
3
+ sgis/exceptions.py,sha256=zhMH61ht4nrx1clQucT1oEclmj-e30NhOVX2n2txg5s,666
4
+ sgis/geopandas_tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
+ sgis/geopandas_tools/buffer_dissolve_explode.py,sha256=GkfxOgRjdhjZ8osUvHFS5fBYTxnYqvy3bKGCIJGL64k,8776
6
+ sgis/geopandas_tools/general.py,sha256=eIqzRQ3iEm0DTzsA4_8LFBNWtt6UARXu9cm0PH90ziY,27590
7
+ sgis/geopandas_tools/geometry_types.py,sha256=u6HjPgzL1IFhhIiJqShyG-SSfrCpOKevR5FdXUI-GDw,5480
8
+ sgis/geopandas_tools/line_operations.py,sha256=qYJNwlYiuCF1gORKAkPpzjLoYuuoEb64VAv9xWkTK-s,34748
9
+ sgis/geopandas_tools/neighbors.py,sha256=pwL670rI7X6jw21bHHb4YNHKDjNJni3nWdAdydqe9-k,16647
10
+ sgis/geopandas_tools/overlay.py,sha256=2CNNP3tI7gdVJVj2y05Kpfurt7sDA99IDphPZ2CDT94,14435
11
+ sgis/geopandas_tools/point_operations.py,sha256=aWvhsl7Ps4PKL0VnFy-wWqT69n-dEDKPUVTNbc2O9BU,6316
12
+ sgis/geopandas_tools/polygon_operations.py,sha256=WU28-d-Jo7uo8CwWs6ZVSMGe6SzdTWME0K9WC_qe1vQ,5046
13
+ sgis/helpers.py,sha256=14_fKCFv8iIaKW41lRDQ-BWIMRWRhQ7Z6T52wp2xblI,2468
14
+ sgis/maps/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
+ sgis/maps/explore.py,sha256=sZwIU3kyX4h9QWlfeCxiKz91ldidD7E18tzl6vVUgHw,19148
16
+ sgis/maps/legend.py,sha256=GXAqGOb_zAWcDavd5aHzRyRB7nTRhPCQfSupYA693lk,20499
17
+ sgis/maps/map.py,sha256=XJQHlzF6r3ZKJU8dn9tnYX428sGq3GIqQEOEeBK5GgM,16402
18
+ sgis/maps/maps.py,sha256=0YkHbv3JbwnSrykTUuh0EzqiFapXv0edtnTa_E0nBqY,12747
19
+ sgis/maps/thematicmap.py,sha256=c-O8hSJchVAcFe-j9jLA5roXZCT4xcuXINBx1TPTReM,14092
20
+ sgis/networkanalysis/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
+ sgis/networkanalysis/_get_route.py,sha256=sW9oiHuEeZbvHJ1lkjDBzjNkM0uAQEID-jAVYBVj9Do,7628
22
+ sgis/networkanalysis/_od_cost_matrix.py,sha256=1l6_WU0fZbyBtsgOpDh10LxyBAwxOPjXqH3237q92Hg,2455
23
+ sgis/networkanalysis/_points.py,sha256=aViJ8k0TdyU5y85fzBX4bpMQ-Pz9m_BxC0MhIycSIYU,4182
24
+ sgis/networkanalysis/_service_area.py,sha256=P1PBRsZBmPdzytZza1B1WvaYP9bHNhzou9CwMUjnFCU,4426
25
+ sgis/networkanalysis/directednetwork.py,sha256=3yMVBP4wLw08wuWfnGJejjko6VmIJGE5J3bQ_PUyxII,11354
26
+ sgis/networkanalysis/network.py,sha256=H-vLYoYpgaX8m8ZntdP1BRcVIGPbybJpfkVYsh-nrZk,23771
27
+ sgis/networkanalysis/network_norway.py,sha256=6QiZ5Ta7rOKkTozRr-kSK324jOZq9NUeXKi-vIio9eI,6124
28
+ sgis/networkanalysis/networkanalysis.py,sha256=trI_YvaxDDX33350nPCtJlX8oS3fvdSZgDKutTOH5DA,67522
29
+ sgis/networkanalysis/networkanalysisrules.py,sha256=k845JaBWzgYDNdP4gKyftnWVuEih2Kq000ovQwJY_uk,12692
30
+ sgis/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
+ sgis/read_parquet.py,sha256=5M3O7y7pL4thdWq87CqNqcaVuJEZnGWVvES3FlG2CWM,3765
32
+ ssb_sgis-0.1.6.dist-info/LICENSE,sha256=lL2h0dNKGTKAE0CjTy62SDbRennVD1xPgM5LzGqhKeo,1074
33
+ ssb_sgis-0.1.6.dist-info/METADATA,sha256=a_56R54CQ-jlGfOIKbZeXZpA2u0Mc9SMtPImjg3rNm8,8624
34
+ ssb_sgis-0.1.6.dist-info/WHEEL,sha256=kLuE8m1WYU0Ig0_YEGrXyTtiJvKPpLpDEiChiNyei5Y,88
35
+ ssb_sgis-0.1.6.dist-info/RECORD,,
@@ -1,35 +0,0 @@
1
- sgis/__init__.py,sha256=p_xsyOsVLVoTT7-4oE2nP86SJtQYr72rUbCxKkqJgUM,1651
2
- sgis/dapla.py,sha256=5akve2IMDYcSbeR6jXzvDFkwaULQ1oMefmChM75v3lk,2634
3
- sgis/exceptions.py,sha256=zhMH61ht4nrx1clQucT1oEclmj-e30NhOVX2n2txg5s,666
4
- sgis/geopandas_tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
- sgis/geopandas_tools/buffer_dissolve_explode.py,sha256=GkfxOgRjdhjZ8osUvHFS5fBYTxnYqvy3bKGCIJGL64k,8776
6
- sgis/geopandas_tools/general.py,sha256=fl0g_xiRYWhVCfyYG9m8dIBiccQqk4ZIA4VOlijqnLs,27649
7
- sgis/geopandas_tools/geometry_types.py,sha256=lB_kV3xRwF5ZdueXUIohx-gdPSyIhwMX1Lfr4dT7Gzg,5456
8
- sgis/geopandas_tools/line_operations.py,sha256=hRXUkBW72dzSsU8g9ITRDsqHfKHhce6fnxl2OVCVSSQ,34762
9
- sgis/geopandas_tools/neighbors.py,sha256=pwL670rI7X6jw21bHHb4YNHKDjNJni3nWdAdydqe9-k,16647
10
- sgis/geopandas_tools/overlay.py,sha256=2CNNP3tI7gdVJVj2y05Kpfurt7sDA99IDphPZ2CDT94,14435
11
- sgis/geopandas_tools/point_operations.py,sha256=aWvhsl7Ps4PKL0VnFy-wWqT69n-dEDKPUVTNbc2O9BU,6316
12
- sgis/geopandas_tools/polygon_operations.py,sha256=WU28-d-Jo7uo8CwWs6ZVSMGe6SzdTWME0K9WC_qe1vQ,5046
13
- sgis/helpers.py,sha256=14_fKCFv8iIaKW41lRDQ-BWIMRWRhQ7Z6T52wp2xblI,2468
14
- sgis/maps/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
- sgis/maps/explore.py,sha256=EcNY01FyfV-ndoR09-iJR_YKZQATGAQKlJNhm2Moreg,23159
16
- sgis/maps/legend.py,sha256=oc-MSJXAqkGKS0oU_aQ2zZLO3jP5CVcOf7q7jmJDgCc,20458
17
- sgis/maps/map.py,sha256=XJQHlzF6r3ZKJU8dn9tnYX428sGq3GIqQEOEeBK5GgM,16402
18
- sgis/maps/maps.py,sha256=0oF3CgjyUofzG20R4Ibd7WtllMb2_NUnj-oSQA0zCW8,12564
19
- sgis/maps/thematicmap.py,sha256=C2p5GzYQeCPB4S8b73GfEi70IEB4s_GdO_dHpe61pXM,13220
20
- sgis/networkanalysis/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
- sgis/networkanalysis/_get_route.py,sha256=BS-3CwxPs5_zdN420Hk8R6ljWlFzeS_2iEDgekQIgUo,5171
22
- sgis/networkanalysis/_od_cost_matrix.py,sha256=oOs_hr2bMH-YUa8fyDNjcARqnXSrqAx30I2AQYymrKs,2521
23
- sgis/networkanalysis/_points.py,sha256=rp3ggXAaUj2aHwvRBpXopjaLXtbKbpukfN2fnv1AvRI,4819
24
- sgis/networkanalysis/_service_area.py,sha256=P1PBRsZBmPdzytZza1B1WvaYP9bHNhzou9CwMUjnFCU,4426
25
- sgis/networkanalysis/directednetwork.py,sha256=4CXghRlCiTeqPl-DRSwsaCnhXkDC8y1Bm0PfTSGvbBM,11360
26
- sgis/networkanalysis/network.py,sha256=9opc67lNi9Q09Gep94lahZLMARmVAa2eKvzdxTtRWzY,23953
27
- sgis/networkanalysis/network_norway.py,sha256=6QiZ5Ta7rOKkTozRr-kSK324jOZq9NUeXKi-vIio9eI,6124
28
- sgis/networkanalysis/networkanalysis.py,sha256=0h96wxbnXUQZ2vbITPb8Gn3302IkdqgAoIGeAu8seC4,58054
29
- sgis/networkanalysis/networkanalysisrules.py,sha256=XmvVxVSKqRRoMpqn1MbDDqwbyIg2r1hGf9ASHLpN7TI,12655
30
- sgis/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
- sgis/read_parquet.py,sha256=5M3O7y7pL4thdWq87CqNqcaVuJEZnGWVvES3FlG2CWM,3765
32
- ssb_sgis-0.1.5.dist-info/LICENSE,sha256=lL2h0dNKGTKAE0CjTy62SDbRennVD1xPgM5LzGqhKeo,1074
33
- ssb_sgis-0.1.5.dist-info/METADATA,sha256=zyUJbAAw5sR4OkXqMxmTBv33OiGeXRv1swxRTSMVFwc,8434
34
- ssb_sgis-0.1.5.dist-info/WHEEL,sha256=kLuE8m1WYU0Ig0_YEGrXyTtiJvKPpLpDEiChiNyei5Y,88
35
- ssb_sgis-0.1.5.dist-info/RECORD,,