sqlshell 0.4.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sqlshell/__init__.py +84 -0
- sqlshell/__main__.py +4926 -0
- sqlshell/ai_autocomplete.py +392 -0
- sqlshell/ai_settings_dialog.py +337 -0
- sqlshell/context_suggester.py +768 -0
- sqlshell/create_test_data.py +152 -0
- sqlshell/data/create_test_data.py +137 -0
- sqlshell/db/__init__.py +6 -0
- sqlshell/db/database_manager.py +1318 -0
- sqlshell/db/export_manager.py +188 -0
- sqlshell/editor.py +1166 -0
- sqlshell/editor_integration.py +127 -0
- sqlshell/execution_handler.py +421 -0
- sqlshell/menus.py +262 -0
- sqlshell/notification_manager.py +370 -0
- sqlshell/query_tab.py +904 -0
- sqlshell/resources/__init__.py +1 -0
- sqlshell/resources/icon.png +0 -0
- sqlshell/resources/logo_large.png +0 -0
- sqlshell/resources/logo_medium.png +0 -0
- sqlshell/resources/logo_small.png +0 -0
- sqlshell/resources/splash_screen.gif +0 -0
- sqlshell/space_invaders.py +501 -0
- sqlshell/splash_screen.py +405 -0
- sqlshell/sqlshell/__init__.py +5 -0
- sqlshell/sqlshell/create_test_data.py +118 -0
- sqlshell/sqlshell/create_test_databases.py +96 -0
- sqlshell/sqlshell_demo.png +0 -0
- sqlshell/styles.py +257 -0
- sqlshell/suggester_integration.py +330 -0
- sqlshell/syntax_highlighter.py +124 -0
- sqlshell/table_list.py +996 -0
- sqlshell/ui/__init__.py +6 -0
- sqlshell/ui/bar_chart_delegate.py +49 -0
- sqlshell/ui/filter_header.py +469 -0
- sqlshell/utils/__init__.py +16 -0
- sqlshell/utils/profile_cn2.py +1661 -0
- sqlshell/utils/profile_column.py +2635 -0
- sqlshell/utils/profile_distributions.py +616 -0
- sqlshell/utils/profile_entropy.py +347 -0
- sqlshell/utils/profile_foreign_keys.py +779 -0
- sqlshell/utils/profile_keys.py +2834 -0
- sqlshell/utils/profile_ohe.py +934 -0
- sqlshell/utils/profile_ohe_advanced.py +754 -0
- sqlshell/utils/profile_ohe_comparison.py +237 -0
- sqlshell/utils/profile_prediction.py +926 -0
- sqlshell/utils/profile_similarity.py +876 -0
- sqlshell/utils/search_in_df.py +90 -0
- sqlshell/widgets.py +400 -0
- sqlshell-0.4.4.dist-info/METADATA +441 -0
- sqlshell-0.4.4.dist-info/RECORD +54 -0
- sqlshell-0.4.4.dist-info/WHEEL +5 -0
- sqlshell-0.4.4.dist-info/entry_points.txt +2 -0
- sqlshell-0.4.4.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,441 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: sqlshell
|
|
3
|
+
Version: 0.4.4
|
|
4
|
+
Summary: A powerful SQL shell with GUI interface for data analysis
|
|
5
|
+
Author: SQLShell Team
|
|
6
|
+
License-Expression: MIT
|
|
7
|
+
Project-URL: Homepage, https://github.com/oyvinrog/SQLShell
|
|
8
|
+
Keywords: sql,data analysis,gui,duckdb
|
|
9
|
+
Classifier: Development Status :: 3 - Alpha
|
|
10
|
+
Classifier: Intended Audience :: Developers
|
|
11
|
+
Classifier: Programming Language :: Python :: 3
|
|
12
|
+
Classifier: Programming Language :: Python :: 3.8
|
|
13
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
14
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
16
|
+
Requires-Python: >=3.8
|
|
17
|
+
Description-Content-Type: text/markdown
|
|
18
|
+
Requires-Dist: pandas>=2.0.0
|
|
19
|
+
Requires-Dist: numpy>=1.24.0
|
|
20
|
+
Requires-Dist: PyQt6>=6.4.0
|
|
21
|
+
Requires-Dist: duckdb>=0.9.0
|
|
22
|
+
Requires-Dist: openpyxl>=3.1.0
|
|
23
|
+
Requires-Dist: fastparquet>=2023.10.1
|
|
24
|
+
Requires-Dist: xlrd>=2.0.1
|
|
25
|
+
Requires-Dist: deltalake
|
|
26
|
+
Requires-Dist: scikit-learn
|
|
27
|
+
Requires-Dist: matplotlib>=3.10.0
|
|
28
|
+
Requires-Dist: scipy>=1.15.0
|
|
29
|
+
Requires-Dist: seaborn>=0.13.0
|
|
30
|
+
Requires-Dist: nltk>=3.8.1
|
|
31
|
+
Requires-Dist: psutil>=5.9.0
|
|
32
|
+
|
|
33
|
+
# SQLShell
|
|
34
|
+
|
|
35
|
+
<div align="center">
|
|
36
|
+
|
|
37
|
+
<img src="https://raw.githubusercontent.com/oyvinrog/SQLShell/main/assets/images/sqlshell_logo.png" alt="SQLShell Logo" width="180" height="auto">
|
|
38
|
+
|
|
39
|
+
**A fast SQL interface for analyzing data files ✨**
|
|
40
|
+
|
|
41
|
+
*Query CSV, Parquet, Excel files with SQL • DuckDB powered • No database setup required*
|
|
42
|
+
|
|
43
|
+
[](https://github.com/oyvinrog/SQLShell/releases/latest)
|
|
44
|
+
[](https://badge.fury.io/py/sqlshell)
|
|
45
|
+
[](https://www.python.org/downloads/)
|
|
46
|
+
[](https://opensource.org/licenses/MIT)
|
|
47
|
+
[](https://pepy.tech/project/sqlshell)
|
|
48
|
+
|
|
49
|
+
<img src="https://raw.githubusercontent.com/oyvinrog/SQLShell/main/assets/images/sqlshell_demo.png" alt="SQLShell Interface" width="80%" height="auto">
|
|
50
|
+
|
|
51
|
+
[📥 Download](https://github.com/oyvinrog/SQLShell/releases/latest) • [🚀 Install](#-quick-install) • [📖 Examples](https://github.com/oyvinrog/SQLShell/wiki/Guides) • [🤝 Contribute](#-contributing)
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
</div>
|
|
56
|
+
|
|
57
|
+
---
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
## What SQLShell Does
|
|
62
|
+
|
|
63
|
+
**SQLShell is a desktop SQL interface specifically designed for analyzing data files.** It's not a database client - instead, it lets you load CSV, Parquet, Excel, and other data files and query them with SQL using DuckDB's fast analytical engine.
|
|
64
|
+
|
|
65
|
+
### 🔥 Key Features
|
|
66
|
+
|
|
67
|
+
<table>
|
|
68
|
+
<tr>
|
|
69
|
+
<td width="33%">
|
|
70
|
+
|
|
71
|
+
**⚡ Fast File Analysis**
|
|
72
|
+
Load data files and search through millions of rows quickly. Built on DuckDB for analytical performance.
|
|
73
|
+
|
|
74
|
+
</td>
|
|
75
|
+
<td width="33%">
|
|
76
|
+
|
|
77
|
+
**🎯 Smart Execution**
|
|
78
|
+
`F5` runs all queries, `F9` runs current statement. Simple keyboard shortcuts for iterative analysis.
|
|
79
|
+
|
|
80
|
+
</td>
|
|
81
|
+
<td width="33%">
|
|
82
|
+
|
|
83
|
+
**🧠 SQL Autocompletion**
|
|
84
|
+
Context-aware suggestions that understand your loaded tables and column names.
|
|
85
|
+
|
|
86
|
+
</td>
|
|
87
|
+
</tr>
|
|
88
|
+
</table>
|
|
89
|
+
|
|
90
|
+
### 📁 **File-Based Data Analysis**
|
|
91
|
+
|
|
92
|
+
**Important**: SQLShell works with data files, not live databases. It's designed for:
|
|
93
|
+
|
|
94
|
+
- **📊 Data Files** - CSV, Parquet, Excel, TSV, JSON files
|
|
95
|
+
- **🗃️ Local Analysis** - Load files from your computer for SQL analysis
|
|
96
|
+
- **⚡ Fast Queries** - DuckDB engine optimized for analytical workloads
|
|
97
|
+
- **🔍 Data Exploration** - Search and filter capabilities across your datasets
|
|
98
|
+
|
|
99
|
+
**Not supported**: Live database connections (MySQL, PostgreSQL, etc.). Use dedicated database clients for those.
|
|
100
|
+
|
|
101
|
+
### 💫 What Makes SQLShell Useful
|
|
102
|
+
|
|
103
|
+
- **🏎️ DuckDB Powered** - Fast analytical queries on data files
|
|
104
|
+
- **📊 Multiple File Formats** - CSV, Parquet, Excel, Delta, TSV, JSON support
|
|
105
|
+
- **🎨 Clean Interface** - Simple SQL editor with result display
|
|
106
|
+
- **🔍 Search Functionality** - Find data across result sets quickly
|
|
107
|
+
- **🚀 Zero Database Setup** - No server installation or configuration needed
|
|
108
|
+
|
|
109
|
+
---
|
|
110
|
+
|
|
111
|
+
## 🚀 Quick Install
|
|
112
|
+
|
|
113
|
+
### 📥 Download (Recommended)
|
|
114
|
+
|
|
115
|
+
Pre-built executables — **no Python installation required**:
|
|
116
|
+
|
|
117
|
+
| Platform | Download | Install |
|
|
118
|
+
|----------|----------|---------|
|
|
119
|
+
| 🪟 **Windows** | [SQLShell Installer (.exe)](https://github.com/oyvinrog/SQLShell/releases/latest) | Run the installer |
|
|
120
|
+
| 🐧 **Linux (Debian/Ubuntu)** | [SQLShell (.deb)](https://github.com/oyvinrog/SQLShell/releases/latest) | `sudo dpkg -i sqlshell_*.deb` |
|
|
121
|
+
|
|
122
|
+
👉 [**View all releases**](https://github.com/oyvinrog/SQLShell/releases)
|
|
123
|
+
|
|
124
|
+
---
|
|
125
|
+
|
|
126
|
+
### 🐍 Install via pip
|
|
127
|
+
|
|
128
|
+
Alternatively, install with pip if you have Python:
|
|
129
|
+
|
|
130
|
+
```bash
|
|
131
|
+
pip install sqlshell
|
|
132
|
+
sqls
|
|
133
|
+
```
|
|
134
|
+
|
|
135
|
+
**That's it!** 🎉 SQLShell opens and you can start loading data files.
|
|
136
|
+
|
|
137
|
+
<details>
|
|
138
|
+
<summary><b>🐧 Linux Users - One-Time Setup for Better Experience</b></summary>
|
|
139
|
+
|
|
140
|
+
```bash
|
|
141
|
+
# Create dedicated environment (recommended)
|
|
142
|
+
python3 -m venv ~/.venv/sqlshell
|
|
143
|
+
source ~/.venv/sqlshell/bin/activate
|
|
144
|
+
pip install sqlshell
|
|
145
|
+
|
|
146
|
+
# Add convenient alias
|
|
147
|
+
echo 'alias sqls="~/.venv/sqlshell/bin/sqls"' >> ~/.bashrc
|
|
148
|
+
source ~/.bashrc
|
|
149
|
+
```
|
|
150
|
+
|
|
151
|
+
</details>
|
|
152
|
+
|
|
153
|
+
<details>
|
|
154
|
+
<summary><b>💻 Alternative Launch Methods</b></summary>
|
|
155
|
+
|
|
156
|
+
If `sqls` doesn't work immediately:
|
|
157
|
+
```bash
|
|
158
|
+
python -c "import sqlshell; sqlshell.start()"
|
|
159
|
+
```
|
|
160
|
+
|
|
161
|
+
</details>
|
|
162
|
+
|
|
163
|
+
---
|
|
164
|
+
|
|
165
|
+
## ⚡ Getting Started
|
|
166
|
+
|
|
167
|
+
1. **Launch**: `sqls`
|
|
168
|
+
2. **Load Data**: Click "Load Files" to import your CSV, Parquet, or Excel files
|
|
169
|
+
3. **Query**: Write SQL queries against your loaded data
|
|
170
|
+
4. **Execute**: Hit `Ctrl+Enter` or `F5` to run queries
|
|
171
|
+
5. **Search**: Press `Ctrl+F` to search through results
|
|
172
|
+
|
|
173
|
+
<div align="center">
|
|
174
|
+
<img src="https://github.com/oyvinrog/SQLShell/blob/main/assets/images/sqlshell_angle.gif?raw=true" alt="SQLShell Live Demo" width="60%" height="auto">
|
|
175
|
+
</div>
|
|
176
|
+
|
|
177
|
+
---
|
|
178
|
+
|
|
179
|
+
## 🔍 Search and Filter Features
|
|
180
|
+
|
|
181
|
+
### ⚡ **Result Search with Ctrl+F**
|
|
182
|
+
|
|
183
|
+
Once you have query results, use `Ctrl+F` to search across all columns:
|
|
184
|
+
|
|
185
|
+
- **Cross-column search** - Finds terms across all visible columns
|
|
186
|
+
- **Case-insensitive** - Flexible text matching
|
|
187
|
+
- **Instant feedback** - Filter results as you type
|
|
188
|
+
- **Numeric support** - Search numbers and dates
|
|
189
|
+
|
|
190
|
+
### 💪 **Practical Use Cases**
|
|
191
|
+
|
|
192
|
+
| Use Case | Search Term | What It Finds |
|
|
193
|
+
|----------|-------------|---------------|
|
|
194
|
+
| **Error Analysis** | `"error"` | Error messages in log files |
|
|
195
|
+
| **Data Quality** | `"null"` | Missing data indicators |
|
|
196
|
+
| **ID Tracking** | `"CUST_12345"` | Specific customer records |
|
|
197
|
+
| **Pattern Matching** | `"*.com"` | Email domains |
|
|
198
|
+
|
|
199
|
+
**Workflow**: Load file → Query data → `Ctrl+F` → Search → `ESC` to clear
|
|
200
|
+
|
|
201
|
+
---
|
|
202
|
+
|
|
203
|
+
## 🤖 Data Analysis Features
|
|
204
|
+
|
|
205
|
+
### 🔮 **Text Encoding**
|
|
206
|
+
Right-click text columns to create binary indicator columns for analysis:
|
|
207
|
+
|
|
208
|
+
```sql
|
|
209
|
+
-- Original data
|
|
210
|
+
SELECT category FROM products;
|
|
211
|
+
-- "Electronics", "Books", "Clothing"
|
|
212
|
+
|
|
213
|
+
-- After encoding
|
|
214
|
+
SELECT
|
|
215
|
+
category_Electronics,
|
|
216
|
+
category_Books,
|
|
217
|
+
category_Clothing
|
|
218
|
+
FROM products_encoded;
|
|
219
|
+
```
|
|
220
|
+
|
|
221
|
+
### 📊 **Column Analysis**
|
|
222
|
+
Right-click columns for quick statistical analysis and correlation insights.
|
|
223
|
+
|
|
224
|
+
---
|
|
225
|
+
|
|
226
|
+
## 🚀 Power User Features
|
|
227
|
+
|
|
228
|
+
### ⚡ F5/F9 Quick Execution
|
|
229
|
+
- **`F5`** - Execute all SQL statements in sequence
|
|
230
|
+
- **`F9`** - Execute only the current statement (where cursor is positioned)
|
|
231
|
+
- **Useful for**: Testing queries step by step
|
|
232
|
+
|
|
233
|
+
### 🧠 SQL Autocompletion
|
|
234
|
+
- Press `Ctrl+Space` for suggestions
|
|
235
|
+
- **After SELECT**: Available columns from loaded tables
|
|
236
|
+
- **After FROM/JOIN**: Loaded table names
|
|
237
|
+
- **After WHERE**: Column names with appropriate operators
|
|
238
|
+
|
|
239
|
+
### 📊 File Format Support
|
|
240
|
+
SQLShell can load and query:
|
|
241
|
+
- **CSV/TSV** - Comma and tab-separated files
|
|
242
|
+
- **Parquet** - Column-oriented format
|
|
243
|
+
- **Excel** - .xlsx and .xls files
|
|
244
|
+
- **JSON** - Structured JSON data
|
|
245
|
+
- **Delta** - Delta Lake format files
|
|
246
|
+
|
|
247
|
+
---
|
|
248
|
+
|
|
249
|
+
## 📝 Query Examples
|
|
250
|
+
|
|
251
|
+
### Basic File Analysis
|
|
252
|
+
```sql
|
|
253
|
+
-- Load and explore your CSV data
|
|
254
|
+
SELECT * FROM my_data LIMIT 10;
|
|
255
|
+
|
|
256
|
+
-- Aggregate analysis
|
|
257
|
+
SELECT
|
|
258
|
+
category,
|
|
259
|
+
AVG(price) as avg_price,
|
|
260
|
+
COUNT(*) as count
|
|
261
|
+
FROM sales_data
|
|
262
|
+
GROUP BY category
|
|
263
|
+
ORDER BY avg_price DESC;
|
|
264
|
+
```
|
|
265
|
+
|
|
266
|
+
### Multi-File Analysis
|
|
267
|
+
```sql
|
|
268
|
+
-- Join data from multiple loaded files
|
|
269
|
+
SELECT
|
|
270
|
+
c.customer_name,
|
|
271
|
+
SUM(o.order_total) as total_spent
|
|
272
|
+
FROM customers c
|
|
273
|
+
JOIN orders o ON c.customer_id = o.customer_id
|
|
274
|
+
GROUP BY c.customer_name
|
|
275
|
+
ORDER BY total_spent DESC
|
|
276
|
+
LIMIT 10;
|
|
277
|
+
```
|
|
278
|
+
|
|
279
|
+
---
|
|
280
|
+
|
|
281
|
+
## 🎯 Perfect For
|
|
282
|
+
|
|
283
|
+
<table>
|
|
284
|
+
<tr>
|
|
285
|
+
<td width="50%">
|
|
286
|
+
|
|
287
|
+
**📊 Data Analysts**
|
|
288
|
+
- Quick file exploration
|
|
289
|
+
- CSV/Excel analysis
|
|
290
|
+
- Report generation from files
|
|
291
|
+
- Data quality checking
|
|
292
|
+
|
|
293
|
+
**🔬 Data Scientists**
|
|
294
|
+
- Dataset exploration
|
|
295
|
+
- Feature analysis
|
|
296
|
+
- Data preparation
|
|
297
|
+
- Quick prototyping
|
|
298
|
+
|
|
299
|
+
</td>
|
|
300
|
+
<td width="50%">
|
|
301
|
+
|
|
302
|
+
**💼 Business Analysts**
|
|
303
|
+
- Spreadsheet analysis with SQL
|
|
304
|
+
- KPI calculations from files
|
|
305
|
+
- Trend analysis
|
|
306
|
+
- Data validation
|
|
307
|
+
|
|
308
|
+
**🛠️ Developers**
|
|
309
|
+
- Log file analysis
|
|
310
|
+
- CSV processing
|
|
311
|
+
- Data transformation
|
|
312
|
+
- File-based testing
|
|
313
|
+
|
|
314
|
+
</td>
|
|
315
|
+
</tr>
|
|
316
|
+
</table>
|
|
317
|
+
|
|
318
|
+
---
|
|
319
|
+
|
|
320
|
+
## 📋 Requirements
|
|
321
|
+
|
|
322
|
+
- **Python 3.8+**
|
|
323
|
+
- **Auto-installed dependencies**: PyQt6, DuckDB, Pandas, NumPy
|
|
324
|
+
|
|
325
|
+
**System Requirements**: SQLShell is a desktop application that works on Windows, macOS, and Linux.
|
|
326
|
+
|
|
327
|
+
---
|
|
328
|
+
|
|
329
|
+
## 💡 Tips for Better Productivity
|
|
330
|
+
|
|
331
|
+
<table>
|
|
332
|
+
<tr>
|
|
333
|
+
<td width="50%">
|
|
334
|
+
|
|
335
|
+
### ⌨️ **Keyboard Shortcuts**
|
|
336
|
+
- `Ctrl+F` → Search results
|
|
337
|
+
- `F5` → Run all statements
|
|
338
|
+
- `F9` → Run current statement
|
|
339
|
+
- `Ctrl+Enter` → Quick execute
|
|
340
|
+
- `ESC` → Clear search
|
|
341
|
+
|
|
342
|
+
</td>
|
|
343
|
+
<td width="50%">
|
|
344
|
+
|
|
345
|
+
### 🎯 **Efficient File Loading**
|
|
346
|
+
- Drag & drop files into the interface
|
|
347
|
+
- Use "Load Files" button for selection
|
|
348
|
+
- Load multiple related files for joins
|
|
349
|
+
- Supported: CSV, Parquet, Excel, JSON, Delta
|
|
350
|
+
|
|
351
|
+
</td>
|
|
352
|
+
</tr>
|
|
353
|
+
</table>
|
|
354
|
+
|
|
355
|
+
### 🚀 **Typical Workflow**
|
|
356
|
+
1. **Load files** (drag & drop or Load Files button)
|
|
357
|
+
2. **Explore structure** (`SELECT * FROM table_name LIMIT 5`)
|
|
358
|
+
3. **Build analysis** (use F9 to test statements)
|
|
359
|
+
4. **Search results** (Ctrl+F for specific data)
|
|
360
|
+
5. **Export findings** (copy results or save queries)
|
|
361
|
+
|
|
362
|
+
---
|
|
363
|
+
|
|
364
|
+
## 🔧 Advanced Features
|
|
365
|
+
|
|
366
|
+
<details>
|
|
367
|
+
<summary><b>📊 Table Analysis Tools</b></summary>
|
|
368
|
+
|
|
369
|
+
Right-click loaded tables for:
|
|
370
|
+
|
|
371
|
+
- **Column profiling** - Data types, null counts, unique values
|
|
372
|
+
- **Quick statistics** - Min, max, average for numeric columns
|
|
373
|
+
- **Sample data preview** - Quick look at table contents
|
|
374
|
+
|
|
375
|
+
</details>
|
|
376
|
+
|
|
377
|
+
<details>
|
|
378
|
+
<summary><b>🔮 Column Operations</b></summary>
|
|
379
|
+
|
|
380
|
+
Right-click column headers in results:
|
|
381
|
+
|
|
382
|
+
- **Text encoding** - Create binary columns from categories
|
|
383
|
+
- **Statistical summary** - Distribution and correlation info
|
|
384
|
+
- **Data type conversion** - Format suggestions
|
|
385
|
+
|
|
386
|
+
</details>
|
|
387
|
+
|
|
388
|
+
<details>
|
|
389
|
+
<summary><b>⚡ Performance Tips</b></summary>
|
|
390
|
+
|
|
391
|
+
- **File format matters** - Parquet files load faster than CSV
|
|
392
|
+
- **Use LIMIT** - for initial exploration of large files
|
|
393
|
+
- **Column selection** - Select only needed columns for better performance
|
|
394
|
+
- **Indexing** - DuckDB automatically optimizes common query patterns
|
|
395
|
+
|
|
396
|
+
</details>
|
|
397
|
+
|
|
398
|
+
---
|
|
399
|
+
|
|
400
|
+
## 🤝 Contributing
|
|
401
|
+
|
|
402
|
+
SQLShell is open source and welcomes contributions!
|
|
403
|
+
|
|
404
|
+
```bash
|
|
405
|
+
git clone https://github.com/oyvinrog/SQLShell.git
|
|
406
|
+
cd SQLShell
|
|
407
|
+
pip install -e .
|
|
408
|
+
```
|
|
409
|
+
|
|
410
|
+
**Ways to contribute:**
|
|
411
|
+
- 🐛 Report bugs and issues
|
|
412
|
+
- 💡 Suggest new features
|
|
413
|
+
- 📖 Improve documentation
|
|
414
|
+
- 🔧 Submit pull requests
|
|
415
|
+
- ⭐ Star the repo to show support
|
|
416
|
+
|
|
417
|
+
---
|
|
418
|
+
|
|
419
|
+
## 📄 License
|
|
420
|
+
|
|
421
|
+
MIT License - feel free to use SQLShell in your projects!
|
|
422
|
+
|
|
423
|
+
---
|
|
424
|
+
|
|
425
|
+
<div align="center">
|
|
426
|
+
|
|
427
|
+
**Ready to analyze your data files with SQL?**
|
|
428
|
+
|
|
429
|
+
[📥 **Download for Windows/Linux**](https://github.com/oyvinrog/SQLShell/releases/latest) or install via pip:
|
|
430
|
+
|
|
431
|
+
```bash
|
|
432
|
+
pip install sqlshell && sqls
|
|
433
|
+
```
|
|
434
|
+
|
|
435
|
+
⭐ **Star us on GitHub** if SQLShell helps with your data analysis!
|
|
436
|
+
|
|
437
|
+
[📥 Download](https://github.com/oyvinrog/SQLShell/releases/latest) • [🚀 Get Started](#-quick-install) • [📖 Documentation](#-getting-started) • [🐛 Report Issues](https://github.com/oyvinrog/SQLShell/issues)
|
|
438
|
+
|
|
439
|
+
*A simple tool for SQL-based file analysis*
|
|
440
|
+
|
|
441
|
+
</div>
|
|
@@ -0,0 +1,54 @@
|
|
|
1
|
+
sqlshell/__init__.py,sha256=Iq8oHAySksHa_LRXQPTEIW4zx-ucxtLJrAs-Op96UHo,2831
|
|
2
|
+
sqlshell/__main__.py,sha256=sss855aeTUxSu3_1K0-WpSXyjc-PWzxdHGtoa_OrnXk,228867
|
|
3
|
+
sqlshell/ai_autocomplete.py,sha256=3Jn-vcD1dNTohzeMt1c4vqJmg4nxXHZJPjrccvX2dVk,14708
|
|
4
|
+
sqlshell/ai_settings_dialog.py,sha256=JSlTbojF8Bgq2B5Ynz96DtBKEQboym4wXJREyBj5dtY,11887
|
|
5
|
+
sqlshell/context_suggester.py,sha256=x_DIrsPhghdPgJPN2xQ7FGIPYVTAJHKWd_BQBSVAj6E,34131
|
|
6
|
+
sqlshell/create_test_data.py,sha256=mPbuzwgDlocgFf0VHxemyRs277y9iqKDhGeseZMkQcU,6596
|
|
7
|
+
sqlshell/editor.py,sha256=ICd5ajTpITQjxEAz7AakNy7bEcvJN1akq0nVxwxtinY,51357
|
|
8
|
+
sqlshell/editor_integration.py,sha256=sZSSwd0vsuV2qlRG1IUlw67y7902Hm75U63YbjKvmWo,4531
|
|
9
|
+
sqlshell/execution_handler.py,sha256=7IwVQz1GiMlXERmdP7CNLtH3SPcjzWon_ywi7vpecz0,15466
|
|
10
|
+
sqlshell/menus.py,sha256=gjxSZrQsE1fgi2vaqf1Af_jBuDaekhd5d-Gxsxyo8Es,8809
|
|
11
|
+
sqlshell/notification_manager.py,sha256=gZAARnZFV-tklOXGickpyd19T8UOxEf3howFc0DgqWs,14318
|
|
12
|
+
sqlshell/query_tab.py,sha256=4JPcyBoxolDHdPCzlKJiQVowKKXrc00x2-ubvmfBlYk,41906
|
|
13
|
+
sqlshell/space_invaders.py,sha256=_i1-VI6GIqZGzKkhQzMutO--7QgZZ6vZ0UBb0VuKxD8,16900
|
|
14
|
+
sqlshell/splash_screen.py,sha256=K0Ku_nXJWmWSnVEh2OttIthRZcnUoY_tmjIAWIWLm7Y,17604
|
|
15
|
+
sqlshell/sqlshell_demo.png,sha256=dPp9J1FVqQVfrh-gekosuha2Jw2p2--wxbOmt2kr7fg,133550
|
|
16
|
+
sqlshell/styles.py,sha256=EGA_Ow-XerPEQgj82ts3fnqkEPMcjSlJPblbPu9L__s,7135
|
|
17
|
+
sqlshell/suggester_integration.py,sha256=22vV_ex-7qeMx8OnVBTQ1-EH8EdUMMdLmZmtLV4gLCI,15605
|
|
18
|
+
sqlshell/syntax_highlighter.py,sha256=2QwMnuuKzQZyFry8qiX3MD3KWO2-dPgIVapa5rJuqp8,6240
|
|
19
|
+
sqlshell/table_list.py,sha256=0V2vQXjah8uWdRaRcB0w9WzclaFX5HulCUmmJEjUW8k,41585
|
|
20
|
+
sqlshell/widgets.py,sha256=Ue9zIpDWYKhgfe5EjvDA3NVbgzW2N9z-QPsuISFGJJ4,19178
|
|
21
|
+
sqlshell/data/create_test_data.py,sha256=sUTcf50V8-bVwYV2VNTLK65c-iHiU4wb99By67I10zM,5404
|
|
22
|
+
sqlshell/db/__init__.py,sha256=ww-pZ0_ucFwXpR5KkkLI-heV06tU7FrO6TwuYaCuTKQ,222
|
|
23
|
+
sqlshell/db/database_manager.py,sha256=MPOL4rb8zhFJyvd95WtovHcnyGP2HYAnWHM5T_lK2gg,59061
|
|
24
|
+
sqlshell/db/export_manager.py,sha256=jDXzF6MSTTcXJBt2w-GlYzlDQDMN3bcctJNX1zBgFpc,7433
|
|
25
|
+
sqlshell/resources/__init__.py,sha256=VLTJ_5pUHhctRiV8UZDvG-jnsjgT6JQvW-ZPzIJqBIY,44
|
|
26
|
+
sqlshell/resources/icon.png,sha256=PcT469bK-GaC6Ws1MwXvN_8y2fUn9LioSnZcXPq59W8,3410
|
|
27
|
+
sqlshell/resources/logo_large.png,sha256=pjLs6kXCy8gW8Iiq1gb6ZLnJEQ7_2GxtoJ_HDZ0_ERQ,31080
|
|
28
|
+
sqlshell/resources/logo_medium.png,sha256=brEV-YLgKS4RSxdZBgrwq_MvMA9zpsYvvvWgchUdjK4,14087
|
|
29
|
+
sqlshell/resources/logo_small.png,sha256=X4oQwj1k4OTbY785hWUIR12f1yAduV-USNzEu7aqkHs,6677
|
|
30
|
+
sqlshell/resources/splash_screen.gif,sha256=H24DQBdK1EsqQTWZkgInjM5ouOzY4cMesUoza10auNg,3070484
|
|
31
|
+
sqlshell/sqlshell/__init__.py,sha256=6Wp5nabfTzH5rkC-2jYo_ZjCuw8utmj21Jpy8vBuliI,100
|
|
32
|
+
sqlshell/sqlshell/create_test_data.py,sha256=TFXgWeK1l3l_c4Dg38yS8Df4sBUfOZcBucXngtpThvk,4624
|
|
33
|
+
sqlshell/sqlshell/create_test_databases.py,sha256=oqryFJJahqLFsAjBFM4r9Fe1ea7djDcRpT9U_aBf7PU,3573
|
|
34
|
+
sqlshell/ui/__init__.py,sha256=2CsTDAvRZJ99gkjs3-rdwkxyGVAKXX6ueOhPdP1VXQc,206
|
|
35
|
+
sqlshell/ui/bar_chart_delegate.py,sha256=tbtIt2ZqPIcYWNJzpONpYa0CYURkLdjkg23TI7TmOKY,1881
|
|
36
|
+
sqlshell/ui/filter_header.py,sha256=qN8fkyB0gz5YCcNPnwFE-orKvFJB9DbtBEkHRdL_4R0,20212
|
|
37
|
+
sqlshell/utils/__init__.py,sha256=-Fmydv-HfRNywlLudcrlyy7RIZsxSHCOLDQ2AR1TnVg,375
|
|
38
|
+
sqlshell/utils/profile_cn2.py,sha256=iffsKyVJ8lVdb9sHZBDvoYqr7gySaXAJbOCKqRfW6Zk,61099
|
|
39
|
+
sqlshell/utils/profile_column.py,sha256=e1pLHoZy-c1066nUgoEVXuFvi9PAPwLKdoeJDQNmevM,119043
|
|
40
|
+
sqlshell/utils/profile_distributions.py,sha256=_uns_fLoA2ac3oiMIh6spG1nDqM4RFCe_UnzozPrL3A,25482
|
|
41
|
+
sqlshell/utils/profile_entropy.py,sha256=pJTcXlBkSEPzL3Fvxizf5gBkw6IsUjfa9Y6MjAqF1do,13238
|
|
42
|
+
sqlshell/utils/profile_foreign_keys.py,sha256=ri1UXYc4Es3u4PabM1YdSEeDt63o4SSkVX_qJwOiwFE,33949
|
|
43
|
+
sqlshell/utils/profile_keys.py,sha256=-lhTqs6mHCkr-7I6JIXCzTyICmgY38BvFwiPwTbU4cE,116235
|
|
44
|
+
sqlshell/utils/profile_ohe.py,sha256=pLWmNabLtXuiPp2pHd7bRoRRpLWcl62j8U-axlmxsec,37821
|
|
45
|
+
sqlshell/utils/profile_ohe_advanced.py,sha256=R8aVAeMS_drOJhRhdQO-vcf6YVM818Freg6N8wQK_1U,30044
|
|
46
|
+
sqlshell/utils/profile_ohe_comparison.py,sha256=MNgX7b357gFmtia1ih5Iw06s2olMyjZ0s9Kx0yeG48Y,9916
|
|
47
|
+
sqlshell/utils/profile_prediction.py,sha256=hUjrYmdlySgAIiEQ8uw_uNUkEXwILSitZbxAlrZZpZ0,38233
|
|
48
|
+
sqlshell/utils/profile_similarity.py,sha256=tkitvxT2au_UTkmJcUKQ-b2Ug7bKiAB7-5aSGXWmGUs,33439
|
|
49
|
+
sqlshell/utils/search_in_df.py,sha256=wbfyCcnXPRfEhzv_h0YtXxvJXLvoL9QEaI2EJoxJzDI,3327
|
|
50
|
+
sqlshell-0.4.4.dist-info/METADATA,sha256=7o-GP3V_r0BquyuI4bAFtM2jVsvh_XIQA_V_pABXOfU,11863
|
|
51
|
+
sqlshell-0.4.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
52
|
+
sqlshell-0.4.4.dist-info/entry_points.txt,sha256=lt4HuxPR0dapNeGxI5ZjMnFDvt3spmKsnT1G7YTpDV8,48
|
|
53
|
+
sqlshell-0.4.4.dist-info/top_level.txt,sha256=ahwsMFhvAqI97ZkT2xvHL5iZCO1p13mNiUOFkdSFwms,9
|
|
54
|
+
sqlshell-0.4.4.dist-info/RECORD,,
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
sqlshell
|