sqlshell 0.1.8__py3-none-any.whl → 0.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sqlshell might be problematic. Click here for more details.

@@ -0,0 +1,198 @@
1
+ Metadata-Version: 2.4
2
+ Name: sqlshell
3
+ Version: 0.2.0
4
+ Summary: A powerful SQL shell with GUI interface for data analysis
5
+ Author: SQLShell Team
6
+ License-Expression: MIT
7
+ Project-URL: Homepage, https://github.com/oyvinrog/SQLShell
8
+ Keywords: sql,data analysis,gui,duckdb
9
+ Classifier: Development Status :: 3 - Alpha
10
+ Classifier: Intended Audience :: Developers
11
+ Classifier: Programming Language :: Python :: 3
12
+ Classifier: Programming Language :: Python :: 3.8
13
+ Classifier: Programming Language :: Python :: 3.9
14
+ Classifier: Programming Language :: Python :: 3.10
15
+ Classifier: Programming Language :: Python :: 3.11
16
+ Requires-Python: >=3.8
17
+ Description-Content-Type: text/markdown
18
+ Requires-Dist: pandas>=2.0.0
19
+ Requires-Dist: numpy>=1.24.0
20
+ Requires-Dist: PyQt6>=6.4.0
21
+ Requires-Dist: duckdb>=0.9.0
22
+ Requires-Dist: openpyxl>=3.1.0
23
+ Requires-Dist: pyarrow>=14.0.1
24
+ Requires-Dist: fastparquet>=2023.10.1
25
+ Requires-Dist: xlrd>=2.0.1
26
+ Requires-Dist: deltalake
27
+ Requires-Dist: Pillow>=10.0.0
28
+
29
+ # SQLShell
30
+
31
+ <div align="center">
32
+
33
+ <img src="sqlshell_logo.png" alt="SQLShell Logo" width="180" height="auto">
34
+
35
+ **A powerful SQL shell with GUI interface for data analysis**
36
+
37
+ <img src="sqlshell_demo.png" alt="SQLShell Interface" width="80%" height="auto">
38
+
39
+ </div>
40
+
41
+ ## 🚀 Key Features
42
+
43
+ - **Interactive SQL Interface** - Rich syntax highlighting for enhanced query writing
44
+ - **Context-Aware Suggestions** - Intelligent SQL autocompletion based on query context and schema
45
+ - **DuckDB Integration** - Powerful analytical queries powered by DuckDB
46
+ - **Multi-Format Support** - Import and query Excel (.xlsx, .xls), CSV, and Parquet files effortlessly
47
+ - **Modern UI** - Clean, tabular results display with intuitive controls
48
+ - **Table Preview** - Quick view of imported data tables
49
+ - **Test Data Generation** - Built-in sample data for testing and learning
50
+ - **Multiple Views** - Support for multiple concurrent table views
51
+ - **Productivity Tools** - Streamlined workflow with keyboard shortcuts (e.g., Ctrl+Enter for query execution)
52
+
53
+ ## 📦 Installation
54
+
55
+ ### Using pip (Recommended)
56
+
57
+ ```bash
58
+ pip install sqlshell
59
+ ```
60
+
61
+ ### Linux Setup with Virtual Environment
62
+
63
+ ```bash
64
+ # Create and activate virtual environment
65
+ python3 -m venv ~/.venv/sqlshell
66
+ source ~/.venv/sqlshell/bin/activate
67
+
68
+ # Install SQLShell
69
+ pip install sqlshell
70
+
71
+ # Configure shell alias
72
+ echo 'alias sqls="~/.venv/sqlshell/bin/sqls"' >> ~/.bashrc # or ~/.zshrc for Zsh
73
+ source ~/.bashrc # or source ~/.zshrc
74
+ ```
75
+
76
+ ### Development Installation
77
+
78
+ ```bash
79
+ git clone https://github.com/oyvinrog/SQLShell.git
80
+ cd SQLShell
81
+ pip install -e .
82
+ ```
83
+
84
+ ## 🎯 Getting Started
85
+
86
+ 1. **Launch the Application**
87
+ ```bash
88
+ sqls
89
+ ```
90
+
91
+ If the `sqls` command doesn't work (e.g., "access denied" on Windows), you can use this alternative:
92
+ ```bash
93
+ python -c "import sqlshell; sqlshell.start()"
94
+ ```
95
+
96
+ 2. **Database Connection**
97
+ - SQLShell automatically connects to a local DuckDB database named 'pool.db'
98
+
99
+ 3. **Working with Data Files**
100
+ - Click "Load Files" to select your Excel, CSV, or Parquet files
101
+ - File contents are loaded as queryable SQL tables
102
+ - Query using standard SQL syntax
103
+
104
+ 4. **Query Execution**
105
+ - Enter SQL in the editor
106
+ - Execute using Ctrl+Enter or the "Execute" button
107
+ - View results in the structured output panel
108
+
109
+ 5. **Test Data**
110
+ - Load sample test data using the "Test" button for quick experimentation
111
+
112
+ 6. **Using Context-Aware Suggestions**
113
+ - Press Ctrl+Space to manually trigger suggestions
114
+ - Suggestions appear automatically as you type
115
+ - Context-specific suggestions based on your query position:
116
+ - After SELECT: columns and functions
117
+ - After FROM/JOIN: tables with join conditions
118
+ - After WHERE: columns with appropriate operators
119
+ - Inside functions: relevant column suggestions
120
+
121
+ ## 📝 Query Examples
122
+
123
+ ### Basic Join Operation
124
+ ```sql
125
+ SELECT *
126
+ FROM sample_sales_data cd
127
+ INNER JOIN product_catalog pc ON pc.productid = cd.productid
128
+ LIMIT 3;
129
+ ```
130
+
131
+ ### Multi-Statement Queries
132
+ ```sql
133
+ -- Create a temporary view
134
+ CREATE OR REPLACE TEMPORARY VIEW test_v AS
135
+ SELECT *
136
+ FROM sample_sales_data cd
137
+ INNER JOIN product_catalog pc ON pc.productid = cd.productid;
138
+
139
+ -- Query the view
140
+ SELECT DISTINCT productid
141
+ FROM test_v;
142
+ ```
143
+
144
+ ## 💡 Pro Tips
145
+
146
+ - Use temporary views for complex query organization
147
+ - Leverage keyboard shortcuts for efficient workflow
148
+ - Explore the multi-format support for various data sources
149
+ - Create multiple tabs for parallel query development
150
+ - The context-aware suggestions learn from your query patterns
151
+ - Type `table_name.` to see all columns for a specific table
152
+ - After JOIN keyword, the system suggests relevant tables and join conditions
153
+
154
+ ## 📊 Column Profiler
155
+
156
+ The Column Profiler provides quick statistical insights into your table columns:
157
+
158
+ <img src="column_profiler.png" alt="Column Profiler" width="80%" height="auto">
159
+
160
+ ### Using the Column Profiler
161
+
162
+ 1. **Access the Profiler**
163
+ - Right-click on any table in the schema browser
164
+ - Select "Profile Table" from the context menu
165
+
166
+ 2. **View Column Statistics**
167
+ - Instantly see key metrics for each column:
168
+ - Data type
169
+ - Non-null count and percentage
170
+ - Unique values count
171
+ - Mean, median, min, and max values (for numeric columns)
172
+ - Most frequent values and their counts
173
+ - Distribution visualization
174
+
175
+ 3. **Benefits**
176
+ - Quickly understand data distribution
177
+ - Identify outliers and data quality issues
178
+ - Make informed decisions about query conditions
179
+ - Assess column cardinality for join operations
180
+
181
+ The Column Profiler is an invaluable tool for exploratory data analysis, helping you gain insights before writing complex queries.
182
+
183
+ ## 📋 Requirements
184
+
185
+ - Python 3.8 or higher
186
+ - Dependencies (automatically installed):
187
+ - PyQt6 ≥ 6.4.0
188
+ - DuckDB ≥ 0.9.0
189
+ - Pandas ≥ 2.0.0
190
+ - NumPy ≥ 1.24.0
191
+ - openpyxl ≥ 3.1.0 (Excel support)
192
+ - pyarrow ≥ 14.0.1 (Parquet support)
193
+ - fastparquet ≥ 2023.10.1 (Alternative parquet engine)
194
+ - xlrd ≥ 2.0.1 (Support for older .xls files)
195
+
196
+ ## 📄 License
197
+
198
+ This project is licensed under the MIT License - see the LICENSE file for details.
@@ -0,0 +1,41 @@
1
+ sqlshell/LICENSE,sha256=YFVzvqHDVzBVtEZoKwcHhashVdNy4P7tDEQ561jAdyo,1070
2
+ sqlshell/MANIFEST.in,sha256=UautKSW4Kzjsy1Ti05-P58qRgM4ct4mmG3aserBGaX0,144
3
+ sqlshell/README.md,sha256=UoWQzdsYThrOoajT40iOtpI73g5ANB7w12vll0eH0Ck,1357
4
+ sqlshell/__init__.py,sha256=GAZ3g4YsExb-aFyN0a77whBxRRk4XMGJYakvpeKbxdg,164
5
+ sqlshell/context_suggester.py,sha256=OdfSBqwKWtf6yGj-_cNjf9RZG9cc70TWZ_7ieAVKJqk,33970
6
+ sqlshell/create_test_data.py,sha256=uJSFyqm8zYWpyERPd29iMu-EbtvKiwK5WV0N-LibNOc,5385
7
+ sqlshell/editor.py,sha256=iWSYUtsNCud7HWZrcqD9Ef7FEa0nt7ekeUHV6CmCgao,39635
8
+ sqlshell/main.py,sha256=vt7s6dXmY6iw-Y3jr2YtPNMwwvdqPu1zqNRNidtIRN0,150575
9
+ sqlshell/menus.py,sha256=hiT1CXXnsRKkai7oJlPi94du_GKtIhl5X5LOGvqcOqs,5684
10
+ sqlshell/query_tab.py,sha256=9Yu_7MRikZXrQ003N2HOvjFEBdiz_J9ZLWgTzXPiumc,8404
11
+ sqlshell/splash_screen.py,sha256=K0Ku_nXJWmWSnVEh2OttIthRZcnUoY_tmjIAWIWLm7Y,17604
12
+ sqlshell/sqlshell_demo.png,sha256=dPp9J1FVqQVfrh-gekosuha2Jw2p2--wxbOmt2kr7fg,133550
13
+ sqlshell/styles.py,sha256=EGA_Ow-XerPEQgj82ts3fnqkEPMcjSlJPblbPu9L__s,7135
14
+ sqlshell/suggester_integration.py,sha256=w3fKuSq5ex5OHxSBzZunyq3mbGvX06-7nxgLClnK5Kw,13232
15
+ sqlshell/syntax_highlighter.py,sha256=mPwsD8N4XzAUx0IgwlelyfjUhe0xmH0Ug3UI9hTcHz0,5861
16
+ sqlshell/table_list.py,sha256=ET9UGxhRL2j42GC6WqocotvQIOUzRskH9BnmciVX_As,37670
17
+ sqlshell/data/create_test_data.py,sha256=sUTcf50V8-bVwYV2VNTLK65c-iHiU4wb99By67I10zM,5404
18
+ sqlshell/db/__init__.py,sha256=AJGRkywFCnJliwfOBvtE_ISXjdESkRea7lBFM5KjuTU,152
19
+ sqlshell/db/database_manager.py,sha256=DRPoRYgY9DthD1YvLuMeo-aRfaAAcdAKZKXMPDmAcsg,35722
20
+ sqlshell/resources/__init__.py,sha256=VLTJ_5pUHhctRiV8UZDvG-jnsjgT6JQvW-ZPzIJqBIY,44
21
+ sqlshell/resources/create_icon.py,sha256=O7idVEKwmSXxLUsbeRn6zcYVQLPSdJi98nGamTgXiM4,4905
22
+ sqlshell/resources/create_splash.py,sha256=t1KK43Y0pHKGcdRkbnZgV6_y1c1C0THHQl5_fmpC2gQ,3347
23
+ sqlshell/resources/icon.png,sha256=l7MI1PWCED1XzsRgUjPR3A9pmbZ253tghd5s_0lJBMs,3173
24
+ sqlshell/resources/logo_large.png,sha256=pjLs6kXCy8gW8Iiq1gb6ZLnJEQ7_2GxtoJ_HDZ0_ERQ,31080
25
+ sqlshell/resources/logo_medium.png,sha256=brEV-YLgKS4RSxdZBgrwq_MvMA9zpsYvvvWgchUdjK4,14087
26
+ sqlshell/resources/logo_small.png,sha256=X4oQwj1k4OTbY785hWUIR12f1yAduV-USNzEu7aqkHs,6677
27
+ sqlshell/resources/splash_screen.gif,sha256=H24DQBdK1EsqQTWZkgInjM5ouOzY4cMesUoza10auNg,3070484
28
+ sqlshell/sqlshell/__init__.py,sha256=6Wp5nabfTzH5rkC-2jYo_ZjCuw8utmj21Jpy8vBuliI,100
29
+ sqlshell/sqlshell/create_test_data.py,sha256=TFXgWeK1l3l_c4Dg38yS8Df4sBUfOZcBucXngtpThvk,4624
30
+ sqlshell/sqlshell/create_test_databases.py,sha256=oqryFJJahqLFsAjBFM4r9Fe1ea7djDcRpT9U_aBf7PU,3573
31
+ sqlshell/ui/__init__.py,sha256=2CsTDAvRZJ99gkjs3-rdwkxyGVAKXX6ueOhPdP1VXQc,206
32
+ sqlshell/ui/bar_chart_delegate.py,sha256=tbtIt2ZqPIcYWNJzpONpYa0CYURkLdjkg23TI7TmOKY,1881
33
+ sqlshell/ui/filter_header.py,sha256=c4Mg1J1yTUfrnT9C-xDWHhcauRsgU3WNfvVInv1J814,16074
34
+ sqlshell/utils/__init__.py,sha256=iPKvOsKcfnV7xvhQVOz8BiQ4kbFZ7PGUW8vg0vyMqvk,225
35
+ sqlshell/utils/profile_entropy.py,sha256=pJTcXlBkSEPzL3Fvxizf5gBkw6IsUjfa9Y6MjAqF1do,13238
36
+ sqlshell/utils/profile_keys.py,sha256=ajdBTqvZVmAlVaY-kDmv_D8D3sKASG75PLTzf8Y8nX4,14170
37
+ sqlshell-0.2.0.dist-info/METADATA,sha256=EihrTD_KfJTWcYr24WnHEpMBfbYNK6NRJHVhCeU8vQQ,6101
38
+ sqlshell-0.2.0.dist-info/WHEEL,sha256=ck4Vq1_RXyvS4Jt6SI0Vz6fyVs4GWg7AINwpsaGEgPE,91
39
+ sqlshell-0.2.0.dist-info/entry_points.txt,sha256=Kd0fOvyOW7UiTgTVY7abVOmDIH2Y2nawGTp5kVadac4,44
40
+ sqlshell-0.2.0.dist-info/top_level.txt,sha256=ahwsMFhvAqI97ZkT2xvHL5iZCO1p13mNiUOFkdSFwms,9
41
+ sqlshell-0.2.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (77.0.3)
2
+ Generator: setuptools (80.0.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
sqlshell/setup.py DELETED
@@ -1,42 +0,0 @@
1
- from setuptools import setup, find_packages
2
-
3
- setup(
4
- name="sqlshell",
5
- version="0.1.1",
6
- packages=find_packages(),
7
- install_requires=[
8
- 'pandas>=2.0.0',
9
- 'numpy>=1.24.0',
10
- 'PyQt6>=6.4.0',
11
- 'duckdb>=0.9.0',
12
- 'openpyxl>=3.1.0',
13
- 'pyarrow>=14.0.1',
14
- 'fastparquet>=2023.10.1',
15
- 'xlrd>=2.0.1'
16
- ],
17
- entry_points={
18
- 'console_scripts': [
19
- 'sqls=sqlshell.main:main',
20
- ],
21
- },
22
- author="SQLShell Team",
23
- description="A powerful SQL shell with GUI interface for data analysis",
24
- long_description=open('README.md').read(),
25
- long_description_content_type="text/markdown",
26
- keywords="sql, data analysis, gui, duckdb",
27
- url="https://github.com/yourusername/sqlshell",
28
- classifiers=[
29
- "Development Status :: 3 - Alpha",
30
- "Intended Audience :: Developers",
31
- "Programming Language :: Python :: 3",
32
- "Programming Language :: Python :: 3.8",
33
- "Programming Language :: Python :: 3.9",
34
- "Programming Language :: Python :: 3.10",
35
- "Programming Language :: Python :: 3.11",
36
- ],
37
- python_requires=">=3.8",
38
- include_package_data=True,
39
- package_data={
40
- 'sqlshell': ['*.db'],
41
- },
42
- )
@@ -1,120 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: sqlshell
3
- Version: 0.1.8
4
- Summary: A powerful SQL shell with GUI interface for data analysis
5
- Home-page: https://github.com/yourusername/sqlshell
6
- Author: SQLShell Team
7
- License: MIT
8
- Project-URL: Homepage, https://github.com/oyvinrog/SQLShell
9
- Keywords: sql,data analysis,gui,duckdb
10
- Classifier: Development Status :: 3 - Alpha
11
- Classifier: Intended Audience :: Developers
12
- Classifier: Programming Language :: Python :: 3
13
- Classifier: Programming Language :: Python :: 3.8
14
- Classifier: Programming Language :: Python :: 3.9
15
- Classifier: Programming Language :: Python :: 3.10
16
- Classifier: Programming Language :: Python :: 3.11
17
- Requires-Python: >=3.8
18
- Description-Content-Type: text/markdown
19
- Requires-Dist: pandas>=2.0.0
20
- Requires-Dist: numpy>=1.24.0
21
- Requires-Dist: PyQt6>=6.4.0
22
- Requires-Dist: duckdb>=0.9.0
23
- Requires-Dist: openpyxl>=3.1.0
24
- Requires-Dist: pyarrow>=14.0.1
25
- Requires-Dist: fastparquet>=2023.10.1
26
- Requires-Dist: xlrd>=2.0.1
27
- Dynamic: home-page
28
- Dynamic: requires-python
29
-
30
- # SQLShell
31
-
32
- <div align="center">
33
-
34
- ![SQLShell Interface](sqlshell_logo.png)
35
-
36
- **A modern SQL REPL interface for seamless querying of Excel, Parquet, and SQLite databases**
37
-
38
- ![SQLShell Interface](sqlshell_demo.png)
39
-
40
- </div>
41
-
42
- ## 🚀 Key Features
43
-
44
- - **Interactive SQL Interface** - Rich syntax highlighting for enhanced query writing
45
- - **DuckDB Integration** - Built-in support for local DuckDB database (pool.db)
46
- - **Multi-Format Support** - Import and query Excel (.xlsx, .xls) and CSV files effortlessly
47
- - **Modern UI** - Clean, tabular results display with intuitive controls
48
- - **Productivity Tools** - Streamlined workflow with keyboard shortcuts (e.g., Ctrl+Enter for query execution)
49
-
50
- ## 📦 Installation
51
-
52
- ### Linux Setup with Virtual Environment
53
-
54
- ```bash
55
- # Create and activate virtual environment
56
- python3 -m venv ~/.venv/sqlshell
57
- source ~/.venv/sqlshell/bin/activate
58
-
59
- # Install SQLShell
60
- pip install sqlshell
61
-
62
- # Configure shell alias
63
- echo 'alias sqls="~/.venv/sqlshell/bin/sqls"' >> ~/.bashrc # or ~/.zshrc for Zsh
64
- source ~/.bashrc # or source ~/.zshrc
65
- ```
66
-
67
- ### Windows Quick Start
68
- SQLShell is immediately available via the `sqls` command after installation:
69
- ```bash
70
- pip install sqlshell
71
- ```
72
-
73
- ## 🎯 Getting Started
74
-
75
- 1. **Launch the Application**
76
- ```bash
77
- sqls
78
- ```
79
-
80
- 2. **Database Connection**
81
- - SQLShell automatically connects to a local DuckDB database named 'pool.db'
82
-
83
- 3. **Working with Excel Files**
84
- - Click "Browse Excel" to select your file
85
- - File contents are loaded as 'imported_data' table
86
- - Query using standard SQL syntax
87
-
88
- 4. **Query Execution**
89
- - Enter SQL in the editor
90
- - Execute using Ctrl+Enter or the "Execute" button
91
- - View results in the structured output panel
92
-
93
- ## 📝 Query Examples
94
-
95
- ### Basic Join Operation
96
- ```sql
97
- SELECT *
98
- FROM sample_sales_data cd
99
- INNER JOIN product_catalog pc ON pc.productid = cd.productid
100
- LIMIT 3;
101
- ```
102
-
103
- ### Multi-Statement Queries
104
- ```sql
105
- -- Create a temporary view
106
- CREATE OR REPLACE TEMPORARY VIEW test_v AS
107
- SELECT *
108
- FROM sample_sales_data cd
109
- INNER JOIN product_catalog pc ON pc.productid = cd.productid;
110
-
111
- -- Query the view
112
- SELECT DISTINCT productid
113
- FROM test_v;
114
- ```
115
-
116
- ## 💡 Pro Tips
117
-
118
- - Use temporary views for complex query organization
119
- - Leverage keyboard shortcuts for efficient workflow
120
- - Explore the multi-format support for various data sources
@@ -1,21 +0,0 @@
1
- sqlshell/__init__.py,sha256=DqhqqdKdvfwO2iUG1Yd7WPmInpG-OcGhqP8LgblopgI,164
2
- sqlshell/create_test_data.py,sha256=AzrEsKlZsR1H1Xlp7IKOzWQ2N6FsVISJbc6CerI8IJ0,1954
3
- sqlshell/editor.py,sha256=4252dxINzJd1jr7CqgSI6IxUYHdkZ1OGZ1qBYN5-MKM,14396
4
- sqlshell/main.py,sha256=0eQlAQnRkFV14Ot8vJikG7Vq_zkSAqqohu50Y8UREyQ,75480
5
- sqlshell/setup.py,sha256=bAIXTpgAHhBRmPdT13Klzq16cjd4w4NOYSbyV_rxjlQ,1245
6
- sqlshell/splash_screen.py,sha256=XkXvSURgQzZfxJvP231Ue4J2E49ph21tWbvfGU03Ogk,6914
7
- sqlshell/sqlshell_demo.png,sha256=dPp9J1FVqQVfrh-gekosuha2Jw2p2--wxbOmt2kr7fg,133550
8
- sqlshell/syntax_highlighter.py,sha256=mPwsD8N4XzAUx0IgwlelyfjUhe0xmH0Ug3UI9hTcHz0,5861
9
- sqlshell/data/create_test_data.py,sha256=sUTcf50V8-bVwYV2VNTLK65c-iHiU4wb99By67I10zM,5404
10
- sqlshell/resources/__init__.py,sha256=VLTJ_5pUHhctRiV8UZDvG-jnsjgT6JQvW-ZPzIJqBIY,44
11
- sqlshell/resources/create_icon.py,sha256=ubNYyBYx5HtYpV8eiGY8Fb1VWUoQt-npaqUckiCimnQ,2030
12
- sqlshell/resources/create_splash.py,sha256=cj6BpMtD1crBkcSxt-ssJIFIZv43UDqLME8FF0fgkoA,2104
13
- sqlshell/resources/splash_screen.gif,sha256=H24DQBdK1EsqQTWZkgInjM5ouOzY4cMesUoza10auNg,3070484
14
- sqlshell/sqlshell/__init__.py,sha256=6Wp5nabfTzH5rkC-2jYo_ZjCuw8utmj21Jpy8vBuliI,100
15
- sqlshell/sqlshell/create_test_data.py,sha256=TFXgWeK1l3l_c4Dg38yS8Df4sBUfOZcBucXngtpThvk,4624
16
- sqlshell/sqlshell/create_test_databases.py,sha256=oqryFJJahqLFsAjBFM4r9Fe1ea7djDcRpT9U_aBf7PU,3573
17
- sqlshell-0.1.8.dist-info/METADATA,sha256=bIt-ocCENwgCT7ZxBMOUOaABM0PWonDQ7x2rYy2j2fU,3323
18
- sqlshell-0.1.8.dist-info/WHEEL,sha256=1tXe9gY0PYatrMPMDd6jXqjfpz_B-Wqm32CPfRC58XU,91
19
- sqlshell-0.1.8.dist-info/entry_points.txt,sha256=Kd0fOvyOW7UiTgTVY7abVOmDIH2Y2nawGTp5kVadac4,44
20
- sqlshell-0.1.8.dist-info/top_level.txt,sha256=ahwsMFhvAqI97ZkT2xvHL5iZCO1p13mNiUOFkdSFwms,9
21
- sqlshell-0.1.8.dist-info/RECORD,,