sqlshell 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of sqlshell might be problematic. Click here for more details.
- sqlshell/__init__.py +5 -0
- sqlshell/create_test_data.py +137 -0
- sqlshell/main.py +346 -0
- sqlshell-0.1.0.dist-info/LICENSE +21 -0
- sqlshell-0.1.0.dist-info/METADATA +85 -0
- sqlshell-0.1.0.dist-info/RECORD +9 -0
- sqlshell-0.1.0.dist-info/WHEEL +5 -0
- sqlshell-0.1.0.dist-info/entry_points.txt +2 -0
- sqlshell-0.1.0.dist-info/top_level.txt +1 -0
sqlshell/__init__.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
import numpy as np
|
|
3
|
+
from datetime import datetime, timedelta
|
|
4
|
+
import os
|
|
5
|
+
|
|
6
|
+
# Set random seed for reproducibility
|
|
7
|
+
np.random.seed(42)
|
|
8
|
+
|
|
9
|
+
# Define output directory
|
|
10
|
+
OUTPUT_DIR = 'test_data'
|
|
11
|
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
|
12
|
+
|
|
13
|
+
def create_sales_data(num_records=1000):
|
|
14
|
+
# Generate dates for the last 365 days
|
|
15
|
+
end_date = datetime.now()
|
|
16
|
+
start_date = end_date - timedelta(days=365)
|
|
17
|
+
dates = [start_date + timedelta(days=x) for x in range(366)]
|
|
18
|
+
random_dates = np.random.choice(dates, num_records)
|
|
19
|
+
|
|
20
|
+
# Create product data
|
|
21
|
+
products = ['Laptop', 'Smartphone', 'Tablet', 'Monitor', 'Keyboard', 'Mouse', 'Headphones', 'Printer']
|
|
22
|
+
product_prices = {
|
|
23
|
+
'Laptop': (800, 2000),
|
|
24
|
+
'Smartphone': (400, 1200),
|
|
25
|
+
'Tablet': (200, 800),
|
|
26
|
+
'Monitor': (150, 500),
|
|
27
|
+
'Keyboard': (20, 150),
|
|
28
|
+
'Mouse': (10, 80),
|
|
29
|
+
'Headphones': (30, 300),
|
|
30
|
+
'Printer': (100, 400)
|
|
31
|
+
}
|
|
32
|
+
|
|
33
|
+
# Generate random data
|
|
34
|
+
data = {
|
|
35
|
+
'OrderID': range(1, num_records + 1),
|
|
36
|
+
'Date': random_dates,
|
|
37
|
+
'ProductID': np.random.randint(1, len(products) + 1, num_records), # Changed to ProductID for joining
|
|
38
|
+
'Quantity': np.random.randint(1, 11, num_records),
|
|
39
|
+
'CustomerID': np.random.randint(1, 201, num_records),
|
|
40
|
+
'Region': np.random.choice(['North', 'South', 'East', 'West'], num_records)
|
|
41
|
+
}
|
|
42
|
+
|
|
43
|
+
# Calculate prices based on product
|
|
44
|
+
product_list = [products[pid-1] for pid in data['ProductID']]
|
|
45
|
+
data['Price'] = [np.random.uniform(product_prices[p][0], product_prices[p][1])
|
|
46
|
+
for p in product_list]
|
|
47
|
+
data['TotalAmount'] = [price * qty for price, qty in zip(data['Price'], data['Quantity'])]
|
|
48
|
+
|
|
49
|
+
# Create DataFrame
|
|
50
|
+
df = pd.DataFrame(data)
|
|
51
|
+
|
|
52
|
+
# Round numerical columns
|
|
53
|
+
df['Price'] = df['Price'].round(2)
|
|
54
|
+
df['TotalAmount'] = df['TotalAmount'].round(2)
|
|
55
|
+
|
|
56
|
+
# Sort by Date
|
|
57
|
+
return df.sort_values('Date')
|
|
58
|
+
|
|
59
|
+
def create_customer_data(num_customers=200):
|
|
60
|
+
# Generate customer data
|
|
61
|
+
data = {
|
|
62
|
+
'CustomerID': range(1, num_customers + 1),
|
|
63
|
+
'FirstName': [f'Customer{i}' for i in range(1, num_customers + 1)],
|
|
64
|
+
'LastName': [f'Lastname{i}' for i in range(1, num_customers + 1)],
|
|
65
|
+
'Email': [f'customer{i}@example.com' for i in range(1, num_customers + 1)],
|
|
66
|
+
'JoinDate': [datetime.now() - timedelta(days=np.random.randint(1, 1000))
|
|
67
|
+
for _ in range(num_customers)],
|
|
68
|
+
'CustomerType': np.random.choice(['Regular', 'Premium', 'VIP'], num_customers),
|
|
69
|
+
'CreditScore': np.random.randint(300, 851, num_customers)
|
|
70
|
+
}
|
|
71
|
+
|
|
72
|
+
return pd.DataFrame(data)
|
|
73
|
+
|
|
74
|
+
def create_product_data():
|
|
75
|
+
# Create detailed product information
|
|
76
|
+
products = {
|
|
77
|
+
'ProductID': range(1, 9),
|
|
78
|
+
'ProductName': ['Laptop', 'Smartphone', 'Tablet', 'Monitor', 'Keyboard', 'Mouse', 'Headphones', 'Printer'],
|
|
79
|
+
'Category': ['Computers', 'Mobile', 'Mobile', 'Accessories', 'Accessories', 'Accessories', 'Audio', 'Peripherals'],
|
|
80
|
+
'Brand': ['TechPro', 'MobileX', 'TabletCo', 'ViewMax', 'TypeMaster', 'ClickPro', 'SoundMax', 'PrintPro'],
|
|
81
|
+
'StockQuantity': np.random.randint(50, 500, 8),
|
|
82
|
+
'MinPrice': [800, 400, 200, 150, 20, 10, 30, 100],
|
|
83
|
+
'MaxPrice': [2000, 1200, 800, 500, 150, 80, 300, 400],
|
|
84
|
+
'Weight_kg': [2.5, 0.2, 0.5, 3.0, 0.8, 0.1, 0.3, 5.0],
|
|
85
|
+
'WarrantyMonths': [24, 12, 12, 36, 12, 12, 24, 12]
|
|
86
|
+
}
|
|
87
|
+
|
|
88
|
+
return pd.DataFrame(products)
|
|
89
|
+
|
|
90
|
+
if __name__ == '__main__':
|
|
91
|
+
# Create and save sales data
|
|
92
|
+
sales_df = create_sales_data()
|
|
93
|
+
sales_output = os.path.join(OUTPUT_DIR, 'sample_sales_data.xlsx')
|
|
94
|
+
sales_df.to_excel(sales_output, index=False)
|
|
95
|
+
print(f"Created sales data in '{sales_output}'")
|
|
96
|
+
print(f"Number of sales records: {len(sales_df)}")
|
|
97
|
+
|
|
98
|
+
# Create and save customer data as parquet
|
|
99
|
+
customer_df = create_customer_data()
|
|
100
|
+
customer_output = os.path.join(OUTPUT_DIR, 'customer_data.parquet')
|
|
101
|
+
customer_df.to_parquet(customer_output, index=False)
|
|
102
|
+
print(f"\nCreated customer data in '{customer_output}'")
|
|
103
|
+
print(f"Number of customers: {len(customer_df)}")
|
|
104
|
+
|
|
105
|
+
# Create and save product data
|
|
106
|
+
product_df = create_product_data()
|
|
107
|
+
product_output = os.path.join(OUTPUT_DIR, 'product_catalog.xlsx')
|
|
108
|
+
product_df.to_excel(product_output, index=False)
|
|
109
|
+
print(f"\nCreated product catalog in '{product_output}'")
|
|
110
|
+
print(f"Number of products: {len(product_df)}")
|
|
111
|
+
|
|
112
|
+
# Print sample queries
|
|
113
|
+
print("\nSample SQL queries for joining the data:")
|
|
114
|
+
print("""
|
|
115
|
+
-- Join sales with customer data
|
|
116
|
+
SELECT s.*, c.FirstName, c.LastName, c.CustomerType
|
|
117
|
+
FROM test_data.sample_sales_data s
|
|
118
|
+
JOIN test_data.customer_data c ON s.CustomerID = c.CustomerID;
|
|
119
|
+
|
|
120
|
+
-- Join sales with product data
|
|
121
|
+
SELECT s.*, p.ProductName, p.Category, p.Brand
|
|
122
|
+
FROM test_data.sample_sales_data s
|
|
123
|
+
JOIN test_data.product_catalog p ON s.ProductID = p.ProductID;
|
|
124
|
+
|
|
125
|
+
-- Three-way join with aggregation
|
|
126
|
+
SELECT
|
|
127
|
+
p.Category,
|
|
128
|
+
c.CustomerType,
|
|
129
|
+
COUNT(*) as NumOrders,
|
|
130
|
+
SUM(s.TotalAmount) as TotalRevenue,
|
|
131
|
+
AVG(s.Quantity) as AvgQuantity
|
|
132
|
+
FROM test_data.sample_sales_data s
|
|
133
|
+
JOIN test_data.customer_data c ON s.CustomerID = c.CustomerID
|
|
134
|
+
JOIN test_data.product_catalog p ON s.ProductID = p.ProductID
|
|
135
|
+
GROUP BY p.Category, c.CustomerType
|
|
136
|
+
ORDER BY p.Category, c.CustomerType;
|
|
137
|
+
""")
|
sqlshell/main.py
ADDED
|
@@ -0,0 +1,346 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
import os
|
|
3
|
+
import duckdb
|
|
4
|
+
import pandas as pd
|
|
5
|
+
from PyQt6.QtWidgets import (QApplication, QMainWindow, QWidget, QVBoxLayout,
|
|
6
|
+
QHBoxLayout, QTextEdit, QPushButton, QFileDialog,
|
|
7
|
+
QLabel, QSplitter, QListWidget, QTableWidget,
|
|
8
|
+
QTableWidgetItem, QHeaderView)
|
|
9
|
+
from PyQt6.QtCore import Qt, QAbstractTableModel
|
|
10
|
+
from PyQt6.QtGui import QFont, QColor
|
|
11
|
+
import numpy as np
|
|
12
|
+
from datetime import datetime
|
|
13
|
+
from . import create_test_data # Import from the same package
|
|
14
|
+
|
|
15
|
+
class SQLShell(QMainWindow):
|
|
16
|
+
def __init__(self):
|
|
17
|
+
super().__init__()
|
|
18
|
+
self.conn = duckdb.connect('pool.db')
|
|
19
|
+
self.loaded_tables = {} # Keep track of loaded tables
|
|
20
|
+
self.init_ui()
|
|
21
|
+
|
|
22
|
+
def init_ui(self):
|
|
23
|
+
self.setWindowTitle('SQL Shell')
|
|
24
|
+
self.setGeometry(100, 100, 1400, 800)
|
|
25
|
+
|
|
26
|
+
# Create central widget and layout
|
|
27
|
+
central_widget = QWidget()
|
|
28
|
+
self.setCentralWidget(central_widget)
|
|
29
|
+
main_layout = QHBoxLayout(central_widget)
|
|
30
|
+
|
|
31
|
+
# Left panel for table list
|
|
32
|
+
left_panel = QWidget()
|
|
33
|
+
left_layout = QVBoxLayout(left_panel)
|
|
34
|
+
|
|
35
|
+
tables_label = QLabel("Loaded Tables:")
|
|
36
|
+
left_layout.addWidget(tables_label)
|
|
37
|
+
|
|
38
|
+
self.tables_list = QListWidget()
|
|
39
|
+
self.tables_list.itemClicked.connect(self.show_table_preview)
|
|
40
|
+
left_layout.addWidget(self.tables_list)
|
|
41
|
+
|
|
42
|
+
# Buttons for table management
|
|
43
|
+
table_buttons_layout = QHBoxLayout()
|
|
44
|
+
self.browse_btn = QPushButton('Load Files')
|
|
45
|
+
self.browse_btn.clicked.connect(self.browse_files)
|
|
46
|
+
self.remove_table_btn = QPushButton('Remove Selected')
|
|
47
|
+
self.remove_table_btn.clicked.connect(self.remove_selected_table)
|
|
48
|
+
self.test_btn = QPushButton('Test')
|
|
49
|
+
self.test_btn.clicked.connect(self.load_test_data)
|
|
50
|
+
|
|
51
|
+
table_buttons_layout.addWidget(self.browse_btn)
|
|
52
|
+
table_buttons_layout.addWidget(self.remove_table_btn)
|
|
53
|
+
table_buttons_layout.addWidget(self.test_btn)
|
|
54
|
+
left_layout.addLayout(table_buttons_layout)
|
|
55
|
+
|
|
56
|
+
# Right panel for query and results
|
|
57
|
+
right_panel = QWidget()
|
|
58
|
+
right_layout = QVBoxLayout(right_panel)
|
|
59
|
+
|
|
60
|
+
# Create splitter for query and results
|
|
61
|
+
splitter = QSplitter(Qt.Orientation.Vertical)
|
|
62
|
+
|
|
63
|
+
# Top part - Query section
|
|
64
|
+
query_widget = QWidget()
|
|
65
|
+
query_layout = QVBoxLayout(query_widget)
|
|
66
|
+
|
|
67
|
+
# Button row
|
|
68
|
+
button_layout = QHBoxLayout()
|
|
69
|
+
self.execute_btn = QPushButton('Execute (Ctrl+Enter)')
|
|
70
|
+
self.execute_btn.clicked.connect(self.execute_query)
|
|
71
|
+
self.clear_btn = QPushButton('Clear')
|
|
72
|
+
self.clear_btn.clicked.connect(self.clear_query)
|
|
73
|
+
|
|
74
|
+
button_layout.addWidget(self.execute_btn)
|
|
75
|
+
button_layout.addWidget(self.clear_btn)
|
|
76
|
+
button_layout.addStretch()
|
|
77
|
+
|
|
78
|
+
query_layout.addLayout(button_layout)
|
|
79
|
+
|
|
80
|
+
# Query input
|
|
81
|
+
self.query_edit = QTextEdit()
|
|
82
|
+
self.query_edit.setPlaceholderText("Enter your SQL query here...")
|
|
83
|
+
query_layout.addWidget(self.query_edit)
|
|
84
|
+
|
|
85
|
+
# Bottom part - Results section
|
|
86
|
+
results_widget = QWidget()
|
|
87
|
+
results_layout = QVBoxLayout(results_widget)
|
|
88
|
+
|
|
89
|
+
# Results header with row count
|
|
90
|
+
results_header = QWidget()
|
|
91
|
+
results_header_layout = QHBoxLayout(results_header)
|
|
92
|
+
self.results_label = QLabel("Results:")
|
|
93
|
+
self.row_count_label = QLabel("")
|
|
94
|
+
results_header_layout.addWidget(self.results_label)
|
|
95
|
+
results_header_layout.addWidget(self.row_count_label)
|
|
96
|
+
results_header_layout.addStretch()
|
|
97
|
+
results_layout.addWidget(results_header)
|
|
98
|
+
|
|
99
|
+
# Table widget for results
|
|
100
|
+
self.results_table = QTableWidget()
|
|
101
|
+
self.results_table.setSortingEnabled(True)
|
|
102
|
+
self.results_table.setAlternatingRowColors(True)
|
|
103
|
+
self.results_table.horizontalHeader().setStretchLastSection(True)
|
|
104
|
+
self.results_table.horizontalHeader().setSectionsMovable(True)
|
|
105
|
+
self.results_table.verticalHeader().setVisible(False)
|
|
106
|
+
results_layout.addWidget(self.results_table)
|
|
107
|
+
|
|
108
|
+
# Add widgets to splitter
|
|
109
|
+
splitter.addWidget(query_widget)
|
|
110
|
+
splitter.addWidget(results_widget)
|
|
111
|
+
|
|
112
|
+
# Set initial sizes for splitter
|
|
113
|
+
splitter.setSizes([300, 500])
|
|
114
|
+
|
|
115
|
+
right_layout.addWidget(splitter)
|
|
116
|
+
|
|
117
|
+
# Add panels to main layout
|
|
118
|
+
main_layout.addWidget(left_panel, 1)
|
|
119
|
+
main_layout.addWidget(right_panel, 4)
|
|
120
|
+
|
|
121
|
+
# Status bar
|
|
122
|
+
self.statusBar().showMessage('Ready')
|
|
123
|
+
|
|
124
|
+
def format_value(self, value):
|
|
125
|
+
"""Format values for display"""
|
|
126
|
+
if pd.isna(value):
|
|
127
|
+
return 'NULL'
|
|
128
|
+
elif isinstance(value, (int, np.integer)):
|
|
129
|
+
return f"{value:,}"
|
|
130
|
+
elif isinstance(value, (float, np.floating)):
|
|
131
|
+
return f"{value:,.2f}"
|
|
132
|
+
elif isinstance(value, (datetime, pd.Timestamp)):
|
|
133
|
+
return value.strftime('%Y-%m-%d %H:%M:%S')
|
|
134
|
+
return str(value)
|
|
135
|
+
|
|
136
|
+
def populate_table(self, df):
|
|
137
|
+
"""Populate the table widget with DataFrame content"""
|
|
138
|
+
if len(df) == 0:
|
|
139
|
+
self.results_table.setRowCount(0)
|
|
140
|
+
self.results_table.setColumnCount(0)
|
|
141
|
+
self.row_count_label.setText("No results")
|
|
142
|
+
return
|
|
143
|
+
|
|
144
|
+
# Set dimensions
|
|
145
|
+
self.results_table.setRowCount(len(df))
|
|
146
|
+
self.results_table.setColumnCount(len(df.columns))
|
|
147
|
+
|
|
148
|
+
# Set headers
|
|
149
|
+
self.results_table.setHorizontalHeaderLabels(df.columns)
|
|
150
|
+
|
|
151
|
+
# Populate data
|
|
152
|
+
for i, (_, row) in enumerate(df.iterrows()):
|
|
153
|
+
for j, value in enumerate(row):
|
|
154
|
+
formatted_value = self.format_value(value)
|
|
155
|
+
item = QTableWidgetItem(formatted_value)
|
|
156
|
+
|
|
157
|
+
# Set alignment based on data type
|
|
158
|
+
if isinstance(value, (int, float, np.integer, np.floating)):
|
|
159
|
+
item.setTextAlignment(Qt.AlignmentFlag.AlignRight | Qt.AlignmentFlag.AlignVCenter)
|
|
160
|
+
else:
|
|
161
|
+
item.setTextAlignment(Qt.AlignmentFlag.AlignLeft | Qt.AlignmentFlag.AlignVCenter)
|
|
162
|
+
|
|
163
|
+
# Make cells read-only
|
|
164
|
+
item.setFlags(item.flags() & ~Qt.ItemFlag.ItemIsEditable)
|
|
165
|
+
|
|
166
|
+
self.results_table.setItem(i, j, item)
|
|
167
|
+
|
|
168
|
+
# Auto-adjust column widths while ensuring minimum and maximum sizes
|
|
169
|
+
self.results_table.resizeColumnsToContents()
|
|
170
|
+
for i in range(len(df.columns)):
|
|
171
|
+
width = self.results_table.columnWidth(i)
|
|
172
|
+
self.results_table.setColumnWidth(i, min(max(width, 50), 300))
|
|
173
|
+
|
|
174
|
+
# Update row count
|
|
175
|
+
row_text = "row" if len(df) == 1 else "rows"
|
|
176
|
+
self.row_count_label.setText(f"{len(df):,} {row_text}")
|
|
177
|
+
|
|
178
|
+
def browse_files(self):
|
|
179
|
+
file_names, _ = QFileDialog.getOpenFileNames(
|
|
180
|
+
self,
|
|
181
|
+
"Open Data Files",
|
|
182
|
+
"",
|
|
183
|
+
"Data Files (*.xlsx *.xls *.csv *.parquet);;Excel Files (*.xlsx *.xls);;CSV Files (*.csv);;Parquet Files (*.parquet);;All Files (*)"
|
|
184
|
+
)
|
|
185
|
+
|
|
186
|
+
for file_name in file_names:
|
|
187
|
+
try:
|
|
188
|
+
if file_name.endswith(('.xlsx', '.xls')):
|
|
189
|
+
df = pd.read_excel(file_name)
|
|
190
|
+
elif file_name.endswith('.csv'):
|
|
191
|
+
df = pd.read_csv(file_name)
|
|
192
|
+
elif file_name.endswith('.parquet'):
|
|
193
|
+
df = pd.read_parquet(file_name)
|
|
194
|
+
else:
|
|
195
|
+
raise ValueError("Unsupported file format")
|
|
196
|
+
|
|
197
|
+
# Generate table name from file name
|
|
198
|
+
base_name = os.path.splitext(os.path.basename(file_name))[0]
|
|
199
|
+
table_name = self.sanitize_table_name(base_name)
|
|
200
|
+
|
|
201
|
+
# Ensure unique table name
|
|
202
|
+
original_name = table_name
|
|
203
|
+
counter = 1
|
|
204
|
+
while table_name in self.loaded_tables:
|
|
205
|
+
table_name = f"{original_name}_{counter}"
|
|
206
|
+
counter += 1
|
|
207
|
+
|
|
208
|
+
# Register table in DuckDB
|
|
209
|
+
self.conn.register(table_name, df)
|
|
210
|
+
self.loaded_tables[table_name] = file_name
|
|
211
|
+
|
|
212
|
+
# Update UI
|
|
213
|
+
self.tables_list.addItem(f"{table_name} ({os.path.basename(file_name)})")
|
|
214
|
+
self.statusBar().showMessage(f'Loaded {file_name} as table "{table_name}"')
|
|
215
|
+
|
|
216
|
+
# Show preview of loaded data
|
|
217
|
+
preview_df = df.head()
|
|
218
|
+
self.populate_table(preview_df)
|
|
219
|
+
self.results_label.setText(f"Preview of {table_name}:")
|
|
220
|
+
|
|
221
|
+
except Exception as e:
|
|
222
|
+
self.statusBar().showMessage(f'Error loading file: {str(e)}')
|
|
223
|
+
self.results_table.setRowCount(0)
|
|
224
|
+
self.results_table.setColumnCount(0)
|
|
225
|
+
self.row_count_label.setText("")
|
|
226
|
+
self.results_label.setText(f"Error loading file: {str(e)}")
|
|
227
|
+
|
|
228
|
+
def sanitize_table_name(self, name):
|
|
229
|
+
# Replace invalid characters with underscores
|
|
230
|
+
import re
|
|
231
|
+
name = re.sub(r'[^a-zA-Z0-9_]', '_', name)
|
|
232
|
+
# Ensure it starts with a letter
|
|
233
|
+
if not name[0].isalpha():
|
|
234
|
+
name = 'table_' + name
|
|
235
|
+
return name.lower()
|
|
236
|
+
|
|
237
|
+
def remove_selected_table(self):
|
|
238
|
+
current_item = self.tables_list.currentItem()
|
|
239
|
+
if current_item:
|
|
240
|
+
table_name = current_item.text().split(' (')[0]
|
|
241
|
+
if table_name in self.loaded_tables:
|
|
242
|
+
# Remove from DuckDB
|
|
243
|
+
self.conn.execute(f'DROP VIEW IF EXISTS {table_name}')
|
|
244
|
+
# Remove from our tracking
|
|
245
|
+
del self.loaded_tables[table_name]
|
|
246
|
+
# Remove from list widget
|
|
247
|
+
self.tables_list.takeItem(self.tables_list.row(current_item))
|
|
248
|
+
self.statusBar().showMessage(f'Removed table "{table_name}"')
|
|
249
|
+
self.results_table.setRowCount(0)
|
|
250
|
+
self.results_table.setColumnCount(0)
|
|
251
|
+
self.row_count_label.setText("")
|
|
252
|
+
self.results_label.setText(f"Removed table: {table_name}")
|
|
253
|
+
|
|
254
|
+
def execute_query(self):
|
|
255
|
+
query = self.query_edit.toPlainText().strip()
|
|
256
|
+
if not query:
|
|
257
|
+
return
|
|
258
|
+
|
|
259
|
+
try:
|
|
260
|
+
result = self.conn.execute(query).fetchdf()
|
|
261
|
+
self.populate_table(result)
|
|
262
|
+
self.results_label.setText("Query Results:")
|
|
263
|
+
self.statusBar().showMessage('Query executed successfully')
|
|
264
|
+
except Exception as e:
|
|
265
|
+
self.results_table.setRowCount(0)
|
|
266
|
+
self.results_table.setColumnCount(0)
|
|
267
|
+
self.row_count_label.setText("")
|
|
268
|
+
self.results_label.setText(f"Error executing query: {str(e)}")
|
|
269
|
+
self.statusBar().showMessage('Error executing query')
|
|
270
|
+
|
|
271
|
+
def clear_query(self):
|
|
272
|
+
self.query_edit.clear()
|
|
273
|
+
|
|
274
|
+
def show_table_preview(self, item):
|
|
275
|
+
"""Show a preview of the selected table"""
|
|
276
|
+
if item:
|
|
277
|
+
table_name = item.text().split(' (')[0]
|
|
278
|
+
try:
|
|
279
|
+
preview_df = self.conn.execute(f'SELECT * FROM {table_name} LIMIT 5').fetchdf()
|
|
280
|
+
self.populate_table(preview_df)
|
|
281
|
+
self.results_label.setText(f"Preview of {table_name}:")
|
|
282
|
+
self.statusBar().showMessage(f'Showing preview of table "{table_name}"')
|
|
283
|
+
except Exception as e:
|
|
284
|
+
self.results_table.setRowCount(0)
|
|
285
|
+
self.results_table.setColumnCount(0)
|
|
286
|
+
self.row_count_label.setText("")
|
|
287
|
+
self.results_label.setText(f"Error showing preview: {str(e)}")
|
|
288
|
+
self.statusBar().showMessage('Error showing table preview')
|
|
289
|
+
|
|
290
|
+
def keyPressEvent(self, event):
|
|
291
|
+
if event.key() == Qt.Key.Key_Return and event.modifiers() == Qt.KeyboardModifier.ControlModifier:
|
|
292
|
+
self.execute_query()
|
|
293
|
+
else:
|
|
294
|
+
super().keyPressEvent(event)
|
|
295
|
+
|
|
296
|
+
def load_test_data(self):
|
|
297
|
+
"""Generate and load test data"""
|
|
298
|
+
try:
|
|
299
|
+
# Create test data directory if it doesn't exist
|
|
300
|
+
os.makedirs('test_data', exist_ok=True)
|
|
301
|
+
|
|
302
|
+
# Generate test data
|
|
303
|
+
sales_df = create_test_data.create_sales_data()
|
|
304
|
+
customer_df = create_test_data.create_customer_data()
|
|
305
|
+
product_df = create_test_data.create_product_data()
|
|
306
|
+
|
|
307
|
+
# Save test data
|
|
308
|
+
sales_df.to_excel('test_data/sample_sales_data.xlsx', index=False)
|
|
309
|
+
customer_df.to_parquet('test_data/customer_data.parquet', index=False)
|
|
310
|
+
product_df.to_excel('test_data/product_catalog.xlsx', index=False)
|
|
311
|
+
|
|
312
|
+
# Load the files into DuckDB
|
|
313
|
+
self.conn.register('sample_sales_data', sales_df)
|
|
314
|
+
self.conn.register('product_catalog', product_df)
|
|
315
|
+
self.conn.register('customer_data', customer_df)
|
|
316
|
+
|
|
317
|
+
# Update loaded tables tracking
|
|
318
|
+
self.loaded_tables['sample_sales_data'] = 'test_data/sample_sales_data.xlsx'
|
|
319
|
+
self.loaded_tables['product_catalog'] = 'test_data/product_catalog.xlsx'
|
|
320
|
+
self.loaded_tables['customer_data'] = 'test_data/customer_data.parquet'
|
|
321
|
+
|
|
322
|
+
# Update UI
|
|
323
|
+
self.tables_list.clear()
|
|
324
|
+
for table_name, file_path in self.loaded_tables.items():
|
|
325
|
+
self.tables_list.addItem(f"{table_name} ({os.path.basename(file_path)})")
|
|
326
|
+
|
|
327
|
+
# Set the sample query
|
|
328
|
+
self.query_edit.setText("select * from sample_sales_data cd inner join product_catalog pc on pc.productid = cd.productid limit 3")
|
|
329
|
+
|
|
330
|
+
self.statusBar().showMessage('Test data loaded successfully')
|
|
331
|
+
|
|
332
|
+
except Exception as e:
|
|
333
|
+
self.statusBar().showMessage(f'Error loading test data: {str(e)}')
|
|
334
|
+
|
|
335
|
+
def main():
|
|
336
|
+
app = QApplication(sys.argv)
|
|
337
|
+
|
|
338
|
+
# Set application style
|
|
339
|
+
app.setStyle('Fusion')
|
|
340
|
+
|
|
341
|
+
sql_shell = SQLShell()
|
|
342
|
+
sql_shell.show()
|
|
343
|
+
sys.exit(app.exec())
|
|
344
|
+
|
|
345
|
+
if __name__ == '__main__':
|
|
346
|
+
main()
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2024 SQLShell Team
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,85 @@
|
|
|
1
|
+
Metadata-Version: 2.2
|
|
2
|
+
Name: sqlshell
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: A powerful SQL shell with GUI interface for data analysis
|
|
5
|
+
Home-page: https://github.com/yourusername/sqlshell
|
|
6
|
+
Author: SQLShell Team
|
|
7
|
+
License: MIT
|
|
8
|
+
Project-URL: Homepage, https://github.com/yourusername/sqlshell
|
|
9
|
+
Keywords: sql,data analysis,gui,duckdb
|
|
10
|
+
Classifier: Development Status :: 3 - Alpha
|
|
11
|
+
Classifier: Intended Audience :: Developers
|
|
12
|
+
Classifier: Programming Language :: Python :: 3
|
|
13
|
+
Classifier: Programming Language :: Python :: 3.8
|
|
14
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
17
|
+
Requires-Python: >=3.8
|
|
18
|
+
Description-Content-Type: text/markdown
|
|
19
|
+
License-File: LICENSE
|
|
20
|
+
Requires-Dist: pandas>=2.0.0
|
|
21
|
+
Requires-Dist: numpy>=1.24.0
|
|
22
|
+
Requires-Dist: PyQt6>=6.4.0
|
|
23
|
+
Requires-Dist: duckdb>=0.9.0
|
|
24
|
+
Requires-Dist: openpyxl>=3.1.0
|
|
25
|
+
Requires-Dist: pyarrow>=14.0.1
|
|
26
|
+
Requires-Dist: fastparquet>=2023.10.1
|
|
27
|
+
Requires-Dist: xlrd>=2.0.1
|
|
28
|
+
Dynamic: home-page
|
|
29
|
+
Dynamic: requires-python
|
|
30
|
+
|
|
31
|
+
# SQLShell
|
|
32
|
+
|
|
33
|
+
A powerful SQL shell with GUI interface for data analysis. SQLShell provides an intuitive interface for working with various data formats (CSV, Excel, Parquet) using SQL queries powered by DuckDB.
|
|
34
|
+
|
|
35
|
+
## Features
|
|
36
|
+
|
|
37
|
+
- Load and analyze data from CSV, Excel (.xlsx, .xls), and Parquet files
|
|
38
|
+
- Interactive GUI with syntax highlighting
|
|
39
|
+
- Real-time query results
|
|
40
|
+
- Table preview functionality
|
|
41
|
+
- Built-in test data generation
|
|
42
|
+
- Support for multiple concurrent table views
|
|
43
|
+
|
|
44
|
+
## Installation
|
|
45
|
+
|
|
46
|
+
You can install SQLShell using pip:
|
|
47
|
+
|
|
48
|
+
```bash
|
|
49
|
+
pip install sqlshell
|
|
50
|
+
```
|
|
51
|
+
|
|
52
|
+
For development installation:
|
|
53
|
+
|
|
54
|
+
```bash
|
|
55
|
+
git clone https://github.com/yourusername/sqlshell.git
|
|
56
|
+
cd sqlshell
|
|
57
|
+
pip install -e .
|
|
58
|
+
```
|
|
59
|
+
|
|
60
|
+
## Usage
|
|
61
|
+
|
|
62
|
+
After installation, you can start SQLShell from anywhere in your terminal by running:
|
|
63
|
+
|
|
64
|
+
```bash
|
|
65
|
+
sqls
|
|
66
|
+
```
|
|
67
|
+
|
|
68
|
+
This will open the GUI interface where you can:
|
|
69
|
+
1. Load data files using the "Load Files" button
|
|
70
|
+
2. Write SQL queries in the query editor
|
|
71
|
+
3. Execute queries using the "Execute" button or Ctrl+Enter
|
|
72
|
+
4. View results in the table view below
|
|
73
|
+
5. Load sample test data using the "Test" button
|
|
74
|
+
|
|
75
|
+
## Requirements
|
|
76
|
+
|
|
77
|
+
- Python 3.8 or higher
|
|
78
|
+
- PyQt6
|
|
79
|
+
- DuckDB
|
|
80
|
+
- Pandas
|
|
81
|
+
- Other dependencies will be automatically installed
|
|
82
|
+
|
|
83
|
+
## License
|
|
84
|
+
|
|
85
|
+
This project is licensed under the MIT License - see the LICENSE file for details.
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
sqlshell/__init__.py,sha256=SBcXRHWYh9_DIAHkP1cFlru3Qwv6qVZ5u3jiNb32W6E,100
|
|
2
|
+
sqlshell/create_test_data.py,sha256=sUTcf50V8-bVwYV2VNTLK65c-iHiU4wb99By67I10zM,5404
|
|
3
|
+
sqlshell/main.py,sha256=MlkjWh5vlAAAZ8SYE8j0ChJmQFOJ_qqUmW5iH8HiGg8,14184
|
|
4
|
+
sqlshell-0.1.0.dist-info/LICENSE,sha256=YFVzvqHDVzBVtEZoKwcHhashVdNy4P7tDEQ561jAdyo,1070
|
|
5
|
+
sqlshell-0.1.0.dist-info/METADATA,sha256=18zo0VjjP3Bdtsomm4ym5Ir_S5CUYTBMZnySa5aOdpE,2328
|
|
6
|
+
sqlshell-0.1.0.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
|
|
7
|
+
sqlshell-0.1.0.dist-info/entry_points.txt,sha256=Kd0fOvyOW7UiTgTVY7abVOmDIH2Y2nawGTp5kVadac4,44
|
|
8
|
+
sqlshell-0.1.0.dist-info/top_level.txt,sha256=ahwsMFhvAqI97ZkT2xvHL5iZCO1p13mNiUOFkdSFwms,9
|
|
9
|
+
sqlshell-0.1.0.dist-info/RECORD,,
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
sqlshell
|