sqil-core 0.0.1__py3-none-any.whl → 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
sqil_core/fit/_core.py ADDED
@@ -0,0 +1,936 @@
1
+ import inspect
2
+ import warnings
3
+ from functools import wraps
4
+
5
+ import numpy as np
6
+ import scipy.optimize as spopt
7
+ from lmfit.model import ModelResult
8
+
9
+ from sqil_core.utils import print_fit_metrics as _print_fit_metrics
10
+ from sqil_core.utils import print_fit_params as _print_fit_params
11
+ from sqil_core.utils._utils import _count_function_parameters
12
+
13
+
14
+ class FitResult:
15
+ """
16
+ Stores the result of a fitting procedure.
17
+
18
+ This class encapsulates the fitted parameters, their standard errors, optimizer output,
19
+ and fit quality metrics. It also provides functionality for summarizing the results and
20
+ making predictions using the fitted model.
21
+
22
+ Parameters
23
+ ----------
24
+ params : dict
25
+ Array of fitted parameters.
26
+ std_err : dict
27
+ Array of standard errors of the fitted parameters.
28
+ fit_output : any
29
+ Raw output from the optimization routine.
30
+ metrics : dict, optional
31
+ Dictionary of fit quality metrics (e.g., R-squared, reduced chi-squared).
32
+ predict : callable, optional
33
+ Function of x that returns predictions based on the fitted parameters.
34
+ If not provided, an exception will be raised when calling it.
35
+ param_names : list, optional
36
+ List of parameter names, defaulting to a range based on the number of parameters.
37
+ metadata : dict, optional
38
+ Additional information that can be passed in the fit result.
39
+
40
+ Methods
41
+ -------
42
+ summary()
43
+ Prints a detailed summary of the fit results, including parameter values,
44
+ standard errors, and fit quality metrics.
45
+ _no_prediction()
46
+ Raises an exception when no prediction function is available.
47
+ """
48
+
49
+ def __init__(
50
+ self,
51
+ params,
52
+ std_err,
53
+ fit_output,
54
+ metrics=None,
55
+ predict=None,
56
+ param_names=None,
57
+ metadata={},
58
+ ):
59
+ self.params = params
60
+ self.std_err = std_err
61
+ self.output = fit_output
62
+ self.metrics = metrics
63
+ self.predict = predict or self._no_prediction
64
+ self.param_names = param_names or list(range(len(params)))
65
+ self.metadata = metadata
66
+
67
+ def __repr__(self):
68
+ return (
69
+ f"FitResult(\n"
70
+ f" params={self.params},\n"
71
+ f" std_err={self.std_err},\n"
72
+ f" metrics={self.metrics}\n)"
73
+ )
74
+
75
+ def summary(self):
76
+ """Prints a detailed summary of the fit results."""
77
+ _print_fit_metrics(self.metrics)
78
+ _print_fit_params(
79
+ self.param_names,
80
+ self.params,
81
+ self.std_err,
82
+ self.std_err / self.params * 100,
83
+ )
84
+
85
+ def _no_prediction(self):
86
+ raise Exception("No predition function available")
87
+
88
+
89
+ def fit_output(fit_func):
90
+ """
91
+ Decorator to standardize the output of fitting functions.
92
+
93
+ This decorator processes the raw output of various fitting libraries
94
+ (such as SciPy's curve_fit, least_squares leastsq, and minimize, as well as lmfit)
95
+ and converts it into a unified `FitResult` object. It extracts
96
+ optimized parameters, their standard errors, fit quality metrics,
97
+ and a prediction function.
98
+
99
+ Parameters
100
+ ----------
101
+ fit_func : Callable
102
+ A function that performs fitting and returns raw fit output,
103
+ possibly along with metadata.
104
+
105
+ Returns
106
+ -------
107
+ Callable
108
+ A wrapped function that returns a `FitResult` object containing:
109
+ - `params` : list
110
+ Optimized parameter values.
111
+ - `std_err` : list or None
112
+ Standard errors of the fitted parameters.
113
+ - `metrics` : dict or None
114
+ Dictionary of fit quality metrics (e.g., reduced chi-squared).
115
+ - `predict` : Callable or None
116
+ A function that predicts values using the optimized parameters.
117
+ - `output` : object
118
+ The raw optimizer output from the fitting process.
119
+ - `param_names` : list or None
120
+ Names of the fitted parameters.
121
+ - `metadata` : dict
122
+ A dictionary containing extra information. Advanced uses include passing
123
+ functions that get evaluated after fit result has been processed.
124
+ See the documentation, Notebooks/The fit_output decorator
125
+
126
+ Raises
127
+ ------
128
+ TypeError
129
+ If the fitting function's output format is not recognized.
130
+
131
+ Notes
132
+ -----
133
+ - If the fit function returns a tuple `(raw_output, metadata)`,
134
+ the metadata is extracted and applied to enhance the fit results.
135
+ In case of any conflicts, the metadata overrides the computed values.
136
+
137
+ Examples
138
+ --------
139
+ >>> @fit_output
140
+ ... def my_fitting_function(x, y):
141
+ ... return some_raw_fit_output
142
+ ...
143
+ >>> fit_result = my_fitting_function(x_data, y_data)
144
+ >>> print(fit_result.params)
145
+ """
146
+
147
+ @wraps(fit_func)
148
+ def wrapper(*args, **kwargs):
149
+ # Perform the fit
150
+ fit_result = fit_func(*args, **kwargs)
151
+
152
+ # Extract information from function arguments
153
+ x_data, y_data = _get_xy_data_from_fit_args(*args, **kwargs)
154
+ sigma = kwargs.get("sigma", None)
155
+ has_sigma = isinstance(sigma, (list, np.ndarray))
156
+
157
+ # Initilize variables
158
+ sqil_keys = ["params", "std_err", "metrics", "predict", "output", "param_names"]
159
+ sqil_dict = {key: None for key in sqil_keys}
160
+ metadata = {}
161
+ formatted = None
162
+ # Set the default parameters to an empty array instead of None
163
+ sqil_dict["params"] = []
164
+
165
+ # Check if the fit output is a tuple and separate it into raw_fit_ouput and metadata
166
+ if (
167
+ isinstance(fit_result, tuple)
168
+ and (len(fit_result) == 2)
169
+ and isinstance(fit_result[1], dict)
170
+ ):
171
+ raw_fit_output, metadata = fit_result
172
+ else:
173
+ raw_fit_output = fit_result
174
+ sqil_dict["output"] = raw_fit_output
175
+
176
+ # Format the raw_fit_output into a standardized dict
177
+ # Scipy tuple (curve_fit, leastsq)
178
+ if _is_scipy_tuple(raw_fit_output):
179
+ formatted = _format_scipy_tuple(raw_fit_output, has_sigma=has_sigma)
180
+
181
+ # Scipy least squares
182
+ elif _is_scipy_least_squares(raw_fit_output):
183
+ formatted = _format_scipy_least_squares(raw_fit_output, has_sigma=has_sigma)
184
+
185
+ # Scipy minimize
186
+ elif _is_scipy_minimize(raw_fit_output):
187
+ residuals = None
188
+ predict = metadata.get("predict", None)
189
+ if predict and callable(predict):
190
+ residuals = y_data - metadata["predict"](x_data, *raw_fit_output.x)
191
+ formatted = _format_scipy_minimize(
192
+ raw_fit_output, residuals=residuals, has_sigma=has_sigma
193
+ )
194
+
195
+ # lmfit
196
+ elif _is_lmfit(raw_fit_output):
197
+ formatted = _format_lmfit(raw_fit_output)
198
+
199
+ # Custom fit output
200
+ elif isinstance(raw_fit_output, dict):
201
+ formatted = raw_fit_output
202
+
203
+ else:
204
+ raise TypeError(
205
+ "Couldn't recognize the output.\n"
206
+ + "Are you using scipy? Did you forget to set `full_output=True` in your fit method?"
207
+ )
208
+
209
+ # Update sqil_dict with the formatted fit_output
210
+ if formatted is not None:
211
+ sqil_dict.update(formatted)
212
+
213
+ # Add/override fileds using metadata
214
+ sqil_dict.update(metadata)
215
+
216
+ # Process metadata
217
+ metadata = _process_metadata(metadata, sqil_dict)
218
+ # Remove fields already present in sqil_dict from metadata
219
+ filtered_metadata = {k: v for k, v in metadata.items() if k not in sqil_keys}
220
+
221
+ # Assign the optimized parameters to the prediction function
222
+ if sqil_dict["predict"] is not None:
223
+ params = sqil_dict["params"]
224
+ predict = sqil_dict["predict"]
225
+ n_inputs = _count_function_parameters(predict)
226
+ if n_inputs == 1 + len(params):
227
+ sqil_dict["predict"] = lambda x: predict(x, *params)
228
+
229
+ return FitResult(
230
+ params=sqil_dict.get("params", []),
231
+ std_err=sqil_dict.get("std_err", None),
232
+ fit_output=raw_fit_output,
233
+ metrics=sqil_dict.get("metrics", None),
234
+ predict=sqil_dict.get("predict", None),
235
+ param_names=sqil_dict.get("param_names", None),
236
+ metadata=filtered_metadata,
237
+ )
238
+
239
+ return wrapper
240
+
241
+
242
+ # TODO: make a function that handles the bounds for lmfit.
243
+ # Such a function will take the bounds as they are returned by @fit_input, i.e lower and upper bounds
244
+ # and it will iterated through the lmfit parameters to apply the bounds.
245
+ def fit_input(fit_func):
246
+ """
247
+ Decorator to handle optional fitting inputs like initial guesses, bounds, and fixed parameters
248
+ for a fitting function.
249
+
250
+ - `guess` : list or np.ndarray, optional, default=None
251
+ The initial guess for the fit. If None it's not passed to the fit function.
252
+ - `bounds` : list or np.ndarray, optional, default=(-np.inf, np.inf)
253
+ The bounds on the fit parameters in the form [(min, max), (min, max), ...].
254
+ - `fixed_params` : list or np.ndarray, optional, default=None
255
+ Indices of the parameters that must remain fixed during the optimization.
256
+ For example fitting `f(x, a, b)`, if we want to fix the value of `a` we would pass
257
+ `fit_f(guess=[a_guess, b_guess], fixed_params=[0])`
258
+ - `fixed_bound_factor` : float, optional, default=1e-6
259
+ The relative tolerance allowed for parameters that must remain fixed (`fixed_params`).
260
+
261
+ IMPORTANT: This decorator requires the x and y input vectors to be named `x_data` and `y_data`.
262
+ The initial guess must be called `guess` and the bounds `bounds`.
263
+
264
+ Parameters
265
+ ----------
266
+ fit_func : callable
267
+ The fitting function to be decorated. This function should accept `x_data` and `y_data` as
268
+ mandatory parameters and may optionally accept `guess` and `bounds` (plus any other additional
269
+ parameter).
270
+
271
+ Returns
272
+ -------
273
+ callable
274
+ A wrapper function that processes the input arguments and then calls the original fitting
275
+ function with the preprocessed inputs. This function also handles warnings if unsupported
276
+ parameters are passed to the fit function.
277
+
278
+ Notes
279
+ -----
280
+ - The parameters in `guess`, `bounds` and `fixed_params` must be in the same order as in the
281
+ modeled function definition.
282
+ - The decorator can fix certain parameters by narrowing their bounds based on an initial guess
283
+ and a specified `fixed_bound_factor`.
284
+ - The decorator processes bounds by setting them as `(-np.inf, np.inf)` if they are not specified (`None`).
285
+
286
+ Examples
287
+ -------
288
+ >>> @fit_input
289
+ ... def my_fit_func(x_data, y_data, guess=None, bounds=None, fixed_params=None):
290
+ ... # Perform fitting...
291
+ ... return fit_result
292
+ >>> x_data = np.linspace(0, 10, 100)
293
+ >>> y_data = np.sin(x_data) + np.random.normal(0, 0.1, 100)
294
+ >>> result = my_fit_func(x_data, y_data, guess=[1, 1], bounds=[(0, 5), (-np.inf, np.inf)])
295
+ """
296
+
297
+ @wraps(fit_func)
298
+ def wrapper(
299
+ x_data,
300
+ y_data,
301
+ guess=None,
302
+ bounds=None,
303
+ fixed_params=None,
304
+ fixed_bound_factor=1e-6,
305
+ **kwargs,
306
+ ):
307
+ # Inspect function to check if it requires guess and bounds
308
+ func_params = inspect.signature(fit_func).parameters
309
+
310
+ # Check if the user passed parameters that are not supported by the fit fun
311
+ if guess and ("guess" not in func_params):
312
+ warnings.warn("The fit function doesn't allow any initial guess.")
313
+ if bounds and ("bounds" not in func_params):
314
+ warnings.warn("The fit function doesn't allow any bounds.")
315
+ if fixed_params and (not guess):
316
+ raise ValueError("Using fixed_params requires an initial guess.")
317
+
318
+ # Process bounds if the function accepts it
319
+ if bounds and ("bounds" in func_params):
320
+ processed_bounds = np.array(
321
+ [(-np.inf, np.inf) if b is None else b for b in bounds],
322
+ dtype=np.float64,
323
+ )
324
+ lower_bounds, upper_bounds = (
325
+ processed_bounds[:, 0],
326
+ processed_bounds[:, 1],
327
+ )
328
+ else:
329
+ lower_bounds, upper_bounds = None, None
330
+
331
+ # Fix parameters by setting a very tight bound
332
+ if (fixed_params is not None) and (guess is not None):
333
+ if bounds is None:
334
+ lower_bounds = -np.inf * np.ones(len(guess))
335
+ upper_bounds = np.inf * np.ones(len(guess))
336
+ for idx in fixed_params:
337
+ tolerance = (
338
+ abs(guess[idx]) * fixed_bound_factor
339
+ if guess[idx] != 0
340
+ else fixed_bound_factor
341
+ )
342
+ lower_bounds[idx] = guess[idx] - tolerance
343
+ upper_bounds[idx] = guess[idx] + tolerance
344
+
345
+ # Prepare arguments dynamically
346
+ fit_args = {"x_data": x_data, "y_data": y_data, **kwargs}
347
+
348
+ if guess is not None and "guess" in func_params:
349
+ fit_args["guess"] = guess
350
+ if (
351
+ (bounds is not None) or (fixed_params is not None)
352
+ ) and "bounds" in func_params:
353
+ fit_args["bounds"] = (lower_bounds, upper_bounds)
354
+
355
+ # Call the wrapped function with preprocessed inputs
356
+ return fit_func(**fit_args)
357
+
358
+ return wrapper
359
+
360
+
361
+ def _process_metadata(metadata: dict, sqil_dict: dict):
362
+ """Process metadata by computing values that cannot be calculated before having
363
+ the sqil_dict. For example use the standard errors to compute a different metric.
364
+
365
+ Treats items whose key starts with @ as functions that take sqil_dict as input.
366
+ So it evaluates them and renames the key removing the @.
367
+ """
368
+ res = metadata.copy()
369
+ for key, value in metadata.items():
370
+ if key.startswith("@"):
371
+ res[key[1:]] = value(sqil_dict)
372
+ del res[key]
373
+ return res
374
+
375
+
376
+ def compute_adjusted_standard_errors(
377
+ pcov: np.ndarray,
378
+ residuals: np.ndarray,
379
+ red_chi2=None,
380
+ cov_rescaled=True,
381
+ sigma=None,
382
+ ) -> np.ndarray:
383
+ """
384
+ Compute adjusted standard errors for fitted parameters.
385
+
386
+ This function adjusts the covariance matrix based on the reduced chi-squared
387
+ value and calculates the standard errors for each parameter. It accounts for
388
+ cases where the covariance matrix is not available or the fit is nearly perfect.
389
+
390
+ Parameters
391
+ ----------
392
+ pcov : np.ndarray
393
+ Covariance matrix of the fitted parameters, typically obtained from an
394
+ optimization routine.
395
+ residuals : np.ndarray
396
+ Residuals of the fit, defined as the difference between observed and
397
+ model-predicted values.
398
+ red_chi2 : float, optional
399
+ Precomputed reduced chi-squared value. If `None`, it is computed from
400
+ `residuals` and `sigma`.
401
+ cov_rescaled : bool, default=True
402
+ Whether the fitting process already rescales the covariance matrix with
403
+ the reduced chi-squared.
404
+ sigma : np.ndarray, optional
405
+ Experimental uncertainties. Only used if `cov_rescaled=False` AND
406
+ known experimental errors are available.
407
+
408
+ Returns
409
+ -------
410
+ np.ndarray
411
+ Standard errors for each fitted parameter. If the covariance matrix is
412
+ undefined, returns `None`.
413
+
414
+ Warnings
415
+ --------
416
+ - If the covariance matrix is not available (`pcov is None`), the function
417
+ issues a warning about possible numerical instability or a near-perfect fit.
418
+ - If the reduced chi-squared value is `NaN`, the function returns `NaN` for
419
+ all standard errors.
420
+
421
+ Notes
422
+ -----
423
+ - The covariance matrix is scaled by the reduced chi-squared value to adjust
424
+ for under- or overestimation of uncertainties.
425
+ - If `red_chi2` is not provided, it is computed internally using the residuals.
426
+ - If a near-perfect fit is detected (all residuals close to zero), the function
427
+ warns that standard errors may not be necessary.
428
+
429
+ Examples
430
+ --------
431
+ >>> pcov = np.array([[0.04, 0.01], [0.01, 0.09]])
432
+ >>> residuals = np.array([0.1, -0.2, 0.15])
433
+ >>> compute_adjusted_standard_errors(pcov, residuals)
434
+ array([0.2, 0.3])
435
+ """
436
+ # Check for invalid covariance
437
+ if pcov is None:
438
+ if np.allclose(residuals, 0, atol=1e-10):
439
+ warnings.warn(
440
+ "Covariance matrix could not be estimated due to an almost perfect fit. "
441
+ "Standard errors are undefined but may not be necessary in this case."
442
+ )
443
+ else:
444
+ warnings.warn(
445
+ "Covariance matrix could not be estimated. This could be due to poor model fit "
446
+ "or numerical instability. Review the data or model configuration."
447
+ )
448
+ return None
449
+
450
+ # Calculate reduced chi-squared
451
+ n_params = len(np.diag(pcov))
452
+ if red_chi2 is None:
453
+ _, red_chi2 = compute_chi2(
454
+ residuals, n_params, cov_rescaled=cov_rescaled, sigma=sigma
455
+ )
456
+
457
+ # Rescale the covariance matrix
458
+ if np.isnan(red_chi2):
459
+ pcov_rescaled = np.nan
460
+ else:
461
+ pcov_rescaled = pcov * red_chi2
462
+
463
+ # Calculate standard errors for each parameter
464
+ if np.any(np.isnan(pcov_rescaled)):
465
+ standard_errors = np.full(n_params, np.nan, dtype=float)
466
+ else:
467
+ standard_errors = np.sqrt(np.diag(pcov_rescaled))
468
+
469
+ return standard_errors
470
+
471
+
472
+ def compute_chi2(residuals, n_params=None, cov_rescaled=True, sigma: np.ndarray = None):
473
+ """
474
+ Compute the chi-squared (χ²) and reduced chi-squared (χ²_red) statistics.
475
+
476
+ This function calculates the chi-squared value based on residuals and an
477
+ estimated or provided uncertainty (`sigma`). If the number of model parameters
478
+ (`n_params`) is specified, it also computes the reduced chi-squared.
479
+
480
+ Parameters
481
+ ----------
482
+ residuals : np.ndarray
483
+ The difference between observed and model-predicted values.
484
+ n_params : int, optional
485
+ Number of fitted parameters. If provided, the function also computes
486
+ the reduced chi-squared (χ²_red).
487
+ cov_rescaled : bool, default=True
488
+ Whether the covariance matrix has been already rescaled by the fit method.
489
+ If `True`, the function assumes proper uncertainty scaling. Otherwise,
490
+ it estimates uncertainty from the standard deviation of the residuals.
491
+ sigma : np.ndarray, optional
492
+ Experimental uncertainties. Should only be used when the fitting process
493
+ does not account for experimental errors AND known uncertainties are available.
494
+
495
+ Returns
496
+ -------
497
+ chi2 : float
498
+ The chi-squared statistic (χ²), which measures the goodness of fit.
499
+ red_chi2 : float (if `n_params` is provided)
500
+ The reduced chi-squared statistic (χ²_red), computed as χ² divided by
501
+ the degrees of freedom (N - p). If `n_params` is `None`, only χ² is returned.
502
+
503
+ Warnings
504
+ --------
505
+ - If the degrees of freedom (N - p) is non-positive, a warning is issued,
506
+ and χ²_red is set to NaN. This may indicate overfitting or an insufficient
507
+ number of data points.
508
+ - If any uncertainty value in `sigma` is zero, it is replaced with machine epsilon
509
+ to prevent division by zero.
510
+
511
+ Notes
512
+ -----
513
+ - If `sigma` is not provided and `cov_rescaled=False`, the function estimates
514
+ the uncertainty using the standard deviation of residuals.
515
+ - The reduced chi-squared value (χ²_red) should ideally be close to 1 for a good fit.
516
+ Values significantly greater than 1 indicate underfitting, while values much less
517
+ than 1 suggest overfitting.
518
+
519
+ Examples
520
+ --------
521
+ >>> residuals = np.array([0.1, -0.2, 0.15, -0.05])
522
+ >>> compute_chi2(residuals, n_params=2)
523
+ (0.085, 0.0425) # Example output
524
+ """
525
+ # If the optimization does not account for th experimental sigma,
526
+ # approximate it with the std of the residuals
527
+ S = 1 if cov_rescaled else np.std(residuals)
528
+ # If the experimental error is provided, use that instead
529
+ if sigma is not None:
530
+ S = sigma
531
+
532
+ # Replace 0 elements of S with the machine epsilon to avoid divisions by 0
533
+ if not np.isscalar(S):
534
+ S_safe = np.where(S == 0, np.finfo(float).eps, S)
535
+ else:
536
+ S_safe = np.finfo(float).eps if S == 0 else S
537
+
538
+ # Compute chi squared
539
+ chi2 = np.sum((residuals / S_safe) ** 2)
540
+ # If number of parameters is not provided return just chi2
541
+ if n_params is None:
542
+ return chi2
543
+
544
+ # Reduced chi squared
545
+ dof = len(residuals) - n_params # degrees of freedom (N - p)
546
+ if dof <= 0:
547
+ warnings.warn(
548
+ "Degrees of freedom (dof) is non-positive. This may indicate overfitting or insufficient data."
549
+ )
550
+ red_chi2 = np.nan
551
+ else:
552
+ red_chi2 = np.sum(residuals**2) / dof
553
+
554
+ return chi2, red_chi2
555
+
556
+
557
+ def _is_scipy_tuple(result):
558
+ """
559
+ Check whether the given result follows the expected structure of a SciPy optimization tuple.
560
+ """
561
+ if isinstance(result, tuple):
562
+ if len(result) < 3:
563
+ raise TypeError(
564
+ "Fit result is a tuple, but couldn't recognize it.\n"
565
+ + "Are you using scipy? Did you forget to set `full_output=True` in your fit method?"
566
+ )
567
+ popt = result[0]
568
+ cov_ish = result[1]
569
+ infodict = result[2]
570
+ keys_to_check = ["fvec"]
571
+
572
+ if cov_ish is not None:
573
+ cov_check = isinstance(cov_ish, np.ndarray) and cov_ish.ndim == 2
574
+ else:
575
+ cov_check = True
576
+ return (
577
+ isinstance(popt, np.ndarray)
578
+ and cov_check
579
+ and (all(key in infodict for key in keys_to_check))
580
+ )
581
+ return False
582
+
583
+
584
+ def _is_scipy_minimize(result):
585
+ """
586
+ Check whether the given result follows the expected structure of a SciPy minimize.
587
+ """
588
+ return (
589
+ isinstance(result, spopt.OptimizeResult)
590
+ and hasattr(result, "fun")
591
+ and np.isscalar(result.fun)
592
+ and hasattr(result, "jac")
593
+ )
594
+
595
+
596
+ def _is_scipy_least_squares(result):
597
+ """
598
+ Check whether the given result follows the expected structure of a SciPy least_squares.
599
+ """
600
+ return (
601
+ isinstance(result, spopt.OptimizeResult)
602
+ and hasattr(result, "cost")
603
+ and hasattr(result, "fun")
604
+ and hasattr(result, "jac")
605
+ )
606
+
607
+
608
+ def _is_lmfit(result):
609
+ """
610
+ Check whether the given result follows the expected structure of a lmfit fit.
611
+ """
612
+ return isinstance(result, ModelResult)
613
+
614
+
615
+ def _format_scipy_tuple(result, has_sigma=False):
616
+ """
617
+ Formats the output of a SciPy fitting function into a standardized dictionary.
618
+
619
+ This function takes the tuple returned by SciPy optimization functions (e.g., `curve_fit`, `leastsq`)
620
+ and extracts relevant fitting parameters, standard errors, and reduced chi-squared values. It ensures
621
+ the result is structured consistently for further processing.
622
+
623
+ Parameters
624
+ ----------
625
+ result : tuple
626
+ A tuple containing the fitting results from a SciPy function. Expected structure:
627
+ - `result[0]`: `popt` (optimized parameters, NumPy array)
628
+ - `result[1]`: `pcov` (covariance matrix, NumPy array or None)
629
+ - `result[2]`: `infodict` (dictionary containing residuals, required for error computation)
630
+
631
+ has_sigma : bool, optional
632
+ Indicates whether the fitting procedure considered experimental errors (`sigma`).
633
+ If `True`, the covariance matrix (`pcov`) does not need rescaling.
634
+
635
+ Returns
636
+ -------
637
+ dict
638
+ A dictionary containing:
639
+ - `"params"`: The optimized parameters (`popt`).
640
+ - `"std_err"`: The standard errors computed from the covariance matrix (`pcov`).
641
+ - `"metrics"`: A dictionary containing the reduced chi-squared (`red_chi2`).
642
+ """
643
+ if not isinstance(result, tuple):
644
+ raise TypeError("Fit result must be a tuple")
645
+
646
+ std_err = None
647
+ popt, pcov, infodict = None, None, None
648
+
649
+ # Extract output parameters
650
+ length = len(result)
651
+ popt = result[0]
652
+ pcov = result[1] if length > 1 else None
653
+ infodict = result[2] if length > 2 else None
654
+
655
+ if infodict is not None:
656
+ residuals = infodict["fvec"]
657
+ _, red_chi2 = compute_chi2(
658
+ residuals, n_params=len(popt), cov_rescaled=has_sigma
659
+ )
660
+ if pcov is not None:
661
+ std_err = compute_adjusted_standard_errors(
662
+ pcov, residuals, cov_rescaled=has_sigma, red_chi2=red_chi2
663
+ )
664
+
665
+ return {"params": popt, "std_err": std_err, "metrics": {"red_chi2": red_chi2}}
666
+
667
+
668
+ def _format_scipy_least_squares(result, has_sigma=False):
669
+ """
670
+ Formats the output of a SciPy least-squares optimization into a standardized dictionary.
671
+
672
+ This function processes the result of a SciPy least-squares fitting function (e.g., `scipy.optimize.least_squares`)
673
+ and structures the fitting parameters, standard errors, and reduced chi-squared values for consistent downstream use.
674
+
675
+ Parameters
676
+ ----------
677
+ result : `scipy.optimize.OptimizeResult`
678
+ The result of a least-squares optimization (e.g., from `scipy.optimize.least_squares`).
679
+ It must contain the following fields:
680
+ - `result.x`: Optimized parameters (NumPy array)
681
+ - `result.fun`: Residuals (array of differences between the observed and fitted data)
682
+ - `result.jac`: Jacobian matrix (used to estimate covariance)
683
+
684
+ has_sigma : bool, optional
685
+ Indicates whether the fitting procedure considered experimental errors (`sigma`).
686
+ If `True`, the covariance matrix does not need rescaling.
687
+
688
+ Returns
689
+ -------
690
+ dict
691
+ A dictionary containing:
692
+ - `"params"`: Optimized parameters (`result.x`).
693
+ - `"std_err"`: Standard errors computed from the covariance matrix and residuals.
694
+ - `"metrics"`: A dictionary containing the reduced chi-squared (`red_chi2`).
695
+ """
696
+ params = result.x
697
+ residuals = result.fun
698
+ cov = np.linalg.inv(result.jac.T @ result.jac)
699
+ _, red_chi2 = compute_chi2(residuals, n_params=len(params), cov_rescaled=has_sigma)
700
+ std_err = compute_adjusted_standard_errors(
701
+ cov, residuals, cov_rescaled=has_sigma, red_chi2=red_chi2
702
+ )
703
+
704
+ return {"params": params, "std_err": std_err, "metrics": {"red_chi2": red_chi2}}
705
+
706
+
707
+ def _format_scipy_minimize(result, residuals=None, has_sigma=False):
708
+ """
709
+ Formats the output of a SciPy minimize optimization into a standardized dictionary.
710
+
711
+ This function processes the result of a SciPy minimization optimization (e.g., `scipy.optimize.minimize`)
712
+ and structures the fitting parameters, standard errors, and reduced chi-squared values for consistent downstream use.
713
+
714
+ Parameters
715
+ ----------
716
+ result : `scipy.optimize.OptimizeResult`
717
+ The result of a minimization optimization (e.g., from `scipy.optimize.minimize`).
718
+ It must contain the following fields:
719
+ - `result.x`: Optimized parameters (NumPy array).
720
+ - `result.hess_inv`: Inverse Hessian matrix used to estimate the covariance.
721
+
722
+ residuals : array-like, optional
723
+ The residuals (differences between observed data and fitted model).
724
+ If not provided, standard errors will be computed based on the inverse Hessian matrix.
725
+
726
+ has_sigma : bool, optional
727
+ Indicates whether the fitting procedure considered experimental errors (`sigma`).
728
+ If `True`, the covariance matrix does not need rescaling.
729
+
730
+ Returns
731
+ -------
732
+ dict
733
+ A dictionary containing:
734
+ - `"params"`: Optimized parameters (`result.x`).
735
+ - `"std_err"`: Standard errors computed either from the Hessian matrix or based on the residuals.
736
+ - `"metrics"`: A dictionary containing the reduced chi-squared (`red_chi2`), if residuals are provided.
737
+ """
738
+ params = result.x
739
+ cov = _get_covariance_from_scipy_optimize_result(result)
740
+ metrics = None
741
+
742
+ if residuals is None:
743
+ std_err = np.sqrt(np.abs(result.hess_inv.diagonal()))
744
+ else:
745
+ std_err = compute_adjusted_standard_errors(
746
+ cov, residuals, cov_rescaled=has_sigma
747
+ )
748
+ _, red_chi2 = compute_chi2(
749
+ residuals, n_params=len(params), cov_rescaled=has_sigma
750
+ )
751
+ metrics = {"red_chi2": red_chi2}
752
+
753
+ return {"params": params, "std_err": std_err, "metrics": metrics}
754
+
755
+
756
+ def _format_lmfit(result: ModelResult):
757
+ """
758
+ Formats the output of an lmfit model fitting result into a standardized dictionary.
759
+
760
+ This function processes the result of an lmfit model fitting (e.g., from `lmfit.Model.fit`) and
761
+ structures the fitting parameters, their standard errors, reduced chi-squared, and a prediction function.
762
+
763
+ Parameters
764
+ ----------
765
+ result : `lmfit.ModelResult`
766
+ The result of an lmfit model fitting procedure. It must contain the following fields:
767
+ - `result.params`: A dictionary of fitted parameters and their values.
768
+ - `result.redchi`: The reduced chi-squared value.
769
+ - `result.eval`: A method to evaluate the fitted model using independent variable values.
770
+ - `result.userkws`: Dictionary of user-supplied keywords that includes the independent variable.
771
+ - `result.model.independent_vars`: List of independent variable names in the model.
772
+
773
+ Returns
774
+ -------
775
+ dict
776
+ A dictionary containing:
777
+ - `"params"`: Optimized parameters (as a NumPy array).
778
+ - `"std_err"`: Standard errors of the parameters.
779
+ - `"metrics"`: A dictionary containing the reduced chi-squared (`red_chi2`).
780
+ - `"predict"`: A function that predicts the model's output given an input (using optimized parameters).
781
+ - `"param_names"`: List of parameter names.
782
+
783
+ Notes
784
+ -----
785
+ - lmfit already rescales standard errors by the reduced chi-squared, so no further adjustments are made.
786
+ - The independent variable name used in the fit is determined from `result.userkws` and `result.model.independent_vars`.
787
+ - The function creates a prediction function (`predict`) from the fitted model.
788
+ """
789
+ params = np.array([param.value for param in result.params.values()])
790
+ param_names = list(result.params.keys())
791
+ std_err = np.array(
792
+ [
793
+ param.stderr if param.stderr is not None else np.nan
794
+ for param in result.params.values()
795
+ ]
796
+ )
797
+ # Determine the independent variable name used in the fit
798
+ independent_var = result.userkws.keys() & result.model.independent_vars
799
+ independent_var = (
800
+ independent_var.pop() if independent_var else result.model.independent_vars[0]
801
+ )
802
+ fit_function = lambda x: result.eval(**{independent_var: x})
803
+
804
+ return {
805
+ "params": params,
806
+ "std_err": std_err,
807
+ "metrics": {"red_chi2": result.redchi},
808
+ "predict": fit_function,
809
+ "param_names": param_names,
810
+ }
811
+
812
+
813
+ def _get_covariance_from_scipy_optimize_result(
814
+ result: spopt.OptimizeResult,
815
+ ) -> np.ndarray:
816
+ """
817
+ Extracts the covariance matrix (or an approximation) from a scipy optimization result.
818
+
819
+ This function attempts to retrieve the covariance matrix of the fitted parameters from the
820
+ result object returned by a scipy optimization method. It first checks for the presence of
821
+ the inverse Hessian (`hess_inv`), which is used to estimate the covariance. If it's not available,
822
+ the function attempts to compute the covariance using the Hessian matrix (`hess`).
823
+
824
+ Parameters
825
+ ----------
826
+ result : `scipy.optimize.OptimizeResult`
827
+ The result object returned by a scipy optimization function, such as `scipy.optimize.minimize` or `scipy.optimize.curve_fit`.
828
+ This object contains the optimization results, including the Hessian or its inverse.
829
+
830
+ Returns
831
+ -------
832
+ np.ndarray or None
833
+ The covariance matrix of the optimized parameters, or `None` if it cannot be computed.
834
+ If the inverse Hessian (`hess_inv`) is available, it will be returned directly.
835
+ If the Hessian matrix (`hess`) is available and not singular, its inverse will be computed and returned.
836
+ If neither is available, the function returns `None`.
837
+
838
+ Notes
839
+ -----
840
+ - If the Hessian matrix (`hess`) is singular or nearly singular, the covariance matrix cannot be computed.
841
+ - In some cases, the inverse Hessian (`hess_inv`) is directly available and provides the covariance without further computation.
842
+ """
843
+ if hasattr(result, "hess_inv"):
844
+ hess_inv = result.hess_inv
845
+
846
+ # Handle different types of hess_inv
847
+ if isinstance(hess_inv, np.ndarray):
848
+ return hess_inv
849
+ elif hasattr(hess_inv, "todense"):
850
+ return hess_inv.todense()
851
+
852
+ if hasattr(result, "hess") and result.hess is not None:
853
+ try:
854
+ return np.linalg.inv(result.hess)
855
+ except np.linalg.LinAlgError:
856
+ pass # Hessian is singular, cannot compute covariance
857
+
858
+ return None
859
+
860
+
861
+ def _get_xy_data_from_fit_args(*args, **kwargs):
862
+ """
863
+ Extracts x and y data from the given arguments and keyword arguments.
864
+
865
+ This helper function retrieves the x and y data (1D vectors) from the function's arguments or keyword arguments.
866
+ The function checks for common keyword names like "x_data", "xdata", "x", "y_data", "ydata", and "y", and returns
867
+ the corresponding data. If no keyword arguments are found, it attempts to extract the first two consecutive 1D
868
+ vectors from the positional arguments.
869
+
870
+ Parameters
871
+ ----------
872
+ *args : variable length argument list
873
+ The positional arguments passed to the function, potentially containing the x and y data.
874
+
875
+ **kwargs : keyword arguments
876
+ The keyword arguments passed to the function, potentially containing keys such as "x_data", "x", "y_data", or "y".
877
+
878
+ Returns
879
+ -------
880
+ tuple of (np.ndarray, np.ndarray)
881
+ A tuple containing the x data and y data as 1D numpy arrays or lists. If no valid data is found, returns (None, None).
882
+
883
+ Raises
884
+ ------
885
+ ValueError
886
+ If both x and y data cannot be found in the input arguments.
887
+
888
+ Notes
889
+ -----
890
+ - The function looks for the x and y data in the keyword arguments first, in the order of x_keys and y_keys.
891
+ - If both x and y data are not found in keyword arguments, the function will look for the first two consecutive
892
+ 1D vectors in the positional arguments.
893
+ - If the data cannot be found, the function will return (None, None).
894
+ - The function validates that the extracted x and y data are 1D vectors (either lists or numpy arrays).
895
+ """
896
+ # Possible keyword names for x and y data
897
+ x_keys = ["x_data", "xdata", "x"]
898
+ y_keys = ["y_data", "ydata", "y"]
899
+
900
+ # Validate if an object is a 1D vector
901
+ def is_valid_vector(obj):
902
+ return isinstance(obj, (list, np.ndarray)) and np.ndim(obj) == 1
903
+
904
+ x_data, y_data = None, None
905
+
906
+ # Look for x_data in keyword arguments
907
+ for key in x_keys:
908
+ if key in kwargs and is_valid_vector(kwargs[key]):
909
+ x_data = kwargs[key]
910
+ break
911
+ # Look for y_data in keyword arguments
912
+ for key in y_keys:
913
+ if key in kwargs and is_valid_vector(kwargs[key]):
914
+ y_data = kwargs[key]
915
+ break
916
+
917
+ # If both parameters were found, return them
918
+ if (x_data is not None) and (y_data is not None):
919
+ return x_data, y_data
920
+
921
+ # If the args have only 1 entry
922
+ if len(args) == 1 and is_valid_vector(args[0]):
923
+ if y_data is not None:
924
+ x_data = args[0]
925
+ else:
926
+ y_data = args[0]
927
+
928
+ # If x and y were not found, try finding the first two consecutive vectors in args
929
+ if x_data is None or y_data is None:
930
+ # Check pairs of consecutive elements
931
+ for i in range(len(args) - 1):
932
+ if is_valid_vector(args[i]) and is_valid_vector(args[i + 1]):
933
+ x_data, y_data = args[i], args[i + 1]
934
+ break
935
+
936
+ return x_data, y_data