spotforecast2 0.2.0__py3-none-any.whl → 0.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -44,57 +44,90 @@ def get_data_home(data_home: Optional[Union[str, Path]] = None) -> Path:
44
44
 
45
45
 
46
46
  def fetch_data(
47
- filename: str = "data_in.csv",
47
+ filename: Optional[str] = None,
48
+ dataframe: Optional[pd.DataFrame] = None,
48
49
  columns: Optional[list] = None,
49
50
  index_col: int = 0,
50
51
  parse_dates: bool = True,
51
52
  dayfirst: bool = False,
52
53
  timezone: str = "UTC",
53
54
  ) -> pd.DataFrame:
54
- """Fetches the integrated raw dataset from a CSV file.
55
+ """Fetches the integrated raw dataset from a CSV file or processes a DataFrame.
55
56
 
56
57
  Args:
57
- filename (str):
58
- Filename of the CSV file containing the dataset. It must be located in the data home directory, which can be get or set using `get_data_home()`.
58
+ filename (str, optional):
59
+ Filename of the CSV file containing the dataset. Must be located in the
60
+ data home directory. If both filename and dataframe are None, defaults to "data_in.csv".
61
+ dataframe (pd.DataFrame, optional):
62
+ A pandas DataFrame to process. If provided, it will be processed with
63
+ proper timezone handling. Mutually exclusive with filename.
59
64
  columns (list, optional):
60
65
  List of columns to be included in the dataset. If None, all columns are included.
61
- If an empty list is provided, a ValueError is blocked.
66
+ If an empty list is provided, a ValueError is raised.
62
67
  index_col (int):
63
- Column index to be used as the index.
68
+ Column index to be used as the index (only used when loading from CSV).
64
69
  parse_dates (bool):
65
- Whether to parse dates in the index column.
70
+ Whether to parse dates in the index column (only used when loading from CSV).
66
71
  dayfirst (bool):
67
- Whether the day comes first in date parsing.
72
+ Whether the day comes first in date parsing (only used when loading from CSV).
68
73
  timezone (str):
69
- Timezone to set for the datetime index.
74
+ Timezone to set for the datetime index. If a DataFrame with naive index is provided,
75
+ it will be localized to this timezone then converted to UTC. Default: "UTC".
70
76
 
71
77
  Returns:
72
- pd.DataFrame: The integrated raw dataset.
78
+ pd.DataFrame: The integrated raw dataset with UTC timezone.
73
79
 
74
80
  Raises:
75
- ValueError: If columns is an empty list.
81
+ ValueError: If columns is an empty list or if both filename and dataframe are provided.
82
+ FileNotFoundError: If CSV file does not exist.
76
83
 
77
84
  Examples:
85
+ Load from CSV (default):
78
86
  >>> from spotforecast2.data.fetch_data import fetch_data
79
87
  >>> data = fetch_data(columns=["col1", "col2"])
80
88
  >>> data.head()
81
89
  Header1 Header2 Header3
90
+
91
+ Load from specific CSV:
92
+ >>> data = fetch_data(filename="custom_data.csv")
93
+
94
+ Process a DataFrame:
95
+ >>> import pandas as pd
96
+ >>> df = pd.DataFrame({"value": [1, 2, 3]},
97
+ ... index=pd.date_range("2024-01-01", periods=3, freq="h"))
98
+ >>> data = fetch_data(dataframe=df, timezone="Europe/Berlin")
99
+ >>> data.index.tz
100
+ <UTC>
82
101
  """
83
102
  if columns is not None and len(columns) == 0:
84
103
  raise ValueError("columns must be specified and cannot be empty.")
85
-
86
- csv_path = get_data_home() / filename
87
- if not Path(csv_path).is_file():
88
- raise FileNotFoundError(f"The file {csv_path} does not exist.")
89
-
90
- dataset = Data.from_csv(
91
- csv_path=csv_path,
92
- index_col=index_col,
93
- parse_dates=parse_dates,
94
- dayfirst=dayfirst,
95
- timezone=timezone,
96
- columns=columns,
97
- )
104
+
105
+ if filename is not None and dataframe is not None:
106
+ raise ValueError("Cannot specify both filename and dataframe. Please provide only one.")
107
+
108
+ # Process DataFrame if provided
109
+ if dataframe is not None:
110
+ dataset = Data.from_dataframe(
111
+ df=dataframe,
112
+ timezone=timezone,
113
+ columns=columns,
114
+ )
115
+ else:
116
+ # Load from CSV file
117
+ if filename is None:
118
+ filename = "data_in.csv"
119
+ csv_path = get_data_home() / filename
120
+ if not Path(csv_path).is_file():
121
+ raise FileNotFoundError(f"The file {csv_path} does not exist.")
122
+
123
+ dataset = Data.from_csv(
124
+ csv_path=csv_path,
125
+ index_col=index_col,
126
+ parse_dates=parse_dates,
127
+ dayfirst=dayfirst,
128
+ timezone=timezone,
129
+ columns=columns,
130
+ )
98
131
 
99
132
  return dataset.data
100
133
 
@@ -314,13 +314,15 @@ def n2n_predict(
314
314
 
315
315
  if verbose:
316
316
  print("--- Starting n2n_predict ---")
317
- print("Fetching data...")
318
317
 
319
- # Fetch data
318
+ # Handle data input - fetch_data handles both CSV and DataFrame
320
319
  if data is not None:
321
- if TARGET is not None:
322
- data = data[TARGET]
320
+ if verbose:
321
+ print("Using provided dataframe...")
322
+ data = fetch_data(dataframe=data, columns=TARGET)
323
323
  else:
324
+ if verbose:
325
+ print("Fetching data from CSV...")
324
326
  data = fetch_data(columns=TARGET)
325
327
 
326
328
  START, END, COV_START, COV_END = get_start_end(
@@ -868,8 +868,16 @@ def n2n_predict_with_covariates(
868
868
  if verbose:
869
869
  print("\n[1/9] Loading and preparing target data...")
870
870
 
871
+ # Handle data input - fetch_data handles both CSV and DataFrame
871
872
  if data is None:
872
- data = fetch_data()
873
+ if verbose:
874
+ print(" Fetching data from CSV...")
875
+ data = fetch_data(timezone=timezone)
876
+ else:
877
+ if verbose:
878
+ print(" Using provided dataframe...")
879
+ data = fetch_data(dataframe=data, timezone=timezone)
880
+
873
881
  target_columns = data.columns.tolist()
874
882
 
875
883
  if verbose:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: spotforecast2
3
- Version: 0.2.0
3
+ Version: 0.2.2
4
4
  Summary: Forecasting with spot
5
5
  Author: bartzbeielstein
6
6
  Author-email: bartzbeielstein <32470350+bartzbeielstein@users.noreply.github.com>
@@ -1,7 +1,7 @@
1
1
  spotforecast2/__init__.py,sha256=X9sBx15iz8yqr9iDJcrGJM5nhvnpaczXto4XV_GtfhE,59
2
2
  spotforecast2/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
3
  spotforecast2/data/data.py,sha256=HEgr-FULaqHvuMeKTviOgYyo3GbxpGRTo3ZnmIU9w2Y,4422
4
- spotforecast2/data/fetch_data.py,sha256=LcHowE6tnjKPNMTCGr8h29ioGHT4xmj6l6iZmZkJdLU,6842
4
+ spotforecast2/data/fetch_data.py,sha256=N99W-NNTC2hbXmx1FofITsvXJfHj9py4r5Kllf5950Y,8464
5
5
  spotforecast2/exceptions.py,sha256=6gOji-3cP-YAisPoxXCcrEEbjTnfPN1YqEhGYhmyZ8Y,20499
6
6
  spotforecast2/forecaster/__init__.py,sha256=BbCOS2ouKcPC9VzcdprllVyqlZIyAWXCOvUAiInxDi4,140
7
7
  spotforecast2/forecaster/base.py,sha256=rXhcjY4AMpyQhkpbtLIA8OOrGEb8fU57SQiyeR9c9DQ,16748
@@ -31,8 +31,8 @@ spotforecast2/preprocessing/imputation.py,sha256=lmH-HumI_QLLm9aMESe_oZq84Axn60w
31
31
  spotforecast2/preprocessing/outlier.py,sha256=jZxAR870QtYner7b4gXk6LLGJw0juLq1VU4CGklYd3c,4208
32
32
  spotforecast2/preprocessing/split.py,sha256=mzzt5ltUZdVzfWtBBTQjp8E2MyqVdWUFtz7nN11urbU,5011
33
33
  spotforecast2/processing/agg_predict.py,sha256=VKlruB0x-eJKokkHyJxR87rZ4m53si3ODbrd0ibPlow,2378
34
- spotforecast2/processing/n2n_predict.py,sha256=KVd7h25EzLKZL71NI3aDDXyPq5RvaRxUPEOqrmYYUrA,14764
35
- spotforecast2/processing/n2n_predict_with_covariates.py,sha256=aaCozQ8JpfHm_KzCSxNPi-WdbSXM5--rm8ae9y4eXkU,40613
34
+ spotforecast2/processing/n2n_predict.py,sha256=Sr2AFaCZxP-tbsxlEjiSdjBU-mtBiDa_f6rJLEJov64,14912
35
+ spotforecast2/processing/n2n_predict_with_covariates.py,sha256=PyB3X1rNb18JBC72YiN12hUg5eSjUAsW4M-atczmCSQ,40914
36
36
  spotforecast2/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
37
  spotforecast2/utils/__init__.py,sha256=NrMt_xJLe4rbTFbsbgSQYeREohEOiYG5S-97e6Jj07I,1018
38
38
  spotforecast2/utils/convert_to_utc.py,sha256=hz8mJUHK9jDLUiN5LdNX5l3KZuOKlklyycB4zFdB9Ng,1405
@@ -42,6 +42,6 @@ spotforecast2/utils/generate_holiday.py,sha256=SHaPvPMt-abis95cChHf5ObyPwCTrzJ87
42
42
  spotforecast2/utils/validation.py,sha256=x9ypQzcneDhWJA_piiY4Q3_ogoGd1LTsZ7__MFeG9Fc,21618
43
43
  spotforecast2/weather/__init__.py,sha256=1Jco88pl0deNESgNATin83Nf5i9c58pxN7G-vNiOiu0,120
44
44
  spotforecast2/weather/weather_client.py,sha256=Ec_ywug6uoa71MfXM8RNbXEvtBtBzr-SUS5xq_HKtZE,9837
45
- spotforecast2-0.2.0.dist-info/WHEEL,sha256=5DEXXimM34_d4Gx1AuF9ysMr1_maoEtGKjaILM3s4w4,80
46
- spotforecast2-0.2.0.dist-info/METADATA,sha256=OH6q5340Sup2MG37NmpxUaaxTTct1vQoADada9JVVm8,3481
47
- spotforecast2-0.2.0.dist-info/RECORD,,
45
+ spotforecast2-0.2.2.dist-info/WHEEL,sha256=5DEXXimM34_d4Gx1AuF9ysMr1_maoEtGKjaILM3s4w4,80
46
+ spotforecast2-0.2.2.dist-info/METADATA,sha256=f5BfMpKyfzwbTOTguKeNPgjbuEu2N0zwMrfcjG82XYo,3481
47
+ spotforecast2-0.2.2.dist-info/RECORD,,