spotforecast2 0.0.5__py3-none-any.whl → 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- spotforecast2/forecaster/utils.py +1 -1
- spotforecast2/processing/n2n_predict_with_covariates.py +283 -26
- {spotforecast2-0.0.5.dist-info → spotforecast2-0.1.0.dist-info}/METADATA +1 -1
- {spotforecast2-0.0.5.dist-info → spotforecast2-0.1.0.dist-info}/RECORD +5 -5
- {spotforecast2-0.0.5.dist-info → spotforecast2-0.1.0.dist-info}/WHEEL +0 -0
|
@@ -142,7 +142,7 @@ def prepare_steps_direct(
|
|
|
142
142
|
steps: int, list, None, default None
|
|
143
143
|
Predict n steps. The value of `steps` must be less than or equal to the
|
|
144
144
|
value of steps defined when initializing the forecaster. Starts at 1.
|
|
145
|
-
|
|
145
|
+
|
|
146
146
|
- If `int`: Only steps within the range of 1 to int are predicted.
|
|
147
147
|
- If `list`: List of ints. Only the steps contained in the list
|
|
148
148
|
are predicted.
|
|
@@ -6,6 +6,9 @@ recursive forecasters with exogenous variables (weather, holidays, calendar feat
|
|
|
6
6
|
It handles data preparation, feature engineering, model training, and prediction
|
|
7
7
|
in a single integrated function.
|
|
8
8
|
|
|
9
|
+
Model persistence follows scikit-learn conventions using joblib for efficient
|
|
10
|
+
serialization and deserialization of trained forecasters.
|
|
11
|
+
|
|
9
12
|
Examples:
|
|
10
13
|
Basic usage with default parameters:
|
|
11
14
|
|
|
@@ -27,8 +30,28 @@ Examples:
|
|
|
27
30
|
... train_ratio=0.75,
|
|
28
31
|
... verbose=True
|
|
29
32
|
... )
|
|
33
|
+
|
|
34
|
+
Using cached models:
|
|
35
|
+
|
|
36
|
+
>>> # Load existing models if available, or train new ones
|
|
37
|
+
>>> predictions, metadata, forecasters = n2n_predict_with_covariates(
|
|
38
|
+
... forecast_horizon=24,
|
|
39
|
+
... force_train=False,
|
|
40
|
+
... model_dir="./models",
|
|
41
|
+
... verbose=True
|
|
42
|
+
... )
|
|
43
|
+
|
|
44
|
+
Force retraining and update cache:
|
|
45
|
+
|
|
46
|
+
>>> predictions, metadata, forecasters = n2n_predict_with_covariates(
|
|
47
|
+
... forecast_horizon=24,
|
|
48
|
+
... force_train=True,
|
|
49
|
+
... model_dir="./models",
|
|
50
|
+
... verbose=True
|
|
51
|
+
... )
|
|
30
52
|
"""
|
|
31
53
|
|
|
54
|
+
from pathlib import Path
|
|
32
55
|
from typing import Dict, List, Optional, Tuple, Union
|
|
33
56
|
|
|
34
57
|
import numpy as np
|
|
@@ -37,6 +60,11 @@ from astral import LocationInfo
|
|
|
37
60
|
from lightgbm import LGBMRegressor
|
|
38
61
|
from sklearn.preprocessing import PolynomialFeatures
|
|
39
62
|
|
|
63
|
+
try:
|
|
64
|
+
from joblib import dump, load
|
|
65
|
+
except ImportError:
|
|
66
|
+
raise ImportError("joblib is required. Install with: pip install joblib")
|
|
67
|
+
|
|
40
68
|
try:
|
|
41
69
|
from tqdm.auto import tqdm
|
|
42
70
|
except ImportError: # pragma: no cover - fallback when tqdm is not installed
|
|
@@ -547,6 +575,152 @@ def _merge_data_and_covariates(
|
|
|
547
575
|
return data_with_exog, exo_tmp, exo_pred
|
|
548
576
|
|
|
549
577
|
|
|
578
|
+
# ============================================================================
|
|
579
|
+
# Model Persistence Functions
|
|
580
|
+
# ============================================================================
|
|
581
|
+
|
|
582
|
+
|
|
583
|
+
def _ensure_model_dir(model_dir: Union[str, Path]) -> Path:
|
|
584
|
+
"""Ensure model directory exists.
|
|
585
|
+
|
|
586
|
+
Args:
|
|
587
|
+
model_dir: Directory path for model storage.
|
|
588
|
+
|
|
589
|
+
Returns:
|
|
590
|
+
Path: Validated Path object.
|
|
591
|
+
|
|
592
|
+
Raises:
|
|
593
|
+
OSError: If directory cannot be created.
|
|
594
|
+
"""
|
|
595
|
+
model_path = Path(model_dir)
|
|
596
|
+
model_path.mkdir(parents=True, exist_ok=True)
|
|
597
|
+
return model_path
|
|
598
|
+
|
|
599
|
+
|
|
600
|
+
def _get_model_filepath(model_dir: Path, target: str) -> Path:
|
|
601
|
+
"""Get filepath for a single model.
|
|
602
|
+
|
|
603
|
+
Args:
|
|
604
|
+
model_dir: Directory containing models.
|
|
605
|
+
target: Target variable name.
|
|
606
|
+
|
|
607
|
+
Returns:
|
|
608
|
+
Path: Full filepath for the model.
|
|
609
|
+
|
|
610
|
+
Examples:
|
|
611
|
+
>>> path = _get_model_filepath(Path("./models"), "power")
|
|
612
|
+
>>> str(path)
|
|
613
|
+
'./models/forecaster_power.joblib'
|
|
614
|
+
"""
|
|
615
|
+
return model_dir / f"forecaster_{target}.joblib"
|
|
616
|
+
|
|
617
|
+
|
|
618
|
+
def _save_forecasters(
|
|
619
|
+
forecasters: Dict[str, object],
|
|
620
|
+
model_dir: Union[str, Path],
|
|
621
|
+
verbose: bool = False,
|
|
622
|
+
) -> Dict[str, Path]:
|
|
623
|
+
"""Save trained forecasters to disk using joblib.
|
|
624
|
+
|
|
625
|
+
Follows scikit-learn persistence conventions using joblib for efficient
|
|
626
|
+
serialization of sklearn-compatible estimators.
|
|
627
|
+
|
|
628
|
+
Args:
|
|
629
|
+
forecasters: Dictionary mapping target names to trained ForecasterRecursive objects.
|
|
630
|
+
model_dir: Directory to save models. Created if it doesn't exist.
|
|
631
|
+
verbose: Print progress messages. Default: False.
|
|
632
|
+
|
|
633
|
+
Returns:
|
|
634
|
+
Dict[str, Path]: Dictionary mapping target names to saved model filepaths.
|
|
635
|
+
|
|
636
|
+
Raises:
|
|
637
|
+
OSError: If models cannot be written to disk.
|
|
638
|
+
TypeError: If forecasters contain non-serializable objects.
|
|
639
|
+
|
|
640
|
+
Examples:
|
|
641
|
+
>>> forecasters = {"power": forecaster_obj}
|
|
642
|
+
>>> paths = _save_forecasters(forecasters, "./models", verbose=True)
|
|
643
|
+
>>> print(paths["power"])
|
|
644
|
+
models/forecaster_power.joblib
|
|
645
|
+
"""
|
|
646
|
+
model_path = _ensure_model_dir(model_dir)
|
|
647
|
+
saved_paths = {}
|
|
648
|
+
|
|
649
|
+
for target, forecaster in forecasters.items():
|
|
650
|
+
filepath = _get_model_filepath(model_path, target)
|
|
651
|
+
try:
|
|
652
|
+
dump(forecaster, filepath, compress=3)
|
|
653
|
+
saved_paths[target] = filepath
|
|
654
|
+
if verbose:
|
|
655
|
+
print(f" ✓ Saved forecaster for {target} to {filepath}")
|
|
656
|
+
except Exception as e:
|
|
657
|
+
raise OSError(f"Failed to save model for {target}: {e}")
|
|
658
|
+
|
|
659
|
+
return saved_paths
|
|
660
|
+
|
|
661
|
+
|
|
662
|
+
def _load_forecasters(
|
|
663
|
+
target_columns: List[str],
|
|
664
|
+
model_dir: Union[str, Path],
|
|
665
|
+
verbose: bool = False,
|
|
666
|
+
) -> Tuple[Dict[str, object], List[str]]:
|
|
667
|
+
"""Load trained forecasters from disk using joblib.
|
|
668
|
+
|
|
669
|
+
Attempts to load all forecasters for given targets. Missing models
|
|
670
|
+
are indicated in the return value for selective retraining.
|
|
671
|
+
|
|
672
|
+
Args:
|
|
673
|
+
target_columns: List of target variable names to load.
|
|
674
|
+
model_dir: Directory containing saved models.
|
|
675
|
+
verbose: Print progress messages. Default: False.
|
|
676
|
+
|
|
677
|
+
Returns:
|
|
678
|
+
Tuple[Dict[str, object], List[str]]:
|
|
679
|
+
- forecasters: Dictionary of successfully loaded ForecasterRecursive objects.
|
|
680
|
+
- missing_targets: List of target names without saved models.
|
|
681
|
+
|
|
682
|
+
Examples:
|
|
683
|
+
>>> forecasters, missing = _load_forecasters(
|
|
684
|
+
... ["power", "energy"],
|
|
685
|
+
... "./models",
|
|
686
|
+
... verbose=True
|
|
687
|
+
... )
|
|
688
|
+
>>> print(missing)
|
|
689
|
+
['energy']
|
|
690
|
+
"""
|
|
691
|
+
model_path = Path(model_dir)
|
|
692
|
+
forecasters = {}
|
|
693
|
+
missing_targets = []
|
|
694
|
+
|
|
695
|
+
for target in target_columns:
|
|
696
|
+
filepath = _get_model_filepath(model_path, target)
|
|
697
|
+
if filepath.exists():
|
|
698
|
+
try:
|
|
699
|
+
forecasters[target] = load(filepath)
|
|
700
|
+
if verbose:
|
|
701
|
+
print(f" ✓ Loaded forecaster for {target} from {filepath}")
|
|
702
|
+
except Exception as e:
|
|
703
|
+
if verbose:
|
|
704
|
+
print(f" ✗ Failed to load {target}: {e}")
|
|
705
|
+
missing_targets.append(target)
|
|
706
|
+
else:
|
|
707
|
+
missing_targets.append(target)
|
|
708
|
+
|
|
709
|
+
return forecasters, missing_targets
|
|
710
|
+
|
|
711
|
+
|
|
712
|
+
def _model_directory_exists(model_dir: Union[str, Path]) -> bool:
|
|
713
|
+
"""Check if model directory exists.
|
|
714
|
+
|
|
715
|
+
Args:
|
|
716
|
+
model_dir: Directory path to check.
|
|
717
|
+
|
|
718
|
+
Returns:
|
|
719
|
+
bool: True if directory exists, False otherwise.
|
|
720
|
+
"""
|
|
721
|
+
return Path(model_dir).exists()
|
|
722
|
+
|
|
723
|
+
|
|
550
724
|
# ============================================================================
|
|
551
725
|
# Main Function
|
|
552
726
|
# ============================================================================
|
|
@@ -567,6 +741,8 @@ def n2n_predict_with_covariates(
|
|
|
567
741
|
include_weather_windows: bool = False,
|
|
568
742
|
include_holiday_features: bool = False,
|
|
569
743
|
include_poly_features: bool = False,
|
|
744
|
+
force_train: bool = False,
|
|
745
|
+
model_dir: Union[str, Path] = "./forecaster_models",
|
|
570
746
|
verbose: bool = True,
|
|
571
747
|
show_progress: bool = True,
|
|
572
748
|
) -> Tuple[pd.DataFrame, Dict, Dict]:
|
|
@@ -580,9 +756,12 @@ def n2n_predict_with_covariates(
|
|
|
580
756
|
5. Performs feature engineering (cyclical encoding, interactions)
|
|
581
757
|
6. Merges target and exogenous data
|
|
582
758
|
7. Splits into train/validation/test sets
|
|
583
|
-
8. Trains recursive forecasters with sample weighting
|
|
759
|
+
8. Trains or loads recursive forecasters with sample weighting
|
|
584
760
|
9. Generates multi-step ahead predictions
|
|
585
761
|
|
|
762
|
+
Models are persisted to disk following scikit-learn conventions using joblib.
|
|
763
|
+
Existing models are reused for prediction unless force_train=True.
|
|
764
|
+
|
|
586
765
|
Args:
|
|
587
766
|
forecast_horizon: Number of time steps to forecast ahead. Default: 24.
|
|
588
767
|
contamination: Contamination parameter for outlier detection. Default: 0.01.
|
|
@@ -599,6 +778,10 @@ def n2n_predict_with_covariates(
|
|
|
599
778
|
include_weather_windows: Include weather window features. Default: False.
|
|
600
779
|
include_holiday_features: Include holiday features. Default: False.
|
|
601
780
|
include_poly_features: Include polynomial interaction features. Default: False.
|
|
781
|
+
force_train: Force retraining of all models, ignoring cached models.
|
|
782
|
+
Default: False.
|
|
783
|
+
model_dir: Directory for saving/loading trained models.
|
|
784
|
+
Default: "./forecaster_models".
|
|
602
785
|
verbose: Print progress messages. Default: True.
|
|
603
786
|
show_progress: Show progress bar during training. Default: True.
|
|
604
787
|
|
|
@@ -611,9 +794,10 @@ def n2n_predict_with_covariates(
|
|
|
611
794
|
Raises:
|
|
612
795
|
ValueError: If data validation fails or required data cannot be retrieved.
|
|
613
796
|
ImportError: If required dependencies are not installed.
|
|
797
|
+
OSError: If models cannot be saved to disk.
|
|
614
798
|
|
|
615
799
|
Examples:
|
|
616
|
-
Basic usage:
|
|
800
|
+
Basic usage with automatic model caching:
|
|
617
801
|
|
|
618
802
|
>>> predictions, metadata, forecasters = n2n_predict_with_covariates(
|
|
619
803
|
... forecast_horizon=24,
|
|
@@ -622,6 +806,22 @@ def n2n_predict_with_covariates(
|
|
|
622
806
|
>>> print(predictions.shape)
|
|
623
807
|
(24, 11)
|
|
624
808
|
|
|
809
|
+
Load cached models (if available):
|
|
810
|
+
|
|
811
|
+
>>> predictions, metadata, forecasters = n2n_predict_with_covariates(
|
|
812
|
+
... forecast_horizon=24,
|
|
813
|
+
... force_train=False,
|
|
814
|
+
... model_dir="./saved_models"
|
|
815
|
+
... )
|
|
816
|
+
|
|
817
|
+
Force retraining and update cache:
|
|
818
|
+
|
|
819
|
+
>>> predictions, metadata, forecasters = n2n_predict_with_covariates(
|
|
820
|
+
... forecast_horizon=24,
|
|
821
|
+
... force_train=True,
|
|
822
|
+
... model_dir="./saved_models"
|
|
823
|
+
... )
|
|
824
|
+
|
|
625
825
|
Custom location and features:
|
|
626
826
|
|
|
627
827
|
>>> predictions, metadata, forecasters = n2n_predict_with_covariates(
|
|
@@ -630,6 +830,7 @@ def n2n_predict_with_covariates(
|
|
|
630
830
|
... longitude=13.4050,
|
|
631
831
|
... lags=48,
|
|
632
832
|
... include_poly_features=True,
|
|
833
|
+
... force_train=False,
|
|
633
834
|
... verbose=True
|
|
634
835
|
... )
|
|
635
836
|
|
|
@@ -641,6 +842,16 @@ def n2n_predict_with_covariates(
|
|
|
641
842
|
near missing data.
|
|
642
843
|
- Train/validation splits are temporal (80/20 by default).
|
|
643
844
|
- All features are cast to float32 for memory efficiency.
|
|
845
|
+
- Trained models are saved to disk using joblib for fast reuse.
|
|
846
|
+
- When force_train=False, existing models are loaded and prediction
|
|
847
|
+
proceeds without retraining. This significantly speeds up prediction
|
|
848
|
+
for repeated calls with the same configuration.
|
|
849
|
+
- The model_dir directory is created automatically if it doesn't exist.
|
|
850
|
+
|
|
851
|
+
Performance Notes:
|
|
852
|
+
- First run: Full training (~5-10 minutes depending on data size)
|
|
853
|
+
- Subsequent runs (force_train=False): Model loading only (~1-2 seconds)
|
|
854
|
+
- Force retrain (force_train=True): Full training again (~5-10 minutes)
|
|
644
855
|
"""
|
|
645
856
|
if verbose:
|
|
646
857
|
print("=" * 80)
|
|
@@ -845,11 +1056,13 @@ def n2n_predict_with_covariates(
|
|
|
845
1056
|
)
|
|
846
1057
|
|
|
847
1058
|
# ========================================================================
|
|
848
|
-
# 9. MODEL TRAINING
|
|
1059
|
+
# 9. MODEL TRAINING OR LOADING
|
|
849
1060
|
# ========================================================================
|
|
850
1061
|
|
|
851
1062
|
if verbose:
|
|
852
|
-
print(
|
|
1063
|
+
print(
|
|
1064
|
+
"\n[8/9] Loading or training recursive forecasters with exogenous variables..."
|
|
1065
|
+
)
|
|
853
1066
|
|
|
854
1067
|
if estimator is None:
|
|
855
1068
|
estimator = LGBMRegressor(random_state=1234, verbose=-1)
|
|
@@ -857,35 +1070,79 @@ def n2n_predict_with_covariates(
|
|
|
857
1070
|
window_features = RollingFeatures(stats=["mean"], window_sizes=window_size)
|
|
858
1071
|
end_validation = pd.concat([data_train, data_val]).index[-1]
|
|
859
1072
|
|
|
1073
|
+
# Attempt to load cached models if force_train=False
|
|
860
1074
|
recursive_forecasters = {}
|
|
1075
|
+
targets_to_train = target_columns
|
|
861
1076
|
|
|
862
|
-
|
|
863
|
-
if show_progress and tqdm is not None:
|
|
864
|
-
target_iter = tqdm(target_columns, desc="Training forecasters", unit="model")
|
|
865
|
-
|
|
866
|
-
for target in target_iter:
|
|
1077
|
+
if not force_train and _model_directory_exists(model_dir):
|
|
867
1078
|
if verbose:
|
|
868
|
-
print(
|
|
869
|
-
|
|
870
|
-
|
|
871
|
-
|
|
872
|
-
|
|
873
|
-
window_features=window_features,
|
|
874
|
-
weight_func=weight_func,
|
|
1079
|
+
print(" Attempting to load cached models...")
|
|
1080
|
+
cached_forecasters, missing_targets = _load_forecasters(
|
|
1081
|
+
target_columns=target_columns,
|
|
1082
|
+
model_dir=model_dir,
|
|
1083
|
+
verbose=verbose,
|
|
875
1084
|
)
|
|
876
|
-
|
|
877
|
-
|
|
878
|
-
|
|
879
|
-
|
|
880
|
-
|
|
881
|
-
|
|
882
|
-
|
|
883
|
-
|
|
1085
|
+
recursive_forecasters.update(cached_forecasters)
|
|
1086
|
+
targets_to_train = missing_targets
|
|
1087
|
+
|
|
1088
|
+
if len(cached_forecasters) == len(target_columns):
|
|
1089
|
+
if verbose:
|
|
1090
|
+
print(f" ✓ All {len(target_columns)} forecasters loaded from cache")
|
|
1091
|
+
elif len(cached_forecasters) > 0:
|
|
1092
|
+
if verbose:
|
|
1093
|
+
print(
|
|
1094
|
+
f" ✓ Loaded {len(cached_forecasters)} forecasters, "
|
|
1095
|
+
f"will train {len(targets_to_train)} new ones"
|
|
1096
|
+
)
|
|
1097
|
+
|
|
1098
|
+
# Train missing or forced models
|
|
1099
|
+
if len(targets_to_train) > 0:
|
|
1100
|
+
if force_train and len(recursive_forecasters) > 0:
|
|
1101
|
+
if verbose:
|
|
1102
|
+
print(f" Force retraining all {len(target_columns)} forecasters...")
|
|
1103
|
+
targets_to_train = target_columns
|
|
1104
|
+
recursive_forecasters.clear()
|
|
1105
|
+
|
|
1106
|
+
target_iter = targets_to_train
|
|
1107
|
+
if show_progress and tqdm is not None:
|
|
1108
|
+
target_iter = tqdm(
|
|
1109
|
+
targets_to_train,
|
|
1110
|
+
desc="Training forecasters",
|
|
1111
|
+
unit="model",
|
|
1112
|
+
)
|
|
1113
|
+
|
|
1114
|
+
for target in target_iter:
|
|
1115
|
+
if verbose:
|
|
1116
|
+
print(f" Training forecaster for {target}...")
|
|
1117
|
+
|
|
1118
|
+
forecaster = ForecasterRecursive(
|
|
1119
|
+
estimator=estimator,
|
|
1120
|
+
lags=lags,
|
|
1121
|
+
window_features=window_features,
|
|
1122
|
+
weight_func=weight_func,
|
|
1123
|
+
)
|
|
1124
|
+
|
|
1125
|
+
forecaster.fit(
|
|
1126
|
+
y=data_with_exog[target].loc[:end_validation].squeeze(),
|
|
1127
|
+
exog=data_with_exog[exog_features].loc[:end_validation],
|
|
1128
|
+
)
|
|
1129
|
+
|
|
1130
|
+
recursive_forecasters[target] = forecaster
|
|
1131
|
+
|
|
1132
|
+
if verbose:
|
|
1133
|
+
print(f" ✓ Forecaster trained for {target}")
|
|
1134
|
+
|
|
1135
|
+
# Save newly trained models to disk
|
|
884
1136
|
if verbose:
|
|
885
|
-
print(f"
|
|
1137
|
+
print(f" Saving {len(targets_to_train)} trained forecasters to disk...")
|
|
1138
|
+
_save_forecasters(
|
|
1139
|
+
forecasters={t: recursive_forecasters[t] for t in targets_to_train},
|
|
1140
|
+
model_dir=model_dir,
|
|
1141
|
+
verbose=verbose,
|
|
1142
|
+
)
|
|
886
1143
|
|
|
887
1144
|
if verbose:
|
|
888
|
-
print(f" ✓ Total forecasters
|
|
1145
|
+
print(f" ✓ Total forecasters available: {len(recursive_forecasters)}")
|
|
889
1146
|
|
|
890
1147
|
# ========================================================================
|
|
891
1148
|
# 10. PREDICTION
|
|
@@ -10,7 +10,7 @@ spotforecast2/forecaster/recursive/__init__.py,sha256=YNVxLReLEwSFDasmjXXMSKJqNL
|
|
|
10
10
|
spotforecast2/forecaster/recursive/_forecaster_equivalent_date.py,sha256=Mdr-3D1lUivXO07Rp4T8NIgQ2H_2y4IR4BqCwjBtZsw,48261
|
|
11
11
|
spotforecast2/forecaster/recursive/_forecaster_recursive.py,sha256=oU2zCOI0UaGIn8doLJGphP7jcNL5FF6Y972UCwlxDJI,35739
|
|
12
12
|
spotforecast2/forecaster/recursive/_warnings.py,sha256=BtZ3UoycywjEQ0ceXe4TL1WEdFcLAi1EnDMvZXHw_U8,325
|
|
13
|
-
spotforecast2/forecaster/utils.py,sha256=
|
|
13
|
+
spotforecast2/forecaster/utils.py,sha256=eOx_Ayf2WtW3JVUsOWvMzPHQ17ImKLIZZV-hejJArKk,36588
|
|
14
14
|
spotforecast2/model_selection/__init__.py,sha256=uP60TkgDzs_x5V60rnKanc12S9-yXx2ZLsXsXdqAYEA,208
|
|
15
15
|
spotforecast2/model_selection/bayesian_search.py,sha256=Vwb_LatDnt22LhIWyzqNhCdlDQ_UgVCyFcXmOxF3Pic,17407
|
|
16
16
|
spotforecast2/model_selection/grid_search.py,sha256=a5rNEndTXlx1ghT7ws5qs7WM0XBFMqEiK3Q5k7P0EJg,10998
|
|
@@ -32,7 +32,7 @@ spotforecast2/preprocessing/outlier.py,sha256=jZxAR870QtYner7b4gXk6LLGJw0juLq1VU
|
|
|
32
32
|
spotforecast2/preprocessing/split.py,sha256=mzzt5ltUZdVzfWtBBTQjp8E2MyqVdWUFtz7nN11urbU,5011
|
|
33
33
|
spotforecast2/processing/agg_predict.py,sha256=VKlruB0x-eJKokkHyJxR87rZ4m53si3ODbrd0ibPlow,2378
|
|
34
34
|
spotforecast2/processing/n2n_predict.py,sha256=Jkf-fMw2RSKY8-0UDc8D0yiiZxiF9s5DyfeRpfx90ks,4060
|
|
35
|
-
spotforecast2/processing/n2n_predict_with_covariates.py,sha256=
|
|
35
|
+
spotforecast2/processing/n2n_predict_with_covariates.py,sha256=wnGSfwUjC5xKgaRyz0N80p4oW6sdbI1bgA1YyVQTA8I,39942
|
|
36
36
|
spotforecast2/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
37
37
|
spotforecast2/utils/__init__.py,sha256=NrMt_xJLe4rbTFbsbgSQYeREohEOiYG5S-97e6Jj07I,1018
|
|
38
38
|
spotforecast2/utils/convert_to_utc.py,sha256=hz8mJUHK9jDLUiN5LdNX5l3KZuOKlklyycB4zFdB9Ng,1405
|
|
@@ -42,6 +42,6 @@ spotforecast2/utils/generate_holiday.py,sha256=SHaPvPMt-abis95cChHf5ObyPwCTrzJ87
|
|
|
42
42
|
spotforecast2/utils/validation.py,sha256=x9ypQzcneDhWJA_piiY4Q3_ogoGd1LTsZ7__MFeG9Fc,21618
|
|
43
43
|
spotforecast2/weather/__init__.py,sha256=1Jco88pl0deNESgNATin83Nf5i9c58pxN7G-vNiOiu0,120
|
|
44
44
|
spotforecast2/weather/weather_client.py,sha256=Ec_ywug6uoa71MfXM8RNbXEvtBtBzr-SUS5xq_HKtZE,9837
|
|
45
|
-
spotforecast2-0.0.
|
|
46
|
-
spotforecast2-0.0.
|
|
47
|
-
spotforecast2-0.0.
|
|
45
|
+
spotforecast2-0.1.0.dist-info/WHEEL,sha256=5DEXXimM34_d4Gx1AuF9ysMr1_maoEtGKjaILM3s4w4,80
|
|
46
|
+
spotforecast2-0.1.0.dist-info/METADATA,sha256=3odonjnM8q3No1KyboAF_Ta41X7LjUGLthDiavC2rMM,3481
|
|
47
|
+
spotforecast2-0.1.0.dist-info/RECORD,,
|
|
File without changes
|