spotforecast2-safe 0.0.2__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -28,7 +28,7 @@ def mark_outliers(
28
28
 
29
29
  Examples:
30
30
  >>> from spotforecast2.data.fetch_data import fetch_data
31
- >>> from spotforecast2.preprocessing.outlier import mark_outliers
31
+ >>> from spotforecast2_safe.preprocessing.outlier import mark_outliers
32
32
  >>> data = fetch_data()
33
33
  >>> cleaned_data, outlier_labels = mark_outliers(data, contamination=0.1, random_state=42, verbose=True)
34
34
  """
@@ -75,7 +75,7 @@ def manual_outlier_removal(
75
75
 
76
76
  Examples:
77
77
  >>> from spotforecast2.data.fetch_data import fetch_data
78
- >>> from spotforecast2.preprocessing.outlier import manual_outlier_removal
78
+ >>> from spotforecast2_safe.preprocessing.outlier import manual_outlier_removal
79
79
  >>> data = fetch_data()
80
80
  >>> data, n_manual_outliers = manual_outlier_removal(
81
81
  ... data,
@@ -148,7 +148,7 @@ def get_outliers(
148
148
  Examples:
149
149
  >>> import pandas as pd
150
150
  >>> import numpy as np
151
- >>> from spotforecast2.preprocessing.outlier import get_outliers
151
+ >>> from spotforecast2_safe.preprocessing.outlier import get_outliers
152
152
  >>>
153
153
  >>> # Create sample data with outliers
154
154
  >>> np.random.seed(42)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: spotforecast2-safe
3
- Version: 0.0.2
3
+ Version: 0.0.3
4
4
  Summary: spotforecast2-safe (Core): Safety-critical time series forecasting for production
5
5
  Author: bartzbeielstein
6
6
  Author-email: bartzbeielstein <32470350+bartzbeielstein@users.noreply.github.com>
@@ -17,7 +17,7 @@ spotforecast2_safe/preprocessing/_differentiator.py,sha256=otka_TO1edM3zgp16zOje
17
17
  spotforecast2_safe/preprocessing/_rolling.py,sha256=eYBOH2QRDbue8MYtitcOFLQS0PMdNi6v9I0nu07XexY,9057
18
18
  spotforecast2_safe/preprocessing/curate_data.py,sha256=4VV8aYwShyrUc9lqWVx_ckIH-moK0B8ONEMb2i463ag,9603
19
19
  spotforecast2_safe/preprocessing/imputation.py,sha256=wXHXcIwWb7_XqW9JdBjaRA7NxWhbKWoQyW5z0KkPLd8,5201
20
- spotforecast2_safe/preprocessing/outlier.py,sha256=uXb9QIYmYM4h3e7tZkdGUF1rVl-Df3E__g9IcDCiuE0,6996
20
+ spotforecast2_safe/preprocessing/outlier.py,sha256=APgflr1ZMvwYLTu83qRBX-iY7sFzcRAZcgAc5zrY0zo,7011
21
21
  spotforecast2_safe/preprocessing/split.py,sha256=mzzt5ltUZdVzfWtBBTQjp8E2MyqVdWUFtz7nN11urbU,5011
22
22
  spotforecast2_safe/processing/__init__.py,sha256=IJ5jTWRvI7V6MCtFpKL1j7tY9VUXwqPiDtfghmfI6Lg,294
23
23
  spotforecast2_safe/processing/agg_predict.py,sha256=4iFGm5leCefnBROcBCfwNrOZ7qFC43NIXZ9TxH6QhrA,2471
@@ -32,6 +32,6 @@ spotforecast2_safe/utils/generate_holiday.py,sha256=SHaPvPMt-abis95cChHf5ObyPwCT
32
32
  spotforecast2_safe/utils/validation.py,sha256=YfFn4OW-SJeJDioY0opkhY9ISGnZ075KIXdfxlSKlyw,21623
33
33
  spotforecast2_safe/weather/__init__.py,sha256=1Jco88pl0deNESgNATin83Nf5i9c58pxN7G-vNiOiu0,120
34
34
  spotforecast2_safe/weather/weather_client.py,sha256=Ec_ywug6uoa71MfXM8RNbXEvtBtBzr-SUS5xq_HKtZE,9837
35
- spotforecast2_safe-0.0.2.dist-info/WHEEL,sha256=iHtWm8nRfs0VRdCYVXocAWFW8ppjHL-uTJkAdZJKOBM,80
36
- spotforecast2_safe-0.0.2.dist-info/METADATA,sha256=saUC8IP6_mxcusND1eyyKk-MPYrz7j-FTpPaSZPkkVs,5779
37
- spotforecast2_safe-0.0.2.dist-info/RECORD,,
35
+ spotforecast2_safe-0.0.3.dist-info/WHEEL,sha256=iHtWm8nRfs0VRdCYVXocAWFW8ppjHL-uTJkAdZJKOBM,80
36
+ spotforecast2_safe-0.0.3.dist-info/METADATA,sha256=ExYL6CV2pKVARM-v8tsJiGXk47FJ04EokSlni3UmOLo,5779
37
+ spotforecast2_safe-0.0.3.dist-info/RECORD,,