spikezoo 0.2.3.5__py3-none-any.whl → 0.2.3.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc +0 -0
  2. spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc +0 -0
  3. spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc +0 -0
  4. spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc +0 -0
  5. spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc +0 -0
  6. spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc +0 -0
  7. spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc +0 -0
  8. spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc +0 -0
  9. spikezoo/archs/stir/metrics/__pycache__/losses.cpython-39.pyc +0 -0
  10. spikezoo/archs/stir/models/__pycache__/Vgg19.cpython-39.pyc +0 -0
  11. spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc +0 -0
  12. spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc +0 -0
  13. spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc +0 -0
  14. spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc +0 -0
  15. spikezoo/archs/stir/package_core/package_core/__pycache__/geometry.cpython-39.pyc +0 -0
  16. spikezoo/archs/stir/package_core/package_core/__pycache__/image_proc.cpython-39.pyc +0 -0
  17. spikezoo/archs/stir/package_core/package_core/__pycache__/losses.cpython-39.pyc +0 -0
  18. spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc +0 -0
  19. spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc +0 -0
  20. spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc +0 -0
  21. spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc +0 -0
  22. spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc +0 -0
  23. spikezoo/archs/yourmodel/arch/__pycache__/net.cpython-39.pyc +0 -0
  24. spikezoo/archs/yourmodel/arch/net.py +35 -0
  25. spikezoo/datasets/__init__.py +20 -21
  26. spikezoo/datasets/base_dataset.py +25 -19
  27. spikezoo/datasets/{realworld_dataset.py → realdata_dataset.py} +5 -7
  28. spikezoo/datasets/reds_base_dataset.py +1 -1
  29. spikezoo/datasets/szdata_dataset.py +1 -1
  30. spikezoo/datasets/uhsr_dataset.py +1 -1
  31. spikezoo/datasets/yourdataset_dataset.py +23 -0
  32. spikezoo/models/__init__.py +11 -18
  33. spikezoo/models/base_model.py +10 -4
  34. spikezoo/models/yourmodel_model.py +22 -0
  35. spikezoo/pipeline/base_pipeline.py +17 -10
  36. spikezoo/pipeline/ensemble_pipeline.py +2 -1
  37. spikezoo/pipeline/train_cfgs.py +32 -29
  38. spikezoo/pipeline/train_pipeline.py +14 -14
  39. spikezoo/utils/spike_utils.py +1 -1
  40. spikezoo-0.2.3.7.dist-info/METADATA +151 -0
  41. {spikezoo-0.2.3.5.dist-info → spikezoo-0.2.3.7.dist-info}/RECORD +44 -41
  42. spikezoo/data/base/train/spike/203_part4_key_id151.dat +0 -0
  43. spikezoo-0.2.3.5.dist-info/METADATA +0 -258
  44. {spikezoo-0.2.3.5.dist-info → spikezoo-0.2.3.7.dist-info}/LICENSE.txt +0 -0
  45. {spikezoo-0.2.3.5.dist-info → spikezoo-0.2.3.7.dist-info}/WHEEL +0 -0
  46. {spikezoo-0.2.3.5.dist-info → spikezoo-0.2.3.7.dist-info}/top_level.txt +0 -0
@@ -29,13 +29,13 @@ from spikingjelly.clock_driven import functional
29
29
  class TrainPipelineConfig(PipelineConfig):
30
30
  # parameters setting
31
31
  "Training epochs."
32
- epochs: int = 1000
32
+ epochs: int = 10
33
33
  "Steps per to save images."
34
- steps_per_save_imgs: int = 200
34
+ steps_per_save_imgs: int = 10
35
35
  "Steps per to save model weights."
36
- steps_per_save_ckpt: int = 500
36
+ steps_per_save_ckpt: int = 10
37
37
  "Steps per to calculate the metrics."
38
- steps_per_cal_metrics: int = 100
38
+ steps_per_cal_metrics: int = 10
39
39
  "Step for gradient accumulation. (for snn methods)"
40
40
  steps_grad_accumulation: int = 4
41
41
  "Pipeline mode."
@@ -48,13 +48,11 @@ class TrainPipelineConfig(PipelineConfig):
48
48
  "Batch size for the train dataloader."
49
49
  bs_train: int = 8
50
50
  "Num_workers for the train dataloader."
51
- num_workers: int = 4
52
- "Pin_memory true or false for the train dataloader."
53
- pin_memory: bool = False
51
+ nw_train: int = 4
54
52
 
55
53
  # train setting - optimizer & scheduler & loss_dict
56
54
  "Optimizer config."
57
- optimizer_cfg: OptimizerConfig = AdamOptimizerConfig(lr=1e-3)
55
+ optimizer_cfg: OptimizerConfig = field(default_factory=lambda: AdamOptimizerConfig(lr=1e-3))
58
56
  "Scheduler config."
59
57
  scheduler_cfg: Optional[SchedulerConfig] = None
60
58
  "Loss dict {loss_name,weight}."
@@ -84,17 +82,19 @@ class TrainPipeline(Pipeline):
84
82
  """Model and Data setup."""
85
83
  # model
86
84
  self.model: BaseModel = build_model_name(model_cfg) if isinstance(model_cfg, str) else build_model_cfg(model_cfg)
87
- self.model.build_network(mode = "train",version="local")
85
+ self.model.build_network(mode="train", version="local")
88
86
  torch.set_grad_enabled(True)
89
87
  # data
90
88
  if isinstance(dataset_cfg, str):
91
- self.train_dataset: BaseDataset = build_dataset_name(dataset_cfg, split="train")
92
- self.dataset: BaseDataset = build_dataset_name(dataset_cfg, split="test")
89
+ self.train_dataset: BaseDataset = build_dataset_name(dataset_cfg)
90
+ self.dataset: BaseDataset = build_dataset_name(dataset_cfg)
93
91
  else:
94
- self.train_dataset: BaseDataset = build_dataset_cfg(dataset_cfg, split="train")
95
- self.dataset: BaseDataset = build_dataset_cfg(dataset_cfg, split="test")
92
+ self.train_dataset: BaseDataset = build_dataset_cfg(dataset_cfg)
93
+ self.dataset: BaseDataset = build_dataset_cfg(dataset_cfg)
94
+ self.train_dataset.build_source("train")
95
+ self.dataset.build_source("test")
96
96
  self.train_dataloader = build_dataloader(self.train_dataset, self.cfg)
97
- self.dataloader = build_dataloader(self.dataset)
97
+ self.dataloader = build_dataloader(self.dataset, self.cfg)
98
98
  # device
99
99
  self.device = "cuda" if torch.cuda.is_available() else "cpu"
100
100
 
@@ -10,7 +10,7 @@ import imageio
10
10
  _platform_check_done = False
11
11
 
12
12
 
13
- def load_vidar_dat(filename, height, width, remove_head=False, version: Literal["python", "cpp"] = "cpp", out_format: Literal["array", "tensor"] = "array"):
13
+ def load_vidar_dat(filename, height, width, remove_head=False, version: Literal["python", "cpp"] = "python", out_format: Literal["array", "tensor"] = "array"):
14
14
  """Load the spike stream from the .dat file."""
15
15
  global _platform_check_done
16
16
  # Spike decode
@@ -0,0 +1,151 @@
1
+ Metadata-Version: 2.2
2
+ Name: spikezoo
3
+ Version: 0.2.3.7
4
+ Summary: A deep learning toolbox for spike-to-image models.
5
+ Home-page: https://github.com/chenkang455/Spike-Zoo
6
+ Author: Kang Chen
7
+ Author-email: mrchenkang@stu.pku.edu.cn
8
+ Requires-Python: >=3.7
9
+ Description-Content-Type: text/markdown
10
+ License-File: LICENSE.txt
11
+ Requires-Dist: torch
12
+ Requires-Dist: requests
13
+ Requires-Dist: numpy
14
+ Requires-Dist: tqdm
15
+ Requires-Dist: scikit-image
16
+ Requires-Dist: lpips
17
+ Requires-Dist: pyiqa
18
+ Requires-Dist: opencv-python
19
+ Requires-Dist: thop
20
+ Requires-Dist: pytorch-wavelets
21
+ Requires-Dist: pytz
22
+ Requires-Dist: PyWavelets
23
+ Requires-Dist: pandas
24
+ Requires-Dist: pillow
25
+ Requires-Dist: scikit-learn
26
+ Requires-Dist: scipy
27
+ Requires-Dist: spikingjelly
28
+ Requires-Dist: setuptools
29
+ Dynamic: author
30
+ Dynamic: author-email
31
+ Dynamic: description
32
+ Dynamic: description-content-type
33
+ Dynamic: home-page
34
+ Dynamic: requires-dist
35
+ Dynamic: requires-python
36
+ Dynamic: summary
37
+
38
+ <p align="center">
39
+ <img src="imgs/spike-zoo.png" width="300"/>
40
+ <p>
41
+
42
+ <h5 align="center">
43
+
44
+ [![GitHub repo stars](https://img.shields.io/github/stars/chenkang455/Spike-Zoo?style=flat&logo=github&logoColor=whitesmoke&label=Stars)](https://github.com/chenkang455/Spike-Zoo/stargazers) [![GitHub Issues](https://img.shields.io/github/issues/chenkang455/Spike-Zoo?style=flat&logo=github&logoColor=whitesmoke&label=Issues)](https://github.com/chenkang455/Spike-Zoo/issues) <a href="https://badge.fury.io/py/spikezoo"><img src="https://badge.fury.io/py/spikezoo.svg" alt="PyPI version"></a> <a href='https://spike-zoo.readthedocs.io/zh-cn/latest/index.html'><img src='https://readthedocs.com/projects/plenoptix-nerfstudio/badge/?version=latest' alt='Documentation Status' /></a>[![License](https://img.shields.io/badge/License-MIT-yellow)](https://github.com/chenkang455/Spike-Zoo)
45
+ <p>
46
+
47
+
48
+
49
+ <!-- <h2 align="center">
50
+ <a href="">⚡Spike-Zoo:
51
+ </a>
52
+ </h2> -->
53
+
54
+ ## 📖 About
55
+ ⚡Spike-Zoo is the go-to library for state-of-the-art pretrained **spike-to-image** models designed to reconstruct images from spike streams. Whether you're looking for a simple inference solution or aiming to train your own spike-to-image models, ⚡Spike-Zoo is a modular toolbox that supports both, with key features including:
56
+
57
+ - Fast inference with pre-trained models.
58
+ - Training support for custom-designed spike-to-image models.
59
+ - Specialized functions for processing spike data.
60
+
61
+ > We are highly looking forward to your advice on our project. We welcome any issues or code contributions and will respond within one day.
62
+
63
+ ## 🚩 Updates/Changelog
64
+ * **25-02-02:** Release the `Spike-Zoo v0.2` code, which supports more methods, provide more usages like training your method from scratch.
65
+ * **24-07-19:** Release the `Spike-Zoo v0.1` code for base evaluation of SOTA methods.
66
+
67
+ ## 🍾 Quick Start
68
+ ### 1. Installation
69
+ For users focused on **utilizing pretrained models for spike-to-image conversion**, we recommend installing SpikeZoo using one of the following methods:
70
+
71
+ * Install the last stable version `0.2.3.5` from PyPI:
72
+ ```
73
+ pip install spikezoo
74
+ ```
75
+ * Install the latest developing version `0.2.3.6` from the source code **(recommended)**:
76
+ ```
77
+ git clone https://github.com/chenkang455/Spike-Zoo
78
+ cd Spike-Zoo
79
+ python setup.py install
80
+ ```
81
+
82
+ For users interested in **training their own spike-to-image model based on our framework**, we recommend cloning the repository and modifying the related code directly.
83
+ ```
84
+ git clone https://github.com/chenkang455/Spike-Zoo
85
+ cd Spike-Zoo
86
+ python setup.py develop
87
+ ```
88
+
89
+ ### 2. Inference
90
+ Reconstructing images from the spike is super easy with Spike-Zoo. Try the following code of the single model:
91
+ ``` python
92
+ from spikezoo.pipeline import Pipeline, PipelineConfig
93
+ import spikezoo as sz
94
+ pipeline = Pipeline(
95
+ cfg=PipelineConfig(save_folder="results",version="v023"),
96
+ model_cfg=sz.METHOD.BASE,
97
+ dataset_cfg=sz.DATASET.BASE
98
+ )
99
+ pipeline.infer_from_dataset(idx = 0)
100
+ ```
101
+
102
+
103
+ ### 3. Training
104
+ We provide a user-friendly code for training our provided `BASE` model (modified from the `SpikeCLIP`) for the classic `REDS` dataset introduced in `Spk2ImgNet`:
105
+ ``` python
106
+ from spikezoo.pipeline import TrainPipelineConfig, TrainPipeline
107
+ from spikezoo.datasets.reds_base_dataset import REDS_BASEConfig
108
+ from spikezoo.models.base_model import BaseModelConfig
109
+ pipeline = TrainPipeline(
110
+ cfg=TrainPipelineConfig(save_folder="results", epochs = 10),
111
+ dataset_cfg=REDS_BASEConfig(root_dir = "spikezoo/data/reds_base"),
112
+ model_cfg=BaseModelConfig(),
113
+ )
114
+ pipeline.train()
115
+ ```
116
+ We finish the training with one 4090 GPU in `2 minutes`, achieving `32.8dB` in PSNR and `0.92` in SSIM.
117
+
118
+ > 🌟 We encourage users to develop their models with simple modifications to our framework.
119
+
120
+ ## 📚 How to navigate the documentation
121
+
122
+ | **Link** | **Description** |
123
+ | --- | --- |
124
+ | [Quick Start](https://spike-zoo.readthedocs.io/zh-cn/latest/%E5%BF%AB%E9%80%9F%E5%BC%80%E5%A7%8B.html) | Learn how to quickly get started with the Spike-Zoo repository for inference and training. |
125
+ | [Dataset](https://spike-zoo.readthedocs.io/zh-cn/latest/%E6%95%B0%E6%8D%AE%E9%9B%86.html) | Learn the parameter configuration of datasets and how to construct them. |
126
+ | [Model](https://spike-zoo.readthedocs.io/zh-cn/latest/%E6%A8%A1%E5%9E%8B.html) | Learn the parameter configuration of models and how to construct them. |
127
+ | [Pipeline](https://spike-zoo.readthedocs.io/zh-cn/latest/%E5%A4%84%E7%90%86%E7%AE%A1%E7%BA%BF.html) | Learn how to configure and construct the processing pipeline for models. |
128
+ | [Released Version](https://spike-zoo.readthedocs.io/zh-cn/latest/%E5%8F%91%E8%A1%8C%E7%89%88%E6%9C%AC%E4%BB%8B%E7%BB%8D.html) | Introduces the differences between different release versions of pre-trained weights. |
129
+ | [Examples](https://spike-zoo.readthedocs.io/zh-cn/latest/%E4%BD%BF%E7%94%A8%E4%BE%8B%E5%AD%90.html) | Complete code examples for using Spike-Zoo. |
130
+ | [Supports](https://spike-zoo.readthedocs.io/zh-cn/latest/%E6%94%AF%E6%8C%81%E8%8C%83%E5%9B%B4.html) | Learn about the datasets and models supported by Spike-Zoo. |
131
+
132
+
133
+ ## 📅 TODO
134
+ - [x] Support the overall pipeline for spike simulation.
135
+ - [x] Provide the tutorials.
136
+ - [ ] Support more training settings.
137
+ - [ ] Support more spike-based image reconstruction methods and datasets.
138
+
139
+ ## ✨‍ Acknowledgment
140
+ Our code is built on the open-source projects of [SpikeCV](https://spikecv.github.io/), [IQA-Pytorch](https://github.com/chaofengc/IQA-PyTorch), [BasicSR](https://github.com/XPixelGroup/BasicSR) and [NeRFStudio](https://github.com/nerfstudio-project/nerfstudio).We appreciate the effort of the contributors to these repositories. Thanks for [@zhiwen_huang](https://github.com/hzw-abc), [@ruizhao26](https://github.com/ruizhao26), [@shiyan_chen](https://github.com/hnmizuho) and [@Leozhangjiyuan](https://github.com/Leozhangjiyuan) for their help in building this project.
141
+
142
+ ## 📑 Citation
143
+ If you find our codes helpful to your research, please consider to use the following citation:
144
+ ```
145
+ @misc{spikezoo,
146
+ title={{Spike-Zoo}: A Toolbox for Spike-to-Image Reconstruction},
147
+ author={Kang Chen and Zhiyuan Ye and Tiejun Huang and Zhaofei Yu},
148
+ year={2025},
149
+ howpublished = {\url{https://github.com/chenkang455/Spike-Zoo}},
150
+ }
151
+ ```
@@ -17,9 +17,9 @@ spikezoo/archs/bsf/models/bsf/align.py,sha256=X_Ud0oCZSYGFQ8DWvOG4yozUaDOJi4X44v
17
17
  spikezoo/archs/bsf/models/bsf/bsf.py,sha256=W3xwHXcKODJqfSRc_Kn-7C_YjVGpse_mZ2tbrDJ6w0Q,4060
18
18
  spikezoo/archs/bsf/models/bsf/dsft_convert.py,sha256=xpFwWFl1ms9LxaA96xdDOf-h_S6foScc3oh-nGjSG-o,3110
19
19
  spikezoo/archs/bsf/models/bsf/rep.py,sha256=Y3YPADL6ndu4u7RwYUFqmGVUqzW0HbgXKu4Z7x52Alg,1660
20
- spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc,sha256=g0KUHvg4hr6xNBmFcDhz5X6E2mVv1kNO_q75Ard8VDE,7082
21
- spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc,sha256=yEcWXqcxVJoEfzskENeqmxZphQqOJqmsIBbMqsAiBsY,4627
22
- spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc,sha256=8-eLh0b4zaJdZGk5-6rdabCP5_ttwXMvhO2AUQvMm8I,1870
20
+ spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc,sha256=pbkUwOtCPxn4PW4_BFAbNWLmRyRNSWFJdmvTXJWQUCg,7052
21
+ spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc,sha256=apb2ppGeRQxEFysJkIzP_DmoFw5lqL3PyHPb26MYD8M,4597
22
+ spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc,sha256=s1I48hRhY2TCOpkQcJfZ7IWDxgA6YdJ9zqrZDfoRyRY,1840
23
23
  spikezoo/archs/bsf/prepare_data/DSFT.py,sha256=RDFREQc-pAGxpETgb1umjQNnLAmpqsRpEmsrjrG4hEU,2203
24
24
  spikezoo/archs/bsf/prepare_data/crop_dataset_train.py,sha256=CpKIhI8kc5TzWMGSHY33IlROBTrXrY0kVGxKLvwjcvo,6050
25
25
  spikezoo/archs/bsf/prepare_data/crop_dataset_val.py,sha256=Zrfe2rsnHXB-TikO9J6s0SL_u0jg492NgXSCebgvK5A,6009
@@ -27,7 +27,7 @@ spikezoo/archs/bsf/prepare_data/crop_train.sh,sha256=VoIqvQ1TWSj5uvkcp6EZIo28egI
27
27
  spikezoo/archs/bsf/prepare_data/crop_val.sh,sha256=PY45EGOvdn89hAUWmeIwHrzzMWmwBbqGYgh0y5oYzP4,185
28
28
  spikezoo/archs/bsf/prepare_data/io_utils.py,sha256=GUs7ocNekOKMSfMNjHAWbZFSOWXiLRtboQLl5NiY-CI,1850
29
29
  spikezoo/archs/spikeclip/nets.py,sha256=j2rPD3AFWLl142XxmQL4PxWw06f4gHi8zjBUjndJ8pQ,1433
30
- spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc,sha256=Q71X3R9ztJCmHY3y1A9MLM9-h9N_ISwDkfiAfGjzLuw,1570
30
+ spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc,sha256=BR8bGBf3nJ1fQbTpNZV1xelHOxrg5D5XEu731h0WYI0,1540
31
31
  spikezoo/archs/spk2imgnet/.gitignore,sha256=LvYh4-uHW8ZL6P5S7I6f35ZaKULvuVoBQ06ia6r1llM,2148
32
32
  spikezoo/archs/spk2imgnet/DCNv2.py,sha256=KqAWzoOQFX1eEqaIP90Ahhj88qvk2K-J21WyzOMQwt4,4715
33
33
  spikezoo/archs/spk2imgnet/align_arch.py,sha256=NpEDZy4YX2JD6mNrw1FOfyPpMqQ866ylYktl-kRzwIU,6264
@@ -56,16 +56,16 @@ spikezoo/archs/ssir/metrics/ssim.py,sha256=RxVoEMJPgu370DWfDRE01UnTOorh-Xy0DldXQ
56
56
  spikezoo/archs/ssir/models/Vgg19.py,sha256=BKYf51YqQantkuxGM5S3yD2a5Pf2nYBzEfmA0XqTjGU,1435
57
57
  spikezoo/archs/ssir/models/layers.py,sha256=gYShN5cp3B1GaNmQD5_6CpYSt6k6h0cZ5IJNtrt0dCw,3450
58
58
  spikezoo/archs/ssir/models/networks.py,sha256=-qwwwC9SWcOzf_TcswnudoOVSjZNvRMiAg5-NRDl14I,1946
59
- spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc,sha256=XIPbn93AwbktnfZg-8vtta2hwZPb4brACXlpDW8Qq6s,3753
60
- spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc,sha256=aDgLebK54ox5R31d0clykxeI-r-F2KscEpnNtvT8MXE,2797
59
+ spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc,sha256=-6VcAI1eOjeS2fEX8QdKaZWUtjz3uIn_72UdjjLaYZQ,3723
60
+ spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc,sha256=d-gjTkm_9niMtVqqxAx4V-sZ-ryH6he0c9nqEfmuimY,2767
61
61
  spikezoo/archs/ssir/shells/eval_SREDS.sh,sha256=byjDfNb_NAO8z28L7Laktlc3qYZjfeY5qn0pkMmql9E,112
62
62
  spikezoo/archs/ssir/shells/train_SSIR.sh,sha256=y-LlaWNqOKwGUXKm2NodCgM3LYOIans25kN7CgDJ9z4,256
63
63
  spikezoo/archs/ssml/cbam.py,sha256=hfVI1vYpboEPRBMKWqWjVlqX41XQi7A4Pwou5PJlPXo,8869
64
64
  spikezoo/archs/ssml/model.py,sha256=DqTwDbwS7diZPxjVz580lAarPeZZ43EtaNjMJWN2Ujo,10354
65
65
  spikezoo/archs/ssml/res.png,sha256=o8VLsy8-znCM9ZoSbsBmV3dTd8O0R48JWyNtuIekQIY,37233
66
66
  spikezoo/archs/ssml/test.py,sha256=3yrMAWDBdhpyVjqNeuDtz1s2XemrR9ZXZDo8yTUAfac,2036
67
- spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc,sha256=wtXvwDBTBBEeRhfmXeNAmbUN6puFxomELtQHk-xHnxA,8678
68
- spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc,sha256=03q3e5HCRfL7sfk6jGSt2_OHYbOkxm7PFMnxnCG2yno,10275
67
+ spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc,sha256=MKRjeqcCxFjOCPycMLxVevG2L2iGHyRDUc7qtbyxxpM,8648
68
+ spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc,sha256=nR7-aDdNCSMY4zl5bn9PgG3-cd35utWDA6d7N16okxM,10245
69
69
  spikezoo/archs/stir/.git-credentials,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
70
70
  spikezoo/archs/stir/README.md,sha256=WA0QvTGiH8kDQ4mNwj4lnZHypKSDVf_UWXckXnXltJc,3223
71
71
  spikezoo/archs/stir/eval_SREDS.sh,sha256=dihTfrrr0jbkXEbpEStKgsk-t5L_4ehu9mpeMliJbME,144
@@ -81,15 +81,15 @@ spikezoo/archs/stir/datasets/ds_utils.py,sha256=RfQyC_8Y50-R-xnxlGooNwAoaTvviIlS
81
81
  spikezoo/archs/stir/metrics/losses.py,sha256=pOs0XYZuKPIjppWwEmx8CXpDPqhq5QcR0NMMUZUR01o,7768
82
82
  spikezoo/archs/stir/metrics/psnr.py,sha256=OntyhZtYIKEbdy5w-qwkl6mBt767W5pitDEjMmnqjRo,707
83
83
  spikezoo/archs/stir/metrics/ssim.py,sha256=RxVoEMJPgu370DWfDRE01UnTOorh-Xy0DldXQFhAi4o,1818
84
- spikezoo/archs/stir/metrics/__pycache__/losses.cpython-39.pyc,sha256=Hm27WKQ09xoNWYX5kcgSparAi5gFxQdCP91h-FOREbA,8158
84
+ spikezoo/archs/stir/metrics/__pycache__/losses.cpython-39.pyc,sha256=c9hI_0Cdlx1UlLrD01DH5KnSxwtHHPxYD4IQRQWHEn0,8128
85
85
  spikezoo/archs/stir/models/Vgg19.py,sha256=BKYf51YqQantkuxGM5S3yD2a5Pf2nYBzEfmA0XqTjGU,1435
86
86
  spikezoo/archs/stir/models/networks_STIR.py,sha256=dU19BT2sAZMa-avJPdQvC48orMFUYsE05ZzWPIZA9Sg,15746
87
87
  spikezoo/archs/stir/models/submodules.py,sha256=gr0W8_ghP6pF5E5M1Ii58XYXOzR5ox8n0Xoh0vDAv6c,3360
88
88
  spikezoo/archs/stir/models/transformer_new.py,sha256=INZFO156bD4A0t5agChPT87uPDJXiu9gibXMORZgzxk,6343
89
- spikezoo/archs/stir/models/__pycache__/Vgg19.cpython-39.pyc,sha256=RFOajG64AhTEkZ5pdTR5KrDJMF6MaQ-lYOz0yYvammE,1815
90
- spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc,sha256=NnOiFfjAOB-WWGU-BFIWgNs-7IZdojuQYavj-AAnNSA,13530
91
- spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc,sha256=zVNI7hYN7S2yvTKYJt8FIXSU5yUg1rfE4tyZ5zPrsWo,3640
92
- spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc,sha256=N1ZPGfGsHXI9b1bwRAOh40eJWlmYfmK7DF9qDr248d0,5939
89
+ spikezoo/archs/stir/models/__pycache__/Vgg19.cpython-39.pyc,sha256=VDE9mgcVkIL7K_WdmvkDK_kao2UsbRQE4RkEzvrMe1A,1785
90
+ spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc,sha256=EbnGqo_fIvKUQTCiCbCSbWbejAt3UIGJeCp-ayzSW8Q,13500
91
+ spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc,sha256=L8EXiJOsmli__ISh-qNM6aP4Dft1JESMCIPkUTy07dU,3610
92
+ spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc,sha256=55PLJlsRGLtbQNqasfmTD184U-1vuVoHNG0VKWO3p3M,5909
93
93
  spikezoo/archs/stir/package_core/setup.py,sha256=l0ZAYjzpqI6IvNFm5pHOmf5jmapFXqJSdOk8SBNupc0,112
94
94
  spikezoo/archs/stir/package_core/build/lib/package_core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
95
95
  spikezoo/archs/stir/package_core/build/lib/package_core/convertions.py,sha256=aKnq_wJ8sddEI2T0ITxukpDdiKsdt-zf3nzM2CHFxGs,26159
@@ -122,19 +122,19 @@ spikezoo/archs/stir/package_core/package_core/net_basics.py,sha256=QX_5zlC5-_ITT
122
122
  spikezoo/archs/stir/package_core/package_core/resnet.py,sha256=l93GwsKVBl75tUMYLZWkzZjNhO3B_Yoissb3oUdq3zE,13627
123
123
  spikezoo/archs/stir/package_core/package_core/transforms.py,sha256=_hE5Y6EWsxacwcfdI1jS-wCvwGkA32-k-4XLPVhquDY,3779
124
124
  spikezoo/archs/stir/package_core/package_core/utils.py,sha256=icSibxXKqEZyHL8GU1J0PMahCfxwVSwBtLGW_kHV25g,2316
125
- spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc,sha256=kMkbhE8EH_BDTqvZladciovDa11NWsKJTLZor2XXliE,206
126
- spikezoo/archs/stir/package_core/package_core/__pycache__/geometry.cpython-39.pyc,sha256=b3wYtOddbULtK8y2fHLQuaRFr1X3568MjczvZb64bQ4,16113
127
- spikezoo/archs/stir/package_core/package_core/__pycache__/image_proc.cpython-39.pyc,sha256=GXlpcDvf7da_Fir1d1B1afIQ1SuDZM3_gcu8amdeBFE,5935
128
- spikezoo/archs/stir/package_core/package_core/__pycache__/losses.cpython-39.pyc,sha256=2cR5ROQJ2m9-BS8smwVnfsSRw0pfQebjqF1VYu8o61Q,7343
129
- spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc,sha256=ZHXtxnR4tYqkTl79drTDby1cu2c_SzgYBLQMMuyVwYQ,3622
125
+ spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc,sha256=nL5bQDd5cKPCL-NbX6qizVTANK4wBBIfvin5XgZOVFU,176
126
+ spikezoo/archs/stir/package_core/package_core/__pycache__/geometry.cpython-39.pyc,sha256=L5BcfIHTOSPBCFx3intGQ7z8wUSvRPHdJdditkcKU9Y,16083
127
+ spikezoo/archs/stir/package_core/package_core/__pycache__/image_proc.cpython-39.pyc,sha256=QdvlUz4W7OtHVm61YKEfVuViVWYJ2B76JSSLvYMcPOc,5905
128
+ spikezoo/archs/stir/package_core/package_core/__pycache__/losses.cpython-39.pyc,sha256=-Kme3mAnjTyDQHv-M-84OGJy0NQiavWq6WVnCO2BQgE,7313
129
+ spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc,sha256=fg_-TnR3RNrW1r57kMehuYtqRTvDXXI3Ld2XXVhJJ2Y,3592
130
130
  spikezoo/archs/stir/package_core/package_core.egg-info/PKG-INFO,sha256=2njov-JTXZp2Sgwyx7KSL0fIPNyOR-lUYSSxIiDQH_Q,56
131
131
  spikezoo/archs/stir/package_core/package_core.egg-info/SOURCES.txt,sha256=rTCDnAkAo4JuMaJgXeumnUODeQBpefgwT-dqrIUXoRc,541
132
132
  spikezoo/archs/stir/package_core/package_core.egg-info/dependency_links.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
133
133
  spikezoo/archs/stir/package_core/package_core.egg-info/top_level.txt,sha256=ezjGZVvZhOw8f-HRDngFtMvGh0NfvyT3sKcG4sSOSoc,13
134
134
  spikezoo/archs/tfi/nets.py,sha256=IpXGoemHjan6FpFZjt2VU-pWE6AptsTlCFf20ha86zo,1382
135
- spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc,sha256=KTIjxwjuAFGlsBdoH81Iew4ik8Vy-lKxlohkbyewOac,1407
135
+ spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc,sha256=-B9-u_KmQUYeNYjMEsWyb6zRLDXnkyNf_jDuZqTR7E4,1377
136
136
  spikezoo/archs/tfp/nets.py,sha256=mNngiPBEXcNH4yP6PiwOgsTS8dOhHvdnXq-UNuhfpxY,388
137
- spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc,sha256=7IeKIZWK7KyFs7i4i_eBk5KQjHq4rIKVfkRNGIWDBHw,861
137
+ spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc,sha256=vtVl1aBfY0Qm2NvObODNEcuuTxksmet7Y00Kt9l_9fw,831
138
138
  spikezoo/archs/wgse/README.md,sha256=vUKBdCOV1MMr3ZqfXgiim99dYTERinrkzejhY-uwoiQ,3151
139
139
  spikezoo/archs/wgse/dataset.py,sha256=pCvOrFRHn7tCku1bAi9vLL_tPIZQnwj57mfvSjnwFgc,1822
140
140
  spikezoo/archs/wgse/demo.png,sha256=6SdZmRf6WYd6OHa1ll0F8msbnR_gsHiuqR3OLmYi1fU,64157
@@ -145,10 +145,12 @@ spikezoo/archs/wgse/submodules.py,sha256=qFsOnAFx7uwvIo9ymUPm3Yo6JvYnZYhrnnJyqFo
145
145
  spikezoo/archs/wgse/train.py,sha256=8y8rjTuTFiSnYR6wWibk_mTszsINV995BoO8nxR_u18,9361
146
146
  spikezoo/archs/wgse/transform.py,sha256=bX3jPacCJdOo1FZmDgIZgS5DWrkUs3kw8njJeHh0NLQ,4532
147
147
  spikezoo/archs/wgse/utils.py,sha256=UXTo8HoeB4BwSLXSbi3AyM1tokPnJ--Giz9ln2Yr0nQ,3892
148
- spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc,sha256=8PBx9A-v2j4LfqbAZzLD-edbbAv-ZhWtGbwvEKMq_9k,3802
149
- spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc,sha256=J5JCZwJBhWRP1JQXCrxPes1tJBg_ggKVym81aTsBpYQ,2179
148
+ spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc,sha256=9BVPES7bGhvlvFNM1RKtVXHN6BM0dKgKKrQIrZbgG-8,3772
149
+ spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc,sha256=ASBTP9PgidG0Urujsjip3Tm8djwhv_aNfUReojomNPE,2149
150
150
  spikezoo/archs/wgse/logs/WGSE-Dwt1dNet-db8-5-ks3/log.txt,sha256=99XvHRXAhKc8E6JwP8fFBBjjFFEvrtOL2y17ibYXiZc,990
151
151
  spikezoo/archs/wgse/weights/demo.png,sha256=jy3xM3Fe_A4b79wbxHoiPGHzMmfK_LMcMs3Y9nT1i3o,69728
152
+ spikezoo/archs/yourmodel/arch/net.py,sha256=fmE845mJeZe063FZVdrYWLg8HxNy9sRiyRqFu6B0ly4,1328
153
+ spikezoo/archs/yourmodel/arch/__pycache__/net.cpython-39.pyc,sha256=JQNXJGFl_t66Uar2ncx6Ge0GgIxkBpdDvhGjMUvCc8w,1563
152
154
  spikezoo/data/base/test/gt/200_part1_key_id151.png,sha256=hkKTqpvv1Ms_xjcP3lQ2pyTswiCM1I7YLKR_ANqD5Bk,52637
153
155
  spikezoo/data/base/test/gt/200_part3_key_id151.png,sha256=e4IpWztmpQ6WDDpfzorLo3Uo17ZECQX7fImLXRJHwcc,58482
154
156
  spikezoo/data/base/test/gt/203_part1_key_id151.png,sha256=x5hItKgaMmpk3yejx5gy2DE2ewQVCphs7gZeqRHhsWQ,65368
@@ -160,16 +162,16 @@ spikezoo/data/base/train/gt/203_part3_key_id151.png,sha256=HqUeySlLeuJyjRj3NKjy0
160
162
  spikezoo/data/base/train/gt/203_part4_key_id151.png,sha256=xUfdlXNWdPlRshLOaEF6ug1lIbx_gGphTxzDOnf6f5Y,56719
161
163
  spikezoo/data/base/train/spike/203_part2_key_id151.dat,sha256=YEenLmbPvcxnKkVn3O7yDVYb-UwpM5OPlRhxVWLYy3Q,3762500
162
164
  spikezoo/data/base/train/spike/203_part3_key_id151.dat,sha256=MY9nM6XzKj-P-tRQ33WZ3G5xulNTpAXKP0y8ZQo7AIQ,3762500
163
- spikezoo/data/base/train/spike/203_part4_key_id151.dat,sha256=IVi2jics66YzpIF-WTkw47te4qOj9cjdgz56GmHpJKg,3762500
164
- spikezoo/datasets/__init__.py,sha256=sfXZVnKGpDj0vKoWM0U6i-C9mqBQNLOm0UR8IgT5MyI,3262
165
- spikezoo/datasets/base_dataset.py,sha256=MeBjGs41xvLTtAamH_cQpEQEhF1qbHKrO83LkTdatpE,5874
166
- spikezoo/datasets/realworld_dataset.py,sha256=VqT6zcLa72DL3Lg8f4TThhYUa1xSIifsrPwpjvk2uBE,726
167
- spikezoo/datasets/reds_base_dataset.py,sha256=W-IJv9H1bsKgp3RT3zsV40jw2PqY2M76jtIS4Qpif1o,859
168
- spikezoo/datasets/szdata_dataset.py,sha256=8RHc6RvYQestgca6gFtMzy7Z1NC4gBOvuPN7TdVdV7o,703
169
- spikezoo/datasets/uhsr_dataset.py,sha256=MKQeQsoCal10yMgHy3I7NJDgJJgkKgruH5tantP921A,1186
165
+ spikezoo/datasets/__init__.py,sha256=Og7DF0_cRP3DfsxHaletOyJrNoNB3rbIoCAYsgdQ2fA,3089
166
+ spikezoo/datasets/base_dataset.py,sha256=qUdIPZHO72vtP6IvIZplWn5oSSpzA_mAmQW9RJje7fY,6196
167
+ spikezoo/datasets/realdata_dataset.py,sha256=zx9_2U5a97Giqcx13WcGjB4Ra1qdNxO1r0fHauU3v3w,708
168
+ spikezoo/datasets/reds_base_dataset.py,sha256=1OpawE_RkpuB94O8eRNRb9LafGWJC01KgVlqB-r-3SE,859
169
+ spikezoo/datasets/szdata_dataset.py,sha256=CMQjhE_pkymhy-v-HHudrMm2tpIXk6-uSvoy9S4UX0U,702
170
+ spikezoo/datasets/uhsr_dataset.py,sha256=q9HYME5jE4uFpk5rbDVc1D4HYltqnRpRqLkcKyGoWj0,1186
171
+ spikezoo/datasets/yourdataset_dataset.py,sha256=ZusR3BhI5OzvVQGvyxAzb7OQ_sT_dCX0Oo7SiaLVHvw,774
170
172
  spikezoo/metrics/__init__.py,sha256=LIKeWNeEMZLANITQD68XJBOhDq7iHiKC7ExtdrXMyQs,3273
171
- spikezoo/models/__init__.py,sha256=JJTRhRIdSPe9WQx-PV1k-Vzt3ZCqzCF_9RQBewkFdhw,2253
172
- spikezoo/models/base_model.py,sha256=v3TD4AmjttTZUg0vEy736TOFdbbBgDLZg_RL-b4-vYM,9152
173
+ spikezoo/models/__init__.py,sha256=EQIbmYz8p1u1ukHR-f52GYCSc0sMNo-SgJ9082nuJHo,1852
174
+ spikezoo/models/base_model.py,sha256=DBQYNORkLBpLhwMzivizFckHkDrYNmwWeM7a3mIVmYU,9521
173
175
  spikezoo/models/bsf_model.py,sha256=yfVin-vctA2w9HoaivVWMMVGpGrH_LnbVc0DeSY9pTk,3922
174
176
  spikezoo/models/spcsnet_model.py,sha256=kLzv-ASXZGnqEFx0jUBONBeRCrsnQ_omkQUYEnr6uJc,540
175
177
  spikezoo/models/spikeclip_model.py,sha256=Ej84RuYbkFRthtBMV1JtmTkUshAqINlrrJ7yiKIsC9s,1125
@@ -180,21 +182,22 @@ spikezoo/models/stir_model.py,sha256=GvVrsuQmElxKsRgsvPmq-tygOEauUYYbvMbYPSKV_Mo
180
182
  spikezoo/models/tfi_model.py,sha256=tgD_HsiXk9jGuh5f_Bh6c3BqJi1p5DWCVo4N1tp5fgs,663
181
183
  spikezoo/models/tfp_model.py,sha256=ihl1H__bWIbE9oair_t8rNJ5qnPJPKl-r_DpaO-0Sdk,663
182
184
  spikezoo/models/wgse_model.py,sha256=DyKcteSRbu5qPs38g_G9WpxNbVW7RXTe3DYq-ZiBoEc,755
185
+ spikezoo/models/yourmodel_model.py,sha256=mQ3hRsDbHovxL6NhsxAKO-W3tvx5WwAHRZDyyGqFtfA,765
183
186
  spikezoo/pipeline/__init__.py,sha256=WPsukNR4cannwsghiukqNsWbWGH5DVPapR_Ly-WOU4Q,188
184
- spikezoo/pipeline/base_pipeline.py,sha256=qob88qk_FAA_sg5NtTYLHsFfk77yzbDuIy62VnaSmYg,13473
185
- spikezoo/pipeline/ensemble_pipeline.py,sha256=ljZkGiCCpxvpC04Aa-r_tvBnqcBpUVi9fl_878tJAcg,2555
186
- spikezoo/pipeline/train_cfgs.py,sha256=ZzTGKlAwkQGDsI0CBfT0qs6a_sVfSWJWJJgTEjQk7C8,3028
187
- spikezoo/pipeline/train_pipeline.py,sha256=BgHUsdv33B_OKauOVclNt7yIPb-_O-93ZHLHIjrwWaA,8459
187
+ spikezoo/pipeline/base_pipeline.py,sha256=9-0vt70x2oftLlNvzRmmLIhnJZ9MtenFiZjQEZn3x58,13625
188
+ spikezoo/pipeline/ensemble_pipeline.py,sha256=cn-QzK-j7T9B43ONsRTr-lJQkquRyDSJfU9gutEO6nk,2614
189
+ spikezoo/pipeline/train_cfgs.py,sha256=fnxYmX070XolVx8rXjY0Nm4WdMU_geZdLcL9pWm3Uww,3157
190
+ spikezoo/pipeline/train_pipeline.py,sha256=CKFOF4mG3oXYJlzcTMG8AHVjKh0P9ndcGlBs9EoNIvE,8438
188
191
  spikezoo/utils/__init__.py,sha256=bYLlusAXwLCoY4s6nhVgviax9ioRA9aea8qgRmj2HpI,152
189
192
  spikezoo/utils/data_utils.py,sha256=mk1xeyIb7o_E1J7Z6-gtPq-rpKiMTxAWSTcvvPvVku8,2033
190
193
  spikezoo/utils/img_utils.py,sha256=0O9z58VzLxQEAuz-GGWCbpeHuHPOCpgBVjCBV9kf6sI,2257
191
194
  spikezoo/utils/optimizer_utils.py,sha256=jvcd4zTY2LCJH6wCwOZ0lsAuJQm6LIVzbprLO3ojYCY,744
192
195
  spikezoo/utils/other_utils.py,sha256=uWNWaII9Jv7fkWNfkAD9wD-4ID-GAzbR-gGYT-1FF_c,3360
193
196
  spikezoo/utils/scheduler_utils.py,sha256=5RBh-hl3-2y-IomxMs47T1p3JsbicZNYLza6q1uAKHo,828
194
- spikezoo/utils/spike_utils.py,sha256=bIUm-6Z3MXjBuLNTMR50L-_pWIWFwL3wuamsUSrwM_s,4297
197
+ spikezoo/utils/spike_utils.py,sha256=XBFo3JOiNeyAQhsdgd_e6v9vVSViHx8DzN0hO3SbxnE,4300
195
198
  spikezoo/utils/vidar_loader.cpython-39-x86_64-linux-gnu.so,sha256=uXqu7ME---cZRRU5LUcLiNrjjtlOjxNwWHyTIQ10BGg,199088
196
- spikezoo-0.2.3.5.dist-info/LICENSE.txt,sha256=ukEi8E0PKq1dQGTXHUflg3rppLymwAhr7il9x-0nPgg,1062
197
- spikezoo-0.2.3.5.dist-info/METADATA,sha256=kUdhbWzKg2nC7Bf7nzH5wHxzWQw3HmWrtm0hG95GTis,12016
198
- spikezoo-0.2.3.5.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
199
- spikezoo-0.2.3.5.dist-info/top_level.txt,sha256=xF2iuOstrACJh43NW4dsTwIdgKfXPXAb_Xzl3M1ricM,9
200
- spikezoo-0.2.3.5.dist-info/RECORD,,
199
+ spikezoo-0.2.3.7.dist-info/LICENSE.txt,sha256=ukEi8E0PKq1dQGTXHUflg3rppLymwAhr7il9x-0nPgg,1062
200
+ spikezoo-0.2.3.7.dist-info/METADATA,sha256=W9E0K3HLmcnsrCoReh_DcHTyj1zpDmKvqwAdKa9NTYk,7205
201
+ spikezoo-0.2.3.7.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
202
+ spikezoo-0.2.3.7.dist-info/top_level.txt,sha256=xF2iuOstrACJh43NW4dsTwIdgKfXPXAb_Xzl3M1ricM,9
203
+ spikezoo-0.2.3.7.dist-info/RECORD,,