spikezoo 0.2.3.4__py3-none-any.whl → 0.2.3.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (55) hide show
  1. spikezoo/archs/__pycache__/__init__.cpython-39.pyc +0 -0
  2. spikezoo/archs/base/__pycache__/nets.cpython-39.pyc +0 -0
  3. spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc +0 -0
  4. spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc +0 -0
  5. spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc +0 -0
  6. spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc +0 -0
  7. spikezoo/archs/spk2imgnet/__pycache__/DCNv2.cpython-39.pyc +0 -0
  8. spikezoo/archs/spk2imgnet/__pycache__/align_arch.cpython-39.pyc +0 -0
  9. spikezoo/archs/spk2imgnet/__pycache__/nets.cpython-39.pyc +0 -0
  10. spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc +0 -0
  11. spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc +0 -0
  12. spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc +0 -0
  13. spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc +0 -0
  14. spikezoo/archs/stir/metrics/__pycache__/losses.cpython-39.pyc +0 -0
  15. spikezoo/archs/stir/models/__pycache__/Vgg19.cpython-39.pyc +0 -0
  16. spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc +0 -0
  17. spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc +0 -0
  18. spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc +0 -0
  19. spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc +0 -0
  20. spikezoo/archs/stir/package_core/package_core/__pycache__/geometry.cpython-39.pyc +0 -0
  21. spikezoo/archs/stir/package_core/package_core/__pycache__/image_proc.cpython-39.pyc +0 -0
  22. spikezoo/archs/stir/package_core/package_core/__pycache__/losses.cpython-39.pyc +0 -0
  23. spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc +0 -0
  24. spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc +0 -0
  25. spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc +0 -0
  26. spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc +0 -0
  27. spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc +0 -0
  28. spikezoo/archs/yourmodel/arch/__pycache__/net.cpython-39.pyc +0 -0
  29. spikezoo/archs/yourmodel/arch/net.py +35 -0
  30. spikezoo/datasets/__init__.py +20 -21
  31. spikezoo/datasets/base_dataset.py +26 -21
  32. spikezoo/datasets/{realworld_dataset.py → realdata_dataset.py} +5 -7
  33. spikezoo/datasets/reds_base_dataset.py +1 -1
  34. spikezoo/datasets/szdata_dataset.py +1 -5
  35. spikezoo/datasets/uhsr_dataset.py +1 -1
  36. spikezoo/datasets/yourdataset_dataset.py +23 -0
  37. spikezoo/models/__init__.py +12 -8
  38. spikezoo/models/base_model.py +10 -4
  39. spikezoo/models/bsf_model.py +0 -1
  40. spikezoo/models/spk2imgnet_model.py +0 -1
  41. spikezoo/models/stir_model.py +0 -1
  42. spikezoo/models/wgse_model.py +0 -1
  43. spikezoo/models/yourmodel_model.py +22 -0
  44. spikezoo/pipeline/base_pipeline.py +17 -10
  45. spikezoo/pipeline/ensemble_pipeline.py +2 -1
  46. spikezoo/pipeline/train_cfgs.py +3 -1
  47. spikezoo/pipeline/train_pipeline.py +12 -12
  48. spikezoo/utils/spike_utils.py +2 -2
  49. spikezoo-0.2.3.6.dist-info/METADATA +151 -0
  50. {spikezoo-0.2.3.4.dist-info → spikezoo-0.2.3.6.dist-info}/RECORD +53 -23
  51. spikezoo/data/base/train/spike/203_part4_key_id151.dat +0 -0
  52. spikezoo-0.2.3.4.dist-info/METADATA +0 -259
  53. {spikezoo-0.2.3.4.dist-info → spikezoo-0.2.3.6.dist-info}/LICENSE.txt +0 -0
  54. {spikezoo-0.2.3.4.dist-info → spikezoo-0.2.3.6.dist-info}/WHEEL +0 -0
  55. {spikezoo-0.2.3.4.dist-info → spikezoo-0.2.3.6.dist-info}/top_level.txt +0 -0
@@ -29,13 +29,13 @@ from spikingjelly.clock_driven import functional
29
29
  class TrainPipelineConfig(PipelineConfig):
30
30
  # parameters setting
31
31
  "Training epochs."
32
- epochs: int = 1000
32
+ epochs: int = 10
33
33
  "Steps per to save images."
34
- steps_per_save_imgs: int = 200
34
+ steps_per_save_imgs: int = 10
35
35
  "Steps per to save model weights."
36
- steps_per_save_ckpt: int = 500
36
+ steps_per_save_ckpt: int = 10
37
37
  "Steps per to calculate the metrics."
38
- steps_per_cal_metrics: int = 100
38
+ steps_per_cal_metrics: int = 10
39
39
  "Step for gradient accumulation. (for snn methods)"
40
40
  steps_grad_accumulation: int = 4
41
41
  "Pipeline mode."
@@ -48,9 +48,7 @@ class TrainPipelineConfig(PipelineConfig):
48
48
  "Batch size for the train dataloader."
49
49
  bs_train: int = 8
50
50
  "Num_workers for the train dataloader."
51
- num_workers: int = 4
52
- "Pin_memory true or false for the train dataloader."
53
- pin_memory: bool = False
51
+ nw_train: int = 4
54
52
 
55
53
  # train setting - optimizer & scheduler & loss_dict
56
54
  "Optimizer config."
@@ -88,13 +86,15 @@ class TrainPipeline(Pipeline):
88
86
  torch.set_grad_enabled(True)
89
87
  # data
90
88
  if isinstance(dataset_cfg, str):
91
- self.train_dataset: BaseDataset = build_dataset_name(dataset_cfg, split="train")
92
- self.dataset: BaseDataset = build_dataset_name(dataset_cfg, split="test")
89
+ self.train_dataset: BaseDataset = build_dataset_name(dataset_cfg)
90
+ self.dataset: BaseDataset = build_dataset_name(dataset_cfg)
93
91
  else:
94
- self.train_dataset: BaseDataset = build_dataset_cfg(dataset_cfg, split="train")
95
- self.dataset: BaseDataset = build_dataset_cfg(dataset_cfg, split="test")
92
+ self.train_dataset: BaseDataset = build_dataset_cfg(dataset_cfg)
93
+ self.dataset: BaseDataset = build_dataset_cfg(dataset_cfg)
94
+ self.train_dataset.build_source("train")
95
+ self.dataset.build_source("test")
96
96
  self.train_dataloader = build_dataloader(self.train_dataset, self.cfg)
97
- self.dataloader = build_dataloader(self.dataset)
97
+ self.dataloader = build_dataloader(self.dataset,self.cfg)
98
98
  # device
99
99
  self.device = "cuda" if torch.cuda.is_available() else "cpu"
100
100
 
@@ -10,7 +10,7 @@ import imageio
10
10
  _platform_check_done = False
11
11
 
12
12
 
13
- def load_vidar_dat(filename, height, width, remove_head=False, version: Literal["python", "cpp"] = "cpp", out_format: Literal["array", "tensor"] = "array"):
13
+ def load_vidar_dat(filename, height, width, remove_head=False, version: Literal["python", "cpp"] = "python", out_format: Literal["array", "tensor"] = "array"):
14
14
  """Load the spike stream from the .dat file."""
15
15
  global _platform_check_done
16
16
  # Spike decode
@@ -35,9 +35,9 @@ def load_vidar_dat(filename, height, width, remove_head=False, version: Literal[
35
35
  frame_ = np.stack(blist).transpose()
36
36
  frame_ = np.flipud(frame_.reshape((height, width), order="C"))
37
37
  spk = frame_.copy()[None]
38
- spk = spk[:, :, :-16] if remove_head == True else spk
39
38
  spikes.append(spk)
40
39
  spikes = np.concatenate(spikes).astype(np.float32)
40
+ spikes = spikes[:, :, :-16] if remove_head == True else spikes
41
41
 
42
42
  # # Output format conversion
43
43
  format_dict = {"array": lambda x: x, "tensor": torch.from_numpy}
@@ -0,0 +1,151 @@
1
+ Metadata-Version: 2.2
2
+ Name: spikezoo
3
+ Version: 0.2.3.6
4
+ Summary: A deep learning toolbox for spike-to-image models.
5
+ Home-page: https://github.com/chenkang455/Spike-Zoo
6
+ Author: Kang Chen
7
+ Author-email: mrchenkang@stu.pku.edu.cn
8
+ Requires-Python: >=3.7
9
+ Description-Content-Type: text/markdown
10
+ License-File: LICENSE.txt
11
+ Requires-Dist: torch
12
+ Requires-Dist: requests
13
+ Requires-Dist: numpy
14
+ Requires-Dist: tqdm
15
+ Requires-Dist: scikit-image
16
+ Requires-Dist: lpips
17
+ Requires-Dist: pyiqa
18
+ Requires-Dist: opencv-python
19
+ Requires-Dist: thop
20
+ Requires-Dist: pytorch-wavelets
21
+ Requires-Dist: pytz
22
+ Requires-Dist: PyWavelets
23
+ Requires-Dist: pandas
24
+ Requires-Dist: pillow
25
+ Requires-Dist: scikit-learn
26
+ Requires-Dist: scipy
27
+ Requires-Dist: spikingjelly
28
+ Requires-Dist: setuptools
29
+ Dynamic: author
30
+ Dynamic: author-email
31
+ Dynamic: description
32
+ Dynamic: description-content-type
33
+ Dynamic: home-page
34
+ Dynamic: requires-dist
35
+ Dynamic: requires-python
36
+ Dynamic: summary
37
+
38
+ <p align="center">
39
+ <img src="imgs/spike-zoo.png" width="300"/>
40
+ <p>
41
+
42
+ <h5 align="center">
43
+
44
+ [![GitHub repo stars](https://img.shields.io/github/stars/chenkang455/Spike-Zoo?style=flat&logo=github&logoColor=whitesmoke&label=Stars)](https://github.com/chenkang455/Spike-Zoo/stargazers) [![GitHub Issues](https://img.shields.io/github/issues/chenkang455/Spike-Zoo?style=flat&logo=github&logoColor=whitesmoke&label=Stars)](https://github.com/chenkang455/Spike-Zoo/issues) <a href="https://badge.fury.io/py/spikezoo"><img src="https://badge.fury.io/py/spikezoo.svg" alt="PyPI version"></a> <a href='https://spike-zoo.readthedocs.io/zh-cn/latest/index.html'><img src='https://readthedocs.com/projects/plenoptix-nerfstudio/badge/?version=latest' alt='Documentation Status' /></a>[![License](https://img.shields.io/badge/License-MIT-yellow)](https://github.com/chenkang455/Spike-Zoo)
45
+ <p>
46
+
47
+
48
+
49
+ <!-- <h2 align="center">
50
+ <a href="">⚡Spike-Zoo:
51
+ </a>
52
+ </h2> -->
53
+
54
+ ## 📖 About
55
+ ⚡Spike-Zoo is the go-to library for state-of-the-art pretrained **spike-to-image** models designed to reconstruct images from spike streams. Whether you're looking for a simple inference solution or aiming to train your own spike-to-image models, ⚡Spike-Zoo is a modular toolbox that supports both, with key features including:
56
+
57
+ - Fast inference with pre-trained models.
58
+ - Training support for custom-designed spike-to-image models.
59
+ - Specialized functions for processing spike data.
60
+
61
+ > We are highly looking forward to your advice on our project. We welcome any issues or code contributions and will respond within one day.
62
+
63
+ ## 🚩 Updates/Changelog
64
+ * **25-02-02:** Release the `Spike-Zoo v0.2` code, which supports more methods, provide more usages like training your method from scratch.
65
+ * **24-07-19:** Release the `Spike-Zoo v0.1` code for base evaluation of SOTA methods.
66
+
67
+ ## 🍾 Quick Start
68
+ ### 1. Installation
69
+ For users focused on **utilizing pretrained models for spike-to-image conversion**, we recommend installing SpikeZoo using one of the following methods:
70
+
71
+ * Install the last stable version `0.2.3.5` from PyPI:
72
+ ```
73
+ pip install spikezoo
74
+ ```
75
+ * Install the latest developing version `0.2.3.6` from the source code **(recommended)**:
76
+ ```
77
+ git clone https://github.com/chenkang455/Spike-Zoo
78
+ cd Spike-Zoo
79
+ python setup.py install
80
+ ```
81
+
82
+ For users interested in **training their own spike-to-image model based on our framework**, we recommend cloning the repository and modifying the related code directly.
83
+ ```
84
+ git clone https://github.com/chenkang455/Spike-Zoo
85
+ cd Spike-Zoo
86
+ python setup.py develop
87
+ ```
88
+
89
+ ### 2. Inference
90
+ Reconstructing images from the spike is super easy with Spike-Zoo. Try the following code of the single model:
91
+ ``` python
92
+ from spikezoo.pipeline import Pipeline, PipelineConfig
93
+ import spikezoo as sz
94
+ pipeline = Pipeline(
95
+ cfg=PipelineConfig(save_folder="results",version="v023"),
96
+ model_cfg=sz.METHOD.BASE,
97
+ dataset_cfg=sz.DATASET.BASE
98
+ )
99
+ pipeline.infer_from_dataset(idx = 0)
100
+ ```
101
+
102
+
103
+ ### 3. Training
104
+ We provide a user-friendly code for training our provided `BASE` model (modified from the `SpikeCLIP`) for the classic `REDS` dataset introduced in `Spk2ImgNet`:
105
+ ``` python
106
+ from spikezoo.pipeline import TrainPipelineConfig, TrainPipeline
107
+ from spikezoo.datasets.reds_base_dataset import REDS_BASEConfig
108
+ from spikezoo.models.base_model import BaseModelConfig
109
+ pipeline = TrainPipeline(
110
+ cfg=TrainPipelineConfig(save_folder="results", epochs = 10),
111
+ dataset_cfg=REDS_BASEConfig(root_dir = "spikezoo/data/reds_base"),
112
+ model_cfg=BaseModelConfig(),
113
+ )
114
+ pipeline.train()
115
+ ```
116
+ We finish the training with one 4090 GPU in `2 minutes`, achieving `32.8dB` in PSNR and `0.92` in SSIM.
117
+
118
+ > 🌟 We encourage users to develop their models with simple modifications to our framework.
119
+
120
+ ## 📚 How to navigate the documentation
121
+
122
+ | **Link** | **Description** |
123
+ | --- | --- |
124
+ | [Quick Start](https://spike-zoo.readthedocs.io/zh-cn/latest/%E5%BF%AB%E9%80%9F%E5%BC%80%E5%A7%8B.html) | Learn how to quickly get started with the Spike-Zoo repository for inference and training. |
125
+ | [Dataset](https://spike-zoo.readthedocs.io/zh-cn/latest/%E6%95%B0%E6%8D%AE%E9%9B%86.html) | Learn the parameter configuration of datasets and how to construct them. |
126
+ | [Model](https://spike-zoo.readthedocs.io/zh-cn/latest/%E6%A8%A1%E5%9E%8B.html) | Learn the parameter configuration of models and how to construct them. |
127
+ | [Pipeline](https://spike-zoo.readthedocs.io/zh-cn/latest/%E5%A4%84%E7%90%86%E7%AE%A1%E7%BA%BF.html) | Learn how to configure and construct the processing pipeline for models. |
128
+ | [Released Version](https://spike-zoo.readthedocs.io/zh-cn/latest/%E5%8F%91%E8%A1%8C%E7%89%88%E6%9C%AC%E4%BB%8B%E7%BB%8D.html) | Introduces the differences between different release versions of pre-trained weights. |
129
+ | [Examples](https://spike-zoo.readthedocs.io/zh-cn/latest/%E4%BD%BF%E7%94%A8%E4%BE%8B%E5%AD%90.html) | Complete code examples for using Spike-Zoo. |
130
+ | [Supports](https://spike-zoo.readthedocs.io/zh-cn/latest/%E6%94%AF%E6%8C%81%E8%8C%83%E5%9B%B4.html) | Learn about the datasets and models supported by Spike-Zoo. |
131
+
132
+
133
+ ## 📅 TODO
134
+ - [x] Support the overall pipeline for spike simulation.
135
+ - [x] Provide the tutorials.
136
+ - [ ] Support more training settings.
137
+ - [ ] Support more spike-based image reconstruction methods and datasets.
138
+
139
+ ## ✨‍ Acknowledgment
140
+ Our code is built on the open-source projects of [SpikeCV](https://spikecv.github.io/), [IQA-Pytorch](https://github.com/chaofengc/IQA-PyTorch), [BasicSR](https://github.com/XPixelGroup/BasicSR) and [NeRFStudio](https://github.com/nerfstudio-project/nerfstudio).We appreciate the effort of the contributors to these repositories. Thanks for [@zhiwen_huang](https://github.com/hzw-abc), [@ruizhao26](https://github.com/ruizhao26), [@shiyan_chen](https://github.com/hnmizuho) and [@Leozhangjiyuan](https://github.com/Leozhangjiyuan) for their help in building this project.
141
+
142
+ ## 📑 Citation
143
+ If you find our codes helpful to your research, please consider to use the following citation:
144
+ ```
145
+ @misc{spikezoo,
146
+ title={{Spike-Zoo}: A Toolbox for Spike-to-Image Reconstruction},
147
+ author={Kang Chen and Zhiyuan Ye and Tiejun Huang and Zhaofei Yu},
148
+ year={2025},
149
+ howpublished = {\url{https://github.com/chenkang455/Spike-Zoo}},
150
+ }
151
+ ```
@@ -1,6 +1,8 @@
1
1
  spikezoo/__init__.py,sha256=3z97Jy20aDJoK3e1ECXneY-i5jLj9Idop5ClHeJLYGE,604
2
2
  spikezoo/archs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
+ spikezoo/archs/__pycache__/__init__.cpython-39.pyc,sha256=Ba5cgbZ2jiTexmzMbqpADlFBQGzqLPtU-YbGhY9wJa0,175
3
4
  spikezoo/archs/base/nets.py,sha256=j-XDEkntYl4M6xe-jqyUOhFBlhh8efNwy4qu-WVqjc4,1311
5
+ spikezoo/archs/base/__pycache__/nets.cpython-39.pyc,sha256=jo5U5WnJ7pzG7h6TU57hJL36Jxh-PEZV2oss1BQ5QNs,1554
4
6
  spikezoo/archs/bsf/README.md,sha256=maT9K0dZcwFPiYWmFISVogF-INTwNr6alqHSNKlk7G0,2777
5
7
  spikezoo/archs/bsf/main.py,sha256=at4CWWqaoGo1k6PqRBOi_PixtDPmND6_7mU6LvWWnLI,15136
6
8
  spikezoo/archs/bsf/requirements.txt,sha256=ZQCaKDZAJvmFtKPcbDSIP3gBpg_YdvwCpaDkS__kfHE,79
@@ -15,6 +17,9 @@ spikezoo/archs/bsf/models/bsf/align.py,sha256=X_Ud0oCZSYGFQ8DWvOG4yozUaDOJi4X44v
15
17
  spikezoo/archs/bsf/models/bsf/bsf.py,sha256=W3xwHXcKODJqfSRc_Kn-7C_YjVGpse_mZ2tbrDJ6w0Q,4060
16
18
  spikezoo/archs/bsf/models/bsf/dsft_convert.py,sha256=xpFwWFl1ms9LxaA96xdDOf-h_S6foScc3oh-nGjSG-o,3110
17
19
  spikezoo/archs/bsf/models/bsf/rep.py,sha256=Y3YPADL6ndu4u7RwYUFqmGVUqzW0HbgXKu4Z7x52Alg,1660
20
+ spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc,sha256=pbkUwOtCPxn4PW4_BFAbNWLmRyRNSWFJdmvTXJWQUCg,7052
21
+ spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc,sha256=apb2ppGeRQxEFysJkIzP_DmoFw5lqL3PyHPb26MYD8M,4597
22
+ spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc,sha256=s1I48hRhY2TCOpkQcJfZ7IWDxgA6YdJ9zqrZDfoRyRY,1840
18
23
  spikezoo/archs/bsf/prepare_data/DSFT.py,sha256=RDFREQc-pAGxpETgb1umjQNnLAmpqsRpEmsrjrG4hEU,2203
19
24
  spikezoo/archs/bsf/prepare_data/crop_dataset_train.py,sha256=CpKIhI8kc5TzWMGSHY33IlROBTrXrY0kVGxKLvwjcvo,6050
20
25
  spikezoo/archs/bsf/prepare_data/crop_dataset_val.py,sha256=Zrfe2rsnHXB-TikO9J6s0SL_u0jg492NgXSCebgvK5A,6009
@@ -22,6 +27,7 @@ spikezoo/archs/bsf/prepare_data/crop_train.sh,sha256=VoIqvQ1TWSj5uvkcp6EZIo28egI
22
27
  spikezoo/archs/bsf/prepare_data/crop_val.sh,sha256=PY45EGOvdn89hAUWmeIwHrzzMWmwBbqGYgh0y5oYzP4,185
23
28
  spikezoo/archs/bsf/prepare_data/io_utils.py,sha256=GUs7ocNekOKMSfMNjHAWbZFSOWXiLRtboQLl5NiY-CI,1850
24
29
  spikezoo/archs/spikeclip/nets.py,sha256=j2rPD3AFWLl142XxmQL4PxWw06f4gHi8zjBUjndJ8pQ,1433
30
+ spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc,sha256=BR8bGBf3nJ1fQbTpNZV1xelHOxrg5D5XEu731h0WYI0,1540
25
31
  spikezoo/archs/spk2imgnet/.gitignore,sha256=LvYh4-uHW8ZL6P5S7I6f35ZaKULvuVoBQ06ia6r1llM,2148
26
32
  spikezoo/archs/spk2imgnet/DCNv2.py,sha256=KqAWzoOQFX1eEqaIP90Ahhj88qvk2K-J21WyzOMQwt4,4715
27
33
  spikezoo/archs/spk2imgnet/align_arch.py,sha256=NpEDZy4YX2JD6mNrw1FOfyPpMqQ866ylYktl-kRzwIU,6264
@@ -32,6 +38,9 @@ spikezoo/archs/spk2imgnet/test_gen_imgseq.py,sha256=UpqerSdtF5qMODIxAuVY3JnhsPy8
32
38
  spikezoo/archs/spk2imgnet/train.py,sha256=ncNwAhFlAhDd4rMkSeAjBhRECp2En1hAZn2-RH7jVpU,6195
33
39
  spikezoo/archs/spk2imgnet/utils.py,sha256=Gc-05AJDfiXqkDAaiTeLBa2oiD78l1PPrBP6frlFy30,1924
34
40
  spikezoo/archs/spk2imgnet/.github/workflows/pylint.yml,sha256=lNUdbM2y3yOGPPrGUNDjnQL3fJnswtFIsuLpchBfLAc,553
41
+ spikezoo/archs/spk2imgnet/__pycache__/DCNv2.cpython-39.pyc,sha256=1mSOxJwgg-5bCAwqgIp6VOUWmHpaRv4ILnkgEiCGaI0,4095
42
+ spikezoo/archs/spk2imgnet/__pycache__/align_arch.cpython-39.pyc,sha256=WqnFKRXqXZY74-4CBp9vpebg98tzwrSsvXibOU1AzO8,4361
43
+ spikezoo/archs/spk2imgnet/__pycache__/nets.cpython-39.pyc,sha256=Xy2sQw54_KsgSrrhZHio5KK6261jo_Ihf0VJDDM2HSA,5916
35
44
  spikezoo/archs/ssir/README.md,sha256=0e56N8SqYfDRgyoyxaMctJqJ2DeWdQ4NUlLDQEUr2O0,2518
36
45
  spikezoo/archs/ssir/losses.py,sha256=mUEghvJQoLM4bTs0AmDa5sZedEHWo_GksW2ojNWYYC8,623
37
46
  spikezoo/archs/ssir/main.py,sha256=Pn0mmUST4hg_BJPOU6NWvorjuZ0OHncFOzVEtxDEPQQ,12054
@@ -47,12 +56,16 @@ spikezoo/archs/ssir/metrics/ssim.py,sha256=RxVoEMJPgu370DWfDRE01UnTOorh-Xy0DldXQ
47
56
  spikezoo/archs/ssir/models/Vgg19.py,sha256=BKYf51YqQantkuxGM5S3yD2a5Pf2nYBzEfmA0XqTjGU,1435
48
57
  spikezoo/archs/ssir/models/layers.py,sha256=gYShN5cp3B1GaNmQD5_6CpYSt6k6h0cZ5IJNtrt0dCw,3450
49
58
  spikezoo/archs/ssir/models/networks.py,sha256=-qwwwC9SWcOzf_TcswnudoOVSjZNvRMiAg5-NRDl14I,1946
59
+ spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc,sha256=-6VcAI1eOjeS2fEX8QdKaZWUtjz3uIn_72UdjjLaYZQ,3723
60
+ spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc,sha256=d-gjTkm_9niMtVqqxAx4V-sZ-ryH6he0c9nqEfmuimY,2767
50
61
  spikezoo/archs/ssir/shells/eval_SREDS.sh,sha256=byjDfNb_NAO8z28L7Laktlc3qYZjfeY5qn0pkMmql9E,112
51
62
  spikezoo/archs/ssir/shells/train_SSIR.sh,sha256=y-LlaWNqOKwGUXKm2NodCgM3LYOIans25kN7CgDJ9z4,256
52
63
  spikezoo/archs/ssml/cbam.py,sha256=hfVI1vYpboEPRBMKWqWjVlqX41XQi7A4Pwou5PJlPXo,8869
53
64
  spikezoo/archs/ssml/model.py,sha256=DqTwDbwS7diZPxjVz580lAarPeZZ43EtaNjMJWN2Ujo,10354
54
65
  spikezoo/archs/ssml/res.png,sha256=o8VLsy8-znCM9ZoSbsBmV3dTd8O0R48JWyNtuIekQIY,37233
55
66
  spikezoo/archs/ssml/test.py,sha256=3yrMAWDBdhpyVjqNeuDtz1s2XemrR9ZXZDo8yTUAfac,2036
67
+ spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc,sha256=MKRjeqcCxFjOCPycMLxVevG2L2iGHyRDUc7qtbyxxpM,8648
68
+ spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc,sha256=nR7-aDdNCSMY4zl5bn9PgG3-cd35utWDA6d7N16okxM,10245
56
69
  spikezoo/archs/stir/.git-credentials,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
57
70
  spikezoo/archs/stir/README.md,sha256=WA0QvTGiH8kDQ4mNwj4lnZHypKSDVf_UWXckXnXltJc,3223
58
71
  spikezoo/archs/stir/eval_SREDS.sh,sha256=dihTfrrr0jbkXEbpEStKgsk-t5L_4ehu9mpeMliJbME,144
@@ -68,10 +81,15 @@ spikezoo/archs/stir/datasets/ds_utils.py,sha256=RfQyC_8Y50-R-xnxlGooNwAoaTvviIlS
68
81
  spikezoo/archs/stir/metrics/losses.py,sha256=pOs0XYZuKPIjppWwEmx8CXpDPqhq5QcR0NMMUZUR01o,7768
69
82
  spikezoo/archs/stir/metrics/psnr.py,sha256=OntyhZtYIKEbdy5w-qwkl6mBt767W5pitDEjMmnqjRo,707
70
83
  spikezoo/archs/stir/metrics/ssim.py,sha256=RxVoEMJPgu370DWfDRE01UnTOorh-Xy0DldXQFhAi4o,1818
84
+ spikezoo/archs/stir/metrics/__pycache__/losses.cpython-39.pyc,sha256=c9hI_0Cdlx1UlLrD01DH5KnSxwtHHPxYD4IQRQWHEn0,8128
71
85
  spikezoo/archs/stir/models/Vgg19.py,sha256=BKYf51YqQantkuxGM5S3yD2a5Pf2nYBzEfmA0XqTjGU,1435
72
86
  spikezoo/archs/stir/models/networks_STIR.py,sha256=dU19BT2sAZMa-avJPdQvC48orMFUYsE05ZzWPIZA9Sg,15746
73
87
  spikezoo/archs/stir/models/submodules.py,sha256=gr0W8_ghP6pF5E5M1Ii58XYXOzR5ox8n0Xoh0vDAv6c,3360
74
88
  spikezoo/archs/stir/models/transformer_new.py,sha256=INZFO156bD4A0t5agChPT87uPDJXiu9gibXMORZgzxk,6343
89
+ spikezoo/archs/stir/models/__pycache__/Vgg19.cpython-39.pyc,sha256=VDE9mgcVkIL7K_WdmvkDK_kao2UsbRQE4RkEzvrMe1A,1785
90
+ spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc,sha256=EbnGqo_fIvKUQTCiCbCSbWbejAt3UIGJeCp-ayzSW8Q,13500
91
+ spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc,sha256=L8EXiJOsmli__ISh-qNM6aP4Dft1JESMCIPkUTy07dU,3610
92
+ spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc,sha256=55PLJlsRGLtbQNqasfmTD184U-1vuVoHNG0VKWO3p3M,5909
75
93
  spikezoo/archs/stir/package_core/setup.py,sha256=l0ZAYjzpqI6IvNFm5pHOmf5jmapFXqJSdOk8SBNupc0,112
76
94
  spikezoo/archs/stir/package_core/build/lib/package_core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
77
95
  spikezoo/archs/stir/package_core/build/lib/package_core/convertions.py,sha256=aKnq_wJ8sddEI2T0ITxukpDdiKsdt-zf3nzM2CHFxGs,26159
@@ -104,12 +122,19 @@ spikezoo/archs/stir/package_core/package_core/net_basics.py,sha256=QX_5zlC5-_ITT
104
122
  spikezoo/archs/stir/package_core/package_core/resnet.py,sha256=l93GwsKVBl75tUMYLZWkzZjNhO3B_Yoissb3oUdq3zE,13627
105
123
  spikezoo/archs/stir/package_core/package_core/transforms.py,sha256=_hE5Y6EWsxacwcfdI1jS-wCvwGkA32-k-4XLPVhquDY,3779
106
124
  spikezoo/archs/stir/package_core/package_core/utils.py,sha256=icSibxXKqEZyHL8GU1J0PMahCfxwVSwBtLGW_kHV25g,2316
125
+ spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc,sha256=nL5bQDd5cKPCL-NbX6qizVTANK4wBBIfvin5XgZOVFU,176
126
+ spikezoo/archs/stir/package_core/package_core/__pycache__/geometry.cpython-39.pyc,sha256=L5BcfIHTOSPBCFx3intGQ7z8wUSvRPHdJdditkcKU9Y,16083
127
+ spikezoo/archs/stir/package_core/package_core/__pycache__/image_proc.cpython-39.pyc,sha256=QdvlUz4W7OtHVm61YKEfVuViVWYJ2B76JSSLvYMcPOc,5905
128
+ spikezoo/archs/stir/package_core/package_core/__pycache__/losses.cpython-39.pyc,sha256=-Kme3mAnjTyDQHv-M-84OGJy0NQiavWq6WVnCO2BQgE,7313
129
+ spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc,sha256=fg_-TnR3RNrW1r57kMehuYtqRTvDXXI3Ld2XXVhJJ2Y,3592
107
130
  spikezoo/archs/stir/package_core/package_core.egg-info/PKG-INFO,sha256=2njov-JTXZp2Sgwyx7KSL0fIPNyOR-lUYSSxIiDQH_Q,56
108
131
  spikezoo/archs/stir/package_core/package_core.egg-info/SOURCES.txt,sha256=rTCDnAkAo4JuMaJgXeumnUODeQBpefgwT-dqrIUXoRc,541
109
132
  spikezoo/archs/stir/package_core/package_core.egg-info/dependency_links.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
110
133
  spikezoo/archs/stir/package_core/package_core.egg-info/top_level.txt,sha256=ezjGZVvZhOw8f-HRDngFtMvGh0NfvyT3sKcG4sSOSoc,13
111
134
  spikezoo/archs/tfi/nets.py,sha256=IpXGoemHjan6FpFZjt2VU-pWE6AptsTlCFf20ha86zo,1382
135
+ spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc,sha256=-B9-u_KmQUYeNYjMEsWyb6zRLDXnkyNf_jDuZqTR7E4,1377
112
136
  spikezoo/archs/tfp/nets.py,sha256=mNngiPBEXcNH4yP6PiwOgsTS8dOhHvdnXq-UNuhfpxY,388
137
+ spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc,sha256=vtVl1aBfY0Qm2NvObODNEcuuTxksmet7Y00Kt9l_9fw,831
113
138
  spikezoo/archs/wgse/README.md,sha256=vUKBdCOV1MMr3ZqfXgiim99dYTERinrkzejhY-uwoiQ,3151
114
139
  spikezoo/archs/wgse/dataset.py,sha256=pCvOrFRHn7tCku1bAi9vLL_tPIZQnwj57mfvSjnwFgc,1822
115
140
  spikezoo/archs/wgse/demo.png,sha256=6SdZmRf6WYd6OHa1ll0F8msbnR_gsHiuqR3OLmYi1fU,64157
@@ -120,8 +145,12 @@ spikezoo/archs/wgse/submodules.py,sha256=qFsOnAFx7uwvIo9ymUPm3Yo6JvYnZYhrnnJyqFo
120
145
  spikezoo/archs/wgse/train.py,sha256=8y8rjTuTFiSnYR6wWibk_mTszsINV995BoO8nxR_u18,9361
121
146
  spikezoo/archs/wgse/transform.py,sha256=bX3jPacCJdOo1FZmDgIZgS5DWrkUs3kw8njJeHh0NLQ,4532
122
147
  spikezoo/archs/wgse/utils.py,sha256=UXTo8HoeB4BwSLXSbi3AyM1tokPnJ--Giz9ln2Yr0nQ,3892
148
+ spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc,sha256=9BVPES7bGhvlvFNM1RKtVXHN6BM0dKgKKrQIrZbgG-8,3772
149
+ spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc,sha256=ASBTP9PgidG0Urujsjip3Tm8djwhv_aNfUReojomNPE,2149
123
150
  spikezoo/archs/wgse/logs/WGSE-Dwt1dNet-db8-5-ks3/log.txt,sha256=99XvHRXAhKc8E6JwP8fFBBjjFFEvrtOL2y17ibYXiZc,990
124
151
  spikezoo/archs/wgse/weights/demo.png,sha256=jy3xM3Fe_A4b79wbxHoiPGHzMmfK_LMcMs3Y9nT1i3o,69728
152
+ spikezoo/archs/yourmodel/arch/net.py,sha256=fmE845mJeZe063FZVdrYWLg8HxNy9sRiyRqFu6B0ly4,1328
153
+ spikezoo/archs/yourmodel/arch/__pycache__/net.cpython-39.pyc,sha256=JQNXJGFl_t66Uar2ncx6Ge0GgIxkBpdDvhGjMUvCc8w,1563
125
154
  spikezoo/data/base/test/gt/200_part1_key_id151.png,sha256=hkKTqpvv1Ms_xjcP3lQ2pyTswiCM1I7YLKR_ANqD5Bk,52637
126
155
  spikezoo/data/base/test/gt/200_part3_key_id151.png,sha256=e4IpWztmpQ6WDDpfzorLo3Uo17ZECQX7fImLXRJHwcc,58482
127
156
  spikezoo/data/base/test/gt/203_part1_key_id151.png,sha256=x5hItKgaMmpk3yejx5gy2DE2ewQVCphs7gZeqRHhsWQ,65368
@@ -133,41 +162,42 @@ spikezoo/data/base/train/gt/203_part3_key_id151.png,sha256=HqUeySlLeuJyjRj3NKjy0
133
162
  spikezoo/data/base/train/gt/203_part4_key_id151.png,sha256=xUfdlXNWdPlRshLOaEF6ug1lIbx_gGphTxzDOnf6f5Y,56719
134
163
  spikezoo/data/base/train/spike/203_part2_key_id151.dat,sha256=YEenLmbPvcxnKkVn3O7yDVYb-UwpM5OPlRhxVWLYy3Q,3762500
135
164
  spikezoo/data/base/train/spike/203_part3_key_id151.dat,sha256=MY9nM6XzKj-P-tRQ33WZ3G5xulNTpAXKP0y8ZQo7AIQ,3762500
136
- spikezoo/data/base/train/spike/203_part4_key_id151.dat,sha256=IVi2jics66YzpIF-WTkw47te4qOj9cjdgz56GmHpJKg,3762500
137
- spikezoo/datasets/__init__.py,sha256=lRJsvCfgbe3qrd9BKTlG9dsgfIJbfXqWOynnlAcBiUI,3346
138
- spikezoo/datasets/base_dataset.py,sha256=oQ_AqWuMlaKnR712_sJ4WiTbqqPqVsfcukDNpFDYXb0,5956
139
- spikezoo/datasets/realworld_dataset.py,sha256=VqT6zcLa72DL3Lg8f4TThhYUa1xSIifsrPwpjvk2uBE,726
140
- spikezoo/datasets/reds_base_dataset.py,sha256=W-IJv9H1bsKgp3RT3zsV40jw2PqY2M76jtIS4Qpif1o,859
141
- spikezoo/datasets/szdata_dataset.py,sha256=xvgkZFHNSQ-Sk_rqmgRKAqpeb2gYpt_gmstJKJ8ooqU,870
142
- spikezoo/datasets/uhsr_dataset.py,sha256=MKQeQsoCal10yMgHy3I7NJDgJJgkKgruH5tantP921A,1186
165
+ spikezoo/datasets/__init__.py,sha256=Og7DF0_cRP3DfsxHaletOyJrNoNB3rbIoCAYsgdQ2fA,3089
166
+ spikezoo/datasets/base_dataset.py,sha256=qUdIPZHO72vtP6IvIZplWn5oSSpzA_mAmQW9RJje7fY,6196
167
+ spikezoo/datasets/realdata_dataset.py,sha256=zx9_2U5a97Giqcx13WcGjB4Ra1qdNxO1r0fHauU3v3w,708
168
+ spikezoo/datasets/reds_base_dataset.py,sha256=1OpawE_RkpuB94O8eRNRb9LafGWJC01KgVlqB-r-3SE,859
169
+ spikezoo/datasets/szdata_dataset.py,sha256=CMQjhE_pkymhy-v-HHudrMm2tpIXk6-uSvoy9S4UX0U,702
170
+ spikezoo/datasets/uhsr_dataset.py,sha256=q9HYME5jE4uFpk5rbDVc1D4HYltqnRpRqLkcKyGoWj0,1186
171
+ spikezoo/datasets/yourdataset_dataset.py,sha256=ZusR3BhI5OzvVQGvyxAzb7OQ_sT_dCX0Oo7SiaLVHvw,774
143
172
  spikezoo/metrics/__init__.py,sha256=LIKeWNeEMZLANITQD68XJBOhDq7iHiKC7ExtdrXMyQs,3273
144
- spikezoo/models/__init__.py,sha256=QZTELBoM3bUW8jZoxN4OuA2RYKeVUT1fboyeIuK8Rtk,1722
145
- spikezoo/models/base_model.py,sha256=v3TD4AmjttTZUg0vEy736TOFdbbBgDLZg_RL-b4-vYM,9152
146
- spikezoo/models/bsf_model.py,sha256=XeZcVC_ODJxyS_I6-CtzlHXSWntgsUtbuAKjczIQ_0M,3972
173
+ spikezoo/models/__init__.py,sha256=EQIbmYz8p1u1ukHR-f52GYCSc0sMNo-SgJ9082nuJHo,1852
174
+ spikezoo/models/base_model.py,sha256=DBQYNORkLBpLhwMzivizFckHkDrYNmwWeM7a3mIVmYU,9521
175
+ spikezoo/models/bsf_model.py,sha256=yfVin-vctA2w9HoaivVWMMVGpGrH_LnbVc0DeSY9pTk,3922
147
176
  spikezoo/models/spcsnet_model.py,sha256=kLzv-ASXZGnqEFx0jUBONBeRCrsnQ_omkQUYEnr6uJc,540
148
177
  spikezoo/models/spikeclip_model.py,sha256=Ej84RuYbkFRthtBMV1JtmTkUshAqINlrrJ7yiKIsC9s,1125
149
- spikezoo/models/spk2imgnet_model.py,sha256=ghdO1oECrRBijvGNT89H5XDi9CvWfbY3wOzmuCrgMJ0,1565
178
+ spikezoo/models/spk2imgnet_model.py,sha256=gkxWswWkv05mCey2SiWefhfwebu09JcNtWDVBOiZA_w,1515
150
179
  spikezoo/models/ssir_model.py,sha256=8tg36eLKAQEOfYiFW-XyO6RfvCLxUXz0fVhTtZ-Dw-Q,625
151
180
  spikezoo/models/ssml_model.py,sha256=pCo2Wp38cRWSqGFEddsteEby_My4Rp-MKIx_g4kjoHo,2380
152
- spikezoo/models/stir_model.py,sha256=htsqhOboIc3GWvQc9gXxyaSI2SYR3TdZR691uV5LZ5s,2193
181
+ spikezoo/models/stir_model.py,sha256=GvVrsuQmElxKsRgsvPmq-tygOEauUYYbvMbYPSKV_Mo,2143
153
182
  spikezoo/models/tfi_model.py,sha256=tgD_HsiXk9jGuh5f_Bh6c3BqJi1p5DWCVo4N1tp5fgs,663
154
183
  spikezoo/models/tfp_model.py,sha256=ihl1H__bWIbE9oair_t8rNJ5qnPJPKl-r_DpaO-0Sdk,663
155
- spikezoo/models/wgse_model.py,sha256=Kl9uV-LeO0Lj7SuPQ9pglw1Khs2b-7miS3A_faL6WSU,805
184
+ spikezoo/models/wgse_model.py,sha256=DyKcteSRbu5qPs38g_G9WpxNbVW7RXTe3DYq-ZiBoEc,755
185
+ spikezoo/models/yourmodel_model.py,sha256=mQ3hRsDbHovxL6NhsxAKO-W3tvx5WwAHRZDyyGqFtfA,765
156
186
  spikezoo/pipeline/__init__.py,sha256=WPsukNR4cannwsghiukqNsWbWGH5DVPapR_Ly-WOU4Q,188
157
- spikezoo/pipeline/base_pipeline.py,sha256=y_jCmYlNlKnK-607b6p987tA3eDnrOI8S9XJGB0hwUE,13456
158
- spikezoo/pipeline/ensemble_pipeline.py,sha256=ljZkGiCCpxvpC04Aa-r_tvBnqcBpUVi9fl_878tJAcg,2555
159
- spikezoo/pipeline/train_cfgs.py,sha256=ZzTGKlAwkQGDsI0CBfT0qs6a_sVfSWJWJJgTEjQk7C8,3028
160
- spikezoo/pipeline/train_pipeline.py,sha256=BgHUsdv33B_OKauOVclNt7yIPb-_O-93ZHLHIjrwWaA,8459
187
+ spikezoo/pipeline/base_pipeline.py,sha256=9-0vt70x2oftLlNvzRmmLIhnJZ9MtenFiZjQEZn3x58,13625
188
+ spikezoo/pipeline/ensemble_pipeline.py,sha256=cn-QzK-j7T9B43ONsRTr-lJQkquRyDSJfU9gutEO6nk,2614
189
+ spikezoo/pipeline/train_cfgs.py,sha256=OGFEZPVv1oncLVZTKgavgPyhKhGkWWfsJbggtwEnU8E,3027
190
+ spikezoo/pipeline/train_pipeline.py,sha256=bc33cvHA4LQPZVMWc6jN2alX-VtrhqLw4q9skL9xXeo,8407
161
191
  spikezoo/utils/__init__.py,sha256=bYLlusAXwLCoY4s6nhVgviax9ioRA9aea8qgRmj2HpI,152
162
192
  spikezoo/utils/data_utils.py,sha256=mk1xeyIb7o_E1J7Z6-gtPq-rpKiMTxAWSTcvvPvVku8,2033
163
193
  spikezoo/utils/img_utils.py,sha256=0O9z58VzLxQEAuz-GGWCbpeHuHPOCpgBVjCBV9kf6sI,2257
164
194
  spikezoo/utils/optimizer_utils.py,sha256=jvcd4zTY2LCJH6wCwOZ0lsAuJQm6LIVzbprLO3ojYCY,744
165
195
  spikezoo/utils/other_utils.py,sha256=uWNWaII9Jv7fkWNfkAD9wD-4ID-GAzbR-gGYT-1FF_c,3360
166
196
  spikezoo/utils/scheduler_utils.py,sha256=5RBh-hl3-2y-IomxMs47T1p3JsbicZNYLza6q1uAKHo,828
167
- spikezoo/utils/spike_utils.py,sha256=u4Haa6Sp5xFqs61ztvq161oXTA_aZmNW3VYUZcayNW0,4296
197
+ spikezoo/utils/spike_utils.py,sha256=XBFo3JOiNeyAQhsdgd_e6v9vVSViHx8DzN0hO3SbxnE,4300
168
198
  spikezoo/utils/vidar_loader.cpython-39-x86_64-linux-gnu.so,sha256=uXqu7ME---cZRRU5LUcLiNrjjtlOjxNwWHyTIQ10BGg,199088
169
- spikezoo-0.2.3.4.dist-info/LICENSE.txt,sha256=ukEi8E0PKq1dQGTXHUflg3rppLymwAhr7il9x-0nPgg,1062
170
- spikezoo-0.2.3.4.dist-info/METADATA,sha256=I2zSpBAJRP1VXpWb2X-QiUK-6YLX2EkVj00sEzgGPuY,11941
171
- spikezoo-0.2.3.4.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
172
- spikezoo-0.2.3.4.dist-info/top_level.txt,sha256=xF2iuOstrACJh43NW4dsTwIdgKfXPXAb_Xzl3M1ricM,9
173
- spikezoo-0.2.3.4.dist-info/RECORD,,
199
+ spikezoo-0.2.3.6.dist-info/LICENSE.txt,sha256=ukEi8E0PKq1dQGTXHUflg3rppLymwAhr7il9x-0nPgg,1062
200
+ spikezoo-0.2.3.6.dist-info/METADATA,sha256=cIUeNrBfmQ6UFJ9KEsw1Vrgdsamd_3ZFvnx_E_WhFRM,7204
201
+ spikezoo-0.2.3.6.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
202
+ spikezoo-0.2.3.6.dist-info/top_level.txt,sha256=xF2iuOstrACJh43NW4dsTwIdgKfXPXAb_Xzl3M1ricM,9
203
+ spikezoo-0.2.3.6.dist-info/RECORD,,