spikezoo 0.2.3.3__py3-none-any.whl → 0.2.3.5__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (43) hide show
  1. spikezoo/archs/__pycache__/__init__.cpython-39.pyc +0 -0
  2. spikezoo/archs/base/__pycache__/nets.cpython-39.pyc +0 -0
  3. spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc +0 -0
  4. spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc +0 -0
  5. spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc +0 -0
  6. spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc +0 -0
  7. spikezoo/archs/spk2imgnet/__pycache__/DCNv2.cpython-39.pyc +0 -0
  8. spikezoo/archs/spk2imgnet/__pycache__/align_arch.cpython-39.pyc +0 -0
  9. spikezoo/archs/spk2imgnet/__pycache__/nets.cpython-39.pyc +0 -0
  10. spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc +0 -0
  11. spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc +0 -0
  12. spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc +0 -0
  13. spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc +0 -0
  14. spikezoo/archs/stir/metrics/__pycache__/losses.cpython-39.pyc +0 -0
  15. spikezoo/archs/stir/models/__pycache__/Vgg19.cpython-39.pyc +0 -0
  16. spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc +0 -0
  17. spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc +0 -0
  18. spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc +0 -0
  19. spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc +0 -0
  20. spikezoo/archs/stir/package_core/package_core/__pycache__/geometry.cpython-39.pyc +0 -0
  21. spikezoo/archs/stir/package_core/package_core/__pycache__/image_proc.cpython-39.pyc +0 -0
  22. spikezoo/archs/stir/package_core/package_core/__pycache__/losses.cpython-39.pyc +0 -0
  23. spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc +0 -0
  24. spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc +0 -0
  25. spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc +0 -0
  26. spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc +0 -0
  27. spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc +0 -0
  28. spikezoo/datasets/__init__.py +1 -1
  29. spikezoo/datasets/base_dataset.py +4 -5
  30. spikezoo/datasets/szdata_dataset.py +0 -4
  31. spikezoo/models/__init__.py +11 -0
  32. spikezoo/models/bsf_model.py +0 -1
  33. spikezoo/models/spk2imgnet_model.py +0 -1
  34. spikezoo/models/stir_model.py +0 -1
  35. spikezoo/models/wgse_model.py +0 -1
  36. spikezoo/pipeline/base_pipeline.py +3 -3
  37. spikezoo/pipeline/train_cfgs.py +0 -22
  38. spikezoo/utils/spike_utils.py +1 -1
  39. {spikezoo-0.2.3.3.dist-info → spikezoo-0.2.3.5.dist-info}/METADATA +3 -4
  40. {spikezoo-0.2.3.3.dist-info → spikezoo-0.2.3.5.dist-info}/RECORD +43 -16
  41. {spikezoo-0.2.3.3.dist-info → spikezoo-0.2.3.5.dist-info}/LICENSE.txt +0 -0
  42. {spikezoo-0.2.3.3.dist-info → spikezoo-0.2.3.5.dist-info}/WHEEL +0 -0
  43. {spikezoo-0.2.3.3.dist-info → spikezoo-0.2.3.5.dist-info}/top_level.txt +0 -0
@@ -15,7 +15,7 @@ dataset_list = [file.replace("_dataset.py", "") for file in files_list if file.e
15
15
  def build_dataset_cfg(cfg: BaseDatasetConfig, split: Literal["train", "test"] = "test"):
16
16
  """Build the dataset from the given dataset config."""
17
17
  # build new cfg according to split
18
- cfg = replace(cfg, split=split, spike_length=cfg.spike_length_train if split == "train" else cfg.spike_length_test)
18
+ cfg = replace(cfg, split=split)
19
19
  # dataset module
20
20
  module_name = cfg.dataset_name + "_dataset"
21
21
  assert cfg.dataset_name in dataset_list, f"Given dataset {cfg.dataset_name} not in our dataset list {dataset_list}."
@@ -30,13 +30,13 @@ class BaseDatasetConfig:
30
30
  spike_length_train: int = -1
31
31
  "Dataset spike length for the test data."
32
32
  spike_length_test: int = -1
33
- "Dataset spike length for the instantiation dataclass."
34
- spike_length: int = -1
35
33
  "Dir name for the spike."
36
34
  spike_dir_name: str = "spike"
37
35
  "Dir name for the image."
38
36
  img_dir_name: str = "gt"
39
-
37
+ "Rate. (-1 denotes variant)"
38
+ rate: float = 0.6
39
+
40
40
  # ------------- Config -------------
41
41
  "Dataset split: train/test. Default set as the 'test' for evaluation."
42
42
  split: Literal["train", "test"] = "test"
@@ -46,8 +46,7 @@ class BaseDatasetConfig:
46
46
  use_cache: bool = False
47
47
  "Crop size."
48
48
  crop_size: tuple = (-1, -1)
49
- "Rate. (-1 denotes variant)"
50
- rate: float = 0.6
49
+
51
50
 
52
51
  # post process
53
52
  def __post_init__(self):
@@ -22,7 +22,3 @@ class SZDataConfig(BaseDatasetConfig):
22
22
  class SZData(BaseDataset):
23
23
  def __init__(self, cfg: BaseDatasetConfig):
24
24
  super(SZData, self).__init__(cfg)
25
-
26
- def prepare_data(self):
27
- super().prepare_data()
28
- self.img_list = [self.img_dir / Path(str(s.name).replace('.dat','.png')) for s in self.spike_list]
@@ -1,6 +1,17 @@
1
1
  import importlib
2
2
  import inspect
3
3
  from spikezoo.models.base_model import BaseModel,BaseModelConfig
4
+ from spikezoo.models.tfp_model import TFPModel,TFPConfig
5
+ from spikezoo.models.tfi_model import TFIModel,TFIConfig
6
+ from spikezoo.models.spk2imgnet_model import Spk2ImgNet,Spk2ImgNetConfig
7
+ from spikezoo.models.wgse_model import WGSE,WGSEConfig
8
+ from spikezoo.models.ssml_model import SSML,SSMLConfig
9
+ from spikezoo.models.bsf_model import BSF,BSFConfig
10
+ from spikezoo.models.stir_model import STIR,STIRConfig
11
+ from spikezoo.models.ssir_model import SSIR,SSIRConfig
12
+ from spikezoo.models.spikeclip_model import SpikeCLIP,SpikeCLIPConfig
13
+
14
+
4
15
  from spikezoo.utils.other_utils import getattr_case_insensitive
5
16
  import os
6
17
  from pathlib import Path
@@ -4,7 +4,6 @@ from spikezoo.models.base_model import BaseModel, BaseModelConfig
4
4
  from torch.optim import Adam
5
5
  import torch.optim.lr_scheduler as lr_scheduler
6
6
  import torch.nn as nn
7
- from spikezoo.pipeline import TrainPipelineConfig
8
7
  from typing import List
9
8
  from spikezoo.archs.bsf.models.bsf.bsf import BSF
10
9
 
@@ -1,7 +1,6 @@
1
1
  import torch
2
2
  from dataclasses import dataclass, field
3
3
  from spikezoo.models.base_model import BaseModel, BaseModelConfig
4
- from spikezoo.pipeline import TrainPipelineConfig
5
4
  import torch.nn as nn
6
5
  import torch.optim as optim
7
6
  import torch.optim.lr_scheduler as lr_scheduler
@@ -4,7 +4,6 @@ from spikezoo.models.base_model import BaseModel, BaseModelConfig
4
4
  from torch.optim import Adam
5
5
  import torch.optim.lr_scheduler as lr_scheduler
6
6
  import torch.nn as nn
7
- from spikezoo.pipeline import TrainPipelineConfig
8
7
  from typing import List
9
8
  from spikezoo.archs.stir.metrics.losses import compute_per_loss_single
10
9
  from spikezoo.archs.stir.models.Vgg19 import Vgg19
@@ -1,7 +1,6 @@
1
1
  from dataclasses import dataclass, field
2
2
  from spikezoo.models.base_model import BaseModel, BaseModelConfig
3
3
  from typing import List
4
- from spikezoo.pipeline import TrainPipelineConfig
5
4
  import torch.nn as nn
6
5
  import torch.optim as optim
7
6
  import torch.optim.lr_scheduler as lr_scheduler
@@ -34,7 +34,7 @@ class PipelineConfig:
34
34
  "Evaluate metrics or not."
35
35
  save_metric: bool = True
36
36
  "Metric names for evaluation."
37
- metric_names: List[str] = field(default_factory=lambda: ["psnr", "ssim"])
37
+ metric_names: List[str] = field(default_factory=lambda: ["psnr", "ssim","niqe","brisque"])
38
38
  "Save recoverd images or not."
39
39
  save_img: bool = True
40
40
  "Normalizing recoverd images and gt or not."
@@ -56,7 +56,7 @@ class Pipeline:
56
56
 
57
57
  def _setup_model_data(self, model_cfg, dataset_cfg):
58
58
  """Model and Data setup."""
59
- self.logger.info("Model and dataset is setting up...")
59
+ print("Model and dataset is setting up...")
60
60
  # model [1] build the model. [2] build the network.
61
61
  self.model: BaseModel = build_model_name(model_cfg) if isinstance(model_cfg, str) else build_model_cfg(model_cfg)
62
62
  self.model.build_network(mode="eval", version=self.cfg.version)
@@ -69,7 +69,7 @@ class Pipeline:
69
69
 
70
70
  def _setup_pipeline(self):
71
71
  """Pipeline setup."""
72
- self.logger.info("Pipeline is setting up...")
72
+ print("Pipeline is setting up...")
73
73
  # save folder
74
74
  self.thistime = datetime.now().strftime("%Y-%m-%d_%H-%M-%S-%f")[:23]
75
75
  self.save_folder = Path(f"results") if len(self.cfg.save_folder) == 0 else self.cfg.save_folder
@@ -30,28 +30,6 @@ class REDS_BASE_TrainConfig(TrainPipelineConfig):
30
30
  scheduler_cfg: Optional[SchedulerConfig] = MultiStepSchedulerConfig(milestones=[400], gamma=0.2) # from wgse
31
31
  loss_weight_dict: Dict = field(default_factory=lambda: {"l1": 1})
32
32
 
33
- # @dataclass
34
- # class REDS_BASE_TrainConfig(TrainPipelineConfig):
35
- # """Training setting for methods on the REDS-BASE dataset."""
36
-
37
- # # parameters setting
38
- # epochs: int = 700
39
- # steps_per_save_imgs: int = 200
40
- # steps_per_save_ckpt: int = 500
41
- # steps_per_cal_metrics: int = 100
42
- # metric_names: List[str] = field(default_factory=lambda: ["psnr", "ssim"])
43
-
44
- # # dataloader setting
45
- # bs_train: int = 8
46
- # num_workers: int = 4
47
- # pin_memory: bool = False
48
-
49
- # # train setting - optimizer & scheduler & loss_dict
50
- # optimizer_cfg: OptimizerConfig = AdamOptimizerConfig(lr=1e-4)
51
- # scheduler_cfg: Optional[SchedulerConfig] = MultiStepSchedulerConfig(milestones=[400, 600], gamma=0.2) # from wgse
52
- # loss_weight_dict: Dict = field(default_factory=lambda: {"l1": 1})
53
-
54
-
55
33
  # ! Train Config for each method on the official setting, not recommended to utilize their default parameters owing to the dataset setting.
56
34
  @dataclass
57
35
  class BSFTrainConfig(TrainPipelineConfig):
@@ -35,9 +35,9 @@ def load_vidar_dat(filename, height, width, remove_head=False, version: Literal[
35
35
  frame_ = np.stack(blist).transpose()
36
36
  frame_ = np.flipud(frame_.reshape((height, width), order="C"))
37
37
  spk = frame_.copy()[None]
38
- spk = spk[:, :, :-16] if remove_head == True else spk
39
38
  spikes.append(spk)
40
39
  spikes = np.concatenate(spikes).astype(np.float32)
40
+ spikes = spikes[:, :, :-16] if remove_head == True else spikes
41
41
 
42
42
  # # Output format conversion
43
43
  format_dict = {"array": lambda x: x, "tensor": torch.from_numpy}
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: spikezoo
3
- Version: 0.2.3.3
3
+ Version: 0.2.3.5
4
4
  Summary: A deep learning toolbox for spike-to-image models.
5
5
  Home-page: https://github.com/chenkang455/Spike-Zoo
6
6
  Author: Kang Chen
@@ -55,7 +55,7 @@ Dynamic: summary
55
55
  - Training support for custom-designed spike-to-image models.
56
56
  - Specialized functions for processing spike data.
57
57
 
58
-
58
+ > 📚Tutorials: https://spike-zoo.readthedocs.io/zh-cn/latest/#
59
59
 
60
60
  ## 🚩 Updates/Changelog
61
61
  * **25-02-02:** Release the `Spike-Zoo v0.2` code, which supports more methods, provide more usages like training your method from scratch.
@@ -117,7 +117,6 @@ pipeline.infer_from_dataset(idx = 0)
117
117
  pipeline.infer_from_file(file_path = 'data/scissor.dat',width = 400,height=250)
118
118
 
119
119
  # 3. spike-to-image from the given spike
120
- import spikezoo as sz
121
120
  spike = sz.load_vidar_dat("data/scissor.dat",width = 400,height = 250)
122
121
  pipeline.infer_from_spk(spike)
123
122
  ```
@@ -252,7 +251,7 @@ If you find our codes helpful to your research, please consider to use the follo
252
251
  ```
253
252
  @misc{spikezoo,
254
253
  title={{Spike-Zoo}: Spike-Zoo: A Toolbox for Spike-to-Image Reconstruction},
255
- author={Kang Chen and Zhiyuan Ye},
254
+ author={Kang Chen and Zhiyuan Ye and Tiejun Huang and Zhaofei Yu},
256
255
  year={2025},
257
256
  howpublished = "[Online]. Available: \url{https://github.com/chenkang455/Spike-Zoo}"
258
257
  }
@@ -1,6 +1,8 @@
1
1
  spikezoo/__init__.py,sha256=3z97Jy20aDJoK3e1ECXneY-i5jLj9Idop5ClHeJLYGE,604
2
2
  spikezoo/archs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
+ spikezoo/archs/__pycache__/__init__.cpython-39.pyc,sha256=Ba5cgbZ2jiTexmzMbqpADlFBQGzqLPtU-YbGhY9wJa0,175
3
4
  spikezoo/archs/base/nets.py,sha256=j-XDEkntYl4M6xe-jqyUOhFBlhh8efNwy4qu-WVqjc4,1311
5
+ spikezoo/archs/base/__pycache__/nets.cpython-39.pyc,sha256=jo5U5WnJ7pzG7h6TU57hJL36Jxh-PEZV2oss1BQ5QNs,1554
4
6
  spikezoo/archs/bsf/README.md,sha256=maT9K0dZcwFPiYWmFISVogF-INTwNr6alqHSNKlk7G0,2777
5
7
  spikezoo/archs/bsf/main.py,sha256=at4CWWqaoGo1k6PqRBOi_PixtDPmND6_7mU6LvWWnLI,15136
6
8
  spikezoo/archs/bsf/requirements.txt,sha256=ZQCaKDZAJvmFtKPcbDSIP3gBpg_YdvwCpaDkS__kfHE,79
@@ -15,6 +17,9 @@ spikezoo/archs/bsf/models/bsf/align.py,sha256=X_Ud0oCZSYGFQ8DWvOG4yozUaDOJi4X44v
15
17
  spikezoo/archs/bsf/models/bsf/bsf.py,sha256=W3xwHXcKODJqfSRc_Kn-7C_YjVGpse_mZ2tbrDJ6w0Q,4060
16
18
  spikezoo/archs/bsf/models/bsf/dsft_convert.py,sha256=xpFwWFl1ms9LxaA96xdDOf-h_S6foScc3oh-nGjSG-o,3110
17
19
  spikezoo/archs/bsf/models/bsf/rep.py,sha256=Y3YPADL6ndu4u7RwYUFqmGVUqzW0HbgXKu4Z7x52Alg,1660
20
+ spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc,sha256=g0KUHvg4hr6xNBmFcDhz5X6E2mVv1kNO_q75Ard8VDE,7082
21
+ spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc,sha256=yEcWXqcxVJoEfzskENeqmxZphQqOJqmsIBbMqsAiBsY,4627
22
+ spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc,sha256=8-eLh0b4zaJdZGk5-6rdabCP5_ttwXMvhO2AUQvMm8I,1870
18
23
  spikezoo/archs/bsf/prepare_data/DSFT.py,sha256=RDFREQc-pAGxpETgb1umjQNnLAmpqsRpEmsrjrG4hEU,2203
19
24
  spikezoo/archs/bsf/prepare_data/crop_dataset_train.py,sha256=CpKIhI8kc5TzWMGSHY33IlROBTrXrY0kVGxKLvwjcvo,6050
20
25
  spikezoo/archs/bsf/prepare_data/crop_dataset_val.py,sha256=Zrfe2rsnHXB-TikO9J6s0SL_u0jg492NgXSCebgvK5A,6009
@@ -22,6 +27,7 @@ spikezoo/archs/bsf/prepare_data/crop_train.sh,sha256=VoIqvQ1TWSj5uvkcp6EZIo28egI
22
27
  spikezoo/archs/bsf/prepare_data/crop_val.sh,sha256=PY45EGOvdn89hAUWmeIwHrzzMWmwBbqGYgh0y5oYzP4,185
23
28
  spikezoo/archs/bsf/prepare_data/io_utils.py,sha256=GUs7ocNekOKMSfMNjHAWbZFSOWXiLRtboQLl5NiY-CI,1850
24
29
  spikezoo/archs/spikeclip/nets.py,sha256=j2rPD3AFWLl142XxmQL4PxWw06f4gHi8zjBUjndJ8pQ,1433
30
+ spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc,sha256=Q71X3R9ztJCmHY3y1A9MLM9-h9N_ISwDkfiAfGjzLuw,1570
25
31
  spikezoo/archs/spk2imgnet/.gitignore,sha256=LvYh4-uHW8ZL6P5S7I6f35ZaKULvuVoBQ06ia6r1llM,2148
26
32
  spikezoo/archs/spk2imgnet/DCNv2.py,sha256=KqAWzoOQFX1eEqaIP90Ahhj88qvk2K-J21WyzOMQwt4,4715
27
33
  spikezoo/archs/spk2imgnet/align_arch.py,sha256=NpEDZy4YX2JD6mNrw1FOfyPpMqQ866ylYktl-kRzwIU,6264
@@ -32,6 +38,9 @@ spikezoo/archs/spk2imgnet/test_gen_imgseq.py,sha256=UpqerSdtF5qMODIxAuVY3JnhsPy8
32
38
  spikezoo/archs/spk2imgnet/train.py,sha256=ncNwAhFlAhDd4rMkSeAjBhRECp2En1hAZn2-RH7jVpU,6195
33
39
  spikezoo/archs/spk2imgnet/utils.py,sha256=Gc-05AJDfiXqkDAaiTeLBa2oiD78l1PPrBP6frlFy30,1924
34
40
  spikezoo/archs/spk2imgnet/.github/workflows/pylint.yml,sha256=lNUdbM2y3yOGPPrGUNDjnQL3fJnswtFIsuLpchBfLAc,553
41
+ spikezoo/archs/spk2imgnet/__pycache__/DCNv2.cpython-39.pyc,sha256=1mSOxJwgg-5bCAwqgIp6VOUWmHpaRv4ILnkgEiCGaI0,4095
42
+ spikezoo/archs/spk2imgnet/__pycache__/align_arch.cpython-39.pyc,sha256=WqnFKRXqXZY74-4CBp9vpebg98tzwrSsvXibOU1AzO8,4361
43
+ spikezoo/archs/spk2imgnet/__pycache__/nets.cpython-39.pyc,sha256=Xy2sQw54_KsgSrrhZHio5KK6261jo_Ihf0VJDDM2HSA,5916
35
44
  spikezoo/archs/ssir/README.md,sha256=0e56N8SqYfDRgyoyxaMctJqJ2DeWdQ4NUlLDQEUr2O0,2518
36
45
  spikezoo/archs/ssir/losses.py,sha256=mUEghvJQoLM4bTs0AmDa5sZedEHWo_GksW2ojNWYYC8,623
37
46
  spikezoo/archs/ssir/main.py,sha256=Pn0mmUST4hg_BJPOU6NWvorjuZ0OHncFOzVEtxDEPQQ,12054
@@ -47,12 +56,16 @@ spikezoo/archs/ssir/metrics/ssim.py,sha256=RxVoEMJPgu370DWfDRE01UnTOorh-Xy0DldXQ
47
56
  spikezoo/archs/ssir/models/Vgg19.py,sha256=BKYf51YqQantkuxGM5S3yD2a5Pf2nYBzEfmA0XqTjGU,1435
48
57
  spikezoo/archs/ssir/models/layers.py,sha256=gYShN5cp3B1GaNmQD5_6CpYSt6k6h0cZ5IJNtrt0dCw,3450
49
58
  spikezoo/archs/ssir/models/networks.py,sha256=-qwwwC9SWcOzf_TcswnudoOVSjZNvRMiAg5-NRDl14I,1946
59
+ spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc,sha256=XIPbn93AwbktnfZg-8vtta2hwZPb4brACXlpDW8Qq6s,3753
60
+ spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc,sha256=aDgLebK54ox5R31d0clykxeI-r-F2KscEpnNtvT8MXE,2797
50
61
  spikezoo/archs/ssir/shells/eval_SREDS.sh,sha256=byjDfNb_NAO8z28L7Laktlc3qYZjfeY5qn0pkMmql9E,112
51
62
  spikezoo/archs/ssir/shells/train_SSIR.sh,sha256=y-LlaWNqOKwGUXKm2NodCgM3LYOIans25kN7CgDJ9z4,256
52
63
  spikezoo/archs/ssml/cbam.py,sha256=hfVI1vYpboEPRBMKWqWjVlqX41XQi7A4Pwou5PJlPXo,8869
53
64
  spikezoo/archs/ssml/model.py,sha256=DqTwDbwS7diZPxjVz580lAarPeZZ43EtaNjMJWN2Ujo,10354
54
65
  spikezoo/archs/ssml/res.png,sha256=o8VLsy8-znCM9ZoSbsBmV3dTd8O0R48JWyNtuIekQIY,37233
55
66
  spikezoo/archs/ssml/test.py,sha256=3yrMAWDBdhpyVjqNeuDtz1s2XemrR9ZXZDo8yTUAfac,2036
67
+ spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc,sha256=wtXvwDBTBBEeRhfmXeNAmbUN6puFxomELtQHk-xHnxA,8678
68
+ spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc,sha256=03q3e5HCRfL7sfk6jGSt2_OHYbOkxm7PFMnxnCG2yno,10275
56
69
  spikezoo/archs/stir/.git-credentials,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
57
70
  spikezoo/archs/stir/README.md,sha256=WA0QvTGiH8kDQ4mNwj4lnZHypKSDVf_UWXckXnXltJc,3223
58
71
  spikezoo/archs/stir/eval_SREDS.sh,sha256=dihTfrrr0jbkXEbpEStKgsk-t5L_4ehu9mpeMliJbME,144
@@ -68,10 +81,15 @@ spikezoo/archs/stir/datasets/ds_utils.py,sha256=RfQyC_8Y50-R-xnxlGooNwAoaTvviIlS
68
81
  spikezoo/archs/stir/metrics/losses.py,sha256=pOs0XYZuKPIjppWwEmx8CXpDPqhq5QcR0NMMUZUR01o,7768
69
82
  spikezoo/archs/stir/metrics/psnr.py,sha256=OntyhZtYIKEbdy5w-qwkl6mBt767W5pitDEjMmnqjRo,707
70
83
  spikezoo/archs/stir/metrics/ssim.py,sha256=RxVoEMJPgu370DWfDRE01UnTOorh-Xy0DldXQFhAi4o,1818
84
+ spikezoo/archs/stir/metrics/__pycache__/losses.cpython-39.pyc,sha256=Hm27WKQ09xoNWYX5kcgSparAi5gFxQdCP91h-FOREbA,8158
71
85
  spikezoo/archs/stir/models/Vgg19.py,sha256=BKYf51YqQantkuxGM5S3yD2a5Pf2nYBzEfmA0XqTjGU,1435
72
86
  spikezoo/archs/stir/models/networks_STIR.py,sha256=dU19BT2sAZMa-avJPdQvC48orMFUYsE05ZzWPIZA9Sg,15746
73
87
  spikezoo/archs/stir/models/submodules.py,sha256=gr0W8_ghP6pF5E5M1Ii58XYXOzR5ox8n0Xoh0vDAv6c,3360
74
88
  spikezoo/archs/stir/models/transformer_new.py,sha256=INZFO156bD4A0t5agChPT87uPDJXiu9gibXMORZgzxk,6343
89
+ spikezoo/archs/stir/models/__pycache__/Vgg19.cpython-39.pyc,sha256=RFOajG64AhTEkZ5pdTR5KrDJMF6MaQ-lYOz0yYvammE,1815
90
+ spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc,sha256=NnOiFfjAOB-WWGU-BFIWgNs-7IZdojuQYavj-AAnNSA,13530
91
+ spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc,sha256=zVNI7hYN7S2yvTKYJt8FIXSU5yUg1rfE4tyZ5zPrsWo,3640
92
+ spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc,sha256=N1ZPGfGsHXI9b1bwRAOh40eJWlmYfmK7DF9qDr248d0,5939
75
93
  spikezoo/archs/stir/package_core/setup.py,sha256=l0ZAYjzpqI6IvNFm5pHOmf5jmapFXqJSdOk8SBNupc0,112
76
94
  spikezoo/archs/stir/package_core/build/lib/package_core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
77
95
  spikezoo/archs/stir/package_core/build/lib/package_core/convertions.py,sha256=aKnq_wJ8sddEI2T0ITxukpDdiKsdt-zf3nzM2CHFxGs,26159
@@ -104,12 +122,19 @@ spikezoo/archs/stir/package_core/package_core/net_basics.py,sha256=QX_5zlC5-_ITT
104
122
  spikezoo/archs/stir/package_core/package_core/resnet.py,sha256=l93GwsKVBl75tUMYLZWkzZjNhO3B_Yoissb3oUdq3zE,13627
105
123
  spikezoo/archs/stir/package_core/package_core/transforms.py,sha256=_hE5Y6EWsxacwcfdI1jS-wCvwGkA32-k-4XLPVhquDY,3779
106
124
  spikezoo/archs/stir/package_core/package_core/utils.py,sha256=icSibxXKqEZyHL8GU1J0PMahCfxwVSwBtLGW_kHV25g,2316
125
+ spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc,sha256=kMkbhE8EH_BDTqvZladciovDa11NWsKJTLZor2XXliE,206
126
+ spikezoo/archs/stir/package_core/package_core/__pycache__/geometry.cpython-39.pyc,sha256=b3wYtOddbULtK8y2fHLQuaRFr1X3568MjczvZb64bQ4,16113
127
+ spikezoo/archs/stir/package_core/package_core/__pycache__/image_proc.cpython-39.pyc,sha256=GXlpcDvf7da_Fir1d1B1afIQ1SuDZM3_gcu8amdeBFE,5935
128
+ spikezoo/archs/stir/package_core/package_core/__pycache__/losses.cpython-39.pyc,sha256=2cR5ROQJ2m9-BS8smwVnfsSRw0pfQebjqF1VYu8o61Q,7343
129
+ spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc,sha256=ZHXtxnR4tYqkTl79drTDby1cu2c_SzgYBLQMMuyVwYQ,3622
107
130
  spikezoo/archs/stir/package_core/package_core.egg-info/PKG-INFO,sha256=2njov-JTXZp2Sgwyx7KSL0fIPNyOR-lUYSSxIiDQH_Q,56
108
131
  spikezoo/archs/stir/package_core/package_core.egg-info/SOURCES.txt,sha256=rTCDnAkAo4JuMaJgXeumnUODeQBpefgwT-dqrIUXoRc,541
109
132
  spikezoo/archs/stir/package_core/package_core.egg-info/dependency_links.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
110
133
  spikezoo/archs/stir/package_core/package_core.egg-info/top_level.txt,sha256=ezjGZVvZhOw8f-HRDngFtMvGh0NfvyT3sKcG4sSOSoc,13
111
134
  spikezoo/archs/tfi/nets.py,sha256=IpXGoemHjan6FpFZjt2VU-pWE6AptsTlCFf20ha86zo,1382
135
+ spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc,sha256=KTIjxwjuAFGlsBdoH81Iew4ik8Vy-lKxlohkbyewOac,1407
112
136
  spikezoo/archs/tfp/nets.py,sha256=mNngiPBEXcNH4yP6PiwOgsTS8dOhHvdnXq-UNuhfpxY,388
137
+ spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc,sha256=7IeKIZWK7KyFs7i4i_eBk5KQjHq4rIKVfkRNGIWDBHw,861
113
138
  spikezoo/archs/wgse/README.md,sha256=vUKBdCOV1MMr3ZqfXgiim99dYTERinrkzejhY-uwoiQ,3151
114
139
  spikezoo/archs/wgse/dataset.py,sha256=pCvOrFRHn7tCku1bAi9vLL_tPIZQnwj57mfvSjnwFgc,1822
115
140
  spikezoo/archs/wgse/demo.png,sha256=6SdZmRf6WYd6OHa1ll0F8msbnR_gsHiuqR3OLmYi1fU,64157
@@ -120,6 +145,8 @@ spikezoo/archs/wgse/submodules.py,sha256=qFsOnAFx7uwvIo9ymUPm3Yo6JvYnZYhrnnJyqFo
120
145
  spikezoo/archs/wgse/train.py,sha256=8y8rjTuTFiSnYR6wWibk_mTszsINV995BoO8nxR_u18,9361
121
146
  spikezoo/archs/wgse/transform.py,sha256=bX3jPacCJdOo1FZmDgIZgS5DWrkUs3kw8njJeHh0NLQ,4532
122
147
  spikezoo/archs/wgse/utils.py,sha256=UXTo8HoeB4BwSLXSbi3AyM1tokPnJ--Giz9ln2Yr0nQ,3892
148
+ spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc,sha256=8PBx9A-v2j4LfqbAZzLD-edbbAv-ZhWtGbwvEKMq_9k,3802
149
+ spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc,sha256=J5JCZwJBhWRP1JQXCrxPes1tJBg_ggKVym81aTsBpYQ,2179
123
150
  spikezoo/archs/wgse/logs/WGSE-Dwt1dNet-db8-5-ks3/log.txt,sha256=99XvHRXAhKc8E6JwP8fFBBjjFFEvrtOL2y17ibYXiZc,990
124
151
  spikezoo/archs/wgse/weights/demo.png,sha256=jy3xM3Fe_A4b79wbxHoiPGHzMmfK_LMcMs3Y9nT1i3o,69728
125
152
  spikezoo/data/base/test/gt/200_part1_key_id151.png,sha256=hkKTqpvv1Ms_xjcP3lQ2pyTswiCM1I7YLKR_ANqD5Bk,52637
@@ -134,29 +161,29 @@ spikezoo/data/base/train/gt/203_part4_key_id151.png,sha256=xUfdlXNWdPlRshLOaEF6u
134
161
  spikezoo/data/base/train/spike/203_part2_key_id151.dat,sha256=YEenLmbPvcxnKkVn3O7yDVYb-UwpM5OPlRhxVWLYy3Q,3762500
135
162
  spikezoo/data/base/train/spike/203_part3_key_id151.dat,sha256=MY9nM6XzKj-P-tRQ33WZ3G5xulNTpAXKP0y8ZQo7AIQ,3762500
136
163
  spikezoo/data/base/train/spike/203_part4_key_id151.dat,sha256=IVi2jics66YzpIF-WTkw47te4qOj9cjdgz56GmHpJKg,3762500
137
- spikezoo/datasets/__init__.py,sha256=lRJsvCfgbe3qrd9BKTlG9dsgfIJbfXqWOynnlAcBiUI,3346
138
- spikezoo/datasets/base_dataset.py,sha256=oQ_AqWuMlaKnR712_sJ4WiTbqqPqVsfcukDNpFDYXb0,5956
164
+ spikezoo/datasets/__init__.py,sha256=sfXZVnKGpDj0vKoWM0U6i-C9mqBQNLOm0UR8IgT5MyI,3262
165
+ spikezoo/datasets/base_dataset.py,sha256=MeBjGs41xvLTtAamH_cQpEQEhF1qbHKrO83LkTdatpE,5874
139
166
  spikezoo/datasets/realworld_dataset.py,sha256=VqT6zcLa72DL3Lg8f4TThhYUa1xSIifsrPwpjvk2uBE,726
140
167
  spikezoo/datasets/reds_base_dataset.py,sha256=W-IJv9H1bsKgp3RT3zsV40jw2PqY2M76jtIS4Qpif1o,859
141
- spikezoo/datasets/szdata_dataset.py,sha256=xvgkZFHNSQ-Sk_rqmgRKAqpeb2gYpt_gmstJKJ8ooqU,870
168
+ spikezoo/datasets/szdata_dataset.py,sha256=8RHc6RvYQestgca6gFtMzy7Z1NC4gBOvuPN7TdVdV7o,703
142
169
  spikezoo/datasets/uhsr_dataset.py,sha256=MKQeQsoCal10yMgHy3I7NJDgJJgkKgruH5tantP921A,1186
143
170
  spikezoo/metrics/__init__.py,sha256=LIKeWNeEMZLANITQD68XJBOhDq7iHiKC7ExtdrXMyQs,3273
144
- spikezoo/models/__init__.py,sha256=QZTELBoM3bUW8jZoxN4OuA2RYKeVUT1fboyeIuK8Rtk,1722
171
+ spikezoo/models/__init__.py,sha256=JJTRhRIdSPe9WQx-PV1k-Vzt3ZCqzCF_9RQBewkFdhw,2253
145
172
  spikezoo/models/base_model.py,sha256=v3TD4AmjttTZUg0vEy736TOFdbbBgDLZg_RL-b4-vYM,9152
146
- spikezoo/models/bsf_model.py,sha256=XeZcVC_ODJxyS_I6-CtzlHXSWntgsUtbuAKjczIQ_0M,3972
173
+ spikezoo/models/bsf_model.py,sha256=yfVin-vctA2w9HoaivVWMMVGpGrH_LnbVc0DeSY9pTk,3922
147
174
  spikezoo/models/spcsnet_model.py,sha256=kLzv-ASXZGnqEFx0jUBONBeRCrsnQ_omkQUYEnr6uJc,540
148
175
  spikezoo/models/spikeclip_model.py,sha256=Ej84RuYbkFRthtBMV1JtmTkUshAqINlrrJ7yiKIsC9s,1125
149
- spikezoo/models/spk2imgnet_model.py,sha256=ghdO1oECrRBijvGNT89H5XDi9CvWfbY3wOzmuCrgMJ0,1565
176
+ spikezoo/models/spk2imgnet_model.py,sha256=gkxWswWkv05mCey2SiWefhfwebu09JcNtWDVBOiZA_w,1515
150
177
  spikezoo/models/ssir_model.py,sha256=8tg36eLKAQEOfYiFW-XyO6RfvCLxUXz0fVhTtZ-Dw-Q,625
151
178
  spikezoo/models/ssml_model.py,sha256=pCo2Wp38cRWSqGFEddsteEby_My4Rp-MKIx_g4kjoHo,2380
152
- spikezoo/models/stir_model.py,sha256=htsqhOboIc3GWvQc9gXxyaSI2SYR3TdZR691uV5LZ5s,2193
179
+ spikezoo/models/stir_model.py,sha256=GvVrsuQmElxKsRgsvPmq-tygOEauUYYbvMbYPSKV_Mo,2143
153
180
  spikezoo/models/tfi_model.py,sha256=tgD_HsiXk9jGuh5f_Bh6c3BqJi1p5DWCVo4N1tp5fgs,663
154
181
  spikezoo/models/tfp_model.py,sha256=ihl1H__bWIbE9oair_t8rNJ5qnPJPKl-r_DpaO-0Sdk,663
155
- spikezoo/models/wgse_model.py,sha256=Kl9uV-LeO0Lj7SuPQ9pglw1Khs2b-7miS3A_faL6WSU,805
182
+ spikezoo/models/wgse_model.py,sha256=DyKcteSRbu5qPs38g_G9WpxNbVW7RXTe3DYq-ZiBoEc,755
156
183
  spikezoo/pipeline/__init__.py,sha256=WPsukNR4cannwsghiukqNsWbWGH5DVPapR_Ly-WOU4Q,188
157
- spikezoo/pipeline/base_pipeline.py,sha256=3laGM-cMhNTSfCXx5jY53V8GY5BhPhHK48yjqm-Gre0,13478
184
+ spikezoo/pipeline/base_pipeline.py,sha256=qob88qk_FAA_sg5NtTYLHsFfk77yzbDuIy62VnaSmYg,13473
158
185
  spikezoo/pipeline/ensemble_pipeline.py,sha256=ljZkGiCCpxvpC04Aa-r_tvBnqcBpUVi9fl_878tJAcg,2555
159
- spikezoo/pipeline/train_cfgs.py,sha256=6NO7DfPc7yjJfOrcIPQPfUPbUODz6eRKurEIDjMmaxA,3836
186
+ spikezoo/pipeline/train_cfgs.py,sha256=ZzTGKlAwkQGDsI0CBfT0qs6a_sVfSWJWJJgTEjQk7C8,3028
160
187
  spikezoo/pipeline/train_pipeline.py,sha256=BgHUsdv33B_OKauOVclNt7yIPb-_O-93ZHLHIjrwWaA,8459
161
188
  spikezoo/utils/__init__.py,sha256=bYLlusAXwLCoY4s6nhVgviax9ioRA9aea8qgRmj2HpI,152
162
189
  spikezoo/utils/data_utils.py,sha256=mk1xeyIb7o_E1J7Z6-gtPq-rpKiMTxAWSTcvvPvVku8,2033
@@ -164,10 +191,10 @@ spikezoo/utils/img_utils.py,sha256=0O9z58VzLxQEAuz-GGWCbpeHuHPOCpgBVjCBV9kf6sI,2
164
191
  spikezoo/utils/optimizer_utils.py,sha256=jvcd4zTY2LCJH6wCwOZ0lsAuJQm6LIVzbprLO3ojYCY,744
165
192
  spikezoo/utils/other_utils.py,sha256=uWNWaII9Jv7fkWNfkAD9wD-4ID-GAzbR-gGYT-1FF_c,3360
166
193
  spikezoo/utils/scheduler_utils.py,sha256=5RBh-hl3-2y-IomxMs47T1p3JsbicZNYLza6q1uAKHo,828
167
- spikezoo/utils/spike_utils.py,sha256=u4Haa6Sp5xFqs61ztvq161oXTA_aZmNW3VYUZcayNW0,4296
194
+ spikezoo/utils/spike_utils.py,sha256=bIUm-6Z3MXjBuLNTMR50L-_pWIWFwL3wuamsUSrwM_s,4297
168
195
  spikezoo/utils/vidar_loader.cpython-39-x86_64-linux-gnu.so,sha256=uXqu7ME---cZRRU5LUcLiNrjjtlOjxNwWHyTIQ10BGg,199088
169
- spikezoo-0.2.3.3.dist-info/LICENSE.txt,sha256=ukEi8E0PKq1dQGTXHUflg3rppLymwAhr7il9x-0nPgg,1062
170
- spikezoo-0.2.3.3.dist-info/METADATA,sha256=3aqIRpJr6TAfjldU8ZLmWy6uuCUla400W5tGpkH-X2M,11941
171
- spikezoo-0.2.3.3.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
172
- spikezoo-0.2.3.3.dist-info/top_level.txt,sha256=xF2iuOstrACJh43NW4dsTwIdgKfXPXAb_Xzl3M1ricM,9
173
- spikezoo-0.2.3.3.dist-info/RECORD,,
196
+ spikezoo-0.2.3.5.dist-info/LICENSE.txt,sha256=ukEi8E0PKq1dQGTXHUflg3rppLymwAhr7il9x-0nPgg,1062
197
+ spikezoo-0.2.3.5.dist-info/METADATA,sha256=kUdhbWzKg2nC7Bf7nzH5wHxzWQw3HmWrtm0hG95GTis,12016
198
+ spikezoo-0.2.3.5.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
199
+ spikezoo-0.2.3.5.dist-info/top_level.txt,sha256=xF2iuOstrACJh43NW4dsTwIdgKfXPXAb_Xzl3M1ricM,9
200
+ spikezoo-0.2.3.5.dist-info/RECORD,,