spikezoo 0.2.2__py3-none-any.whl → 0.2.3.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (86) hide show
  1. spikezoo/__init__.py +23 -7
  2. spikezoo/archs/bsf/models/bsf/bsf.py +37 -25
  3. spikezoo/archs/bsf/models/bsf/rep.py +2 -2
  4. spikezoo/archs/spk2imgnet/nets.py +1 -1
  5. spikezoo/archs/ssir/models/networks.py +1 -1
  6. spikezoo/archs/ssml/model.py +9 -5
  7. spikezoo/archs/stir/metrics/losses.py +1 -1
  8. spikezoo/archs/stir/models/networks_STIR.py +16 -9
  9. spikezoo/archs/tfi/nets.py +1 -1
  10. spikezoo/archs/tfp/nets.py +1 -1
  11. spikezoo/archs/wgse/dwtnets.py +6 -6
  12. spikezoo/datasets/__init__.py +11 -9
  13. spikezoo/datasets/base_dataset.py +10 -3
  14. spikezoo/datasets/realworld_dataset.py +1 -3
  15. spikezoo/datasets/{reds_small_dataset.py → reds_base_dataset.py} +9 -8
  16. spikezoo/datasets/reds_ssir_dataset.py +181 -0
  17. spikezoo/datasets/szdata_dataset.py +5 -15
  18. spikezoo/datasets/uhsr_dataset.py +4 -3
  19. spikezoo/models/__init__.py +8 -6
  20. spikezoo/models/base_model.py +120 -64
  21. spikezoo/models/bsf_model.py +11 -3
  22. spikezoo/models/spcsnet_model.py +19 -0
  23. spikezoo/models/spikeclip_model.py +4 -3
  24. spikezoo/models/spk2imgnet_model.py +9 -15
  25. spikezoo/models/ssir_model.py +4 -6
  26. spikezoo/models/ssml_model.py +44 -2
  27. spikezoo/models/stir_model.py +26 -5
  28. spikezoo/models/tfi_model.py +3 -1
  29. spikezoo/models/tfp_model.py +4 -2
  30. spikezoo/models/wgse_model.py +8 -14
  31. spikezoo/pipeline/base_pipeline.py +79 -55
  32. spikezoo/pipeline/ensemble_pipeline.py +10 -9
  33. spikezoo/pipeline/train_cfgs.py +89 -0
  34. spikezoo/pipeline/train_pipeline.py +129 -30
  35. spikezoo/utils/optimizer_utils.py +22 -0
  36. spikezoo/utils/other_utils.py +31 -6
  37. spikezoo/utils/scheduler_utils.py +25 -0
  38. spikezoo/utils/spike_utils.py +61 -29
  39. spikezoo-0.2.3.2.dist-info/METADATA +263 -0
  40. {spikezoo-0.2.2.dist-info → spikezoo-0.2.3.2.dist-info}/RECORD +43 -80
  41. spikezoo/archs/__pycache__/__init__.cpython-39.pyc +0 -0
  42. spikezoo/archs/base/__pycache__/nets.cpython-39.pyc +0 -0
  43. spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc +0 -0
  44. spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc +0 -0
  45. spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc +0 -0
  46. spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc +0 -0
  47. spikezoo/archs/spikeformer/CheckPoints/readme +0 -1
  48. spikezoo/archs/spikeformer/DataProcess/DataExtactor.py +0 -60
  49. spikezoo/archs/spikeformer/DataProcess/DataLoader.py +0 -115
  50. spikezoo/archs/spikeformer/DataProcess/LoadSpike.py +0 -39
  51. spikezoo/archs/spikeformer/EvalResults/readme +0 -1
  52. spikezoo/archs/spikeformer/LICENSE +0 -21
  53. spikezoo/archs/spikeformer/Metrics/Metrics.py +0 -50
  54. spikezoo/archs/spikeformer/Metrics/__init__.py +0 -0
  55. spikezoo/archs/spikeformer/Model/Loss.py +0 -89
  56. spikezoo/archs/spikeformer/Model/SpikeFormer.py +0 -230
  57. spikezoo/archs/spikeformer/Model/__init__.py +0 -0
  58. spikezoo/archs/spikeformer/Model/__pycache__/SpikeFormer.cpython-39.pyc +0 -0
  59. spikezoo/archs/spikeformer/Model/__pycache__/__init__.cpython-39.pyc +0 -0
  60. spikezoo/archs/spikeformer/README.md +0 -30
  61. spikezoo/archs/spikeformer/evaluate.py +0 -87
  62. spikezoo/archs/spikeformer/recon_real_data.py +0 -97
  63. spikezoo/archs/spikeformer/requirements.yml +0 -95
  64. spikezoo/archs/spikeformer/train.py +0 -173
  65. spikezoo/archs/spikeformer/utils.py +0 -22
  66. spikezoo/archs/spk2imgnet/__pycache__/DCNv2.cpython-39.pyc +0 -0
  67. spikezoo/archs/spk2imgnet/__pycache__/align_arch.cpython-39.pyc +0 -0
  68. spikezoo/archs/spk2imgnet/__pycache__/nets.cpython-39.pyc +0 -0
  69. spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc +0 -0
  70. spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc +0 -0
  71. spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc +0 -0
  72. spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc +0 -0
  73. spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc +0 -0
  74. spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc +0 -0
  75. spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc +0 -0
  76. spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc +0 -0
  77. spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc +0 -0
  78. spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc +0 -0
  79. spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc +0 -0
  80. spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc +0 -0
  81. spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc +0 -0
  82. spikezoo/models/spikeformer_model.py +0 -50
  83. spikezoo-0.2.2.dist-info/METADATA +0 -196
  84. {spikezoo-0.2.2.dist-info → spikezoo-0.2.3.2.dist-info}/LICENSE.txt +0 -0
  85. {spikezoo-0.2.2.dist-info → spikezoo-0.2.3.2.dist-info}/WHEEL +0 -0
  86. {spikezoo-0.2.2.dist-info → spikezoo-0.2.3.2.dist-info}/top_level.txt +0 -0
@@ -1,8 +1,6 @@
1
- spikezoo/__init__.py,sha256=edeJMa3xcfGEZTxMO4Z7YZTh4gtBnYkCGrT7aOYse2c,283
1
+ spikezoo/__init__.py,sha256=3z97Jy20aDJoK3e1ECXneY-i5jLj9Idop5ClHeJLYGE,604
2
2
  spikezoo/archs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
- spikezoo/archs/__pycache__/__init__.cpython-39.pyc,sha256=Ba5cgbZ2jiTexmzMbqpADlFBQGzqLPtU-YbGhY9wJa0,175
4
3
  spikezoo/archs/base/nets.py,sha256=j-XDEkntYl4M6xe-jqyUOhFBlhh8efNwy4qu-WVqjc4,1311
5
- spikezoo/archs/base/__pycache__/nets.cpython-39.pyc,sha256=Ie9588wEf8hRFO7donRgviMdoSK4jeeGZn56FDa_tg8,1554
6
4
  spikezoo/archs/bsf/README.md,sha256=maT9K0dZcwFPiYWmFISVogF-INTwNr6alqHSNKlk7G0,2777
7
5
  spikezoo/archs/bsf/main.py,sha256=at4CWWqaoGo1k6PqRBOi_PixtDPmND6_7mU6LvWWnLI,15136
8
6
  spikezoo/archs/bsf/requirements.txt,sha256=ZQCaKDZAJvmFtKPcbDSIP3gBpg_YdvwCpaDkS__kfHE,79
@@ -14,12 +12,9 @@ spikezoo/archs/bsf/metrics/psnr.py,sha256=OntyhZtYIKEbdy5w-qwkl6mBt767W5pitDEjMm
14
12
  spikezoo/archs/bsf/metrics/ssim.py,sha256=RxVoEMJPgu370DWfDRE01UnTOorh-Xy0DldXQFhAi4o,1818
15
13
  spikezoo/archs/bsf/models/get_model.py,sha256=acp0f10J81ue_lSJHlMfGeMq7IijZmPsw9Trg0nqKiQ,129
16
14
  spikezoo/archs/bsf/models/bsf/align.py,sha256=X_Ud0oCZSYGFQ8DWvOG4yozUaDOJi4X44vBiXsBThiI,7979
17
- spikezoo/archs/bsf/models/bsf/bsf.py,sha256=cgm_nEl-XMWUz7EOm8aVmfqB5PorT1YsP9GZ-57rNMY,3480
15
+ spikezoo/archs/bsf/models/bsf/bsf.py,sha256=W3xwHXcKODJqfSRc_Kn-7C_YjVGpse_mZ2tbrDJ6w0Q,4060
18
16
  spikezoo/archs/bsf/models/bsf/dsft_convert.py,sha256=xpFwWFl1ms9LxaA96xdDOf-h_S6foScc3oh-nGjSG-o,3110
19
- spikezoo/archs/bsf/models/bsf/rep.py,sha256=xD0nNjEQdmBwzMlUEQxYmLmZBx8ieGwbIy-v_1CeXw8,1643
20
- spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc,sha256=vGZzrpGGFZeVzf-FGdA3Sq8u87y7CZ-wC93vgPwkT4E,7082
21
- spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc,sha256=XreuEfY7R00NN4GXjZQpt_x44n6vIfjDher7qNOWq5c,4216
22
- spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc,sha256=RtKNwwHV0-vQ3AKGyDUeaeDVFopQLsVDEIdqklJIAxw,1860
17
+ spikezoo/archs/bsf/models/bsf/rep.py,sha256=Y3YPADL6ndu4u7RwYUFqmGVUqzW0HbgXKu4Z7x52Alg,1660
23
18
  spikezoo/archs/bsf/prepare_data/DSFT.py,sha256=RDFREQc-pAGxpETgb1umjQNnLAmpqsRpEmsrjrG4hEU,2203
24
19
  spikezoo/archs/bsf/prepare_data/crop_dataset_train.py,sha256=CpKIhI8kc5TzWMGSHY33IlROBTrXrY0kVGxKLvwjcvo,6050
25
20
  spikezoo/archs/bsf/prepare_data/crop_dataset_val.py,sha256=Zrfe2rsnHXB-TikO9J6s0SL_u0jg492NgXSCebgvK5A,6009
@@ -27,39 +22,16 @@ spikezoo/archs/bsf/prepare_data/crop_train.sh,sha256=VoIqvQ1TWSj5uvkcp6EZIo28egI
27
22
  spikezoo/archs/bsf/prepare_data/crop_val.sh,sha256=PY45EGOvdn89hAUWmeIwHrzzMWmwBbqGYgh0y5oYzP4,185
28
23
  spikezoo/archs/bsf/prepare_data/io_utils.py,sha256=GUs7ocNekOKMSfMNjHAWbZFSOWXiLRtboQLl5NiY-CI,1850
29
24
  spikezoo/archs/spikeclip/nets.py,sha256=j2rPD3AFWLl142XxmQL4PxWw06f4gHi8zjBUjndJ8pQ,1433
30
- spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc,sha256=Bp7ISUzHzcIj5ebzUzry2pDrWdg1dlr-GH72wWTHkiM,1570
31
- spikezoo/archs/spikeformer/LICENSE,sha256=YYnrgInlCj2xhRzxoWJZDx6DGHe85AxmozL-SyCrW8k,1069
32
- spikezoo/archs/spikeformer/README.md,sha256=e1OWqkquJpkAG-TpzB6M0Eaob2-I0zgYgk70kanLoOk,1089
33
- spikezoo/archs/spikeformer/evaluate.py,sha256=4orJqfDyfXNiRJpOJP_JdybdcoGHMV8ugMMhGn6WX8Q,2986
34
- spikezoo/archs/spikeformer/recon_real_data.py,sha256=GxWPYJLJRpzAp0p1XfH1wBlgt5aY-RH6UxVRm7AV17s,3250
35
- spikezoo/archs/spikeformer/requirements.yml,sha256=v-9a7_nyM1Rj6rZPiXPD9pxMIm0C1BO9qOyjCgdHQzI,2856
36
- spikezoo/archs/spikeformer/train.py,sha256=t8N38QUw4NagABV5gkgWi_UssbDQOcTmOgGmZJDrToA,6655
37
- spikezoo/archs/spikeformer/utils.py,sha256=DK0qJA01_Hs0VL9pcdyHdctJoJVr2zTPkWhk-6aT6yk,821
38
- spikezoo/archs/spikeformer/CheckPoints/readme,sha256=h_HwP9-B0O3-fBTUVNNXcoGzVV6KBFakWSlXJGlpIRg,47
39
- spikezoo/archs/spikeformer/DataProcess/DataExtactor.py,sha256=N_OMPASjaqXOQhGokGPehrMUwaxgh9ybF_diVycRuA8,1319
40
- spikezoo/archs/spikeformer/DataProcess/DataLoader.py,sha256=28T5hlS1qZVhHbtn1CS22V7uqX_BXlD-GqAz3HyoFOc,2951
41
- spikezoo/archs/spikeformer/DataProcess/LoadSpike.py,sha256=sR4tIiKLBxEyF8bzNjLJsILmBNSlYjKs8On_-c-M3yk,1580
42
- spikezoo/archs/spikeformer/EvalResults/readme,sha256=o3kRLSB6ZZPRW4naL9EghJuMvsLOnrHKauVMfWItnBM,83
43
- spikezoo/archs/spikeformer/Metrics/Metrics.py,sha256=YxfJSL_8UqASCy2R2G-ZCumdRFGNFCxksk8PlMwpStM,1240
44
- spikezoo/archs/spikeformer/Metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
45
- spikezoo/archs/spikeformer/Model/Loss.py,sha256=evR1RuiU-A63p1llK_TdFJ0BCyf9l2yVraoKzzlMzEM,3183
46
- spikezoo/archs/spikeformer/Model/SpikeFormer.py,sha256=W_nSR4m2YlE_EUaVNcz_eB8QO3Ns5dJUhOzIPL20yZc,7171
47
- spikezoo/archs/spikeformer/Model/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
48
- spikezoo/archs/spikeformer/Model/__pycache__/SpikeFormer.cpython-39.pyc,sha256=_ofZvPDudojhpBGitJ9BP-lHQPlVLH5hwo1fi8W2E3E,7057
49
- spikezoo/archs/spikeformer/Model/__pycache__/__init__.cpython-39.pyc,sha256=QxKCbkXZoN8TlFT05KDorzQWZH4eXsOTYTl0y_-J-8o,193
50
25
  spikezoo/archs/spk2imgnet/.gitignore,sha256=LvYh4-uHW8ZL6P5S7I6f35ZaKULvuVoBQ06ia6r1llM,2148
51
26
  spikezoo/archs/spk2imgnet/DCNv2.py,sha256=KqAWzoOQFX1eEqaIP90Ahhj88qvk2K-J21WyzOMQwt4,4715
52
27
  spikezoo/archs/spk2imgnet/align_arch.py,sha256=NpEDZy4YX2JD6mNrw1FOfyPpMqQ866ylYktl-kRzwIU,6264
53
28
  spikezoo/archs/spk2imgnet/dataset.py,sha256=ROGBtAYtIfTLAmpCUpEkYeLWTAC8QGMpS8Tfq7jK-K8,4794
54
- spikezoo/archs/spk2imgnet/nets.py,sha256=_VFExW8fLcxrjAf8WYgqKgZhliOa5WI_lziVFOpa7nI,8039
29
+ spikezoo/archs/spk2imgnet/nets.py,sha256=ELEqYElUWp-NNHA9cF2ABweWiSVZ9IJYb2OLQ106WgQ,8061
55
30
  spikezoo/archs/spk2imgnet/readme.md,sha256=0uYl7DEeXQ7EmioqIHAkmkWXIcvxpY6n12hFTwpyjr0,2591
56
31
  spikezoo/archs/spk2imgnet/test_gen_imgseq.py,sha256=UpqerSdtF5qMODIxAuVY3JnhsPy8GjNQA_4xl5X7dwk,4359
57
32
  spikezoo/archs/spk2imgnet/train.py,sha256=ncNwAhFlAhDd4rMkSeAjBhRECp2En1hAZn2-RH7jVpU,6195
58
33
  spikezoo/archs/spk2imgnet/utils.py,sha256=Gc-05AJDfiXqkDAaiTeLBa2oiD78l1PPrBP6frlFy30,1924
59
34
  spikezoo/archs/spk2imgnet/.github/workflows/pylint.yml,sha256=lNUdbM2y3yOGPPrGUNDjnQL3fJnswtFIsuLpchBfLAc,553
60
- spikezoo/archs/spk2imgnet/__pycache__/DCNv2.cpython-39.pyc,sha256=1mSOxJwgg-5bCAwqgIp6VOUWmHpaRv4ILnkgEiCGaI0,4095
61
- spikezoo/archs/spk2imgnet/__pycache__/align_arch.cpython-39.pyc,sha256=WqnFKRXqXZY74-4CBp9vpebg98tzwrSsvXibOU1AzO8,4361
62
- spikezoo/archs/spk2imgnet/__pycache__/nets.cpython-39.pyc,sha256=Kam188Xp8paFk0ZhgzHfOrNibFDExu53MQNge5aM6lI,5862
63
35
  spikezoo/archs/ssir/README.md,sha256=0e56N8SqYfDRgyoyxaMctJqJ2DeWdQ4NUlLDQEUr2O0,2518
64
36
  spikezoo/archs/ssir/losses.py,sha256=mUEghvJQoLM4bTs0AmDa5sZedEHWo_GksW2ojNWYYC8,623
65
37
  spikezoo/archs/ssir/main.py,sha256=Pn0mmUST4hg_BJPOU6NWvorjuZ0OHncFOzVEtxDEPQQ,12054
@@ -74,17 +46,13 @@ spikezoo/archs/ssir/metrics/psnr.py,sha256=OntyhZtYIKEbdy5w-qwkl6mBt767W5pitDEjM
74
46
  spikezoo/archs/ssir/metrics/ssim.py,sha256=RxVoEMJPgu370DWfDRE01UnTOorh-Xy0DldXQFhAi4o,1818
75
47
  spikezoo/archs/ssir/models/Vgg19.py,sha256=BKYf51YqQantkuxGM5S3yD2a5Pf2nYBzEfmA0XqTjGU,1435
76
48
  spikezoo/archs/ssir/models/layers.py,sha256=gYShN5cp3B1GaNmQD5_6CpYSt6k6h0cZ5IJNtrt0dCw,3450
77
- spikezoo/archs/ssir/models/networks.py,sha256=LtcYT_SU3-X-XFCDfsyMMbe1lPe0I0eiW8oNClwsjdE,1948
78
- spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc,sha256=jUAodYnILqoNJWWU2P5b1EgGItM2cSppoYWeQNKtals,3753
79
- spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc,sha256=XiOQdwmw-VLLBw4LEvE8PWP8nouKX6IXu_HXOB8DGHw,2799
49
+ spikezoo/archs/ssir/models/networks.py,sha256=-qwwwC9SWcOzf_TcswnudoOVSjZNvRMiAg5-NRDl14I,1946
80
50
  spikezoo/archs/ssir/shells/eval_SREDS.sh,sha256=byjDfNb_NAO8z28L7Laktlc3qYZjfeY5qn0pkMmql9E,112
81
51
  spikezoo/archs/ssir/shells/train_SSIR.sh,sha256=y-LlaWNqOKwGUXKm2NodCgM3LYOIans25kN7CgDJ9z4,256
82
52
  spikezoo/archs/ssml/cbam.py,sha256=hfVI1vYpboEPRBMKWqWjVlqX41XQi7A4Pwou5PJlPXo,8869
83
- spikezoo/archs/ssml/model.py,sha256=ILN9LRoY_WZYASMSSUsCpQPabAF2kybPkW4OwCiU_nE,10220
53
+ spikezoo/archs/ssml/model.py,sha256=DqTwDbwS7diZPxjVz580lAarPeZZ43EtaNjMJWN2Ujo,10354
84
54
  spikezoo/archs/ssml/res.png,sha256=o8VLsy8-znCM9ZoSbsBmV3dTd8O0R48JWyNtuIekQIY,37233
85
55
  spikezoo/archs/ssml/test.py,sha256=3yrMAWDBdhpyVjqNeuDtz1s2XemrR9ZXZDo8yTUAfac,2036
86
- spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc,sha256=wtXvwDBTBBEeRhfmXeNAmbUN6puFxomELtQHk-xHnxA,8678
87
- spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc,sha256=tgYpLrpWboUAruKwXbzvdCe78ODXryO0lGKgRt2u7to,10192
88
56
  spikezoo/archs/stir/.git-credentials,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
89
57
  spikezoo/archs/stir/README.md,sha256=WA0QvTGiH8kDQ4mNwj4lnZHypKSDVf_UWXckXnXltJc,3223
90
58
  spikezoo/archs/stir/eval_SREDS.sh,sha256=dihTfrrr0jbkXEbpEStKgsk-t5L_4ehu9mpeMliJbME,144
@@ -97,16 +65,13 @@ spikezoo/archs/stir/configs/utils.py,sha256=ebPww68XHeS2Ip8G8FD7AxRDh2-cPk1VFKBP
97
65
  spikezoo/archs/stir/configs/yml_parser.py,sha256=4IMJSoMKyBU00Qv4K7mmRBT0YFCLPHb7h7J0pIGtBLo,2078
98
66
  spikezoo/archs/stir/datasets/dataset_sreds.py,sha256=lN-woOl1RJ1Q5t7ttPIZizdkUMtYCTfXj_LAn78kqr4,6803
99
67
  spikezoo/archs/stir/datasets/ds_utils.py,sha256=RfQyC_8Y50-R-xnxlGooNwAoaTvviIlSQrrRIgDMGqc,1939
100
- spikezoo/archs/stir/metrics/losses.py,sha256=BDMKLMrAb7L_4zWzS3nXoW9RKjFrYyl9PeiZpYoW5V4,7753
68
+ spikezoo/archs/stir/metrics/losses.py,sha256=pOs0XYZuKPIjppWwEmx8CXpDPqhq5QcR0NMMUZUR01o,7768
101
69
  spikezoo/archs/stir/metrics/psnr.py,sha256=OntyhZtYIKEbdy5w-qwkl6mBt767W5pitDEjMmnqjRo,707
102
70
  spikezoo/archs/stir/metrics/ssim.py,sha256=RxVoEMJPgu370DWfDRE01UnTOorh-Xy0DldXQFhAi4o,1818
103
71
  spikezoo/archs/stir/models/Vgg19.py,sha256=BKYf51YqQantkuxGM5S3yD2a5Pf2nYBzEfmA0XqTjGU,1435
104
- spikezoo/archs/stir/models/networks_STIR.py,sha256=KA0_qYBDcD_DJ6eafmvYlSpRyfVt8i8rG88BQ-IBAI4,15290
72
+ spikezoo/archs/stir/models/networks_STIR.py,sha256=dU19BT2sAZMa-avJPdQvC48orMFUYsE05ZzWPIZA9Sg,15746
105
73
  spikezoo/archs/stir/models/submodules.py,sha256=gr0W8_ghP6pF5E5M1Ii58XYXOzR5ox8n0Xoh0vDAv6c,3360
106
74
  spikezoo/archs/stir/models/transformer_new.py,sha256=INZFO156bD4A0t5agChPT87uPDJXiu9gibXMORZgzxk,6343
107
- spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc,sha256=GZ5MB9hqinl17F51CtdfYw0EoC75eQF4SGhrwb_WcKk,13282
108
- spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc,sha256=zVNI7hYN7S2yvTKYJt8FIXSU5yUg1rfE4tyZ5zPrsWo,3640
109
- spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc,sha256=N1ZPGfGsHXI9b1bwRAOh40eJWlmYfmK7DF9qDr248d0,5939
110
75
  spikezoo/archs/stir/package_core/setup.py,sha256=l0ZAYjzpqI6IvNFm5pHOmf5jmapFXqJSdOk8SBNupc0,112
111
76
  spikezoo/archs/stir/package_core/build/lib/package_core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
112
77
  spikezoo/archs/stir/package_core/build/lib/package_core/convertions.py,sha256=aKnq_wJ8sddEI2T0ITxukpDdiKsdt-zf3nzM2CHFxGs,26159
@@ -139,28 +104,22 @@ spikezoo/archs/stir/package_core/package_core/net_basics.py,sha256=QX_5zlC5-_ITT
139
104
  spikezoo/archs/stir/package_core/package_core/resnet.py,sha256=l93GwsKVBl75tUMYLZWkzZjNhO3B_Yoissb3oUdq3zE,13627
140
105
  spikezoo/archs/stir/package_core/package_core/transforms.py,sha256=_hE5Y6EWsxacwcfdI1jS-wCvwGkA32-k-4XLPVhquDY,3779
141
106
  spikezoo/archs/stir/package_core/package_core/utils.py,sha256=icSibxXKqEZyHL8GU1J0PMahCfxwVSwBtLGW_kHV25g,2316
142
- spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc,sha256=kMkbhE8EH_BDTqvZladciovDa11NWsKJTLZor2XXliE,206
143
- spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc,sha256=ZHXtxnR4tYqkTl79drTDby1cu2c_SzgYBLQMMuyVwYQ,3622
144
107
  spikezoo/archs/stir/package_core/package_core.egg-info/PKG-INFO,sha256=2njov-JTXZp2Sgwyx7KSL0fIPNyOR-lUYSSxIiDQH_Q,56
145
108
  spikezoo/archs/stir/package_core/package_core.egg-info/SOURCES.txt,sha256=rTCDnAkAo4JuMaJgXeumnUODeQBpefgwT-dqrIUXoRc,541
146
109
  spikezoo/archs/stir/package_core/package_core.egg-info/dependency_links.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
147
110
  spikezoo/archs/stir/package_core/package_core.egg-info/top_level.txt,sha256=ezjGZVvZhOw8f-HRDngFtMvGh0NfvyT3sKcG4sSOSoc,13
148
- spikezoo/archs/tfi/nets.py,sha256=Sw4Oy92DS2DqrxzS7P02-cN1JQDq35SnngcbrM8VTEk,1377
149
- spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc,sha256=4fzCYhy51OyXFeAtEWzNCXCRPDtsRDyS3kfGByg5zhg,1393
150
- spikezoo/archs/tfp/nets.py,sha256=e1UzuOizrXX3AaW0fvIvvjyqZ905La2EFCWJlytk7A0,383
151
- spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc,sha256=HsOsttvdfAoTFsq1HTsFhaDnOU9ZJ6LFZG0XSgvNMYk,847
111
+ spikezoo/archs/tfi/nets.py,sha256=IpXGoemHjan6FpFZjt2VU-pWE6AptsTlCFf20ha86zo,1382
112
+ spikezoo/archs/tfp/nets.py,sha256=mNngiPBEXcNH4yP6PiwOgsTS8dOhHvdnXq-UNuhfpxY,388
152
113
  spikezoo/archs/wgse/README.md,sha256=vUKBdCOV1MMr3ZqfXgiim99dYTERinrkzejhY-uwoiQ,3151
153
114
  spikezoo/archs/wgse/dataset.py,sha256=pCvOrFRHn7tCku1bAi9vLL_tPIZQnwj57mfvSjnwFgc,1822
154
115
  spikezoo/archs/wgse/demo.png,sha256=6SdZmRf6WYd6OHa1ll0F8msbnR_gsHiuqR3OLmYi1fU,64157
155
116
  spikezoo/archs/wgse/demo.py,sha256=9lQDIi5at95ky0ccRdcdYYxiA9U8anX2DsXTlZTIQaQ,2416
156
- spikezoo/archs/wgse/dwtnets.py,sha256=fyLM6O1GsPVGvaZwzq0kz8jc9kVS5bElpFbLTjbrfKY,4089
117
+ spikezoo/archs/wgse/dwtnets.py,sha256=oCKQspqO_61IkXdFMxKTlK6HXge2FcqfObx9Llb426U,4096
157
118
  spikezoo/archs/wgse/eval.py,sha256=5Daj-1eoYRqjgp3hf6W3m54jtcVoydBPBb0bR0ZIDF0,3888
158
119
  spikezoo/archs/wgse/submodules.py,sha256=qFsOnAFx7uwvIo9ymUPm3Yo6JvYnZYhrnnJyqFoPJWw,2326
159
120
  spikezoo/archs/wgse/train.py,sha256=8y8rjTuTFiSnYR6wWibk_mTszsINV995BoO8nxR_u18,9361
160
121
  spikezoo/archs/wgse/transform.py,sha256=bX3jPacCJdOo1FZmDgIZgS5DWrkUs3kw8njJeHh0NLQ,4532
161
122
  spikezoo/archs/wgse/utils.py,sha256=UXTo8HoeB4BwSLXSbi3AyM1tokPnJ--Giz9ln2Yr0nQ,3892
162
- spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc,sha256=U0zs8m7ZzDRqrclKEeU5z5YFBBHjEbzChrOCXWMMp-I,3780
163
- spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc,sha256=J5JCZwJBhWRP1JQXCrxPes1tJBg_ggKVym81aTsBpYQ,2179
164
123
  spikezoo/archs/wgse/logs/WGSE-Dwt1dNet-db8-5-ks3/log.txt,sha256=99XvHRXAhKc8E6JwP8fFBBjjFFEvrtOL2y17ibYXiZc,990
165
124
  spikezoo/archs/wgse/weights/demo.png,sha256=jy3xM3Fe_A4b79wbxHoiPGHzMmfK_LMcMs3Y9nT1i3o,69728
166
125
  spikezoo/data/base/test/gt/200_part1_key_id151.png,sha256=hkKTqpvv1Ms_xjcP3lQ2pyTswiCM1I7YLKR_ANqD5Bk,52637
@@ -175,37 +134,41 @@ spikezoo/data/base/train/gt/203_part4_key_id151.png,sha256=xUfdlXNWdPlRshLOaEF6u
175
134
  spikezoo/data/base/train/spike/203_part2_key_id151.dat,sha256=YEenLmbPvcxnKkVn3O7yDVYb-UwpM5OPlRhxVWLYy3Q,3762500
176
135
  spikezoo/data/base/train/spike/203_part3_key_id151.dat,sha256=MY9nM6XzKj-P-tRQ33WZ3G5xulNTpAXKP0y8ZQo7AIQ,3762500
177
136
  spikezoo/data/base/train/spike/203_part4_key_id151.dat,sha256=IVi2jics66YzpIF-WTkw47te4qOj9cjdgz56GmHpJKg,3762500
178
- spikezoo/datasets/__init__.py,sha256=bnskj7Bo0cWEk8XEBjOB2etTOjtsoReOxjezeZmYyTs,3274
179
- spikezoo/datasets/base_dataset.py,sha256=gm3jLmnkbiWoWZuyjnGySU2WVgkv-tdMWLRuG5lGYvI,5787
180
- spikezoo/datasets/realworld_dataset.py,sha256=iqn9oYu56Ph2nsA2U5aesTjflNmfr3-6krHVXC49ByM,715
181
- spikezoo/datasets/reds_small_dataset.py,sha256=nhX95iWAADlu65XCGsU8CosjLHvxzSgAumA4MDwaTUc,883
182
- spikezoo/datasets/szdata_dataset.py,sha256=2zLLKj6PC2XUcmgUMUqKKiA_zQZdZx7hCsI8Ft-i4o8,1230
183
- spikezoo/datasets/uhsr_dataset.py,sha256=cuQBEuOw0AFaxV-reLWqsS2KevKTYF2Pr8ak5dSlkbc,1166
137
+ spikezoo/datasets/__init__.py,sha256=lRJsvCfgbe3qrd9BKTlG9dsgfIJbfXqWOynnlAcBiUI,3346
138
+ spikezoo/datasets/base_dataset.py,sha256=gaMcrgWB3JLfc5lAM5wZjgMj72lZaO5otGfXOwRRiL8,5954
139
+ spikezoo/datasets/realworld_dataset.py,sha256=CSyXj_uo0y1a4TlLDSTkB0CyFiFdZiU1phrWdkwvqgg,701
140
+ spikezoo/datasets/reds_base_dataset.py,sha256=W-IJv9H1bsKgp3RT3zsV40jw2PqY2M76jtIS4Qpif1o,859
141
+ spikezoo/datasets/reds_ssir_dataset.py,sha256=t0hm6PUWX5hfvSXB0UEv_JuihIhc5-mufrfur5bIq_0,7076
142
+ spikezoo/datasets/szdata_dataset.py,sha256=7lSqNzWkVUVTVufPhm7AjpLghpZvjfu1X9c0sCsrjwM,850
143
+ spikezoo/datasets/uhsr_dataset.py,sha256=Ue0vfKMpmvR0TelQx8G4xdWB8HdSlb4HSjIVOyFe5oE,1168
184
144
  spikezoo/metrics/__init__.py,sha256=LIKeWNeEMZLANITQD68XJBOhDq7iHiKC7ExtdrXMyQs,3273
185
- spikezoo/models/__init__.py,sha256=ePC94bz7Yjvg_CQQSWCkb7J5E_Tc370408a9tkzDFDQ,1679
186
- spikezoo/models/base_model.py,sha256=BQmiJSRHfuzeCDQOc1eoAaso3E0SWqKAtwev7-cSF18,6695
187
- spikezoo/models/bsf_model.py,sha256=KVKmukMfhr8hOIwIlWAKnCvDSHlXK2HJwjzP9bEGpNw,3523
188
- spikezoo/models/spikeclip_model.py,sha256=ltEbEb-TNyzHGWHgiOc6-701LSGvSHYiD1WXglwgOJM,1010
189
- spikezoo/models/spikeformer_model.py,sha256=oNwmzWNdemJhjDWnPoJwlxUzKLAAu9YpE2J9iwEkEoA,1586
190
- spikezoo/models/spk2imgnet_model.py,sha256=QknQeqLfZdU2MoToUsNqFvAGN0rN2-6wzOw6I4Xtqwc,1549
191
- spikezoo/models/ssir_model.py,sha256=sVLZ_7BwBqloB3H94BuQfyhbepwS1FdoEtbIkrPqQkk,586
192
- spikezoo/models/ssml_model.py,sha256=u_UohCL2Q_iRZ-I_udJiQ5_30_ZASKxhttDgJKLtZ6E,493
193
- spikezoo/models/stir_model.py,sha256=fXFajxWs2P4OoAPGXGkwOGJCDslWqJ4wus4mfbvvH7w,1176
194
- spikezoo/models/tfi_model.py,sha256=fLaBOz1f3c-wvA8bEYVfUNk9vgtbMhbS02-Xie294mg,536
195
- spikezoo/models/tfp_model.py,sha256=khG15qA_32PEb3BaYHFo5BzXUaxh-Napl_0bwXIcGz8,535
196
- spikezoo/models/wgse_model.py,sha256=9N1O_ucbdQ_lndLpWNjuhidyWKs8Ct8Wr-OWTYCVc44,860
145
+ spikezoo/models/__init__.py,sha256=QZTELBoM3bUW8jZoxN4OuA2RYKeVUT1fboyeIuK8Rtk,1722
146
+ spikezoo/models/base_model.py,sha256=v3TD4AmjttTZUg0vEy736TOFdbbBgDLZg_RL-b4-vYM,9152
147
+ spikezoo/models/bsf_model.py,sha256=XeZcVC_ODJxyS_I6-CtzlHXSWntgsUtbuAKjczIQ_0M,3972
148
+ spikezoo/models/spcsnet_model.py,sha256=kLzv-ASXZGnqEFx0jUBONBeRCrsnQ_omkQUYEnr6uJc,540
149
+ spikezoo/models/spikeclip_model.py,sha256=Ej84RuYbkFRthtBMV1JtmTkUshAqINlrrJ7yiKIsC9s,1125
150
+ spikezoo/models/spk2imgnet_model.py,sha256=ghdO1oECrRBijvGNT89H5XDi9CvWfbY3wOzmuCrgMJ0,1565
151
+ spikezoo/models/ssir_model.py,sha256=8tg36eLKAQEOfYiFW-XyO6RfvCLxUXz0fVhTtZ-Dw-Q,625
152
+ spikezoo/models/ssml_model.py,sha256=pCo2Wp38cRWSqGFEddsteEby_My4Rp-MKIx_g4kjoHo,2380
153
+ spikezoo/models/stir_model.py,sha256=htsqhOboIc3GWvQc9gXxyaSI2SYR3TdZR691uV5LZ5s,2193
154
+ spikezoo/models/tfi_model.py,sha256=tgD_HsiXk9jGuh5f_Bh6c3BqJi1p5DWCVo4N1tp5fgs,663
155
+ spikezoo/models/tfp_model.py,sha256=ihl1H__bWIbE9oair_t8rNJ5qnPJPKl-r_DpaO-0Sdk,663
156
+ spikezoo/models/wgse_model.py,sha256=Kl9uV-LeO0Lj7SuPQ9pglw1Khs2b-7miS3A_faL6WSU,805
197
157
  spikezoo/pipeline/__init__.py,sha256=WPsukNR4cannwsghiukqNsWbWGH5DVPapR_Ly-WOU4Q,188
198
- spikezoo/pipeline/base_pipeline.py,sha256=n6EXiNDLeEdej1fuDfPbrbGxwCseVyJeR_Tq0ipDmBo,12265
199
- spikezoo/pipeline/ensemble_pipeline.py,sha256=Aoi0lLcSDi9aJGIyHsjs45OYBqjDBDu97353IHLoUmw,2467
200
- spikezoo/pipeline/train_pipeline.py,sha256=xMOX-ulb1fPLOH7EIK4ww8q1SY8x_lJvnGov_kXZl-k,4060
158
+ spikezoo/pipeline/base_pipeline.py,sha256=ns2rBRbKaq8M9yDtWOiD-t6lo_5_c5rE2ZWH9sR78P4,13361
159
+ spikezoo/pipeline/ensemble_pipeline.py,sha256=ljZkGiCCpxvpC04Aa-r_tvBnqcBpUVi9fl_878tJAcg,2555
160
+ spikezoo/pipeline/train_cfgs.py,sha256=6NO7DfPc7yjJfOrcIPQPfUPbUODz6eRKurEIDjMmaxA,3836
161
+ spikezoo/pipeline/train_pipeline.py,sha256=BgHUsdv33B_OKauOVclNt7yIPb-_O-93ZHLHIjrwWaA,8459
201
162
  spikezoo/utils/__init__.py,sha256=bYLlusAXwLCoY4s6nhVgviax9ioRA9aea8qgRmj2HpI,152
202
163
  spikezoo/utils/data_utils.py,sha256=mk1xeyIb7o_E1J7Z6-gtPq-rpKiMTxAWSTcvvPvVku8,2033
203
164
  spikezoo/utils/img_utils.py,sha256=0O9z58VzLxQEAuz-GGWCbpeHuHPOCpgBVjCBV9kf6sI,2257
204
- spikezoo/utils/other_utils.py,sha256=fKqs4zRxzQsIfmYZv02PZlVaGrmVEjq2KHTMrk_tBKY,2845
205
- spikezoo/utils/spike_utils.py,sha256=0GY1hQCOCj0HDDwjXxrHykdjTKmPdb9rC_CexpRzwdk,3123
165
+ spikezoo/utils/optimizer_utils.py,sha256=jvcd4zTY2LCJH6wCwOZ0lsAuJQm6LIVzbprLO3ojYCY,744
166
+ spikezoo/utils/other_utils.py,sha256=uWNWaII9Jv7fkWNfkAD9wD-4ID-GAzbR-gGYT-1FF_c,3360
167
+ spikezoo/utils/scheduler_utils.py,sha256=5RBh-hl3-2y-IomxMs47T1p3JsbicZNYLza6q1uAKHo,828
168
+ spikezoo/utils/spike_utils.py,sha256=u4Haa6Sp5xFqs61ztvq161oXTA_aZmNW3VYUZcayNW0,4296
206
169
  spikezoo/utils/vidar_loader.cpython-39-x86_64-linux-gnu.so,sha256=uXqu7ME---cZRRU5LUcLiNrjjtlOjxNwWHyTIQ10BGg,199088
207
- spikezoo-0.2.2.dist-info/LICENSE.txt,sha256=ukEi8E0PKq1dQGTXHUflg3rppLymwAhr7il9x-0nPgg,1062
208
- spikezoo-0.2.2.dist-info/METADATA,sha256=j-XErZpa-tDx5wkFwwbOaHdcUjRuuGopldedu0hwEVk,7939
209
- spikezoo-0.2.2.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
210
- spikezoo-0.2.2.dist-info/top_level.txt,sha256=xF2iuOstrACJh43NW4dsTwIdgKfXPXAb_Xzl3M1ricM,9
211
- spikezoo-0.2.2.dist-info/RECORD,,
170
+ spikezoo-0.2.3.2.dist-info/LICENSE.txt,sha256=ukEi8E0PKq1dQGTXHUflg3rppLymwAhr7il9x-0nPgg,1062
171
+ spikezoo-0.2.3.2.dist-info/METADATA,sha256=k4-w6mwZAfSx1YhunWGVx3LYuocZEqs8ypcMr9WhkZ8,11962
172
+ spikezoo-0.2.3.2.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
173
+ spikezoo-0.2.3.2.dist-info/top_level.txt,sha256=xF2iuOstrACJh43NW4dsTwIdgKfXPXAb_Xzl3M1ricM,9
174
+ spikezoo-0.2.3.2.dist-info/RECORD,,
@@ -1 +0,0 @@
1
- This is a folder for saving the trained model !
@@ -1,60 +0,0 @@
1
- import os
2
- import numpy as np
3
-
4
-
5
- class DataExtractor():
6
-
7
- def __init__(self, dataPath='', type='train'):
8
-
9
- self.type = type
10
- self.rootPath = dataPath
11
-
12
- def GetData(self):
13
-
14
- if self.type == "train":
15
- return self.__GetTrainData()
16
- if self.type == "valid":
17
- return self.__GetValidData()
18
- if self.type == "test":
19
- return self.__GetTestData()
20
-
21
-
22
- def __GetTrainData(self):
23
-
24
- pathList = []
25
-
26
- root = os.path.join(self.rootPath, 'train')
27
- fileNames = os.listdir(root)
28
- fileNames.sort()
29
- for name in fileNames:
30
- path = os.path.join(root, name)
31
- pathList.append(path)
32
-
33
- return pathList
34
-
35
- def __GetValidData(self):
36
-
37
- pathList = []
38
-
39
- root = os.path.join(self.rootPath, 'valid')
40
- fileNames = os.listdir(root)
41
- fileNames.sort()
42
- for name in fileNames:
43
- path = os.path.join(root, name)
44
- pathList.append(path)
45
-
46
- return pathList
47
-
48
- def __GetTestData(self):
49
-
50
- pathList = []
51
-
52
- root = os.path.join(self.rootPath, 'test')
53
- fileNames = os.listdir(root)
54
- fileNames.sort()
55
- for name in fileNames:
56
- path = os.path.join(root, name)
57
- pathList.append(path)
58
-
59
- return pathList
60
-
@@ -1,115 +0,0 @@
1
- import os
2
- import torch
3
- # from torchvision import transforms
4
- from torch.utils import data
5
- import numpy as np
6
- from PIL import Image
7
- import cv2
8
- import random
9
-
10
-
11
- from DataProcess.DataExtactor import DataExtractor
12
- from DataProcess.LoadSpike import LoadSpike, load_spike_raw
13
-
14
- class Dataset(data.Dataset):
15
-
16
- def __init__(self, pathList, dataType, spikeRadius):
17
-
18
- self.pathList = pathList
19
- self.dataType = dataType
20
- self.spikeRadius = spikeRadius
21
-
22
- #Random Rotation
23
- if self.dataType == "train":
24
- self.choice = [0, 1, 2, 3]
25
- else:
26
- self.choice = [0]
27
-
28
- def __getitem__(self, index):
29
-
30
- spSeq, gtFrames = self.GetItem(index)
31
-
32
- return spSeq, gtFrames
33
-
34
- def __len__(self):
35
-
36
- return len(self.pathList)
37
-
38
- def GetItem(self, index):
39
-
40
- path = self.pathList[index]
41
- spSeq, gtFrames = LoadSpike(path)
42
-
43
- spLen, _, _ = spSeq.shape
44
- gtLen, _, _ = gtFrames.shape
45
- spCenter = spLen // 2
46
- gtCenter = gtLen // 2
47
-
48
- spLeft, spRight = (spCenter - self.spikeRadius,
49
- spCenter + self.spikeRadius)
50
- spRight = spRight + 1
51
- spSeq = spSeq[spLeft:spRight]
52
-
53
- gtFrame = gtFrames[gtCenter]
54
-
55
- spSeq = np.pad(spSeq, ((0, 0), (3, 3), (0, 0)), mode='constant')
56
- spSeq = spSeq.astype(float) * 2 - 1
57
-
58
- gtFrame = gtFrame.astype(float) / 255. * 2.0 - 1.
59
-
60
-
61
- spSeq = torch.FloatTensor(spSeq)
62
- gtFrame = torch.FloatTensor(gtFrame)
63
-
64
- '''
65
- Rotate the spike frame and Gt frame by ramdom degree,
66
- depending on the values of 'self.choice'
67
- '''
68
- # choice = random.choice(self.choice)
69
- # spSeq = torch.rot90(spSeq, choice, dims=(1,2))
70
- # gtFrame =torch.rot90(gtFrame, choice, dims=(1,2))
71
- return spSeq, gtFrame
72
-
73
-
74
-
75
-
76
-
77
- class DataContainer():
78
-
79
- def __init__(self, dataPath='', dataType='train',
80
- spikeRadius=16, batchSize=128, numWorks=0):
81
-
82
- self.dataPath = dataPath
83
- self.dataType = dataType
84
- self.spikeRadius = spikeRadius
85
- self.batchSize = batchSize
86
- self.numWorks = numWorks
87
-
88
- self.__GetData()
89
-
90
- def __GetData(self):
91
-
92
- dataset = None
93
-
94
- dataset = DataExtractor(dataPath=self.dataPath, type=self.dataType)
95
- self.pathList = dataset.GetData()
96
-
97
- def GetLoader(self):
98
-
99
- dataset = Dataset(self.pathList, self.dataType, self.spikeRadius)
100
- dataLoader = None
101
- if self.dataType == "train":
102
- dataLoader = data.DataLoader(dataset, batch_size=self.batchSize, shuffle=True,
103
- num_workers=self.numWorks, pin_memory=False)
104
- else:
105
- dataLoader = data.DataLoader(dataset, batch_size=self.batchSize, shuffle=False,
106
- num_workers=self.numWorks, pin_memory=False)
107
-
108
- return dataLoader
109
-
110
- if __name__ == "__main__":
111
-
112
- pass
113
-
114
-
115
-
@@ -1,39 +0,0 @@
1
- import numpy as np
2
-
3
- def load_spike_numpy(path: str) -> (np.ndarray, np.ndarray):
4
- '''
5
- Load a spike sequence with it's tag from prepacked `.npz` file.\n
6
- The sequence is of shape (`length`, `height`, `width`) and tag of
7
- shape (`height`, `width`).
8
- '''
9
- data = np.load(path)
10
- seq, tag, length = data['seq'], data['tag'], int(data['length'])
11
- seq = np.array([(seq[i // 8] >> (i & 7)) & 1 for i in range(length)])
12
- return seq, tag
13
-
14
- def LoadSpike(path: str) -> (np.ndarray, np.ndarray):
15
- '''
16
- Load a spike sequence, the corresponding ground-truth frame sequence,
17
- and sequence length.
18
- spSeq: an ndarray of shape('sequence number', 'height', 'width')
19
- gtFrames: an ndarray of shape('sequence length', 'height', 'width')
20
- '''
21
- data = np.load(path)
22
- spSeq, gtFrames, length = data['spSeq'], data['gt'], int(data['length'])
23
- spSeq = np.array([(spSeq[i // 8] >> (i & 7)) & 1 for i in range(length)])
24
- return spSeq, gtFrames
25
-
26
- def load_spike_raw(path: str, width=400, height=250) -> np.ndarray:
27
- '''
28
- Load bit-compact raw spike data into an ndarray of shape
29
- (`sequence length`, `height`, `width`).
30
- '''
31
- with open(path, 'rb') as f:
32
- fbytes = f.read()
33
- fnum = (len(fbytes) * 8) // (width * height) # number of frames
34
- frames = np.frombuffer(fbytes, dtype=np.uint8)
35
- frames = np.array([frames & (1 << i) for i in range(8)])
36
- frames = frames.astype(np.bool).astype(np.uint8)
37
- frames = frames.transpose(1, 0).reshape(fnum, height, width)
38
- frames = np.flip(frames, 1)
39
- return frames
@@ -1 +0,0 @@
1
- This is a folder for saving the images reconstructed from validation/testing set !
@@ -1,21 +0,0 @@
1
- MIT License
2
-
3
- Copyright (c) 2022 YangChenUcas
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
@@ -1,50 +0,0 @@
1
- import numpy as np
2
- from skimage import metrics
3
-
4
- class Metrics():
5
-
6
- def __init__(self):
7
- self.best_psnr = 0.
8
- self.best_ssim = 0.
9
- self.best_niqe = 0.
10
-
11
- def Update(self, psnr=0., ssim=0., niqe=0.):
12
- self.best_psnr = psnr
13
- self.best_ssim = ssim
14
- self.best_niqe = niqe
15
-
16
- def GetBestMetrics(self):
17
-
18
- return self.best_psnr, self.best_ssim, self.best_niqe
19
-
20
- def Cal_PSNR(self, preImgs, gtImgs): #shape:[B, H, W]
21
-
22
- B, _, _ = preImgs.shape
23
- total_psnr = 0.
24
- for i, (pre, gt) in enumerate(zip(preImgs, gtImgs)):
25
- print(i+1, metrics.peak_signal_noise_ratio(gt, pre))
26
- total_psnr += metrics.peak_signal_noise_ratio(gt, pre)
27
-
28
- avg_psnr = total_psnr / B
29
-
30
- return avg_psnr
31
-
32
- def Cal_SSIM(self, preImgs, gtImgs): #shape:[B, H, W]
33
-
34
- B, _, _ = preImgs.shape
35
- total_ssim = 0.
36
- for i, (pre, gt) in enumerate(zip(preImgs, gtImgs)):
37
- total_ssim += metrics.structural_similarity(pre, gt)
38
-
39
- avg_ssim = total_ssim / B
40
-
41
- return avg_ssim
42
-
43
-
44
- if __name__ == "__main__":
45
-
46
- a = np.random.random((2,256,256))
47
- b = np.random.random((2,256,256))
48
- metrics = Metrics()
49
-
50
- print(metrics.Cal_NIQE(a))
File without changes
@@ -1,89 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torch.nn.functional as F
4
-
5
- class CharbonnierLoss(nn.Module):
6
- """Charbonnier Loss (L1)"""
7
-
8
- def __init__(self, eps=1e-3):
9
- super(CharbonnierLoss, self).__init__()
10
- self.eps = eps
11
-
12
- def forward(self, x, y):
13
- diff = x - y
14
- # loss = torch.sum(torch.sqrt(diff * diff + self.eps))
15
- loss = torch.mean(torch.sqrt((diff * diff) + (self.eps*self.eps)))
16
- return loss
17
-
18
- class EdgeLoss(nn.Module):
19
- def __init__(self):
20
- super(EdgeLoss, self).__init__()
21
- k = torch.Tensor([[.05, .25, .4, .25, .05]])
22
- # self.kernel = torch.matmul(k.t(),k).unsqueeze(0).repeat(3,1,1,1)
23
- self.kernel = torch.matmul(k.t(),k).unsqueeze(0).unsqueeze(0).repeat(1,3,1,1) #这个的repeat也是后加的
24
- # print(self.kernel.shape)
25
- if torch.cuda.is_available():
26
- self.kernel = self.kernel.cuda()
27
- self.loss = CharbonnierLoss()
28
-
29
- def conv_gauss(self, img):
30
- # print('aaaa')
31
- # print(img.shape)
32
- n_channels, _, kw, kh = self.kernel.shape
33
- img = F.pad(img, (kw//2, kh//2, kw//2, kh//2), mode='replicate')
34
- # return F.conv2d(img, self.kernel, groups=n_channels)
35
- return F.conv2d(img, self.kernel)
36
-
37
- def laplacian_kernel(self, current):
38
- filtered = self.conv_gauss(current) # filter
39
- down = filtered[:,:,::2,::2] # downsample
40
- new_filter = torch.zeros_like(filtered)
41
- new_filter[:,:,::2,::2] = down*4 # upsample
42
- filtered = self.conv_gauss(new_filter.repeat(1,3,1,1)) # filter #这里为什么需要repeat一下?原文的目的是什么?否则不能正常运行
43
- diff = current - filtered
44
- return diff
45
-
46
- def forward(self, x, y):
47
- y = y.repeat(1,3,1,1)
48
- x = x.repeat(1,3,1,1)
49
- # print('bbbbbb')
50
- # print(x.shape)
51
- # print(y.shape)
52
- loss = self.loss(self.laplacian_kernel(x), self.laplacian_kernel(y))
53
- return loss
54
-
55
-
56
- class VGGLoss4(nn.Module):
57
- def __init__(self, path: str):
58
- super().__init__()
59
- self.features = nn.Sequential(
60
- nn.Conv2d(3, 64, 3, 1, 1),
61
- nn.ReLU(inplace=True),
62
- nn.Conv2d(64, 64, 3, 1, 1),
63
- nn.ReLU(inplace=True),
64
- nn.MaxPool2d(2),
65
- nn.Conv2d(64, 128, 3, 1, 1),
66
- nn.ReLU(inplace=True),
67
- nn.Conv2d(128, 128, 3, 1, 1),
68
- nn.ReLU(inplace=True),
69
- nn.MaxPool2d(2),
70
- nn.Conv2d(128, 256, 3, 1, 1),
71
- nn.ReLU(inplace=True),
72
- # nn.Conv2d(256, 256, 3, 1, 1),
73
- # nn.ReLU(inplace=True),
74
- # nn.Conv2d(256, 256, 3, 1, 1),
75
- # nn.ReLU(inplace=True),
76
- )
77
- self.load_state_dict(torch.load(path))
78
- for param in self.parameters():
79
- param.requires_grad = False
80
-
81
- def forward(self, real_y, fake_y):
82
- real_y = real_y.repeat((1, 3, 1, 1))
83
- fake_y = fake_y.repeat((1, 3, 1, 1))
84
- with torch.no_grad():
85
- real_f = self.features(real_y)
86
- fake_f = self.features(fake_y)
87
- return F.mse_loss(real_f, fake_f)
88
-
89
-