spikezoo 0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,64 @@
1
+ import torch
2
+ from dataclasses import dataclass, field
3
+ import os
4
+ from spikezoo.utils.img_utils import tensor2npy, AverageMeter
5
+ from spikezoo.utils.spike_utils import load_vidar_dat
6
+ from spikezoo.metrics import cal_metric_pair, cal_metric_single
7
+ import numpy as np
8
+ import cv2
9
+ from pathlib import Path
10
+ from enum import Enum, auto
11
+ from typing import Literal
12
+ from spikezoo.metrics import metric_pair_names, metric_single_names, metric_all_names
13
+ from thop import profile
14
+ import time
15
+ from datetime import datetime
16
+ from spikezoo.utils import setup_logging, save_config
17
+ from tqdm import tqdm
18
+ from spikezoo.models import build_model_cfg, build_model_name, BaseModel, BaseModelConfig
19
+ from spikezoo.datasets import build_dataset_cfg, build_dataset_name, BaseDataset, BaseDatasetConfig, build_dataloader
20
+ from typing import Optional, Union, List
21
+ from spikezoo.pipeline.base_pipeline import Pipeline, PipelineConfig
22
+
23
+
24
+ @dataclass
25
+ class EnsemblePipelineConfig(PipelineConfig):
26
+ _mode: Literal["single_mode", "multi_mode", "train_mode"] = "multi_mode"
27
+
28
+
29
+ class EnsemblePipeline(Pipeline):
30
+ def __init__(
31
+ self,
32
+ cfg: PipelineConfig,
33
+ model_cfg_list: Union[List[str], List[BaseModelConfig]],
34
+ dataset_cfg: Union[str, BaseDatasetConfig],
35
+ ):
36
+ self.cfg = cfg
37
+ self._setup_model_data(model_cfg_list,dataset_cfg)
38
+ self._setup_pipeline()
39
+
40
+ def _setup_model_data(self,model_cfg_list,dataset_cfg):
41
+ """Model and Data setup."""
42
+ # model
43
+ self.model_list: List[BaseModel] = (
44
+ [build_model_name(name) for name in model_cfg_list] if isinstance(model_cfg_list[0],str) else [build_model_cfg(cfg) for cfg in model_cfg_list]
45
+ )
46
+ self.model_list = [model.eval() for model in self.model_list]
47
+ torch.set_grad_enabled(False)
48
+ # data
49
+ self.dataset: BaseDataset = build_dataset_name(dataset_cfg) if isinstance(dataset_cfg, str) else build_dataset_cfg(dataset_cfg)
50
+ self.dataloader = build_dataloader(self.dataset)
51
+ # device
52
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
53
+
54
+ def _spk2img(self, spike, img, save_folder):
55
+ for model in self.model_list:
56
+ self._spk2img_model(model, spike, img, save_folder)
57
+
58
+ def cal_params(self):
59
+ for model in self.model_list:
60
+ self._cal_prams_model(model)
61
+
62
+ def cal_metrics(self):
63
+ for model in self.model_list:
64
+ self._cal_metrics_model(model)
@@ -0,0 +1,94 @@
1
+ import torch
2
+ from dataclasses import dataclass
3
+ import os
4
+ from spikezoo.utils.img_utils import tensor2npy
5
+ import cv2
6
+ from pathlib import Path
7
+ from typing import Literal
8
+ from tqdm import tqdm
9
+ from spikezoo.models import build_model_cfg, build_model_name, BaseModel, BaseModelConfig
10
+ from spikezoo.datasets import build_dataset_cfg, build_dataset_name, BaseDataset, BaseDatasetConfig, build_dataloader
11
+ from typing import Union
12
+ from spikezoo.pipeline.base_pipeline import Pipeline, PipelineConfig
13
+
14
+
15
+ @dataclass
16
+ class TrainPipelineConfig(PipelineConfig):
17
+ bs_train: int = 4
18
+ epochs: int = 100
19
+ lr: float = 1e-3
20
+ num_workers: int = 4
21
+ pin_memory: bool = False
22
+ steps_per_save_imgs = 10
23
+ steps_per_cal_metrics = 10
24
+ _mode: Literal["single_mode", "multi_mode", "train_mode"] = "train_mode"
25
+
26
+
27
+ class TrainPipeline(Pipeline):
28
+ def __init__(
29
+ self,
30
+ cfg: TrainPipelineConfig,
31
+ model_cfg: Union[str, BaseModelConfig],
32
+ dataset_cfg: Union[str, BaseDatasetConfig],
33
+ ):
34
+ self.cfg = cfg
35
+ self._setup_model_data(model_cfg, dataset_cfg)
36
+ self._setup_pipeline()
37
+ self.model.setup_training(cfg)
38
+
39
+ def _setup_model_data(self, model_cfg, dataset_cfg):
40
+ """Model and Data setup."""
41
+ # model
42
+ self.model: BaseModel = build_model_name(model_cfg) if isinstance(model_cfg, str) else build_model_cfg(model_cfg)
43
+ self.model = self.model.train()
44
+ torch.set_grad_enabled(True)
45
+ # data
46
+ if isinstance(dataset_cfg, str):
47
+ self.train_dataset: BaseDataset = build_dataset_name(dataset_cfg, split="train")
48
+ self.dataset: BaseDataset = build_dataset_name(dataset_cfg, split="test")
49
+ else:
50
+ self.train_dataset: BaseDataset = build_dataset_cfg(dataset_cfg, split="train")
51
+ self.dataset: BaseDataset = build_dataset_cfg(dataset_cfg, split="test")
52
+ self.train_dataloader = build_dataloader(self.train_dataset, self.cfg)
53
+ self.dataloader = build_dataloader(self.dataset)
54
+ # device
55
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
56
+
57
+ def save_network(self, epoch):
58
+ """Save the network."""
59
+ save_folder = self.save_folder / Path("ckpt")
60
+ os.makedirs(save_folder, exist_ok=True)
61
+ self.model.save_network(save_folder / f"{epoch:06d}.pth")
62
+
63
+ def save_visual(self, epoch):
64
+ """Save the visual results."""
65
+ self.logger.info("Saving visual results...")
66
+ save_folder = self.save_folder / Path("imgs") / Path(f"{epoch:06d}")
67
+ os.makedirs(save_folder, exist_ok=True)
68
+ for batch_idx, batch in enumerate(tqdm(self.dataloader)):
69
+ if batch_idx % (len(self.dataloader) // 4) == 0:
70
+ continue
71
+ batch = self.model.feed_to_device(batch)
72
+ outputs = self.model.get_outputs_dict(batch)
73
+ visual_dict = self.model.get_visual_dict(batch, outputs)
74
+ # save
75
+ for key, img in visual_dict.items():
76
+ cv2.imwrite(str(save_folder / Path(f"{batch_idx:06d}_{key}.png")), tensor2npy(img))
77
+
78
+ def train(self):
79
+ """Training code."""
80
+ self.logger.info("Start Training!")
81
+ for epoch in range(self.cfg.epochs):
82
+ # training
83
+ for batch_idx, batch in enumerate(tqdm(self.train_dataloader)):
84
+ batch = self.model.feed_to_device(batch)
85
+ outputs = self.model.get_outputs_dict(batch)
86
+ loss_dict, loss_values_dict = self.model.get_loss_dict(outputs, batch)
87
+ self.model.optimize_parameters(loss_dict)
88
+ self.model.update_learning_rate()
89
+ self.logger.info(f"EPOCH {epoch}/{self.cfg.epochs}: Train Loss: {loss_values_dict}")
90
+ # save visual results & evaluate metrics
91
+ if epoch % self.cfg.steps_per_save_imgs == 0 or epoch == self.cfg.epochs - 1:
92
+ self.save_visual(epoch)
93
+ if epoch % self.cfg.steps_per_cal_metrics == 0 or epoch == self.cfg.epochs - 1:
94
+ self.cal_metrics()
@@ -0,0 +1,3 @@
1
+ from .spike_utils import load_vidar_dat
2
+ from .img_utils import load_network,tensor2npy
3
+ from .other_utils import setup_logging,save_config,download_file
@@ -0,0 +1,52 @@
1
+ import queue as Queue
2
+ import threading
3
+ import torch
4
+ from torch.utils.data import DataLoader
5
+ import math
6
+ import random
7
+
8
+ class Augmentor:
9
+ def __init__(self, crop_size = (-1,-1)):
10
+ self.crop_size = crop_size
11
+
12
+ def augment(self, img, mode=0):
13
+ mode = mode - mode % 2 if self.use_rot == False else mode
14
+ if mode == 0:
15
+ return img
16
+ elif mode == 1:
17
+ return torch.flip(torch.rot90(img, 1, [1, 2]), [1]) # flipud + rot90(k=1)
18
+ elif mode == 2:
19
+ return torch.flip(img, [1]) # flipud
20
+ elif mode == 3:
21
+ return torch.rot90(img, 3, [1, 2]) # rot90(k=3)
22
+ elif mode == 4:
23
+ return torch.flip(torch.rot90(img, 2, [1, 2]), [1]) # flipud + rot90(k=2)
24
+ elif mode == 5:
25
+ return torch.rot90(img, 1, [1, 2]) # rot90(k=1)
26
+ elif mode == 6:
27
+ return torch.rot90(img, 2, [1, 2]) # rot90(k=2)
28
+ elif mode == 7:
29
+ return torch.flip(torch.rot90(img, 3, [1, 2]), [1]) # flipud + rot90(k=3)
30
+
31
+ def spatial_transform(self, spike, image):
32
+ mode = random.randint(0, 7)
33
+ spike_h = spike.shape[1]
34
+ spike_w = spike.shape[2]
35
+ # default mode
36
+ if self.crop_size != (-1,-1):
37
+ assert spike_h > self.crop_size[0] and spike_w > self.crop_size[1], f"ROI Size should be smaller than spike input size."
38
+ y0 = random.randint(0, spike_h - self.crop_size[0])
39
+ x0 = random.randint(0, spike_w - self.crop_size[1])
40
+ spike = spike[:,y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
41
+ image = image[:,y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
42
+ # rotation set
43
+ self.use_rot = True if image.shape[1] == image.shape[2] else False
44
+ # aug
45
+ spike = self.augment(spike, mode=mode)
46
+ image = self.augment(image, mode=mode)
47
+ return spike, image
48
+
49
+ def __call__(self, spike, image):
50
+ spike, image = self.spatial_transform(spike, image)
51
+ return spike, image
52
+
@@ -0,0 +1,72 @@
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ from collections import OrderedDict
5
+ from torch.nn.parallel import DistributedDataParallel
6
+
7
+
8
+ def tensor2npy(tensor,normalize = False):
9
+ """Convert the 0-1 torch float tensor to the 0-255 uint numpy array"""
10
+ if tensor.dim() == 4:
11
+ tensor = tensor[0,0]
12
+ tensor = tensor.clip(0, 1).detach().cpu().numpy()
13
+ if normalize == True:
14
+ tensor = (tensor - tensor.min()) / (tensor.max() - tensor.min())
15
+ tensor = 255 * tensor
16
+ return tensor.astype(np.uint8)
17
+
18
+
19
+ class AverageMeter(object):
20
+ """Computes and stores the average and current value"""
21
+
22
+ def __init__(self):
23
+ self.reset()
24
+
25
+ def reset(self):
26
+ self.val = 0
27
+ self.avg = 0
28
+ self.sum = 0
29
+ self.count = 0
30
+
31
+ def update(self, val, n=1):
32
+ self.val = val
33
+ self.count += n
34
+ self.sum += val * n
35
+ self.avg = self.sum / self.count
36
+
37
+ def load_network(load_path, network, strict=False):
38
+ # network multi-gpu training
39
+ if isinstance(network, nn.DataParallel) or isinstance(network, DistributedDataParallel):
40
+ network = network.module
41
+
42
+ # load .pt or .pth
43
+ if load_path.endswith('.pt') == True:
44
+ load_net = torch.load(load_path)
45
+ if isinstance(load_net, nn.DataParallel) or isinstance(load_net, DistributedDataParallel):
46
+ load_net = load_net.module
47
+
48
+ if isinstance(load_net,nn.Module):
49
+ load_state = load_net.state_dict()
50
+ else:
51
+ load_state = load_net
52
+ elif load_path.endswith('.pth') == True:
53
+ load_state = torch.load(load_path)
54
+
55
+ # clean multi-gpu state
56
+ load_state_clean = OrderedDict()
57
+ for k, v in load_state.items():
58
+ if k.startswith('module.'):
59
+ load_state_clean[k[7:]] = v
60
+ else:
61
+ load_state_clean[k] = v
62
+
63
+ # load the model_weight
64
+ if 'model_state_dict' in load_state_clean.keys():
65
+ network.load_state_dict(load_state_clean['model_state_dict'], strict=strict)
66
+ elif 'model' in load_state_clean.keys():
67
+ network.load_state_dict(load_state_clean['model'], strict=strict)
68
+ else:
69
+ network.load_state_dict(load_state_clean, strict=strict)
70
+ return network
71
+
72
+
@@ -0,0 +1,59 @@
1
+ import logging
2
+ from dataclasses import dataclass, field, asdict
3
+ import requests
4
+ from tqdm import tqdm
5
+ import os
6
+
7
+
8
+ # log info
9
+ def setup_logging(log_file):
10
+ logger = logging.getLogger("training_logger")
11
+ logger.setLevel(logging.INFO)
12
+ logger.propagate = False
13
+ if logger.hasHandlers():
14
+ logger.handlers.clear()
15
+ file_handler = logging.FileHandler(log_file, mode="w") # 使用'w'模式打开文件
16
+ file_handler.setLevel(logging.INFO)
17
+ console_handler = logging.StreamHandler()
18
+ console_handler.setLevel(logging.INFO)
19
+ formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s", datefmt="%Y-%m-%d %H:%M")
20
+ file_handler.setFormatter(formatter)
21
+ console_handler.setFormatter(formatter)
22
+ logger.addHandler(file_handler)
23
+ logger.addHandler(console_handler)
24
+ return logger
25
+
26
+
27
+ def save_config(cfg, filename, mode="w"):
28
+ """Save the config file to the given filename."""
29
+ filename = str(filename)
30
+ with open(filename, mode) as file:
31
+ for key, value in asdict(cfg).items():
32
+ file.write(f"{key} = {value}\n")
33
+ file.write("\n")
34
+
35
+
36
+ def download_file(url, output_path):
37
+ headers = {
38
+ "sec-ch-ua": '" Not A;Brand";v="99", "Chromium";v="90", "Google Chrome";v="90"',
39
+ "sec-ch-ua-mobile": "?0",
40
+ "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36"
41
+ }
42
+ try:
43
+ print(f"Ready to download the file from the {url} 😊😊😊.")
44
+ response = requests.head(url,headers=headers)
45
+ response.raise_for_status()
46
+ file_size = int(response.headers.get("Content-Length", 0))
47
+ response = requests.get(url, stream=True)
48
+ response.raise_for_status()
49
+ if response.status_code == 200:
50
+ with open(output_path, "wb") as file, tqdm(desc="Downloading", total=file_size, unit="B", unit_scale=True) as bar:
51
+ for chunk in response.iter_content(chunk_size=1024):
52
+ if chunk:
53
+ file.write(chunk)
54
+ bar.update(len(chunk))
55
+ print(f"Files downloaded successfully 🎉🎉🎉 and saved on {output_path}!")
56
+ else:
57
+ raise RuntimeError(f"Files fail to download 😔😔😔. Try downloading it from {url} and move it to {output_path}.")
58
+ except requests.exceptions.RequestException as e:
59
+ raise RuntimeError(f"Files fail to download 😔😔😔. Try downloading it from {url} and move it to {output_path}.")
@@ -0,0 +1,82 @@
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import os
5
+
6
+ def load_vidar_dat(filename, height, width, remove_head=False, out_type="float", out_format="array"):
7
+ """Load the spike stream from the .dat file."""
8
+ # Spike decode
9
+ if isinstance(filename, str):
10
+ array = np.fromfile(filename, dtype=np.uint8)
11
+ elif isinstance(filename, (list, tuple)):
12
+ l = []
13
+ for name in filename:
14
+ a = np.fromfile(name, dtype=np.uint8)
15
+ l.append(a)
16
+ array = np.concatenate(l)
17
+ else:
18
+ raise NotImplementedError
19
+ len_per_frame = height * width // 8
20
+ framecnt = len(array) // len_per_frame
21
+ spikes = []
22
+ for i in range(framecnt):
23
+ compr_frame = array[i * len_per_frame : (i + 1) * len_per_frame]
24
+ blist = []
25
+ for b in range(8):
26
+ blist.append(np.right_shift(np.bitwise_and(compr_frame, np.left_shift(1, b)), b))
27
+ frame_ = np.stack(blist).transpose()
28
+ frame_ = np.flipud(frame_.reshape((height, width), order="C"))
29
+ spk = frame_.copy()[None]
30
+ spk = spk[:, :, :-16] if remove_head == True else spk
31
+ spikes.append(spk)
32
+ spikes = np.concatenate(spikes)
33
+
34
+ # Data type conversion
35
+ type_dict = {"float": np.float32, "int": np.uint8}
36
+ spikes = spikes.astype(type_dict[out_type])
37
+
38
+ # Output format conversion
39
+ format_dict = {"array": lambda x: x, "tensor": torch.from_numpy}
40
+ spikes = format_dict[out_format](spikes)
41
+ return spikes
42
+
43
+ def SpikeToRaw(save_path, SpikeSeq, filpud=True, delete_if_exists=True):
44
+ """Save the spike sequence to the .dat file."""
45
+ if delete_if_exists:
46
+ if os.path.exists(save_path):
47
+ os.remove(save_path)
48
+ sfn, h, w = SpikeSeq.shape
49
+ remainder = int((h * w) % 8)
50
+ base = np.power(2, np.linspace(0, 7, 8))
51
+ fid = open(save_path, 'ab')
52
+ for img_id in range(sfn):
53
+ if filpud:
54
+ spike = np.flipud(SpikeSeq[img_id, :, :])
55
+ else:
56
+ spike = SpikeSeq[img_id, :, :]
57
+ if remainder == 0:
58
+ spike = spike.flatten()
59
+ else:
60
+ spike = np.concatenate([spike.flatten(), np.array([0]*(8-remainder))])
61
+ spike = spike.reshape([int(h*w/8), 8])
62
+ data = spike * base
63
+ data = np.sum(data, axis=1).astype(np.uint8)
64
+ fid.write(data.tobytes())
65
+ fid.close()
66
+ return
67
+
68
+ def video2spike_simulation(imgs, threshold=2.0):
69
+ """Convert the images input to the spike stream."""
70
+ imgs = np.array(imgs)
71
+ T,H, W = imgs.shape
72
+ spike = np.zeros([T, H, W], np.uint8)
73
+ integral = np.random.random(size=([H,W])) * threshold
74
+ for t in range(0, T):
75
+ integral += imgs[t]
76
+ fire = (integral - threshold) >= 0
77
+ fire_pos = fire.nonzero()
78
+ integral[fire_pos] -= threshold
79
+ spike[t][fire_pos] = 1
80
+ return spike
81
+
82
+
@@ -0,0 +1,17 @@
1
+ MIT License
2
+ Copyright (c) 2018 YOUR NAME
3
+ Permission is hereby granted, free of charge, to any person obtaining a copy
4
+ of this software and associated documentation files (the "Software"), to deal
5
+ in the Software without restriction, including without limitation the rights
6
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7
+ copies of the Software, and to permit persons to whom the Software is
8
+ furnished to do so, subject to the following conditions:
9
+ The above copyright notice and this permission notice shall be included in all
10
+ copies or substantial portions of the Software.
11
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
12
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
14
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
15
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
16
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17
+ SOFTWARE.
@@ -0,0 +1,39 @@
1
+ Metadata-Version: 2.2
2
+ Name: spikezoo
3
+ Version: 0.1
4
+ Summary: A deep learning toolbox for spike-to-image models.
5
+ Home-page: https://github.com/chenkang455/Spike-Zoo
6
+ Author: Kang Chen
7
+ Author-email: mrchenkang@stu.pku.edu.cn
8
+ Requires-Python: >=3.7
9
+ Description-Content-Type: text/markdown
10
+ License-File: LICENSE.txt
11
+ Requires-Dist: torch
12
+ Requires-Dist: requests
13
+ Requires-Dist: numpy
14
+ Requires-Dist: tqdm
15
+ Requires-Dist: scikit-image
16
+ Requires-Dist: lpips
17
+ Requires-Dist: pyiqa
18
+ Requires-Dist: opencv-python
19
+ Requires-Dist: thop
20
+ Requires-Dist: pytorch-wavelets
21
+ Requires-Dist: pytz
22
+ Requires-Dist: PyWavelets
23
+ Requires-Dist: pandas
24
+ Requires-Dist: pillow
25
+ Requires-Dist: scikit-learn
26
+ Requires-Dist: scipy
27
+ Requires-Dist: spikingjelly
28
+ Requires-Dist: setuptools
29
+ Dynamic: author
30
+ Dynamic: author-email
31
+ Dynamic: description
32
+ Dynamic: description-content-type
33
+ Dynamic: home-page
34
+ Dynamic: requires-dist
35
+ Dynamic: requires-python
36
+ Dynamic: summary
37
+
38
+ ⚡Spike-Zoo is the go-to library for state-of-the-art pretrained **spike-to-image** models for reconstructing the image from the given spike stream. Whether you're looking for a **simple inference** solution or **training** your own spike-to-image models, ⚡Spike-Zoo is a modular toolbox that supports both.
39
+
@@ -0,0 +1,36 @@
1
+ spikezoo/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ spikezoo/archs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
+ spikezoo/datasets/__init__.py,sha256=bnskj7Bo0cWEk8XEBjOB2etTOjtsoReOxjezeZmYyTs,3274
4
+ spikezoo/datasets/base_dataset.py,sha256=oLBy8R_iZXloYZU-kcLyu680cSgs0J3KM62gAiHyL8E,5800
5
+ spikezoo/datasets/realworld_dataset.py,sha256=iqn9oYu56Ph2nsA2U5aesTjflNmfr3-6krHVXC49ByM,715
6
+ spikezoo/datasets/reds_small_dataset.py,sha256=nhX95iWAADlu65XCGsU8CosjLHvxzSgAumA4MDwaTUc,883
7
+ spikezoo/datasets/szdata_dataset.py,sha256=2zLLKj6PC2XUcmgUMUqKKiA_zQZdZx7hCsI8Ft-i4o8,1230
8
+ spikezoo/datasets/uhsr_dataset.py,sha256=cuQBEuOw0AFaxV-reLWqsS2KevKTYF2Pr8ak5dSlkbc,1166
9
+ spikezoo/metrics/__init__.py,sha256=C1sX1sx7-UAvuR-LemYejWB9fsvl786IqIKA6LSY1so,3250
10
+ spikezoo/models/__init__.py,sha256=ePC94bz7Yjvg_CQQSWCkb7J5E_Tc370408a9tkzDFDQ,1679
11
+ spikezoo/models/base_model.py,sha256=zqlYuAHPqhLjG86V9qaY7xNUYs7fL3UnvjNdlojOlM0,6766
12
+ spikezoo/models/bsf_model.py,sha256=KVKmukMfhr8hOIwIlWAKnCvDSHlXK2HJwjzP9bEGpNw,3523
13
+ spikezoo/models/spcsnet_model.py,sha256=kLzv-ASXZGnqEFx0jUBONBeRCrsnQ_omkQUYEnr6uJc,540
14
+ spikezoo/models/spikeclip_model.py,sha256=ltEbEb-TNyzHGWHgiOc6-701LSGvSHYiD1WXglwgOJM,1010
15
+ spikezoo/models/spikeformer_model.py,sha256=oNwmzWNdemJhjDWnPoJwlxUzKLAAu9YpE2J9iwEkEoA,1586
16
+ spikezoo/models/spk2imgnet_model.py,sha256=QknQeqLfZdU2MoToUsNqFvAGN0rN2-6wzOw6I4Xtqwc,1549
17
+ spikezoo/models/ssir_model.py,sha256=sVLZ_7BwBqloB3H94BuQfyhbepwS1FdoEtbIkrPqQkk,586
18
+ spikezoo/models/ssml_model.py,sha256=u_UohCL2Q_iRZ-I_udJiQ5_30_ZASKxhttDgJKLtZ6E,493
19
+ spikezoo/models/stir_model.py,sha256=fXFajxWs2P4OoAPGXGkwOGJCDslWqJ4wus4mfbvvH7w,1176
20
+ spikezoo/models/tfi_model.py,sha256=fLaBOz1f3c-wvA8bEYVfUNk9vgtbMhbS02-Xie294mg,536
21
+ spikezoo/models/tfp_model.py,sha256=khG15qA_32PEb3BaYHFo5BzXUaxh-Napl_0bwXIcGz8,535
22
+ spikezoo/models/wgse_model.py,sha256=9N1O_ucbdQ_lndLpWNjuhidyWKs8Ct8Wr-OWTYCVc44,860
23
+ spikezoo/pipeline/__init__.py,sha256=WPsukNR4cannwsghiukqNsWbWGH5DVPapR_Ly-WOU4Q,188
24
+ spikezoo/pipeline/base_pipeline.py,sha256=Lh00P5wzhPYJRCZryVYIREw5Wv9SN0xNKRGAf22rI_M,11993
25
+ spikezoo/pipeline/ensemble_pipeline.py,sha256=Aoi0lLcSDi9aJGIyHsjs45OYBqjDBDu97353IHLoUmw,2467
26
+ spikezoo/pipeline/train_pipeline.py,sha256=AseUJJYhZTIA83IFG4F6nRA6UBrMQ3p4gQaDalM8mA8,4060
27
+ spikezoo/utils/__init__.py,sha256=bYLlusAXwLCoY4s6nhVgviax9ioRA9aea8qgRmj2HpI,152
28
+ spikezoo/utils/data_utils.py,sha256=mk1xeyIb7o_E1J7Z6-gtPq-rpKiMTxAWSTcvvPvVku8,2033
29
+ spikezoo/utils/img_utils.py,sha256=0O9z58VzLxQEAuz-GGWCbpeHuHPOCpgBVjCBV9kf6sI,2257
30
+ spikezoo/utils/other_utils.py,sha256=Zy7_UM0AeppKh7u9EFL3hBj7IeQtMwqrSOXDqwBzT74,2539
31
+ spikezoo/utils/spike_utils.py,sha256=CJao2QuQkxEzOCGaf1UfeP0xFsrit5QhIT_uAsLk4PE,2830
32
+ spikezoo-0.1.dist-info/LICENSE.txt,sha256=ukEi8E0PKq1dQGTXHUflg3rppLymwAhr7il9x-0nPgg,1062
33
+ spikezoo-0.1.dist-info/METADATA,sha256=_OkXJ9Yq67P2XDVAJuF74UvSKTn8ga0cMlxoWCrKj0A,1230
34
+ spikezoo-0.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
35
+ spikezoo-0.1.dist-info/top_level.txt,sha256=xF2iuOstrACJh43NW4dsTwIdgKfXPXAb_Xzl3M1ricM,9
36
+ spikezoo-0.1.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (75.8.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1 @@
1
+ spikezoo