spikezoo 0.1.1__py3-none-any.whl → 0.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (192) hide show
  1. spikezoo/__init__.py +13 -0
  2. spikezoo/archs/__pycache__/__init__.cpython-39.pyc +0 -0
  3. spikezoo/archs/base/__pycache__/nets.cpython-39.pyc +0 -0
  4. spikezoo/archs/base/nets.py +34 -0
  5. spikezoo/archs/bsf/README.md +92 -0
  6. spikezoo/archs/bsf/datasets/datasets.py +328 -0
  7. spikezoo/archs/bsf/datasets/ds_utils.py +64 -0
  8. spikezoo/archs/bsf/main.py +398 -0
  9. spikezoo/archs/bsf/metrics/psnr.py +22 -0
  10. spikezoo/archs/bsf/metrics/ssim.py +54 -0
  11. spikezoo/archs/bsf/models/bsf/__pycache__/align.cpython-39.pyc +0 -0
  12. spikezoo/archs/bsf/models/bsf/__pycache__/bsf.cpython-39.pyc +0 -0
  13. spikezoo/archs/bsf/models/bsf/__pycache__/rep.cpython-39.pyc +0 -0
  14. spikezoo/archs/bsf/models/bsf/align.py +154 -0
  15. spikezoo/archs/bsf/models/bsf/bsf.py +105 -0
  16. spikezoo/archs/bsf/models/bsf/dsft_convert.py +96 -0
  17. spikezoo/archs/bsf/models/bsf/rep.py +44 -0
  18. spikezoo/archs/bsf/models/get_model.py +7 -0
  19. spikezoo/archs/bsf/prepare_data/DSFT.py +62 -0
  20. spikezoo/archs/bsf/prepare_data/crop_dataset_train.py +135 -0
  21. spikezoo/archs/bsf/prepare_data/crop_dataset_val.py +139 -0
  22. spikezoo/archs/bsf/prepare_data/crop_train.sh +4 -0
  23. spikezoo/archs/bsf/prepare_data/crop_val.sh +4 -0
  24. spikezoo/archs/bsf/prepare_data/io_utils.py +64 -0
  25. spikezoo/archs/bsf/requirements.txt +9 -0
  26. spikezoo/archs/bsf/test.py +16 -0
  27. spikezoo/archs/bsf/utils.py +154 -0
  28. spikezoo/archs/spikeclip/__pycache__/nets.cpython-39.pyc +0 -0
  29. spikezoo/archs/spikeclip/nets.py +40 -0
  30. spikezoo/archs/spikeformer/CheckPoints/readme +1 -0
  31. spikezoo/archs/spikeformer/DataProcess/DataExtactor.py +60 -0
  32. spikezoo/archs/spikeformer/DataProcess/DataLoader.py +115 -0
  33. spikezoo/archs/spikeformer/DataProcess/LoadSpike.py +39 -0
  34. spikezoo/archs/spikeformer/EvalResults/readme +1 -0
  35. spikezoo/archs/spikeformer/LICENSE +21 -0
  36. spikezoo/archs/spikeformer/Metrics/Metrics.py +50 -0
  37. spikezoo/archs/spikeformer/Metrics/__init__.py +0 -0
  38. spikezoo/archs/spikeformer/Model/Loss.py +89 -0
  39. spikezoo/archs/spikeformer/Model/SpikeFormer.py +230 -0
  40. spikezoo/archs/spikeformer/Model/__init__.py +0 -0
  41. spikezoo/archs/spikeformer/Model/__pycache__/SpikeFormer.cpython-39.pyc +0 -0
  42. spikezoo/archs/spikeformer/Model/__pycache__/__init__.cpython-39.pyc +0 -0
  43. spikezoo/archs/spikeformer/README.md +30 -0
  44. spikezoo/archs/spikeformer/evaluate.py +87 -0
  45. spikezoo/archs/spikeformer/recon_real_data.py +97 -0
  46. spikezoo/archs/spikeformer/requirements.yml +95 -0
  47. spikezoo/archs/spikeformer/train.py +173 -0
  48. spikezoo/archs/spikeformer/utils.py +22 -0
  49. spikezoo/archs/spk2imgnet/.github/workflows/pylint.yml +23 -0
  50. spikezoo/archs/spk2imgnet/.gitignore +150 -0
  51. spikezoo/archs/spk2imgnet/DCNv2.py +135 -0
  52. spikezoo/archs/spk2imgnet/__pycache__/DCNv2.cpython-39.pyc +0 -0
  53. spikezoo/archs/spk2imgnet/__pycache__/align_arch.cpython-39.pyc +0 -0
  54. spikezoo/archs/spk2imgnet/__pycache__/nets.cpython-39.pyc +0 -0
  55. spikezoo/archs/spk2imgnet/align_arch.py +159 -0
  56. spikezoo/archs/spk2imgnet/dataset.py +144 -0
  57. spikezoo/archs/spk2imgnet/nets.py +230 -0
  58. spikezoo/archs/spk2imgnet/readme.md +86 -0
  59. spikezoo/archs/spk2imgnet/test_gen_imgseq.py +118 -0
  60. spikezoo/archs/spk2imgnet/train.py +189 -0
  61. spikezoo/archs/spk2imgnet/utils.py +64 -0
  62. spikezoo/archs/ssir/README.md +87 -0
  63. spikezoo/archs/ssir/configs/SSIR.yml +37 -0
  64. spikezoo/archs/ssir/configs/yml_parser.py +78 -0
  65. spikezoo/archs/ssir/datasets/dataset_sreds.py +170 -0
  66. spikezoo/archs/ssir/datasets/ds_utils.py +66 -0
  67. spikezoo/archs/ssir/losses.py +21 -0
  68. spikezoo/archs/ssir/main.py +326 -0
  69. spikezoo/archs/ssir/metrics/psnr.py +22 -0
  70. spikezoo/archs/ssir/metrics/ssim.py +54 -0
  71. spikezoo/archs/ssir/models/Vgg19.py +42 -0
  72. spikezoo/archs/ssir/models/__pycache__/layers.cpython-39.pyc +0 -0
  73. spikezoo/archs/ssir/models/__pycache__/networks.cpython-39.pyc +0 -0
  74. spikezoo/archs/ssir/models/layers.py +110 -0
  75. spikezoo/archs/ssir/models/networks.py +61 -0
  76. spikezoo/archs/ssir/requirements.txt +8 -0
  77. spikezoo/archs/ssir/shells/eval_SREDS.sh +6 -0
  78. spikezoo/archs/ssir/shells/train_SSIR.sh +12 -0
  79. spikezoo/archs/ssir/test.py +3 -0
  80. spikezoo/archs/ssir/utils.py +154 -0
  81. spikezoo/archs/ssml/__pycache__/cbam.cpython-39.pyc +0 -0
  82. spikezoo/archs/ssml/__pycache__/model.cpython-39.pyc +0 -0
  83. spikezoo/archs/ssml/cbam.py +224 -0
  84. spikezoo/archs/ssml/model.py +290 -0
  85. spikezoo/archs/ssml/res.png +0 -0
  86. spikezoo/archs/ssml/test.py +67 -0
  87. spikezoo/archs/stir/.git-credentials +0 -0
  88. spikezoo/archs/stir/README.md +65 -0
  89. spikezoo/archs/stir/ckpt_outputs/Descriptions.txt +1 -0
  90. spikezoo/archs/stir/configs/STIR.yml +37 -0
  91. spikezoo/archs/stir/configs/utils.py +155 -0
  92. spikezoo/archs/stir/configs/yml_parser.py +78 -0
  93. spikezoo/archs/stir/datasets/dataset_sreds.py +180 -0
  94. spikezoo/archs/stir/datasets/ds_utils.py +66 -0
  95. spikezoo/archs/stir/eval_SREDS.sh +5 -0
  96. spikezoo/archs/stir/main.py +397 -0
  97. spikezoo/archs/stir/metrics/losses.py +219 -0
  98. spikezoo/archs/stir/metrics/psnr.py +22 -0
  99. spikezoo/archs/stir/metrics/ssim.py +54 -0
  100. spikezoo/archs/stir/models/Vgg19.py +42 -0
  101. spikezoo/archs/stir/models/__pycache__/networks_STIR.cpython-39.pyc +0 -0
  102. spikezoo/archs/stir/models/__pycache__/submodules.cpython-39.pyc +0 -0
  103. spikezoo/archs/stir/models/__pycache__/transformer_new.cpython-39.pyc +0 -0
  104. spikezoo/archs/stir/models/networks_STIR.py +361 -0
  105. spikezoo/archs/stir/models/submodules.py +86 -0
  106. spikezoo/archs/stir/models/transformer_new.py +151 -0
  107. spikezoo/archs/stir/package_core/build/lib/package_core/__init__.py +0 -0
  108. spikezoo/archs/stir/package_core/build/lib/package_core/convertions.py +721 -0
  109. spikezoo/archs/stir/package_core/build/lib/package_core/disp_netS.py +133 -0
  110. spikezoo/archs/stir/package_core/build/lib/package_core/flow_utils.py +167 -0
  111. spikezoo/archs/stir/package_core/build/lib/package_core/generic_train_test.py +76 -0
  112. spikezoo/archs/stir/package_core/build/lib/package_core/geometry.py +458 -0
  113. spikezoo/archs/stir/package_core/build/lib/package_core/image_proc.py +183 -0
  114. spikezoo/archs/stir/package_core/build/lib/package_core/linalg.py +40 -0
  115. spikezoo/archs/stir/package_core/build/lib/package_core/losses.py +198 -0
  116. spikezoo/archs/stir/package_core/build/lib/package_core/metrics.py +51 -0
  117. spikezoo/archs/stir/package_core/build/lib/package_core/model_base.py +53 -0
  118. spikezoo/archs/stir/package_core/build/lib/package_core/net_basics.py +100 -0
  119. spikezoo/archs/stir/package_core/build/lib/package_core/resnet.py +333 -0
  120. spikezoo/archs/stir/package_core/build/lib/package_core/transforms.py +123 -0
  121. spikezoo/archs/stir/package_core/build/lib/package_core/utils.py +72 -0
  122. spikezoo/archs/stir/package_core/dist/package_core-0.0.0-py3.9.egg +0 -0
  123. spikezoo/archs/stir/package_core/package_core/__init__.py +0 -0
  124. spikezoo/archs/stir/package_core/package_core/__pycache__/__init__.cpython-39.pyc +0 -0
  125. spikezoo/archs/stir/package_core/package_core/__pycache__/net_basics.cpython-39.pyc +0 -0
  126. spikezoo/archs/stir/package_core/package_core/convertions.py +721 -0
  127. spikezoo/archs/stir/package_core/package_core/disp_netS.py +133 -0
  128. spikezoo/archs/stir/package_core/package_core/flow_utils.py +167 -0
  129. spikezoo/archs/stir/package_core/package_core/generic_train_test.py +76 -0
  130. spikezoo/archs/stir/package_core/package_core/geometry.py +458 -0
  131. spikezoo/archs/stir/package_core/package_core/image_proc.py +183 -0
  132. spikezoo/archs/stir/package_core/package_core/linalg.py +40 -0
  133. spikezoo/archs/stir/package_core/package_core/losses.py +198 -0
  134. spikezoo/archs/stir/package_core/package_core/metrics.py +51 -0
  135. spikezoo/archs/stir/package_core/package_core/model_base.py +53 -0
  136. spikezoo/archs/stir/package_core/package_core/net_basics.py +100 -0
  137. spikezoo/archs/stir/package_core/package_core/resnet.py +333 -0
  138. spikezoo/archs/stir/package_core/package_core/transforms.py +123 -0
  139. spikezoo/archs/stir/package_core/package_core/utils.py +72 -0
  140. spikezoo/archs/stir/package_core/package_core.egg-info/PKG-INFO +3 -0
  141. spikezoo/archs/stir/package_core/package_core.egg-info/SOURCES.txt +20 -0
  142. spikezoo/archs/stir/package_core/package_core.egg-info/dependency_links.txt +1 -0
  143. spikezoo/archs/stir/package_core/package_core.egg-info/top_level.txt +1 -0
  144. spikezoo/archs/stir/package_core/setup.py +5 -0
  145. spikezoo/archs/stir/requirements.txt +12 -0
  146. spikezoo/archs/stir/train_STIR.sh +9 -0
  147. spikezoo/archs/tfi/__pycache__/nets.cpython-39.pyc +0 -0
  148. spikezoo/archs/tfi/nets.py +43 -0
  149. spikezoo/archs/tfp/__pycache__/nets.cpython-39.pyc +0 -0
  150. spikezoo/archs/tfp/nets.py +13 -0
  151. spikezoo/archs/wgse/README.md +64 -0
  152. spikezoo/archs/wgse/__pycache__/dwtnets.cpython-39.pyc +0 -0
  153. spikezoo/archs/wgse/__pycache__/submodules.cpython-39.pyc +0 -0
  154. spikezoo/archs/wgse/dataset.py +59 -0
  155. spikezoo/archs/wgse/demo.png +0 -0
  156. spikezoo/archs/wgse/demo.py +83 -0
  157. spikezoo/archs/wgse/dwtnets.py +145 -0
  158. spikezoo/archs/wgse/eval.py +133 -0
  159. spikezoo/archs/wgse/logs/WGSE-Dwt1dNet-db8-5-ks3/log.txt +11 -0
  160. spikezoo/archs/wgse/submodules.py +68 -0
  161. spikezoo/archs/wgse/train.py +261 -0
  162. spikezoo/archs/wgse/transform.py +139 -0
  163. spikezoo/archs/wgse/utils.py +128 -0
  164. spikezoo/archs/wgse/weights/demo.png +0 -0
  165. spikezoo/data/base/test/gt/200_part1_key_id151.png +0 -0
  166. spikezoo/data/base/test/gt/200_part3_key_id151.png +0 -0
  167. spikezoo/data/base/test/gt/203_part1_key_id151.png +0 -0
  168. spikezoo/data/base/test/spike/200_part1_key_id151.dat +0 -0
  169. spikezoo/data/base/test/spike/200_part3_key_id151.dat +0 -0
  170. spikezoo/data/base/test/spike/203_part1_key_id151.dat +0 -0
  171. spikezoo/data/base/train/gt/203_part2_key_id151.png +0 -0
  172. spikezoo/data/base/train/gt/203_part3_key_id151.png +0 -0
  173. spikezoo/data/base/train/gt/203_part4_key_id151.png +0 -0
  174. spikezoo/data/base/train/spike/203_part2_key_id151.dat +0 -0
  175. spikezoo/data/base/train/spike/203_part3_key_id151.dat +0 -0
  176. spikezoo/data/base/train/spike/203_part4_key_id151.dat +0 -0
  177. spikezoo/datasets/base_dataset.py +2 -3
  178. spikezoo/metrics/__init__.py +1 -1
  179. spikezoo/models/base_model.py +1 -3
  180. spikezoo/pipeline/base_pipeline.py +7 -5
  181. spikezoo/pipeline/train_pipeline.py +1 -1
  182. spikezoo/utils/other_utils.py +16 -6
  183. spikezoo/utils/spike_utils.py +33 -29
  184. spikezoo/utils/vidar_loader.cpython-39-x86_64-linux-gnu.so +0 -0
  185. spikezoo-0.2.dist-info/METADATA +163 -0
  186. spikezoo-0.2.dist-info/RECORD +211 -0
  187. spikezoo/models/spcsnet_model.py +0 -19
  188. spikezoo-0.1.1.dist-info/METADATA +0 -39
  189. spikezoo-0.1.1.dist-info/RECORD +0 -36
  190. {spikezoo-0.1.1.dist-info → spikezoo-0.2.dist-info}/LICENSE.txt +0 -0
  191. {spikezoo-0.1.1.dist-info → spikezoo-0.2.dist-info}/WHEEL +0 -0
  192. {spikezoo-0.1.1.dist-info → spikezoo-0.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,333 @@
1
+ import torch.nn as nn
2
+ try:
3
+ from torch.hub import load_state_dict_from_url
4
+ except ImportError:
5
+ from torch.utils.model_zoo import load_url as load_state_dict_from_url
6
+
7
+
8
+ __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
9
+ 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
10
+ 'wide_resnet50_2', 'wide_resnet101_2']
11
+
12
+
13
+ model_urls = {
14
+ 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
15
+ 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
16
+ 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
17
+ 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
18
+ 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
19
+ 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
20
+ 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
21
+ 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
22
+ 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
23
+ }
24
+
25
+
26
+ def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
27
+ """3x3 convolution with padding"""
28
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
29
+ padding=dilation, groups=groups, bias=False, dilation=dilation)
30
+
31
+
32
+ def conv1x1(in_planes, out_planes, stride=1):
33
+ """1x1 convolution"""
34
+ return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
35
+
36
+
37
+ class BasicBlock(nn.Module):
38
+ expansion = 1
39
+
40
+ def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
41
+ base_width=64, dilation=1, norm_layer=None):
42
+ super(BasicBlock, self).__init__()
43
+ if norm_layer is None:
44
+ norm_layer = nn.BatchNorm2d
45
+ if groups != 1 or base_width != 64:
46
+ raise ValueError('BasicBlock only supports groups=1 and base_width=64')
47
+ if dilation > 1:
48
+ raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
49
+ # Both self.conv1 and self.downsample layers downsample the input when stride != 1
50
+ self.conv1 = conv3x3(inplanes, planes, stride)
51
+ self.bn1 = norm_layer(planes)
52
+ self.relu = nn.ReLU(inplace=True)
53
+ self.conv2 = conv3x3(planes, planes)
54
+ self.bn2 = norm_layer(planes)
55
+ self.downsample = downsample
56
+ self.stride = stride
57
+
58
+ def forward(self, x):
59
+ identity = x
60
+
61
+ out = self.conv1(x)
62
+ out = self.bn1(out)
63
+ out = self.relu(out)
64
+
65
+ out = self.conv2(out)
66
+ out = self.bn2(out)
67
+
68
+ if self.downsample is not None:
69
+ identity = self.downsample(x)
70
+
71
+ out += identity
72
+ out = self.relu(out)
73
+
74
+ return out
75
+
76
+
77
+ class Bottleneck(nn.Module):
78
+ expansion = 4
79
+
80
+ def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
81
+ base_width=64, dilation=1, norm_layer=None):
82
+ super(Bottleneck, self).__init__()
83
+ if norm_layer is None:
84
+ norm_layer = nn.BatchNorm2d
85
+ width = int(planes * (base_width / 64.)) * groups
86
+ # Both self.conv2 and self.downsample layers downsample the input when stride != 1
87
+ self.conv1 = conv1x1(inplanes, width)
88
+ self.bn1 = norm_layer(width)
89
+ self.conv2 = conv3x3(width, width, stride, groups, dilation)
90
+ self.bn2 = norm_layer(width)
91
+ self.conv3 = conv1x1(width, planes * self.expansion)
92
+ self.bn3 = norm_layer(planes * self.expansion)
93
+ self.relu = nn.ReLU(inplace=True)
94
+ self.downsample = downsample
95
+ self.stride = stride
96
+
97
+ def forward(self, x):
98
+ identity = x
99
+
100
+ out = self.conv1(x)
101
+ out = self.bn1(out)
102
+ out = self.relu(out)
103
+
104
+ out = self.conv2(out)
105
+ out = self.bn2(out)
106
+ out = self.relu(out)
107
+
108
+ out = self.conv3(out)
109
+ out = self.bn3(out)
110
+
111
+ if self.downsample is not None:
112
+ identity = self.downsample(x)
113
+
114
+ out += identity
115
+ out = self.relu(out)
116
+
117
+ return out
118
+
119
+
120
+ class ResNet(nn.Module):
121
+
122
+ def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
123
+ groups=1, width_per_group=64, replace_stride_with_dilation=None,
124
+ norm_layer=None):
125
+ super(ResNet, self).__init__()
126
+ if norm_layer is None:
127
+ norm_layer = nn.BatchNorm2d
128
+ self._norm_layer = norm_layer
129
+
130
+ self.inplanes = 64
131
+ self.dilation = 1
132
+ if replace_stride_with_dilation is None:
133
+ # each element in the tuple indicates if we should replace
134
+ # the 2x2 stride with a dilated convolution instead
135
+ replace_stride_with_dilation = [False, False, False]
136
+ if len(replace_stride_with_dilation) != 3:
137
+ raise ValueError("replace_stride_with_dilation should be None "
138
+ "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
139
+ self.groups = groups
140
+ self.base_width = width_per_group
141
+ self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
142
+ bias=False)
143
+ self.bn1 = norm_layer(self.inplanes)
144
+ self.relu = nn.ReLU(inplace=True)
145
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
146
+ self.layer1 = self._make_layer(block, 64, layers[0])
147
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
148
+ dilate=replace_stride_with_dilation[0])
149
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
150
+ dilate=replace_stride_with_dilation[1])
151
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
152
+ dilate=replace_stride_with_dilation[2])
153
+ self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
154
+ self.fc = nn.Linear(512 * block.expansion, num_classes)
155
+
156
+ for m in self.modules():
157
+ if isinstance(m, nn.Conv2d):
158
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
159
+ elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
160
+ nn.init.constant_(m.weight, 1)
161
+ nn.init.constant_(m.bias, 0)
162
+
163
+ # Zero-initialize the last BN in each residual branch,
164
+ # so that the residual branch starts with zeros, and each residual block behaves like an identity.
165
+ # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
166
+ if zero_init_residual:
167
+ for m in self.modules():
168
+ if isinstance(m, Bottleneck):
169
+ nn.init.constant_(m.bn3.weight, 0)
170
+ elif isinstance(m, BasicBlock):
171
+ nn.init.constant_(m.bn2.weight, 0)
172
+
173
+ def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
174
+ norm_layer = self._norm_layer
175
+ downsample = None
176
+ previous_dilation = self.dilation
177
+ if dilate:
178
+ self.dilation *= stride
179
+ stride = 1
180
+ if stride != 1 or self.inplanes != planes * block.expansion:
181
+ downsample = nn.Sequential(
182
+ conv1x1(self.inplanes, planes * block.expansion, stride),
183
+ norm_layer(planes * block.expansion),
184
+ )
185
+
186
+ layers = []
187
+ layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
188
+ self.base_width, previous_dilation, norm_layer))
189
+ self.inplanes = planes * block.expansion
190
+ for _ in range(1, blocks):
191
+ layers.append(block(self.inplanes, planes, groups=self.groups,
192
+ base_width=self.base_width, dilation=self.dilation,
193
+ norm_layer=norm_layer))
194
+
195
+ return nn.Sequential(*layers)
196
+
197
+ def forward(self, x):
198
+ x = self.conv1(x)
199
+ x = self.bn1(x)
200
+ x = self.relu(x)
201
+ x = self.maxpool(x)
202
+
203
+ x = self.layer1(x)
204
+ x = self.layer2(x)
205
+ x = self.layer3(x)
206
+ x = self.layer4(x)
207
+
208
+ #x = self.avgpool(x)
209
+ #x = x.reshape(x.size(0), -1)
210
+ #x = self.fc(x)
211
+
212
+ return x
213
+
214
+
215
+ def _resnet(arch, block, layers, pretrained, progress, **kwargs):
216
+ model = ResNet(block, layers, **kwargs)
217
+ if pretrained:
218
+ state_dict = load_state_dict_from_url(model_urls[arch],
219
+ progress=progress)
220
+ model.load_state_dict(state_dict)
221
+ return model
222
+
223
+
224
+ def resnet18(pretrained=False, progress=True, **kwargs):
225
+ r"""ResNet-18 model from
226
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>'_
227
+ Args:
228
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
229
+ progress (bool): If True, displays a progress bar of the download to stderr
230
+ """
231
+ return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
232
+ **kwargs)
233
+
234
+
235
+ def resnet34(pretrained=False, progress=True, **kwargs):
236
+ r"""ResNet-34 model from
237
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>'_
238
+ Args:
239
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
240
+ progress (bool): If True, displays a progress bar of the download to stderr
241
+ """
242
+ return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
243
+ **kwargs)
244
+
245
+
246
+ def resnet50(pretrained=False, progress=True, **kwargs):
247
+ r"""ResNet-50 model from
248
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>'_
249
+ Args:
250
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
251
+ progress (bool): If True, displays a progress bar of the download to stderr
252
+ """
253
+ return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
254
+ **kwargs)
255
+
256
+
257
+ def resnet101(pretrained=False, progress=True, **kwargs):
258
+ r"""ResNet-101 model from
259
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>'_
260
+ Args:
261
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
262
+ progress (bool): If True, displays a progress bar of the download to stderr
263
+ """
264
+ return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
265
+ **kwargs)
266
+
267
+
268
+ def resnet152(pretrained=False, progress=True, **kwargs):
269
+ r"""ResNet-152 model from
270
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>'_
271
+ Args:
272
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
273
+ progress (bool): If True, displays a progress bar of the download to stderr
274
+ """
275
+ return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
276
+ **kwargs)
277
+
278
+
279
+ def resnext50_32x4d(pretrained=False, progress=True, **kwargs):
280
+ r"""ResNeXt-50 32x4d model from
281
+ `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
282
+ Args:
283
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
284
+ progress (bool): If True, displays a progress bar of the download to stderr
285
+ """
286
+ kwargs['groups'] = 32
287
+ kwargs['width_per_group'] = 4
288
+ return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
289
+ pretrained, progress, **kwargs)
290
+
291
+
292
+ def resnext101_32x8d(pretrained=False, progress=True, **kwargs):
293
+ r"""ResNeXt-101 32x8d model from
294
+ `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
295
+ Args:
296
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
297
+ progress (bool): If True, displays a progress bar of the download to stderr
298
+ """
299
+ kwargs['groups'] = 32
300
+ kwargs['width_per_group'] = 8
301
+ return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
302
+ pretrained, progress, **kwargs)
303
+
304
+
305
+ def wide_resnet50_2(pretrained=False, progress=True, **kwargs):
306
+ r"""Wide ResNet-50-2 model from
307
+ `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
308
+ The model is the same as ResNet except for the bottleneck number of channels
309
+ which is twice larger in every block. The number of channels in outer 1x1
310
+ convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
311
+ channels, and in Wide ResNet-50-2 has 2048-1024-2048.
312
+ Args:
313
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
314
+ progress (bool): If True, displays a progress bar of the download to stderr
315
+ """
316
+ kwargs['width_per_group'] = 64 * 2
317
+ return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
318
+ pretrained, progress, **kwargs)
319
+
320
+
321
+ def wide_resnet101_2(pretrained=False, progress=True, **kwargs):
322
+ r"""Wide ResNet-101-2 model from
323
+ `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
324
+ The model is the same as ResNet except for the bottleneck number of channels
325
+ which is twice larger in every block. The number of channels in outer 1x1
326
+ convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
327
+ channels, and in Wide ResNet-50-2 has 2048-1024-2048.
328
+ Args:
329
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
330
+ progress (bool): If True, displays a progress bar of the download to stderr
331
+ """
332
+ kwargs['width_per_group'] = 64 * 2
333
+ return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
@@ -0,0 +1,123 @@
1
+ import torch
2
+ import random
3
+ import numbers
4
+ import collections
5
+ import numpy as np
6
+
7
+ class Merge(object):
8
+ def __init__(self, axis=-1):
9
+ self.axis = axis
10
+
11
+ def __call__(self, images):
12
+ if isinstance(images, collections.Sequence) or isinstance(images, np.ndarray):
13
+ assert all([isinstance(i, np.ndarray) for i in images]), 'only numpy array is supported'
14
+ shapes = [list(i.shape) for i in images]
15
+ for s in shapes:
16
+ s[self.axis] = None
17
+ assert all([s == shapes[0] for s in shapes]), 'shapes must be the same except the merge axis'
18
+ return np.concatenate(images, axis=self.axis)
19
+ else:
20
+ raise Exception("obj is not a sequence (list, tuple, etc)")
21
+
22
+ class Normalize(object):
23
+ def __call__(self, image):
24
+ image=image/255.
25
+ return image
26
+
27
+ class Crop(object):
28
+ def __init__(self, size):
29
+ if isinstance(size, numbers.Number):
30
+ self.size = (int(size), int(size))
31
+ else:
32
+ self.size = size
33
+
34
+ def __call__(self, img):
35
+ h, w = img.shape[:2]
36
+
37
+ th, tw = self.size
38
+ if w == tw and h == th:
39
+ return img
40
+
41
+ return img[:th, :tw, :]
42
+
43
+ class Random_crop(object):
44
+ """Crops the given numpy array at a random location to have a region of
45
+ the given size. size can be a tuple (target_height, target_width)
46
+ or an integer, in which case the target will be of a square shape (size, size)
47
+ """
48
+ def __init__(self, size):
49
+ if isinstance(size, numbers.Number):
50
+ self.size = (int(size), int(size))
51
+ else:
52
+ self.size = size
53
+ random.seed()
54
+
55
+ def __call__(self, img):
56
+ h, w = img.shape[:2]
57
+
58
+ th, tw = self.size
59
+ if w == tw and h == th:
60
+ return img
61
+
62
+ w1 = 0 if w==tw else random.randint(0, w - tw)
63
+ h1 = 0 if h==th else random.randint(0, h - th)
64
+
65
+ return img[h1:h1+th, w1:w1+tw, :]
66
+
67
+ class Split(object):
68
+ """Split images into individual arraies
69
+ """
70
+ def __init__(self, *slices, **kwargs):
71
+ assert isinstance(slices, collections.Sequence)
72
+ slices_ = []
73
+ for s in slices:
74
+ slices_.append(s)
75
+ self.slices = slices_
76
+
77
+ def __call__(self, image):
78
+ if isinstance(image, np.ndarray):
79
+ ret = []
80
+ for s in self.slices:
81
+ ret.append(image[:, :, s[0]:s[1]])
82
+ return ret
83
+ else:
84
+ raise Exception("obj is not an numpy array")
85
+
86
+ class To_tensor(object):
87
+ def __call__(self, image):
88
+ image = image.transpose((2, 0, 1))
89
+ return torch.from_numpy(image).float()
90
+
91
+ class Compose(object):
92
+ """Composes several transforms together.
93
+ Args:
94
+ transforms (List[Transform]): list of transforms to compose.
95
+ Example:
96
+ >>> transforms.Compose([
97
+ >>> transforms.CenterCrop(10),
98
+ >>> transforms.ToTensor(),
99
+ >>> ])
100
+ """
101
+
102
+ def __init__(self, transforms):
103
+ self.transforms = transforms
104
+
105
+ def __call__(self, img):
106
+ for t in self.transforms:
107
+ if isinstance(t, collections.Sequence):
108
+ assert isinstance(img, collections.Sequence) and len(img) == len(
109
+ t), "size of image group and transform group does not fit"
110
+ tmp_ = []
111
+ for i, im_ in enumerate(img):
112
+ if callable(t[i]):
113
+ tmp_.append(t[i](im_))
114
+ else:
115
+ tmp_.append(im_)
116
+ img = tmp_
117
+ elif callable(t):
118
+ img = t(img)
119
+ elif t is None:
120
+ continue
121
+ else:
122
+ raise Exception('unexpected type')
123
+ return img
@@ -0,0 +1,72 @@
1
+ from __future__ import division
2
+ import shutil
3
+ import numpy as np
4
+ import torch
5
+ import meshzoo
6
+ from path import Path
7
+ import datetime
8
+ from collections import OrderedDict
9
+ from matplotlib import cm
10
+ from matplotlib.colors import ListedColormap, LinearSegmentedColormap
11
+
12
+ def high_res_colormap(low_res_cmap, resolution=1000, max_value=1):
13
+ # Construct the list colormap, with interpolated values for higer resolution
14
+ # For a linear segmented colormap, you can just specify the number of point in
15
+ # cm.get_cmap(name, lutsize) with the parameter lutsize
16
+ x = np.linspace(0, 1, low_res_cmap.N)
17
+ low_res = low_res_cmap(x)
18
+ new_x = np.linspace(0, max_value, resolution)
19
+ high_res = np.stack([np.interp(new_x, x, low_res[:, i])
20
+ for i in range(low_res.shape[1])], axis=1)
21
+ return ListedColormap(high_res)
22
+
23
+
24
+ def opencv_rainbow(resolution=1000):
25
+ # Construct the opencv equivalent of Rainbow
26
+ opencv_rainbow_data = (
27
+ (0.000, (1.00, 0.00, 0.00)),
28
+ (0.400, (1.00, 1.00, 0.00)),
29
+ (0.600, (0.00, 1.00, 0.00)),
30
+ (0.800, (0.00, 0.00, 1.00)),
31
+ (1.000, (0.60, 0.00, 1.00))
32
+ )
33
+
34
+ return LinearSegmentedColormap.from_list('opencv_rainbow', opencv_rainbow_data, resolution)
35
+
36
+
37
+ COLORMAPS = {'rainbow': opencv_rainbow(),
38
+ 'magma': high_res_colormap(cm.get_cmap('magma')),
39
+ 'bone': cm.get_cmap('bone', 10000)}
40
+
41
+
42
+ def tensor2array(tensor, max_value=None, colormap='rainbow'):
43
+ tensor = tensor.detach().cpu()
44
+ if max_value is None:
45
+ max_value = tensor.max().item()
46
+ if tensor.ndimension() == 2 or tensor.size(0) == 1:
47
+ norm_array = tensor.squeeze().numpy()/max_value
48
+ array = COLORMAPS[colormap](norm_array).astype(np.float32)
49
+ array = array.transpose(2, 0, 1)
50
+
51
+ elif tensor.ndimension() == 3:
52
+ assert(tensor.size(0) == 3)
53
+ array = 0.5 + tensor.numpy()*0.5
54
+ return array
55
+
56
+ def generate_2D_mesh(H, W):
57
+ _, faces = meshzoo.rectangle(
58
+ xmin = -1., xmax = 1.,
59
+ ymin = -1., ymax = 1.,
60
+ nx = W, ny = H,
61
+ zigzag=True)
62
+
63
+ x = torch.arange(0, W, 1).float().cuda()
64
+ y = torch.arange(0, H, 1).float().cuda()
65
+
66
+ xx = x.repeat(H, 1)
67
+ yy = y.view(H, 1).repeat(1, W)
68
+
69
+ grid = torch.stack([xx, yy], dim=0)
70
+
71
+ return grid, faces
72
+