speedy-utils 1.0.4__py3-none-any.whl → 1.0.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. llm_utils/__init__.py +31 -0
  2. llm_utils/chat_format/__init__.py +34 -0
  3. llm_utils/chat_format/display.py +274 -0
  4. llm_utils/chat_format/transform.py +149 -0
  5. llm_utils/chat_format/utils.py +43 -0
  6. llm_utils/group_messages.py +120 -0
  7. llm_utils/lm/__init__.py +8 -0
  8. llm_utils/lm/lm.py +304 -0
  9. llm_utils/lm/utils.py +130 -0
  10. llm_utils/scripts/vllm_load_balancer.py +435 -0
  11. llm_utils/scripts/vllm_serve.py +416 -0
  12. speedy_utils/__init__.py +85 -0
  13. speedy_utils/all.py +159 -0
  14. {speedy → speedy_utils}/common/__init__.py +0 -0
  15. speedy_utils/common/clock.py +215 -0
  16. speedy_utils/common/function_decorator.py +66 -0
  17. speedy_utils/common/logger.py +207 -0
  18. speedy_utils/common/report_manager.py +112 -0
  19. speedy_utils/common/utils_cache.py +264 -0
  20. {speedy → speedy_utils}/common/utils_io.py +66 -19
  21. {speedy → speedy_utils}/common/utils_misc.py +25 -11
  22. speedy_utils/common/utils_print.py +216 -0
  23. speedy_utils/multi_worker/__init__.py +0 -0
  24. speedy_utils/multi_worker/process.py +198 -0
  25. speedy_utils/multi_worker/thread.py +327 -0
  26. speedy_utils/scripts/mpython.py +108 -0
  27. speedy_utils-1.0.9.dist-info/METADATA +287 -0
  28. speedy_utils-1.0.9.dist-info/RECORD +30 -0
  29. {speedy_utils-1.0.4.dist-info → speedy_utils-1.0.9.dist-info}/WHEEL +1 -2
  30. speedy_utils-1.0.9.dist-info/entry_points.txt +5 -0
  31. speedy/__init__.py +0 -53
  32. speedy/common/clock.py +0 -68
  33. speedy/common/utils_cache.py +0 -170
  34. speedy/common/utils_print.py +0 -138
  35. speedy/multi_worker.py +0 -121
  36. speedy_utils-1.0.4.dist-info/METADATA +0 -22
  37. speedy_utils-1.0.4.dist-info/RECORD +0 -12
  38. speedy_utils-1.0.4.dist-info/top_level.txt +0 -1
@@ -0,0 +1,287 @@
1
+ Metadata-Version: 2.3
2
+ Name: speedy-utils
3
+ Version: 1.0.9
4
+ Summary: Fast and easy-to-use package for data science
5
+ Author: AnhVTH
6
+ Author-email: anhvth.226@gmail.com
7
+ Requires-Python: >=3.9
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: Programming Language :: Python :: 3.9
10
+ Classifier: Programming Language :: Python :: 3.10
11
+ Classifier: Programming Language :: Python :: 3.11
12
+ Classifier: Programming Language :: Python :: 3.12
13
+ Classifier: Programming Language :: Python :: 3.13
14
+ Requires-Dist: bump2version
15
+ Requires-Dist: cachetools
16
+ Requires-Dist: debugpy
17
+ Requires-Dist: fastcore
18
+ Requires-Dist: fastprogress
19
+ Requires-Dist: freezegun (>=1.5.1,<2.0.0)
20
+ Requires-Dist: ipdb
21
+ Requires-Dist: ipywidgets
22
+ Requires-Dist: json-repair (>=0.40.0,<0.41.0)
23
+ Requires-Dist: jupyterlab
24
+ Requires-Dist: loguru
25
+ Requires-Dist: matplotlib
26
+ Requires-Dist: numpy
27
+ Requires-Dist: packaging (>=23.2,<25)
28
+ Requires-Dist: pandas
29
+ Requires-Dist: pydantic
30
+ Requires-Dist: requests
31
+ Requires-Dist: scikit-learn
32
+ Requires-Dist: tabulate
33
+ Requires-Dist: tqdm
34
+ Requires-Dist: xxhash
35
+ Project-URL: Homepage, https://github.com/anhvth/speedy
36
+ Description-Content-Type: text/markdown
37
+
38
+ # Speedy Utils
39
+
40
+ ![PyPI](https://img.shields.io/pypi/v/speedy-utils)
41
+ ![Python Versions](https://img.shields.io/pypi/pyversions/speedy-utils)
42
+ ![License](https://img.shields.io/pypi/l/speedy-utils)
43
+
44
+ **Speedy Utils** is a Python utility library designed to streamline common programming tasks such as caching, parallel processing, file I/O, and data manipulation. It provides a collection of decorators, functions, and classes to enhance productivity and performance in your Python projects.
45
+
46
+ ## Table of Contents
47
+
48
+ - [Features](#features)
49
+ - [Installation](#installation)
50
+ - [Usage](#usage)
51
+ - [Caching](#caching)
52
+ - [Parallel Processing](#parallel-processing)
53
+ - [File I/O](#file-io)
54
+ - [Data Manipulation](#data-manipulation)
55
+ - [Utility Functions](#utility-functions)
56
+ - [Testing](#testing)
57
+
58
+ ## Features
59
+
60
+ - **Caching Mechanisms**: Disk-based and in-memory caching to optimize function calls.
61
+ - **Parallel Processing**: Multi-threading, multi-processing, and asynchronous multi-threading utilities.
62
+ - **File I/O**: Simplified JSON, JSONL, and pickle file handling with support for various file extensions.
63
+ - **Data Manipulation**: Utilities for flattening lists and dictionaries, converting data types, and more.
64
+ - **Timing Utilities**: Tools to measure and log execution time of functions and processes.
65
+ - **Pretty Printing**: Enhanced printing functions for structured data, including HTML tables for Jupyter notebooks.
66
+
67
+ ## Installation
68
+
69
+ You can install **Speedy Utils** via [PyPI](https://pypi.org/project/speedy-utils/) using `pip`:
70
+
71
+ ```bash
72
+ uv pip install speedy-utils
73
+
74
+ ```
75
+
76
+ Alternatively, install directly from the repository:
77
+
78
+ ```bash
79
+ uv pip install git+https://github.com/anhvth/speedy
80
+ cd speedy-utils
81
+ pip install .
82
+ ```
83
+
84
+ ## Updating from previous versions
85
+
86
+ To update from previous versions or switch to v1.x, first uninstall any old
87
+ packages, then install the latest version:
88
+
89
+ ```bash
90
+ pip uninstall speedy_llm_utils speedy_utils
91
+ pip install -e ./ # for local development
92
+ # or
93
+ pip install speedy_utils -U # for PyPI upgrade
94
+ ```
95
+
96
+ ## Usage
97
+
98
+ Below are examples demonstrating how to utilize various features of **Speedy Utils**.
99
+
100
+ ### Caching
101
+
102
+ #### Memoize Decorator
103
+
104
+ Cache the results of function calls to disk to avoid redundant computations.
105
+
106
+ ```python
107
+ from speedy_utils import memoize
108
+
109
+ @memoize
110
+ def expensive_function(x):
111
+ # Simulate an expensive computation
112
+ import time
113
+ time.sleep(2)
114
+ return x * x
115
+
116
+ result = expensive_function(4) # Takes ~2 seconds
117
+ result = expensive_function(4) # Retrieved from cache instantly
118
+ ```
119
+
120
+ #### In-Memory Memoization
121
+
122
+ Cache function results in memory for faster access within the same runtime.
123
+
124
+ ```python
125
+ from speedy_utils import imemoize
126
+
127
+ @imemoize
128
+ def compute_sum(a, b):
129
+ return a + b
130
+
131
+ result = compute_sum(5, 7) # Computed and cached
132
+ result = compute_sum(5, 7) # Retrieved from in-memory cache
133
+ ```
134
+
135
+ ### Parallel Processing
136
+
137
+ #### Multi-threading
138
+
139
+ Execute functions concurrently using multiple threads. This approach is straightforward and automatically handles both notebook and Python script executions. In a notebook environment, it delegates the running thread to a separate process. If interrupted, it immediately stops this process, avoiding thread dependency issues where threads continue running until all tasks are completed.
140
+
141
+ ```python
142
+ from speedy_utils import multi_thread
143
+
144
+ def process_item(item):
145
+ # Your processing logic
146
+ return item * 2
147
+
148
+ items = [1, 2, 3, 4, 5]
149
+ results = multi_thread(process_item, items, workers=3)
150
+ print(results) # [2, 4, 6, 8, 10]
151
+ ```
152
+
153
+ ### File I/O
154
+
155
+ #### Dumping Data
156
+
157
+ Save data in JSON, JSONL, or pickle formats.
158
+
159
+ ```python
160
+ from speedy_utils import dump_json_or_pickle, dump_jsonl
161
+
162
+ data = {"name": "Alice", "age": 30}
163
+
164
+ # Save as JSON
165
+ dump_json_or_pickle(data, "data.json")
166
+
167
+ # Save as JSONL
168
+ dump_jsonl([data, {"name": "Bob", "age": 25}], "data.jsonl")
169
+
170
+ # Save as Pickle
171
+ dump_json_or_pickle(data, "data.pkl")
172
+ ```
173
+
174
+ #### Loading Data
175
+
176
+ Load data based on file extensions.
177
+
178
+ ```python
179
+ from speedy_utils import load_json_or_pickle, load_by_ext
180
+
181
+ # Load JSON
182
+ data = load_json_or_pickle("data.json")
183
+
184
+ # Load JSONL
185
+ data_list = load_json_or_pickle("data.jsonl")
186
+
187
+ # Load Pickle
188
+ data = load_json_or_pickle("data.pkl")
189
+
190
+ # Load based on extension with parallel processing
191
+ loaded_data = load_by_ext(["data.json", "data.pkl"])
192
+ ```
193
+
194
+ ### Data Manipulation
195
+
196
+ #### Flattening Lists and Dictionaries
197
+
198
+ ```python
199
+ from speedy_utils import flatten_list, flatten_dict
200
+
201
+ nested_list = [[1, 2], [3, 4], [5]]
202
+ flat_list = flatten_list(nested_list)
203
+ print(flat_list) # [1, 2, 3, 4, 5]
204
+
205
+ nested_dict = {"a": {"b": 1, "c": 2}, "d": 3}
206
+ flat_dict = flatten_dict(nested_dict)
207
+ print(flat_dict) # {'a.b': 1, 'a.c': 2, 'd': 3}
208
+ ```
209
+
210
+ #### Converting to Built-in Python Types
211
+
212
+ ```python
213
+ from speedy_utils import convert_to_builtin_python
214
+ from pydantic import BaseModel
215
+
216
+ class User(BaseModel):
217
+ name: str
218
+ age: int
219
+
220
+ user = User(name="Charlie", age=28)
221
+ builtin_user = convert_to_builtin_python(user)
222
+ print(builtin_user) # {'name': 'Charlie', 'age': 28}
223
+ ```
224
+
225
+ ### Utility Functions
226
+
227
+ #### Pretty Printing
228
+
229
+ ```python
230
+ from speedy_utils import fprint, print_table
231
+
232
+ data = {"name": "Dana", "age": 22, "city": "New York"}
233
+
234
+ # Pretty print as table
235
+ fprint(data)
236
+
237
+ # Print as table using tabulate
238
+ print_table(data)
239
+ ```
240
+
241
+ #### Timing Utilities
242
+
243
+ ```python
244
+ from speedy_utils import timef, Clock
245
+
246
+ @timef
247
+ def slow_function():
248
+ import time
249
+ time.sleep(3)
250
+ return "Done"
251
+
252
+ result = slow_function() # Prints execution time
253
+
254
+ # Using Clock
255
+ clock = Clock()
256
+ # ... your code ...
257
+ clock.log()
258
+ ```
259
+
260
+ ## Testing
261
+
262
+ The project includes a comprehensive test suite using `unittest`. To run the tests, execute the following command in the project root directory:
263
+
264
+ ```bash
265
+ python test.py
266
+ ```
267
+
268
+ Ensure all dependencies are installed before running tests:
269
+
270
+ ```bash
271
+ pip install -r requirements.txt
272
+ ```
273
+
274
+ Run the script to parse and display the arguments:
275
+
276
+ ```bash
277
+ python speedy_utils/common/dataclass_parser.py
278
+ ```
279
+
280
+ Example output:
281
+
282
+ | Field | Value |
283
+ |--------------------|---------------------------------------|
284
+ | from_peft | ./outputs/llm_hn_qw32b/hn_results_r3/ |
285
+
286
+ Please ensure your code adheres to the project's coding standards and includes appropriate tests.
287
+
@@ -0,0 +1,30 @@
1
+ llm_utils/__init__.py,sha256=ibEVUPkL11M4htL-3uXkSyyUZiIO-TZD6IzWVmi8QYw,697
2
+ llm_utils/chat_format/__init__.py,sha256=8dBIUqFJvkgQYedxBtcyxt-4tt8JxAKVap2JlTXmgaM,737
3
+ llm_utils/chat_format/display.py,sha256=a3zWzo47SUf4i-uic-dwf-vxtu6gZWLbnJrszjjZjQ8,9801
4
+ llm_utils/chat_format/transform.py,sha256=328V18FOgRQzljAl9Mh8NF4Tl-N3cZZIPmAwHQspXCY,5461
5
+ llm_utils/chat_format/utils.py,sha256=xTxN4HrLHcRO2PfCTR43nH1M5zCa7v0kTTdzAcGkZg0,1229
6
+ llm_utils/group_messages.py,sha256=wyiZzs7O8yK2lyIakV2x-1CrrWVT12sjnP1vVnmPet4,3606
7
+ llm_utils/lm/__init__.py,sha256=vXFILZLBmmpg39cy5XniQPSMzoFQCE3wdfz39EtqDKU,71
8
+ llm_utils/lm/lm.py,sha256=wLVX7-kE8odyS-mLew0rihswxWxoEn7smxFGHoPKv_4,10739
9
+ llm_utils/lm/utils.py,sha256=-fDNueiXKQI6RDoNHJYNyORomf2XlCf2doJZ3GEV2Io,4762
10
+ llm_utils/scripts/vllm_load_balancer.py,sha256=MgMnnoKWJQc-l2fspUSkyA9wxL1RkXd7wdBLJNQBlr4,17384
11
+ llm_utils/scripts/vllm_serve.py,sha256=uFS5kNXZ7kZ9rQms63LnliGEVV3rATT6dEppGTgoR0s,13910
12
+ speedy_utils/__init__.py,sha256=I2bSfDIE9yRF77tnHW0vqfExDA2m1gUx4AH8C9XmGtg,1707
13
+ speedy_utils/all.py,sha256=A9jiKGjo950eg1pscS9x38OWAjKGyusoAN5mrfweY4E,3090
14
+ speedy_utils/common/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
+ speedy_utils/common/clock.py,sha256=3n4FkCW0dz46O8By09V5Pve1DSMgpLDRbWEVRryryeQ,7423
16
+ speedy_utils/common/function_decorator.py,sha256=r_r42qCWuNcu0_aH7musf2BWvcJfgZrD81G28mDcolw,2226
17
+ speedy_utils/common/logger.py,sha256=NIOlhhACpcc0BUTSJ8oDYrLp23J2gW_KJFyRVdLN2tY,6432
18
+ speedy_utils/common/report_manager.py,sha256=dgGfS_fHbZiQMsLzkgnj0OfB758t1x6B4MhjsetSl9A,3930
19
+ speedy_utils/common/utils_cache.py,sha256=gXX5qTXpCG3qDgjnOsSvxM4LkQurmcsg4QRv_zOBG1E,8378
20
+ speedy_utils/common/utils_io.py,sha256=d7PKz5tOPrwHDr7GXuYmILvjXJOFEwfzAEIuUcYaI60,4790
21
+ speedy_utils/common/utils_misc.py,sha256=nsQOu2jcplcFHVQ1CnOjEpNcdxIINveGxB493Cqo63U,1812
22
+ speedy_utils/common/utils_print.py,sha256=QRaL2QPbks4Mtol_gJy3ZdahgUfzUEtcOp4--lBlzYI,6709
23
+ speedy_utils/multi_worker/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
24
+ speedy_utils/multi_worker/process.py,sha256=XwQlffxzRFnCVeKjDNBZDwFfUQHiJiuFA12MRGJVru8,6708
25
+ speedy_utils/multi_worker/thread.py,sha256=9pXjvgjD0s0Hp0cZ6I3M0ndp1OlYZ1yvqbs_bcun_Kw,12775
26
+ speedy_utils/scripts/mpython.py,sha256=ZzkBWI5Xw3vPoMx8xQt2x4mOFRjtwWqfvAJ5_ngyWgw,3816
27
+ speedy_utils-1.0.9.dist-info/METADATA,sha256=bLbYeo_uDW0hasjtbmuZoslF-S6qkO-gURfbZhnEuIo,7391
28
+ speedy_utils-1.0.9.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
29
+ speedy_utils-1.0.9.dist-info/entry_points.txt,sha256=rP43satgw1uHcKUAlmVxS-MTAQImL-03-WwLIB5a300,165
30
+ speedy_utils-1.0.9.dist-info/RECORD,,
@@ -1,5 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.1.0)
2
+ Generator: poetry-core 2.1.3
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
-
@@ -0,0 +1,5 @@
1
+ [console_scripts]
2
+ mpython=speedy_utils.scripts.mpython:main
3
+ svllm=llm_utils.scripts.vllm_serve:main
4
+ svllm-lb=llm_utils.scripts.vllm_load_balancer:run_load_balancer
5
+
speedy/__init__.py DELETED
@@ -1,53 +0,0 @@
1
- from .common.clock import Clock, timef
2
- from .common.utils_cache import (
3
- ICACHE,
4
- SPEED_CACHE_DIR,
5
- identify,
6
- imemoize,
7
- imemoize_v2,
8
- memoize,
9
- memoize_method,
10
- memoize_v2,
11
- )
12
- from .common.utils_io import (
13
- dump_json_or_pickle,
14
- dump_jsonl,
15
- load_by_ext,
16
- load_json_or_pickle,
17
- )
18
- from .common.utils_misc import (
19
- convert_to_builtin_python,
20
- flatten_list,
21
- get_arg_names,
22
- is_interactive,
23
- mkdir_or_exist,
24
- )
25
- from .common.utils_print import fprint, print_table
26
- from .multi_worker import async_multi_thread, multi_process, multi_thread
27
-
28
- __all__ = [
29
- "SPEED_CACHE_DIR",
30
- "ICACHE",
31
- "mkdir_or_exist",
32
- "dump_jsonl",
33
- "dump_json_or_pickle",
34
- "timef", # Ensure timef is moved to an appropriate module or included here
35
- "load_json_or_pickle",
36
- "load_by_ext",
37
- "identify",
38
- "memoize",
39
- "imemoize",
40
- "imemoize_v2",
41
- "flatten_list",
42
- "fprint",
43
- "get_arg_names",
44
- "memoize_v2",
45
- "is_interactive",
46
- "print_table",
47
- "convert_to_builtin_python",
48
- "Clock",
49
- "multi_thread",
50
- "multi_process",
51
- "async_multi_thread",
52
- "memoize_method",
53
- ]
speedy/common/clock.py DELETED
@@ -1,68 +0,0 @@
1
- import time
2
- from loguru import logger
3
-
4
- __all__ = ["Clock"]
5
-
6
-
7
- def timef(func):
8
- def wrapper(*args, **kwargs):
9
- start_time = time.time()
10
- result = func(*args, **kwargs)
11
- end_time = time.time()
12
- execution_time = end_time - start_time
13
- print(f"{func.__name__} took {execution_time:0.2f} seconds to execute.")
14
- return result
15
-
16
- return wrapper
17
-
18
-
19
- class Clock:
20
- def __init__(self, start_now=True):
21
- self.start_time = None
22
- self.time_table = {}
23
- self.last_check = None
24
- if start_now:
25
- self.start()
26
- self.pbar_counter = 0
27
- self.last_print = time.time()
28
-
29
- def start(self):
30
- self.start_time = time.time() if self.start_time is None else self.start_time
31
- self.last_check = self.start_time
32
-
33
- def since_start(self):
34
- if self.start_time is None:
35
- raise ValueError("Clock has not been started.")
36
- return time.time() - self.start_time
37
-
38
- def log(self, custom_logger=None):
39
- msg = f"Time elapsed: {self.since_start():.2f} seconds."
40
- if custom_logger:
41
- custom_logger(msg)
42
- else:
43
- logger.info(msg)
44
-
45
- def since_last_check(self):
46
- now = time.time()
47
- elapsed = now - self.last_check
48
- self.last_check = now
49
- return elapsed
50
-
51
- def update(self, name):
52
- if not name in self.time_table:
53
- self.time_table[name] = 0
54
- self.time_table[name] += self.since_last_check()
55
-
56
- def print_table(self, every=1):
57
- now = time.time()
58
- if now - self.last_print > every:
59
- self.pbar_counter += 1
60
- total_time = sum(self.time_table.values())
61
- desc = "Time table: "
62
- for name, t in self.time_table.items():
63
- percentage = (t / total_time) * 100
64
- desc += "{}: avg_time: {:.2f} s ({:.2f}%), total: {} s".format(
65
- name, t, percentage, total_time
66
- )
67
- logger.info(desc)
68
- self.last_print = now
@@ -1,170 +0,0 @@
1
- # utils/utils_cache.py
2
-
3
- import functools
4
- import inspect
5
- import os
6
- import os.path as osp
7
- import pickle
8
- import traceback
9
- from typing import Any, Callable, Dict, List, Optional
10
-
11
- import xxhash
12
- from loguru import logger
13
-
14
- from .utils_io import dump_json_or_pickle, load_json_or_pickle
15
- from .utils_misc import mkdir_or_exist
16
-
17
- SPEED_CACHE_DIR = osp.join(osp.expanduser("~"), ".cache/av")
18
- ICACHE: Dict[str, Any] = {}
19
-
20
-
21
- def identify(x: Any) -> str:
22
- """Return an hex digest of the input."""
23
- return xxhash.xxh64(pickle.dumps(x), seed=0).hexdigest()
24
-
25
-
26
- def memoize(
27
- func: Callable,
28
- ignore_self: bool = True,
29
- cache_dir: str = SPEED_CACHE_DIR,
30
- cache_type: str = ".pkl",
31
- verbose: bool = False,
32
- cache_key: Optional[str] = None,
33
- ) -> Callable:
34
- """Cache result of function call on disk."""
35
- assert cache_type in [".pkl", ".json"]
36
- if os.environ.get("AV_MEMOIZE_DISABLE", "0") == "1":
37
- logger.info("Memoize is disabled")
38
- return func
39
-
40
- @functools.wraps(func)
41
- def memoized_func(*args, **kwargs):
42
- try:
43
- arg_names = inspect.getfullargspec(func).args
44
- func_source = inspect.getsource(func).replace(" ", "")
45
- if cache_key is not None:
46
- logger.info(f"Use cache_key={kwargs[cache_key]}")
47
- fid = [func_source, kwargs[cache_key]]
48
- func_id = identify(fid)
49
- elif len(arg_names) > 0 and arg_names[0] == "self" and ignore_self:
50
- func_id = identify((func_source, args[1:], kwargs))
51
- else:
52
- func_id = identify((func_source, args, kwargs))
53
-
54
- cache_path = osp.join(
55
- cache_dir, "funcs", func.__name__, f"{func_id}{cache_type}"
56
- )
57
- mkdir_or_exist(os.path.dirname(cache_path))
58
- if osp.exists(cache_path):
59
- if verbose:
60
- logger.info(f"Load from cache file: {cache_path}")
61
- result = load_json_or_pickle(cache_path)
62
- else:
63
- result = func(*args, **kwargs)
64
- dump_json_or_pickle(result, cache_path)
65
- return result
66
- except Exception as e:
67
- traceback.print_exc()
68
- logger.warning(f"Exception: {e}, using default function call")
69
- return func(*args, **kwargs)
70
-
71
- return memoized_func
72
-
73
-
74
- def imemoize(func: Callable) -> Callable:
75
- """Memoize a function into memory."""
76
-
77
- @functools.wraps(func)
78
- def _f(*args, **kwargs):
79
- ident_name = identify((inspect.getsource(func), args, kwargs))
80
- try:
81
- return ICACHE[ident_name]
82
- except KeyError:
83
- result = func(*args, **kwargs)
84
- ICACHE[ident_name] = result
85
- return result
86
-
87
- return _f
88
-
89
-
90
- def imemoize_v2(keys: List[str]) -> Callable:
91
- """Memoize a function into memory based on specified keys."""
92
-
93
- def decorator(func: Callable) -> Callable:
94
- @functools.wraps(func)
95
- def wrapper(*args, **kwargs):
96
- arg_names = inspect.getfullargspec(func).args
97
- args_dict = dict(zip(arg_names, args))
98
- all_args = {**args_dict, **kwargs}
99
- key_values = {key: all_args[key] for key in keys if key in all_args}
100
- if not key_values:
101
- return func(*args, **kwargs)
102
-
103
- ident_name = identify((func.__name__, tuple(sorted(key_values.items()))))
104
- try:
105
- return ICACHE[ident_name]
106
- except KeyError:
107
- result = func(*args, **kwargs)
108
- ICACHE[ident_name] = result
109
- return result
110
-
111
- return wrapper
112
-
113
- return decorator
114
-
115
-
116
- def memoize_v2(keys: List[str], cache_dir: str = SPEED_CACHE_DIR) -> Callable:
117
- """Decorator to memoize function results based on specific keys."""
118
-
119
- def decorator(func: Callable) -> Callable:
120
- @functools.wraps(func)
121
- def wrapper(*args, **kwargs):
122
- args_key_values = {}
123
- for i, arg in enumerate(args):
124
- arg_name = inspect.getfullargspec(func).args[i]
125
- args_key_values[arg_name] = arg
126
- args_key_values.update(kwargs)
127
-
128
- values = [args_key_values[key] for key in keys if key in args_key_values]
129
- if not values:
130
- return func(*args, **kwargs)
131
-
132
- key_id = identify(values)
133
- func_source = inspect.getsource(func).replace(" ", "")
134
- func_id = identify(func_source)
135
- key_names = "_".join(keys)
136
- cache_path = osp.join(
137
- cache_dir, f"{func.__name__}_{func_id}", f"{key_names}_{key_id}.pkl"
138
- )
139
- if osp.exists(cache_path):
140
- return load_json_or_pickle(cache_path)
141
- result = func(*args, **kwargs)
142
- dump_json_or_pickle(result, cache_path)
143
- return result
144
-
145
- return wrapper
146
-
147
- return decorator
148
-
149
-
150
- def memoize_method(method):
151
- """
152
- Decorator function to memoize (cache) results of a class method.
153
-
154
- This decorator caches the output of the wrapped method based on its input arguments
155
- (both positional and keyword). If the method is called again with the same arguments,
156
- it returns the cached result instead of executing the method again.
157
-
158
- Args:
159
- method (Callable): The decorated method whose result will be memoized.
160
- """
161
- cache = {}
162
-
163
- def cached_method(cls, *args, **kwargs):
164
- cache_key = identify([args, kwargs])
165
- logger.debug("HIT" if cache_key in cache else "MISS")
166
- if cache_key not in cache:
167
- cache[cache_key] = method(cls, *args, **kwargs)
168
- return cache[cache_key]
169
-
170
- return cached_method