sparse-ir 1.1.7__py3-none-any.whl → 2.0.0a2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sparse_ir/__init__.py +33 -15
- sparse_ir/abstract.py +70 -82
- sparse_ir/augment.py +27 -17
- sparse_ir/basis.py +130 -239
- sparse_ir/basis_set.py +99 -57
- sparse_ir/dlr.py +131 -88
- sparse_ir/kernel.py +54 -477
- sparse_ir/poly.py +221 -476
- sparse_ir/sampling.py +260 -371
- sparse_ir/sve.py +56 -358
- sparse_ir-2.0.0a2.dist-info/METADATA +23 -0
- sparse_ir-2.0.0a2.dist-info/RECORD +16 -0
- {sparse_ir-1.1.7.dist-info → sparse_ir-2.0.0a2.dist-info}/WHEEL +1 -1
- sparse_ir/_gauss.py +0 -260
- sparse_ir/_roots.py +0 -140
- sparse_ir/adapter.py +0 -267
- sparse_ir/svd.py +0 -102
- sparse_ir-1.1.7.dist-info/METADATA +0 -155
- sparse_ir-1.1.7.dist-info/RECORD +0 -20
- {sparse_ir-1.1.7.dist-info → sparse_ir-2.0.0a2.dist-info/licenses}/LICENSE.txt +0 -0
- {sparse_ir-1.1.7.dist-info → sparse_ir-2.0.0a2.dist-info}/top_level.txt +0 -0
sparse_ir/svd.py
DELETED
@@ -1,102 +0,0 @@
|
|
1
|
-
# Copyright (C) 2020-2022 Markus Wallerberger, Hiroshi Shinaoka, and others
|
2
|
-
# SPDX-License-Identifier: MIT
|
3
|
-
from warnings import warn
|
4
|
-
import numpy as np
|
5
|
-
import scipy.linalg.interpolative as intp_decomp
|
6
|
-
|
7
|
-
try:
|
8
|
-
from xprec import ddouble as _ddouble, finfo
|
9
|
-
import xprec.linalg as _xprec_linalg
|
10
|
-
|
11
|
-
MAX_DTYPE = _ddouble
|
12
|
-
MAX_EPS = 5e-32
|
13
|
-
except ImportError:
|
14
|
-
_ddouble = None
|
15
|
-
_xprec_linalg = None
|
16
|
-
|
17
|
-
MAX_DTYPE = np.double
|
18
|
-
MAX_EPS = np.finfo(MAX_DTYPE).eps
|
19
|
-
finfo = np.finfo
|
20
|
-
|
21
|
-
try:
|
22
|
-
from scipy.linalg.lapack import dgejsv as _lapack_dgejsv
|
23
|
-
except ImportError:
|
24
|
-
_lapack_dgejsv = None
|
25
|
-
|
26
|
-
|
27
|
-
def compute(a_matrix, n_sv_hint=None, strategy='fast'):
|
28
|
-
"""Compute thin/truncated singular value decomposition
|
29
|
-
|
30
|
-
Computes the thin/truncated singular value decomposition of a matrix ``A``
|
31
|
-
into ``U``, ``s``, ``V``:
|
32
|
-
|
33
|
-
A == (U * s) @ V.T
|
34
|
-
|
35
|
-
Depending on the strategy, only as few as ``n_sv_hint`` most significant
|
36
|
-
singular values may be returned, but applications should not rely on this
|
37
|
-
behvaiour. The ``strategy`` parameter can be ``fast`` (RRQR/t-SVD),
|
38
|
-
``default`` (full SVD) or ``accurate`` (Jacobi rotation SVD).
|
39
|
-
"""
|
40
|
-
a_matrix = np.asarray(a_matrix)
|
41
|
-
m, n = a_matrix.shape
|
42
|
-
if n_sv_hint is None:
|
43
|
-
n_sv_hint = min(m, n)
|
44
|
-
n_sv_hint = min(m, n, n_sv_hint)
|
45
|
-
|
46
|
-
if _ddouble is not None and a_matrix.dtype == _ddouble:
|
47
|
-
u, s, v = _ddouble_svd_trunc(a_matrix)
|
48
|
-
elif strategy == 'fast':
|
49
|
-
u, s, v = _idsvd(a_matrix, n_sv=n_sv_hint)
|
50
|
-
elif strategy == 'default':
|
51
|
-
# Usual (simple) SVD
|
52
|
-
u, s, vh = np.linalg.svd(a_matrix, full_matrices=False)
|
53
|
-
v = vh.T.conj()
|
54
|
-
elif strategy == 'accurate':
|
55
|
-
# Most accurate SVD
|
56
|
-
if _lapack_dgejsv is None:
|
57
|
-
warn("dgejsv (accurate SVD) is not available. Falling back to\n"
|
58
|
-
"default SVD. Expect slightly lower precision.\n"
|
59
|
-
"Use xprec or scipy >= 1.5 to fix the issue.")
|
60
|
-
return compute(a_matrix, n_sv_hint, strategy='default')
|
61
|
-
u, s, v = _dgejsv(a_matrix, mode='F')
|
62
|
-
else:
|
63
|
-
raise ValueError("invalid strategy:" + str(strategy))
|
64
|
-
|
65
|
-
return u, s, v
|
66
|
-
|
67
|
-
|
68
|
-
def _idsvd(a, n_sv):
|
69
|
-
# Use interpolative decomposition, since it scales favorably to a full
|
70
|
-
# SVD when we are only interested in a small subset of singular values.
|
71
|
-
# NOTE: this returns the right singular vectors, not their conjugate!
|
72
|
-
intp_decomp.seed(4711)
|
73
|
-
return intp_decomp.svd(a, n_sv)
|
74
|
-
|
75
|
-
|
76
|
-
def _dgejsv(a, mode='A'):
|
77
|
-
"""Compute SVD using the (more accurate) Jacobi method"""
|
78
|
-
# GEJSV can only handle tall matrices
|
79
|
-
m, n = a.shape
|
80
|
-
if m < n:
|
81
|
-
u, s, v = _dgejsv(a.T, mode)
|
82
|
-
return v, s, u
|
83
|
-
|
84
|
-
mode = mode.upper()
|
85
|
-
joba = dict(zip("CEFGAR", range(6)))[mode]
|
86
|
-
s, u, v, _stat, istat, info = _lapack_dgejsv(a, joba)
|
87
|
-
if info < 0:
|
88
|
-
raise ValueError("LAPACK error - invalid parameter")
|
89
|
-
if istat[2] != 0:
|
90
|
-
warn("a contained denormalized floats - possible loss of accuracy",
|
91
|
-
UserWarning, 2)
|
92
|
-
if info > 0:
|
93
|
-
warn("SVD did not converge", UserWarning, 2)
|
94
|
-
return u, s, v
|
95
|
-
|
96
|
-
|
97
|
-
def _ddouble_svd_trunc(a):
|
98
|
-
"""Truncated SVD with double double precision"""
|
99
|
-
if _xprec_linalg is None:
|
100
|
-
raise RuntimeError("require xprec package for this precision")
|
101
|
-
u, s, vh = _xprec_linalg.svd_trunc(a)
|
102
|
-
return u, s, vh.T
|
@@ -1,155 +0,0 @@
|
|
1
|
-
Metadata-Version: 2.1
|
2
|
-
Name: sparse-ir
|
3
|
-
Version: 1.1.7
|
4
|
-
Summary: intermediate representation (IR) basis for electronic propagator
|
5
|
-
Home-page: https://github.com/SpM-lab/sparse-ir
|
6
|
-
Author: ['Markus Wallerberger', 'Hiroshi Shinaoka', 'Kazuyoshi Yoshimi', 'Junya Otsuki', 'Chikano Naoya']
|
7
|
-
Author-email: markus.wallerberger@tuwien.ac.at
|
8
|
-
Keywords: irbasis many-body propagator svd
|
9
|
-
Classifier: Development Status :: 5 - Production/Stable
|
10
|
-
Classifier: Intended Audience :: Developers
|
11
|
-
Classifier: Intended Audience :: Science/Research
|
12
|
-
Classifier: Topic :: Scientific/Engineering :: Physics
|
13
|
-
Classifier: License :: OSI Approved :: MIT License
|
14
|
-
Classifier: Programming Language :: Python :: 3
|
15
|
-
Requires-Python: >=3
|
16
|
-
Description-Content-Type: text/x-rst
|
17
|
-
License-File: LICENSE.txt
|
18
|
-
Requires-Dist: numpy
|
19
|
-
Requires-Dist: scipy
|
20
|
-
Requires-Dist: setuptools
|
21
|
-
Provides-Extra: doc
|
22
|
-
Requires-Dist: sphinx >=2.1 ; extra == 'doc'
|
23
|
-
Requires-Dist: sphinx-rtd-theme ; extra == 'doc'
|
24
|
-
Provides-Extra: test
|
25
|
-
Requires-Dist: irbasis ; extra == 'test'
|
26
|
-
Requires-Dist: pytest ; extra == 'test'
|
27
|
-
Requires-Dist: xprec ; extra == 'test'
|
28
|
-
Provides-Extra: xprec
|
29
|
-
Requires-Dist: xprec >=1.0 ; extra == 'xprec'
|
30
|
-
|
31
|
-
sparse-ir - A library for the intermediate representation of propagators
|
32
|
-
========================================================================
|
33
|
-
This library provides routines for constructing and working with the
|
34
|
-
intermediate representation of correlation functions. It provides:
|
35
|
-
|
36
|
-
- on-the-fly computation of basis functions for arbitrary cutoff Λ
|
37
|
-
- basis functions and singular values are accurate to full precision
|
38
|
-
- routines for sparse sampling
|
39
|
-
|
40
|
-
|
41
|
-
Installation
|
42
|
-
------------
|
43
|
-
Install via `pip <https://pypi.org/project/sparse-ir>`_::
|
44
|
-
|
45
|
-
pip install sparse-ir[xprec]
|
46
|
-
|
47
|
-
The above line is the recommended way to install `sparse-ir`. It automatically
|
48
|
-
installs the `xprec <https://github.com/tuwien-cms/xprec>`_ package, which
|
49
|
-
allows one to compute the IR basis functions with greater accuracy. If you do
|
50
|
-
not want to do this, simply remove the string ``[xprec]`` from the above command.
|
51
|
-
|
52
|
-
Install via `conda <https://anaconda.org/spm-lab/sparse-ir>`_::
|
53
|
-
|
54
|
-
conda install -c spm-lab sparse-ir xprec
|
55
|
-
|
56
|
-
Other than the optional xprec dependency, sparse-ir requires only
|
57
|
-
`numpy <https://numpy.org/>`_ and `scipy <https://scipy.org/>`_.
|
58
|
-
|
59
|
-
To manually install the current development version, you can use the following::
|
60
|
-
|
61
|
-
# Only recommended for developers - no automatic updates!
|
62
|
-
git clone https://github.com/SpM-lab/sparse-ir
|
63
|
-
pip install -e sparse-ir/[xprec]
|
64
|
-
|
65
|
-
Documentation and tutorial
|
66
|
-
--------------------------
|
67
|
-
Check out our `comprehensive tutorial`_, where we self-contained
|
68
|
-
notebooks for several many-body methods - GF(2), GW, Eliashberg equations,
|
69
|
-
Lichtenstein formula, FLEX, ... - are presented.
|
70
|
-
|
71
|
-
Refer to the `API documentation`_ for more details on how to work
|
72
|
-
with the python library.
|
73
|
-
|
74
|
-
There is also a `Julia library`_ and (currently somewhat restricted)
|
75
|
-
`Fortran library`_ available for the IR basis and sparse sampling.
|
76
|
-
|
77
|
-
.. _comprehensive tutorial: https://spm-lab.github.io/sparse-ir-tutorial
|
78
|
-
.. _API documentation: https://sparse-ir.readthedocs.io
|
79
|
-
.. _Julia library: https://github.com/SpM-lab/SparseIR.jl
|
80
|
-
.. _Fortran library: https://github.com/SpM-lab/sparse-ir-fortran
|
81
|
-
|
82
|
-
Getting started
|
83
|
-
---------------
|
84
|
-
Here is a full second-order perturbation theory solver (GF(2)) in a few
|
85
|
-
lines of Python code::
|
86
|
-
|
87
|
-
# Construct the IR basis and sparse sampling for fermionic propagators
|
88
|
-
import sparse_ir, numpy as np
|
89
|
-
basis = sparse_ir.FiniteTempBasis('F', beta=10, wmax=8, eps=1e-6)
|
90
|
-
stau = sparse_ir.TauSampling(basis)
|
91
|
-
siw = sparse_ir.MatsubaraSampling(basis, positive_only=True)
|
92
|
-
|
93
|
-
# Solve the single impurity Anderson model coupled to a bath with a
|
94
|
-
# semicircular states with unit half bandwidth.
|
95
|
-
U = 1.2
|
96
|
-
def rho0w(w):
|
97
|
-
return np.sqrt(1-w.clip(-1,1)**2) * 2/np.pi
|
98
|
-
|
99
|
-
# Compute the IR basis coefficients for the non-interacting propagator
|
100
|
-
rho0l = basis.v.overlap(rho0w)
|
101
|
-
G0l = -basis.s * rho0l
|
102
|
-
|
103
|
-
# Self-consistency loop: alternate between second-order expression for the
|
104
|
-
# self-energy and the Dyson equation until convergence.
|
105
|
-
Gl = G0l
|
106
|
-
Gl_prev = 0
|
107
|
-
while np.linalg.norm(Gl - Gl_prev) > 1e-6:
|
108
|
-
Gl_prev = Gl
|
109
|
-
Gtau = stau.evaluate(Gl)
|
110
|
-
Sigmatau = U**2 * Gtau**3
|
111
|
-
Sigmal = stau.fit(Sigmatau)
|
112
|
-
Sigmaiw = siw.evaluate(Sigmal)
|
113
|
-
G0iw = siw.evaluate(G0l)
|
114
|
-
Giw = 1/(1/G0iw - Sigmaiw)
|
115
|
-
Gl = siw.fit(Giw)
|
116
|
-
|
117
|
-
You may want to start with reading up on the `intermediate representation`_.
|
118
|
-
It is tied to the analytic continuation of bosonic/fermionic spectral
|
119
|
-
functions from (real) frequencies to imaginary time, a transformation mediated
|
120
|
-
by a kernel ``K``. The kernel depends on a cutoff, which you should choose to
|
121
|
-
be ``lambda_ >= beta * W``, where ``beta`` is the inverse temperature and ``W``
|
122
|
-
is the bandwidth.
|
123
|
-
|
124
|
-
One can now perform a `singular value expansion`_ on this kernel, which
|
125
|
-
generates two sets of orthonormal basis functions, one set ``v[l](w)`` for
|
126
|
-
real frequency side ``w``, and one set ``u[l](tau)`` for the same obejct in
|
127
|
-
imaginary (Euclidean) time ``tau``, together with a "coupling" strength
|
128
|
-
``s[l]`` between the two sides.
|
129
|
-
|
130
|
-
By this construction, the imaginary time basis can be shown to be *optimal* in
|
131
|
-
terms of compactness.
|
132
|
-
|
133
|
-
.. _intermediate representation: https://arxiv.org/abs/2106.12685
|
134
|
-
.. _singular value expansion: https://w.wiki/3poQ
|
135
|
-
|
136
|
-
License and citation
|
137
|
-
--------------------
|
138
|
-
This software is released under the MIT License. See LICENSE.txt for details.
|
139
|
-
|
140
|
-
If you find the intermediate representation, sparse sampling, or this software
|
141
|
-
useful in your research, please consider citing the following papers:
|
142
|
-
|
143
|
-
- Hiroshi Shinaoka et al., `Phys. Rev. B 96, 035147`_ (2017)
|
144
|
-
- Jia Li et al., `Phys. Rev. B 101, 035144`_ (2020)
|
145
|
-
- Markus Wallerberger et al., `SoftwareX 21, 101266`_ (2023)
|
146
|
-
|
147
|
-
If you are discussing sparse sampling in your research specifically, please
|
148
|
-
also consider citing an independently discovered, closely related approach, the
|
149
|
-
MINIMAX isometry method (Merzuk Kaltak and Georg Kresse,
|
150
|
-
`Phys. Rev. B 101, 205145`_, 2020).
|
151
|
-
|
152
|
-
.. _Phys. Rev. B 96, 035147: https://doi.org/10.1103/PhysRevB.96.035147
|
153
|
-
.. _Phys. Rev. B 101, 035144: https://doi.org/10.1103/PhysRevB.101.035144
|
154
|
-
.. _SoftwareX 21, 101266: https://doi.org/10.1016/j.softx.2022.101266
|
155
|
-
.. _Phys. Rev. B 101, 205145: https://doi.org/10.1103/PhysRevB.101.205145
|
sparse_ir-1.1.7.dist-info/RECORD
DELETED
@@ -1,20 +0,0 @@
|
|
1
|
-
sparse_ir/__init__.py,sha256=Cn522EobVKyXbZ68TpO7hbfkwWaERl_t4wRjIz6tVBw,816
|
2
|
-
sparse_ir/_gauss.py,sha256=9Ou38SfucUjY83o8Tz62s-gXfWDC8QEHBjiUzcbWaY4,9621
|
3
|
-
sparse_ir/_roots.py,sha256=ARpyYhhI5gR1AT1zDgezVgCxnHEaJwGF38jEv6ebarA,4351
|
4
|
-
sparse_ir/_util.py,sha256=93s7tGcXxz3mwHsBQmAh-6EQ26xLbUeFHVtlnzQxRps,3004
|
5
|
-
sparse_ir/abstract.py,sha256=I7RMcHwgPrtn_XBZ4x_XPxaqp32OLFtXQ5bC2mKp7ic,6604
|
6
|
-
sparse_ir/adapter.py,sha256=ptiHkTBwZ8aNbtFMnr9k2Rt_v5zwrDyPJ1yx-kiDvew,8351
|
7
|
-
sparse_ir/augment.py,sha256=rKnmNUREQfymdCYgtpjk8M2jc7LbvTzpvzK-HWjD1e0,9973
|
8
|
-
sparse_ir/basis.py,sha256=O8wYl4LIj8qJbA_ve7j8FmRcA5i95VO3tglMC-a0j0A,13878
|
9
|
-
sparse_ir/basis_set.py,sha256=yaXV7qE2RffhzfYE4cqDFdmoISj64cagrJBr5gbhVxQ,3419
|
10
|
-
sparse_ir/dlr.py,sha256=X6orDjvsOAsFrZsCh8vfedu0_SmTvIpSQmGabfI9pi8,5361
|
11
|
-
sparse_ir/kernel.py,sha256=2HO77HTOK2WJKizDgr1nmmyhd1mGYT2WvKrFwLiMhjM,18487
|
12
|
-
sparse_ir/poly.py,sha256=moPMTxJvd2_g43vcyjHSsyBjcQ1lnuPyIjfce6j_AgI,18359
|
13
|
-
sparse_ir/sampling.py,sha256=BoHOHcLAvQjYR8KwK8Ee0LgZz3q3OgMBuLPgG494VEM,13879
|
14
|
-
sparse_ir/svd.py,sha256=iQwpBCFSPJeKqhAIlufzz9Ybpm1dq382Km3TU-UvNuc,3375
|
15
|
-
sparse_ir/sve.py,sha256=pVUKg_cLphx-lRCfrDJXrpkow97vjIgvvSrxA7lhzzg,15179
|
16
|
-
sparse_ir-1.1.7.dist-info/LICENSE.txt,sha256=3tGlA0QNYsfjETaQqJO0Ixne5PQ16PNVJiDcGsgHER0,1079
|
17
|
-
sparse_ir-1.1.7.dist-info/METADATA,sha256=kewCGbFLhFbLi_9iZVJc9BGxG_ODzNM5OkXH1Fb1Tso,6417
|
18
|
-
sparse_ir-1.1.7.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
19
|
-
sparse_ir-1.1.7.dist-info/top_level.txt,sha256=UsscWAzJg7fKo9qmIwW8jnG7CAfhFzWYBOTXVySzuA0,10
|
20
|
-
sparse_ir-1.1.7.dist-info/RECORD,,
|
File without changes
|
File without changes
|