sparrow-parse 0.4.7__py3-none-any.whl → 0.4.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
sparrow_parse/__init__.py CHANGED
@@ -1 +1 @@
1
- __version__ = '0.4.7'
1
+ __version__ = '0.4.9'
@@ -152,34 +152,34 @@ if __name__ == "__main__":
152
152
 
153
153
  extractor = VLLMExtractor()
154
154
 
155
- # export HF_TOKEN="hf_"
156
- config = {
157
- "method": "mlx", # Could be 'huggingface', 'mlx' or 'local_gpu'
158
- "model_name": "mlx-community/Qwen2-VL-7B-Instruct-8bit",
159
- # "hf_space": "katanaml/sparrow-qwen2-vl-7b",
160
- # "hf_token": os.getenv('HF_TOKEN'),
161
- # Additional fields for local GPU inference
162
- # "device": "cuda", "model_path": "model.pth"
163
- }
164
-
165
- # Use the factory to get the correct instance
166
- factory = InferenceFactory(config)
167
- model_inference_instance = factory.get_inference_instance()
168
-
169
- input_data = [
170
- {
171
- "file_path": "/Users/andrejb/Work/katana-git/sparrow/sparrow-ml/llm/data/invoice_1.jpg",
172
- "text_input": "retrieve document data. return response in JSON format"
173
- }
174
- ]
175
-
176
- # Now you can run inference without knowing which implementation is used
177
- results_array, num_pages = extractor.run_inference(model_inference_instance, input_data, tables_only=True,
178
- generic_query=False,
179
- debug_dir="/Users/andrejb/Work/katana-git/sparrow/sparrow-ml/llm/data/",
180
- debug=True,
181
- mode=None)
182
-
183
- for i, result in enumerate(results_array):
184
- print(f"Result for page {i + 1}:", result)
185
- print(f"Number of pages: {num_pages}")
155
+ # # export HF_TOKEN="hf_"
156
+ # config = {
157
+ # "method": "mlx", # Could be 'huggingface', 'mlx' or 'local_gpu'
158
+ # "model_name": "mlx-community/Qwen2-VL-7B-Instruct-8bit",
159
+ # # "hf_space": "katanaml/sparrow-qwen2-vl-7b",
160
+ # # "hf_token": os.getenv('HF_TOKEN'),
161
+ # # Additional fields for local GPU inference
162
+ # # "device": "cuda", "model_path": "model.pth"
163
+ # }
164
+ #
165
+ # # Use the factory to get the correct instance
166
+ # factory = InferenceFactory(config)
167
+ # model_inference_instance = factory.get_inference_instance()
168
+ #
169
+ # input_data = [
170
+ # {
171
+ # "file_path": "/Users/andrejb/Work/katana-git/sparrow/sparrow-ml/llm/data/invoice_1.jpg",
172
+ # "text_input": "retrieve document data. return response in JSON format"
173
+ # }
174
+ # ]
175
+ #
176
+ # # Now you can run inference without knowing which implementation is used
177
+ # results_array, num_pages = extractor.run_inference(model_inference_instance, input_data, tables_only=True,
178
+ # generic_query=False,
179
+ # debug_dir="/Users/andrejb/Work/katana-git/sparrow/sparrow-ml/llm/data/",
180
+ # debug=True,
181
+ # mode=None)
182
+ #
183
+ # for i, result in enumerate(results_array):
184
+ # print(f"Result for page {i + 1}:", result)
185
+ # print(f"Number of pages: {num_pages}")
@@ -4,7 +4,9 @@ from mlx_vlm.utils import load_image
4
4
  from sparrow_parse.vllm.inference_base import ModelInference
5
5
  import os
6
6
  import json
7
+ from rich.console import Console
7
8
 
9
+ console = Console()
8
10
 
9
11
  class MLXInference(ModelInference):
10
12
  """
@@ -19,7 +21,7 @@ class MLXInference(ModelInference):
19
21
  :param model_name: Name of the model to load.
20
22
  """
21
23
  self.model_name = model_name
22
- print(f"MLXInference initialized for model: {model_name}")
24
+ console.print(f"MLXInference initialized for model: {model_name}")
23
25
 
24
26
 
25
27
  @staticmethod
@@ -31,7 +33,7 @@ class MLXInference(ModelInference):
31
33
  :return: Tuple containing the loaded model and processor.
32
34
  """
33
35
  model, processor = load(model_name)
34
- print(f"Loaded model: {model_name}")
36
+ console.print(f"Loaded model: {model_name}")
35
37
  return model, processor
36
38
 
37
39
 
@@ -52,7 +54,7 @@ class MLXInference(ModelInference):
52
54
  formatted_json = json.loads(cleaned_text)
53
55
  return json.dumps(formatted_json, indent=2)
54
56
  except json.JSONDecodeError as e:
55
- print(f"Failed to parse JSON in MLX inference backend: {e}")
57
+ console.print(f"Failed to parse JSON in MLX inference backend: {e}")
56
58
  return output_text
57
59
 
58
60
 
@@ -120,7 +122,7 @@ class MLXInference(ModelInference):
120
122
  )
121
123
  results.append(self.process_response(response))
122
124
 
123
- print("Inference completed successfully for: ", file_path)
125
+ console.print("Inference completed successfully for: ", file_path)
124
126
 
125
127
  return results
126
128
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: sparrow-parse
3
- Version: 0.4.7
3
+ Version: 0.4.9
4
4
  Summary: Sparrow Parse is a Python package (part of Sparrow) for parsing and extracting information from documents.
5
5
  Home-page: https://github.com/katanaml/sparrow/tree/main/sparrow-data/parse
6
6
  Author: Andrej Baranovskij
@@ -1,7 +1,7 @@
1
- sparrow_parse/__init__.py,sha256=swwUIK4WtUiYyZYTfyyc_9CkUUoMvY9Mrqd1fsqa9_E,21
1
+ sparrow_parse/__init__.py,sha256=HVLYuTxwxepBhsoeROAeognEnSW-LkbZ_mSNgbAcTqA,21
2
2
  sparrow_parse/__main__.py,sha256=Xs1bpJV0n08KWOoQE34FBYn6EBXZA9HIYJKrE4ZdG78,153
3
3
  sparrow_parse/extractors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- sparrow_parse/extractors/vllm_extractor.py,sha256=G4kQh0GoZ4V4TdyeDwZWFkOG15MQCQMvSf2UbFQDWeI,7746
4
+ sparrow_parse/extractors/vllm_extractor.py,sha256=PDLgLlKiq3Bv-UOQTzX3AgxNOLcEU2EniGAXLjMC30U,7820
5
5
  sparrow_parse/helpers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
6
  sparrow_parse/helpers/pdf_optimizer.py,sha256=GIqQYWtixFeZGCRFXL0lQfQByapCDuQzzRHAkzcPwLE,3302
7
7
  sparrow_parse/processors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -11,9 +11,9 @@ sparrow_parse/vllm/huggingface_inference.py,sha256=EJnG6PesGKMc_0qGPN8ufE6pSnhAg
11
11
  sparrow_parse/vllm/inference_base.py,sha256=4mwGoAY63MB4cHZpV0czTkJWEzimmiTzqqzKmLNzgjw,820
12
12
  sparrow_parse/vllm/inference_factory.py,sha256=FTM65O-dW2WZchHOrNN7_Q3-FlVoAc65iSptuuUuClM,1166
13
13
  sparrow_parse/vllm/local_gpu_inference.py,sha256=aHoJTejb5xrXjWDIGu5RBQWEyRCOBCB04sMvO2Wyvg8,628
14
- sparrow_parse/vllm/mlx_inference.py,sha256=9PgcPf5uvAmbRmuUD1BOs_WZqzx82hFdoWMUcTLdJ50,4876
15
- sparrow_parse-0.4.7.dist-info/METADATA,sha256=KX74XdEuoK7fGg0haxPlo6Oyx3HLA-kDyfACDJEouJY,6432
16
- sparrow_parse-0.4.7.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
17
- sparrow_parse-0.4.7.dist-info/entry_points.txt,sha256=8CrvTVTTcz1YuZ8aRCYNOH15ZOAaYLlcbYX3t28HwJY,54
18
- sparrow_parse-0.4.7.dist-info/top_level.txt,sha256=n6b-WtT91zKLyCPZTP7wvne8v_yvIahcsz-4sX8I0rY,14
19
- sparrow_parse-0.4.7.dist-info/RECORD,,
14
+ sparrow_parse/vllm/mlx_inference.py,sha256=jlycb0WwpQKGkfCrYYgirOdXrqEV6RROB86dmBvAlrU,4961
15
+ sparrow_parse-0.4.9.dist-info/METADATA,sha256=vunHfk8AaOMZGvmR-5oeph45PBfJMiiYKRbSBGZ-AGA,6432
16
+ sparrow_parse-0.4.9.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
17
+ sparrow_parse-0.4.9.dist-info/entry_points.txt,sha256=8CrvTVTTcz1YuZ8aRCYNOH15ZOAaYLlcbYX3t28HwJY,54
18
+ sparrow_parse-0.4.9.dist-info/top_level.txt,sha256=n6b-WtT91zKLyCPZTP7wvne8v_yvIahcsz-4sX8I0rY,14
19
+ sparrow_parse-0.4.9.dist-info/RECORD,,