spark-nlp 6.1.2rc1__py2.py3-none-any.whl → 6.1.3__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of spark-nlp might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: spark-nlp
3
- Version: 6.1.2rc1
3
+ Version: 6.1.3
4
4
  Summary: John Snow Labs Spark NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment.
5
5
  Home-page: https://github.com/JohnSnowLabs/spark-nlp
6
6
  Author: John Snow Labs
@@ -102,7 +102,7 @@ $ java -version
102
102
  $ conda create -n sparknlp python=3.7 -y
103
103
  $ conda activate sparknlp
104
104
  # spark-nlp by default is based on pyspark 3.x
105
- $ pip install spark-nlp==6.1.1 pyspark==3.3.1
105
+ $ pip install spark-nlp==6.1.3 pyspark==3.3.1
106
106
  ```
107
107
 
108
108
  In Python console or Jupyter `Python3` kernel:
@@ -168,7 +168,7 @@ For a quick example of using pipelines and models take a look at our official [d
168
168
 
169
169
  ### Apache Spark Support
170
170
 
171
- Spark NLP *6.1.1* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x
171
+ Spark NLP *6.1.3* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x
172
172
 
173
173
  | Spark NLP | Apache Spark 3.5.x | Apache Spark 3.4.x | Apache Spark 3.3.x | Apache Spark 3.2.x | Apache Spark 3.1.x | Apache Spark 3.0.x | Apache Spark 2.4.x | Apache Spark 2.3.x |
174
174
  |-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
@@ -198,7 +198,7 @@ Find out more about 4.x `SparkNLP` versions in our official [documentation](http
198
198
 
199
199
  ### Databricks Support
200
200
 
201
- Spark NLP 6.1.1 has been tested and is compatible with the following runtimes:
201
+ Spark NLP 6.1.3 has been tested and is compatible with the following runtimes:
202
202
 
203
203
  | **CPU** | **GPU** |
204
204
  |--------------------|--------------------|
@@ -216,7 +216,7 @@ We are compatible with older runtimes. For a full list check databricks support
216
216
 
217
217
  ### EMR Support
218
218
 
219
- Spark NLP 6.1.1 has been tested and is compatible with the following EMR releases:
219
+ Spark NLP 6.1.3 has been tested and is compatible with the following EMR releases:
220
220
 
221
221
  | **EMR Release** |
222
222
  |--------------------|
@@ -3,7 +3,7 @@ com/johnsnowlabs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,
3
3
  com/johnsnowlabs/ml/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  com/johnsnowlabs/ml/ai/__init__.py,sha256=YQiK2M7U4d8y5irPy_HB8ae0mSpqS9583MH44pnKJXc,295
5
5
  com/johnsnowlabs/nlp/__init__.py,sha256=DPIVXtONO5xXyOk-HB0-sNiHAcco17NN13zPS_6Uw8c,294
6
- sparknlp/__init__.py,sha256=sEwJ50P2C-LGn-MZ8oI6jO6N0OutYSL3b6bCVkOo2wc,13814
6
+ sparknlp/__init__.py,sha256=UR0dRykX67j-Ksuzk5Xe-Mod5qCK24iBjHHa0omOp2w,13814
7
7
  sparknlp/annotation.py,sha256=I5zOxG5vV2RfPZfqN9enT1i4mo6oBcn3Lrzs37QiOiA,5635
8
8
  sparknlp/annotation_audio.py,sha256=iRV_InSVhgvAwSRe9NTbUH9v6OGvTM-FPCpSAKVu0mE,1917
9
9
  sparknlp/annotation_image.py,sha256=xhCe8Ko-77XqWVuuYHFrjKqF6zPd8Z-RY_rmZXNwCXU,2547
@@ -146,11 +146,12 @@ sparknlp/annotator/matcher/date_matcher.py,sha256=FrjTVoNBq1Z7E4qSJKvfV5rC7Mlm9R
146
146
  sparknlp/annotator/matcher/multi_date_matcher.py,sha256=-zCp4HugIpSN6U4-c1uN_dGn7x69xYy6SUoQz6dY34s,4475
147
147
  sparknlp/annotator/matcher/regex_matcher.py,sha256=GYhJNjBnCvfeEMv7d2_kDnqjfHtC7Hts--Ttlkjdozs,8380
148
148
  sparknlp/annotator/matcher/text_matcher.py,sha256=kpP1-5BEFEW9kantoHvjhcCbX1qsGm4gEDtFHATWOwA,10636
149
- sparknlp/annotator/ner/__init__.py,sha256=4ni5IHCbGlEmhCgGDw7A61x633qUTvWko2pIixiKO2Q,948
149
+ sparknlp/annotator/ner/__init__.py,sha256=cd13PX6O92BIasE8NWd3JUR6up2fRbe7chRx4lQZRcY,1006
150
150
  sparknlp/annotator/ner/ner_approach.py,sha256=4Y4gcusVtDaQpXfBbBe8XMAZ5hw1mvdh5A7g1j_T1KY,2793
151
151
  sparknlp/annotator/ner/ner_converter.py,sha256=ANPp_Xe0DaK4z4n-0KujBj3Xp5jIbsFXBXvmp-aCKlM,5924
152
152
  sparknlp/annotator/ner/ner_crf.py,sha256=eFylEz3-CENW0dyc6K4jodz9Kig3tnCyfZ3s-KZMvH4,14283
153
153
  sparknlp/annotator/ner/ner_dl.py,sha256=ght1W6-ArjLRiNHCv_bKpozkyNd8HVIb8SDGhcbp8Fg,22123
154
+ sparknlp/annotator/ner/ner_dl_graph_checker.py,sha256=KB_BuNj2EPiVaHJEU9N1d40j-qGCn9e2tsTYctsioyc,8227
154
155
  sparknlp/annotator/ner/ner_overwriter.py,sha256=en5OxXIP46yTXokIE96YDP9kcHA9oxiRPgwXMo0otew,6798
155
156
  sparknlp/annotator/ner/zero_shot_ner_model.py,sha256=DohhnkGSG-JxjW72t8AOx3GY7R_qT-LA3I0KF9TBz-Y,7501
156
157
  sparknlp/annotator/openai/__init__.py,sha256=u6SpV_xS8UpBE95WnTl0IefOI5TrTRl7ZHuYoeTetiA,759
@@ -167,8 +168,9 @@ sparknlp/annotator/sentence/sentence_detector_dl.py,sha256=-Osj9Bm9KyZRTAWkOsK9c
167
168
  sparknlp/annotator/sentiment/__init__.py,sha256=Lq3vKaZS1YATLMg0VNXSVtkWL5q5G9taGBvdrvSwnfg,766
168
169
  sparknlp/annotator/sentiment/sentiment_detector.py,sha256=m545NGU0Xzg_PO6_qIfpli1uZj7JQcyFgqe9R6wAPFI,8154
169
170
  sparknlp/annotator/sentiment/vivekn_sentiment.py,sha256=4rpXWDgzU6ddnbrSCp9VdLb2epCc9oZ3c6XcqxEw8nk,9655
170
- sparknlp/annotator/seq2seq/__init__.py,sha256=Aj43G1MuQE0mW7LakCWPjiTkIGl7iHPAnKIwT_DfdIM,1781
171
+ sparknlp/annotator/seq2seq/__init__.py,sha256=aDiph00Hyq7L8uDY0frtyuHtqFodBqTMbixx_nq4z1I,1841
171
172
  sparknlp/annotator/seq2seq/auto_gguf_model.py,sha256=yhZQHMHfp88rQvLHTWyS-8imZrwqp-8RQQwnw6PmHfc,11749
173
+ sparknlp/annotator/seq2seq/auto_gguf_reranker.py,sha256=MS4wCm2A2YiQfkB4HVVZKuN-3A1yGzqSCF69nu7J2rQ,12640
172
174
  sparknlp/annotator/seq2seq/auto_gguf_vision_model.py,sha256=swBek2026dW6BOX5O9P8Uq41X2GC71VGW0ADFeUIvs0,15299
173
175
  sparknlp/annotator/seq2seq/bart_transformer.py,sha256=I1flM4yeCzEAKOdQllBC30XuedxVJ7ferkFhZ6gwEbE,18481
174
176
  sparknlp/annotator/seq2seq/cohere_transformer.py,sha256=43LZBVazZMgJRCsN7HaYjVYfJ5hRMV95QZyxMtXq-m4,13496
@@ -200,12 +202,13 @@ sparknlp/annotator/token/regex_tokenizer.py,sha256=FG2HvFwMb1G_4grfyIQaeBpaAgKv_
200
202
  sparknlp/annotator/token/tokenizer.py,sha256=Me3P3wogUKUJ7O7_2wLdPzF00vKpp_sHuiztpGWRVpU,19939
201
203
  sparknlp/annotator/ws/__init__.py,sha256=-l8bnl8Z6lGXWOBdRIBZ6958fzTHt4o87QhhLHIFF8A,693
202
204
  sparknlp/annotator/ws/word_segmenter.py,sha256=rrbshwn5wzXIHpCCDji6ZcsmiARpuA82_p_6TgNHfRc,16365
203
- sparknlp/base/__init__.py,sha256=fCL-kReIavZceUa1OC99pSRH7MsXzqGB8BXgzVS_f7s,1311
205
+ sparknlp/base/__init__.py,sha256=ug0e79fv03D67mUqmb-i-a89vOa6EcRx49Z0fS6rT3g,1361
204
206
  sparknlp/base/audio_assembler.py,sha256=HKa9mXvmuMUrjTihUZkppGj-WJjcUrm2BGapNuPifyI,3320
205
207
  sparknlp/base/doc2_chunk.py,sha256=TyvbdJNkVo9favHlOEoH5JwKbjpk5ZVJ75p8Cilp9jM,6551
206
208
  sparknlp/base/document_assembler.py,sha256=zl-SXWMTR3B0EZ8z6SWYchCwEo-61FhU6u7dHUKDIOg,6697
207
209
  sparknlp/base/embeddings_finisher.py,sha256=5QU1Okgl2ULrPVf4ze1H0SsRCMYXWGARtUsT7dagBYA,7659
208
210
  sparknlp/base/finisher.py,sha256=V4wkMm9Ug09q4zTQc9T9Wr-awmu2Hu-eNaJ039YgZXM,8583
211
+ sparknlp/base/gguf_ranking_finisher.py,sha256=tzoisuD70myfHo3t4WFtBs8i1jwdjkwXCbWknDEXOHk,8315
209
212
  sparknlp/base/graph_finisher.py,sha256=a8fxk3ei2YQw6s0Y9Yy8oMOF1i1XUrgqaiwVE0VPt4w,4834
210
213
  sparknlp/base/has_recursive_fit.py,sha256=P55rSHLIXhihXWS2bOC_DskcQTc3njieVD1JkjS2bcA,849
211
214
  sparknlp/base/has_recursive_transform.py,sha256=UkGNgo4LMsjQC-Coeefg4bJcg7FoPcPiG382zEa6Ywk,841
@@ -228,7 +231,7 @@ sparknlp/common/read_as.py,sha256=imxPGwV7jr4Li_acbo0OAHHRGCBbYv-akzEGaBWEfcY,12
228
231
  sparknlp/common/recursive_annotator_approach.py,sha256=vqugBw22cE3Ff7PIpRlnYFuOlchgL0nM26D8j-NdpqU,1449
229
232
  sparknlp/common/storage.py,sha256=D91H3p8EIjNspjqAYu6ephRpCUtdcAir4_PrAbkIQWE,4842
230
233
  sparknlp/common/utils.py,sha256=Yne6yYcwKxhOZC-U4qfYoDhWUP_6BIaAjI5X_P_df1E,1306
231
- sparknlp/internal/__init__.py,sha256=f5kxLz6bEX8FCMo6lek30MXbn_lDC-dBTI9s_fARblI,40748
234
+ sparknlp/internal/__init__.py,sha256=m7Y7y-IPkB6aJuGUCM54eOueGOEt65C3ujAzN16hegQ,40995
232
235
  sparknlp/internal/annotator_java_ml.py,sha256=UGPoThG0rGXUOXGSQnDzEDW81Mu1s5RPF29v7DFyE3c,1187
233
236
  sparknlp/internal/annotator_transformer.py,sha256=fXmc2IWXGybqZpbEU9obmbdBYPc798y42zvSB4tqV9U,1448
234
237
  sparknlp/internal/extended_java_wrapper.py,sha256=hwP0133-hDiDf5sBF-P3MtUsuuDj1PpQbtGZQIRwzfk,2240
@@ -247,7 +250,7 @@ sparknlp/pretrained/utils.py,sha256=T1MrvW_DaWk_jcOjVLOea0NMFE9w8fe0ZT_5urZ_nEY,
247
250
  sparknlp/reader/__init__.py,sha256=-Toj3AIBki-zXPpV8ezFTI2LX1yP_rK2bhpoa8nBkTw,685
248
251
  sparknlp/reader/enums.py,sha256=MNGug9oJ1BBLM1Pbske13kAabalDzHa2kucF5xzFpHs,770
249
252
  sparknlp/reader/pdf_to_text.py,sha256=eWw-cwjosmcSZ9eHso0F5QQoeGBBnwsOhzhCXXvMjZA,7169
250
- sparknlp/reader/reader2doc.py,sha256=LRqfaL9nidhlPkJIwTJo7SnGYmNNfOqwEdrsWYGEdnI,7146
253
+ sparknlp/reader/reader2doc.py,sha256=8x1tvx7Hj2J4xpyRiCUvrG-kmOPBvIE8K1tJZY-e0Xw,8200
251
254
  sparknlp/reader/reader2table.py,sha256=GC6Yz0gQ83S6XKOi329TUNQuAvLrBxysqDkDRZPvcYA,4759
252
255
  sparknlp/reader/sparknlp_reader.py,sha256=MJs8v_ECYaV1SOabI1L_2MkVYEDVImtwgbYypO7DJSY,20623
253
256
  sparknlp/training/__init__.py,sha256=qREi9u-5Vc2VjpL6-XZsyvu5jSEIdIhowW7_kKaqMqo,852
@@ -280,7 +283,7 @@ sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py,sha256=R4yHFN3
280
283
  sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py,sha256=EoCSdcIjqQ3wv13MAuuWrKV8wyVBP0SbOEW41omHlR0,23189
281
284
  sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py,sha256=k5CQ7gKV6HZbZMB8cKLUJuZxoZWlP_DFWdZ--aIDwsc,2356
282
285
  sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py,sha256=pAxjWhjazSX8Vg0MFqJiuRVw1IbnQNSs-8Xp26L4nko,870
283
- spark_nlp-6.1.2rc1.dist-info/METADATA,sha256=4qK5_LPihfkDmSrLBQgH38R_VE5lzDnsygPpOccUTdc,19777
284
- spark_nlp-6.1.2rc1.dist-info/WHEEL,sha256=JNWh1Fm1UdwIQV075glCn4MVuCRs0sotJIq-J6rbxCU,109
285
- spark_nlp-6.1.2rc1.dist-info/top_level.txt,sha256=uuytur4pyMRw2H_txNY2ZkaucZHUs22QF8-R03ch_-E,13
286
- spark_nlp-6.1.2rc1.dist-info/RECORD,,
286
+ spark_nlp-6.1.3.dist-info/METADATA,sha256=U4Fb5wRd8Ql6BULfRwQSE6Pa77wsLwOGwTk-s038YuI,19774
287
+ spark_nlp-6.1.3.dist-info/WHEEL,sha256=JNWh1Fm1UdwIQV075glCn4MVuCRs0sotJIq-J6rbxCU,109
288
+ spark_nlp-6.1.3.dist-info/top_level.txt,sha256=uuytur4pyMRw2H_txNY2ZkaucZHUs22QF8-R03ch_-E,13
289
+ spark_nlp-6.1.3.dist-info/RECORD,,
sparknlp/__init__.py CHANGED
@@ -66,7 +66,7 @@ sys.modules['com.johnsnowlabs.ml.ai'] = annotator
66
66
  annotators = annotator
67
67
  embeddings = annotator
68
68
 
69
- __version__ = "6.1.1"
69
+ __version__ = "6.1.3"
70
70
 
71
71
 
72
72
  def start(gpu=False,
@@ -16,5 +16,6 @@ from sparknlp.annotator.ner.ner_approach import *
16
16
  from sparknlp.annotator.ner.ner_converter import *
17
17
  from sparknlp.annotator.ner.ner_crf import *
18
18
  from sparknlp.annotator.ner.ner_dl import *
19
+ from sparknlp.annotator.ner.ner_dl_graph_checker import *
19
20
  from sparknlp.annotator.ner.ner_overwriter import *
20
21
  from sparknlp.annotator.ner.zero_shot_ner_model import *
@@ -0,0 +1,237 @@
1
+ # Copyright 2017-2025 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for NerDL."""
15
+
16
+ from sparknlp.common import *
17
+ import sparknlp.internal as _internal
18
+ from pyspark.ml.util import JavaMLWritable
19
+ from pyspark.ml.wrapper import JavaEstimator
20
+
21
+
22
+ class NerDLGraphChecker(
23
+ JavaEstimator,
24
+ JavaMLWritable,
25
+ _internal.ParamsGettersSetters,
26
+ ):
27
+ """Checks whether a suitable NerDL graph is available for the given training dataset, before any
28
+ computations/training is done. This annotator is useful for custom training cases, where
29
+ specialized graphs are needed.
30
+
31
+ Important: This annotator should be used or positioned before any embedding or NerDLApproach
32
+ annotators in the pipeline and will process the whole dataset to extract the required graph parameters.
33
+
34
+ This annotator requires a dataset with at least two columns: one with tokens and one with the
35
+ labels. In addition, it requires the used embedding annotator in the pipeline to extract the
36
+ suitable embedding dimension.
37
+
38
+ For extended examples of usage, see the`Examples
39
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master//home/ducha/Workspace/scala/spark-nlp-feature/examples/python/training/english/dl-ner/ner_dl_graph_checker.ipynb>`__
40
+ and the `NerDLGraphCheckerTestSpec
41
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/ner/dl/NerDLGraphCheckerTestSpec.scala>`__.
42
+
43
+ ==================================== ======================
44
+ Input Annotation types Output Annotation type
45
+ ==================================== ======================
46
+ ``DOCUMENT, TOKEN`` `NONE`
47
+ ==================================== ======================
48
+
49
+ Parameters
50
+ ----------
51
+ inputCols
52
+ Column names of input annotations
53
+ labelColumn
54
+ Column name for data labels
55
+ embeddingsDim
56
+ Dimensionality of embeddings
57
+
58
+ Examples
59
+ --------
60
+ >>> import sparknlp
61
+ >>> from sparknlp.base import *
62
+ >>> from sparknlp.annotator import *
63
+ >>> from pyspark.ml import Pipeline
64
+
65
+ This CoNLL dataset already includes a sentence, token and label
66
+ column with their respective annotator types. If a custom dataset is used,
67
+ these need to be defined with for example:
68
+
69
+ >>> conll = CoNLL()
70
+ >>> trainingData = conll.readDataset(spark, "src/test/resources/conll2003/eng.train")
71
+ >>> embeddings = BertEmbeddings \\
72
+ ... .pretrained() \\
73
+ ... .setInputCols(["sentence", "token"]) \\
74
+ ... .setOutputCol("embeddings")
75
+
76
+ This annotatorr requires the data for NerDLApproach graphs: text, tokens, labels and the embedding model
77
+
78
+ >>> nerDLGraphChecker = NerDLGraphChecker() \\
79
+ ... .setInputCols(["sentence", "token"]) \\
80
+ ... .setLabelColumn("label") \\
81
+ ... .setEmbeddingsModel(embeddings)
82
+ >>> nerTagger = NerDLApproach() \\
83
+ ... .setInputCols(["sentence", "token", "embeddings"]) \\
84
+ ... .setLabelColumn("label") \\
85
+ ... .setOutputCol("ner") \\
86
+ ... .setMaxEpochs(1) \\
87
+ ... .setRandomSeed(0) \\
88
+ ... .setVerbose(0)
89
+ >>> pipeline = Pipeline().setStages([nerDLGraphChecker, embeddings, nerTagger])
90
+
91
+ If we now fit the model with a graph missing, then an exception is raised.
92
+
93
+ >>> pipelineModel = pipeline.fit(trainingData)
94
+ """
95
+
96
+ inputCols = Param(
97
+ Params._dummy(),
98
+ "inputCols",
99
+ "Input columns",
100
+ typeConverter=TypeConverters.toListString,
101
+ )
102
+
103
+ def setInputCols(self, *value):
104
+ """Sets column names of input annotations.
105
+
106
+ Parameters
107
+ ----------
108
+ *value : List[str]
109
+ Input columns for the annotator
110
+ """
111
+ if type(value[0]) == str or type(value[0]) == list:
112
+ # self.inputColsValidation(value)
113
+ if len(value) == 1 and type(value[0]) == list:
114
+ return self._set(inputCols=value[0])
115
+ else:
116
+ return self._set(inputCols=list(value))
117
+ else:
118
+ raise TypeError(
119
+ "InputCols datatype not supported. It must be either str or list"
120
+ )
121
+
122
+ labelColumn = Param(
123
+ Params._dummy(),
124
+ "labelColumn",
125
+ "Column with label per each token",
126
+ typeConverter=TypeConverters.toString,
127
+ )
128
+
129
+ def setLabelColumn(self, value):
130
+ """Sets name of column for data labels.
131
+
132
+ Parameters
133
+ ----------
134
+ value : str
135
+ Column for data labels
136
+ """
137
+ return self._set(labelColumn=value)
138
+
139
+ embeddingsDim = Param(
140
+ Params._dummy(),
141
+ "embeddingsDim",
142
+ "Dimensionality of embeddings",
143
+ typeConverter=TypeConverters.toInt,
144
+ )
145
+
146
+ def setEmbeddingsDim(self, value: int):
147
+ """Sets Dimensionality of embeddings
148
+
149
+ Parameters
150
+ ----------
151
+ value : int
152
+ Dimensionality of embeddings
153
+ """
154
+ return self._set(embeddingsDim=value)
155
+
156
+ def setEmbeddingsModel(self, model: HasEmbeddingsProperties):
157
+ """
158
+ Get embeddingsDim from a given embeddings model, if possible.
159
+ Falls back to setEmbeddingsDim if dimension cannot be obtained automatically.
160
+ """
161
+ # Try Python API first
162
+ if hasattr(model, "getDimension"):
163
+ dim = model.getDimension()
164
+ return self.setEmbeddingsDim(int(dim))
165
+ # Try JVM side if available
166
+ if hasattr(model, "_java_obj") and hasattr(model._java_obj, "getDimension"):
167
+ dim = int(model._java_obj.getDimension())
168
+ return self.setEmbeddingsDim(dim)
169
+ raise ValueError(
170
+ "Could not infer embeddings dimension from provided model. "
171
+ "Use setEmbeddingsDim(dim) explicitly."
172
+ )
173
+
174
+ inputAnnotatorTypes = [
175
+ AnnotatorType.DOCUMENT,
176
+ AnnotatorType.TOKEN,
177
+ ]
178
+
179
+ graphFolder = Param(
180
+ Params._dummy(),
181
+ "graphFolder",
182
+ "Folder path that contain external graph files",
183
+ TypeConverters.toString,
184
+ )
185
+
186
+ def setGraphFolder(self, p):
187
+ """Sets folder path that contain external graph files.
188
+
189
+ Parameters
190
+ ----------
191
+ p : str
192
+ Folder path that contain external graph files
193
+ """
194
+ return self._set(graphFolder=p)
195
+
196
+ @keyword_only
197
+ def __init__(self):
198
+ _internal.ParamsGettersSetters.__init__(self)
199
+ classname = "com.johnsnowlabs.nlp.annotators.ner.dl.NerDLGraphChecker"
200
+ self.__class__._java_class_name = classname
201
+ self._java_obj = self._new_java_obj(classname, self.uid)
202
+ # self._setDefault()
203
+
204
+ def _create_model(self, java_model):
205
+ return NerDLGraphCheckerModel()
206
+
207
+
208
+ class NerDLGraphCheckerModel(
209
+ JavaModel,
210
+ JavaMLWritable,
211
+ _internal.ParamsGettersSetters,
212
+ ):
213
+ """
214
+ Resulting model from NerDLGraphChecker, that does not perform any transformations, as the
215
+ checks are done during the ``fit`` phase. It acts as the identity.
216
+
217
+ This annotator should never be used directly.
218
+ """
219
+
220
+ inputAnnotatorTypes = [
221
+ AnnotatorType.DOCUMENT,
222
+ AnnotatorType.TOKEN,
223
+ ]
224
+
225
+ @keyword_only
226
+ def __init__(
227
+ self,
228
+ classname="com.johnsnowlabs.nlp.annotators.ner.dl.NerDLGraphCheckerModel",
229
+ java_model=None,
230
+ ):
231
+ super(NerDLGraphCheckerModel, self).__init__(java_model=java_model)
232
+ if classname and not java_model:
233
+ self.__class__._java_class_name = classname
234
+ self._java_obj = self._new_java_obj(classname, self.uid)
235
+ if java_model is not None:
236
+ self._transfer_params_from_java()
237
+ # self._setDefault(lazyAnnotator=False)
@@ -32,3 +32,4 @@ from sparknlp.annotator.seq2seq.llama3_transformer import *
32
32
  from sparknlp.annotator.seq2seq.cohere_transformer import *
33
33
  from sparknlp.annotator.seq2seq.olmo_transformer import *
34
34
  from sparknlp.annotator.seq2seq.phi4_transformer import *
35
+ from sparknlp.annotator.seq2seq.auto_gguf_reranker import *
@@ -0,0 +1,329 @@
1
+ # Copyright 2017-2023 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for the AutoGGUFReranker."""
15
+ from typing import List, Dict
16
+
17
+ from sparknlp.common import *
18
+
19
+
20
+ class AutoGGUFReranker(AnnotatorModel, HasBatchedAnnotate, HasLlamaCppProperties):
21
+ """
22
+ Annotator that uses the llama.cpp library to rerank text documents based on their relevance
23
+ to a given query using GGUF-format reranking models.
24
+
25
+ This annotator is specifically designed for text reranking tasks, where multiple documents
26
+ or text passages are ranked according to their relevance to a query. It uses specialized
27
+ reranking models in GGUF format that output relevance scores for each input document.
28
+
29
+ The reranker takes a query (set via :meth:`.setQuery`) and a list of documents, then returns the
30
+ same documents with added metadata containing relevance scores. The documents are processed
31
+ in batches and each receives a ``relevance_score`` in its metadata indicating how relevant
32
+ it is to the provided query.
33
+
34
+ For settable parameters, and their explanations, see the parameters of this class and refer to
35
+ the llama.cpp documentation of
36
+ `server.cpp <https://github.com/ggerganov/llama.cpp/tree/7d5e8777ae1d21af99d4f95be10db4870720da91/examples/server>`__
37
+ for more information.
38
+
39
+ If the parameters are not set, the annotator will default to use the parameters provided by
40
+ the model.
41
+
42
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
43
+ object:
44
+
45
+ >>> reranker = AutoGGUFReranker.pretrained() \\
46
+ ... .setInputCols(["document"]) \\
47
+ ... .setOutputCol("reranked_documents") \\
48
+ ... .setQuery("A man is eating pasta.")
49
+
50
+ The default model is ``"bge_reranker_v2_m3_Q4_K_M"``, if no name is provided.
51
+
52
+ For extended examples of usage, see the
53
+ `AutoGGUFRerankerTest <https://github.com/JohnSnowLabs/spark-nlp/tree/master/src/test/scala/com/johnsnowlabs/nlp/annotators/seq2seq/AutoGGUFRerankerTest.scala>`__
54
+ and the
55
+ `example notebook <https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples/python/llama.cpp/llama.cpp_in_Spark_NLP_AutoGGUFReranker.ipynb>`__.
56
+
57
+ For available pretrained models please see the `Models Hub <https://sparknlp.org/models>`__.
58
+
59
+ ====================== ======================
60
+ Input Annotation types Output Annotation type
61
+ ====================== ======================
62
+ ``DOCUMENT`` ``DOCUMENT``
63
+ ====================== ======================
64
+
65
+ Parameters
66
+ ----------
67
+ query
68
+ The query to be used for reranking. If not set, the input text will be used as the query.
69
+ nThreads
70
+ Set the number of threads to use during generation
71
+ nThreadsDraft
72
+ Set the number of threads to use during draft generation
73
+ nThreadsBatch
74
+ Set the number of threads to use during batch and prompt processing
75
+ nThreadsBatchDraft
76
+ Set the number of threads to use during batch and prompt processing
77
+ nCtx
78
+ Set the size of the prompt context
79
+ nBatch
80
+ Set the logical batch size for prompt processing (must be >=32 to use BLAS)
81
+ nUbatch
82
+ Set the physical batch size for prompt processing (must be >=32 to use BLAS)
83
+ nGpuLayers
84
+ Set the number of layers to store in VRAM (-1 - use default)
85
+ nGpuLayersDraft
86
+ Set the number of layers to store in VRAM for the draft model (-1 - use default)
87
+ gpuSplitMode
88
+ Set how to split the model across GPUs
89
+ mainGpu
90
+ Set the main GPU that is used for scratch and small tensors.
91
+ tensorSplit
92
+ Set how split tensors should be distributed across GPUs
93
+ grpAttnN
94
+ Set the group-attention factor
95
+ grpAttnW
96
+ Set the group-attention width
97
+ ropeFreqBase
98
+ Set the RoPE base frequency, used by NTK-aware scaling
99
+ ropeFreqScale
100
+ Set the RoPE frequency scaling factor, expands context by a factor of 1/N
101
+ yarnExtFactor
102
+ Set the YaRN extrapolation mix factor
103
+ yarnAttnFactor
104
+ Set the YaRN scale sqrt(t) or attention magnitude
105
+ yarnBetaFast
106
+ Set the YaRN low correction dim or beta
107
+ yarnBetaSlow
108
+ Set the YaRN high correction dim or alpha
109
+ yarnOrigCtx
110
+ Set the YaRN original context size of model
111
+ defragmentationThreshold
112
+ Set the KV cache defragmentation threshold
113
+ numaStrategy
114
+ Set optimization strategies that help on some NUMA systems (if available)
115
+ ropeScalingType
116
+ Set the RoPE frequency scaling method, defaults to linear unless specified by the model
117
+ poolingType
118
+ Set the pooling type for embeddings, use model default if unspecified
119
+ modelDraft
120
+ Set the draft model for speculative decoding
121
+ modelAlias
122
+ Set a model alias
123
+ lookupCacheStaticFilePath
124
+ Set path to static lookup cache to use for lookup decoding (not updated by generation)
125
+ lookupCacheDynamicFilePath
126
+ Set path to dynamic lookup cache to use for lookup decoding (updated by generation)
127
+ flashAttention
128
+ Whether to enable Flash Attention
129
+ inputPrefixBos
130
+ Whether to add prefix BOS to user inputs, preceding the `--in-prefix` string
131
+ useMmap
132
+ Whether to use memory-map model (faster load but may increase pageouts if not using mlock)
133
+ useMlock
134
+ Whether to force the system to keep model in RAM rather than swapping or compressing
135
+ noKvOffload
136
+ Whether to disable KV offload
137
+ systemPrompt
138
+ Set a system prompt to use
139
+ chatTemplate
140
+ The chat template to use
141
+ inputPrefix
142
+ Set the prompt to start generation with
143
+ inputSuffix
144
+ Set a suffix for infilling
145
+ cachePrompt
146
+ Whether to remember the prompt to avoid reprocessing it
147
+ nPredict
148
+ Set the number of tokens to predict
149
+ topK
150
+ Set top-k sampling
151
+ topP
152
+ Set top-p sampling
153
+ minP
154
+ Set min-p sampling
155
+ tfsZ
156
+ Set tail free sampling, parameter z
157
+ typicalP
158
+ Set locally typical sampling, parameter p
159
+ temperature
160
+ Set the temperature
161
+ dynatempRange
162
+ Set the dynamic temperature range
163
+ dynatempExponent
164
+ Set the dynamic temperature exponent
165
+ repeatLastN
166
+ Set the last n tokens to consider for penalties
167
+ repeatPenalty
168
+ Set the penalty of repeated sequences of tokens
169
+ frequencyPenalty
170
+ Set the repetition alpha frequency penalty
171
+ presencePenalty
172
+ Set the repetition alpha presence penalty
173
+ miroStat
174
+ Set MiroStat sampling strategies.
175
+ mirostatTau
176
+ Set the MiroStat target entropy, parameter tau
177
+ mirostatEta
178
+ Set the MiroStat learning rate, parameter eta
179
+ penalizeNl
180
+ Whether to penalize newline tokens
181
+ nKeep
182
+ Set the number of tokens to keep from the initial prompt
183
+ seed
184
+ Set the RNG seed
185
+ nProbs
186
+ Set the amount top tokens probabilities to output if greater than 0.
187
+ minKeep
188
+ Set the amount of tokens the samplers should return at least (0 = disabled)
189
+ grammar
190
+ Set BNF-like grammar to constrain generations
191
+ penaltyPrompt
192
+ Override which part of the prompt is penalized for repetition.
193
+ ignoreEos
194
+ Set whether to ignore end of stream token and continue generating (implies --logit-bias 2-inf)
195
+ disableTokenIds
196
+ Set the token ids to disable in the completion
197
+ stopStrings
198
+ Set strings upon seeing which token generation is stopped
199
+ samplers
200
+ Set which samplers to use for token generation in the given order
201
+ useChatTemplate
202
+ Set whether or not generate should apply a chat template
203
+
204
+ Notes
205
+ -----
206
+ This annotator is designed for reranking tasks and requires setting a query using ``setQuery``.
207
+ The query represents the search intent against which documents will be ranked. Each input
208
+ document receives a relevance score in the output metadata.
209
+
210
+ To use GPU inference with this annotator, make sure to use the Spark NLP GPU package and set
211
+ the number of GPU layers with the `setNGpuLayers` method.
212
+
213
+ When using larger models, we recommend adjusting GPU usage with `setNCtx` and `setNGpuLayers`
214
+ according to your hardware to avoid out-of-memory errors.
215
+
216
+ Examples
217
+ --------
218
+ >>> import sparknlp
219
+ >>> from sparknlp.base import *
220
+ >>> from sparknlp.annotator import *
221
+ >>> from pyspark.ml import Pipeline
222
+ >>> document = DocumentAssembler() \\
223
+ ... .setInputCol("text") \\
224
+ ... .setOutputCol("document")
225
+ >>> reranker = AutoGGUFReranker.pretrained() \\
226
+ ... .setInputCols(["document"]) \\
227
+ ... .setOutputCol("reranked_documents") \\
228
+ ... .setBatchSize(4) \\
229
+ ... .setQuery("A man is eating pasta.")
230
+ >>> pipeline = Pipeline().setStages([document, reranker])
231
+ >>> data = spark.createDataFrame([
232
+ ... ["A man is eating food."],
233
+ ... ["A man is eating a piece of bread."],
234
+ ... ["The girl is carrying a baby."],
235
+ ... ["A man is riding a horse."]
236
+ ... ]).toDF("text")
237
+ >>> result = pipeline.fit(data).transform(data)
238
+ >>> result.select("reranked_documents").show(truncate = False)
239
+ # Each document will have a relevance_score in metadata showing how relevant it is to the query
240
+ """
241
+
242
+ name = "AutoGGUFReranker"
243
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
244
+ outputAnnotatorType = AnnotatorType.DOCUMENT
245
+
246
+ query = Param(Params._dummy(), "query",
247
+ "The query to be used for reranking. If not set, the input text will be used as the query.",
248
+ typeConverter=TypeConverters.toString)
249
+ @keyword_only
250
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.AutoGGUFReranker", java_model=None):
251
+ super(AutoGGUFReranker, self).__init__(
252
+ classname=classname,
253
+ java_model=java_model
254
+ )
255
+ self._setDefault(
256
+ useChatTemplate=True,
257
+ nCtx=4096,
258
+ nBatch=512,
259
+ nGpuLayers=99,
260
+ systemPrompt="You are a helpful assistant.",
261
+ query=""
262
+ )
263
+
264
+ def setQuery(self, value: str):
265
+ """Set the query to be used for reranking.
266
+
267
+ Parameters
268
+ ----------
269
+ value : str
270
+ The query text that documents will be ranked against.
271
+
272
+ Returns
273
+ -------
274
+ AutoGGUFReranker
275
+ This instance for method chaining.
276
+ """
277
+ return self._set(query=value)
278
+
279
+ def getQuery(self):
280
+ """Get the current query used for reranking.
281
+
282
+ Returns
283
+ -------
284
+ str
285
+ The current query string.
286
+ """
287
+ return self._call_java("getQuery")
288
+
289
+ @staticmethod
290
+ def loadSavedModel(folder, spark_session):
291
+ """Loads a locally saved model.
292
+
293
+ Parameters
294
+ ----------
295
+ folder : str
296
+ Folder of the saved model
297
+ spark_session : pyspark.sql.SparkSession
298
+ The current SparkSession
299
+
300
+ Returns
301
+ -------
302
+ AutoGGUFReranker
303
+ The restored model
304
+ """
305
+ from sparknlp.internal import _AutoGGUFRerankerLoader
306
+ jModel = _AutoGGUFRerankerLoader(folder, spark_session._jsparkSession)._java_obj
307
+ return AutoGGUFReranker(java_model=jModel)
308
+
309
+ @staticmethod
310
+ def pretrained(name="bge_reranker_v2_m3_Q4_K_M", lang="en", remote_loc=None):
311
+ """Downloads and loads a pretrained model.
312
+
313
+ Parameters
314
+ ----------
315
+ name : str, optional
316
+ Name of the pretrained model, by default "bge_reranker_v2_m3_Q4_K_M"
317
+ lang : str, optional
318
+ Language of the pretrained model, by default "en"
319
+ remote_loc : str, optional
320
+ Optional remote address of the resource, by default None. Will use
321
+ Spark NLPs repositories otherwise.
322
+
323
+ Returns
324
+ -------
325
+ AutoGGUFReranker
326
+ The restored model
327
+ """
328
+ from sparknlp.pretrained import ResourceDownloader
329
+ return ResourceDownloader.downloadModel(AutoGGUFReranker, name, lang, remote_loc)
sparknlp/base/__init__.py CHANGED
@@ -17,6 +17,7 @@ from sparknlp.base.document_assembler import *
17
17
  from sparknlp.base.multi_document_assembler import *
18
18
  from sparknlp.base.embeddings_finisher import *
19
19
  from sparknlp.base.finisher import *
20
+ from sparknlp.base.gguf_ranking_finisher import *
20
21
  from sparknlp.base.graph_finisher import *
21
22
  from sparknlp.base.has_recursive_fit import *
22
23
  from sparknlp.base.has_recursive_transform import *
@@ -0,0 +1,234 @@
1
+ # Copyright 2017-2024 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for the GGUFRankingFinisher."""
15
+
16
+ from pyspark import keyword_only
17
+ from pyspark.ml.param import TypeConverters, Params, Param
18
+ from sparknlp.internal import AnnotatorTransformer
19
+
20
+
21
+ class GGUFRankingFinisher(AnnotatorTransformer):
22
+ """Finisher for AutoGGUFReranker outputs that provides ranking capabilities
23
+ including top-k selection, sorting by relevance score, and score normalization.
24
+
25
+ This finisher processes the output of AutoGGUFReranker, which contains documents with
26
+ relevance scores in their metadata. It provides several options for post-processing:
27
+
28
+ - Top-k selection: Select only the top k documents by relevance score
29
+ - Score thresholding: Filter documents by minimum relevance score
30
+ - Min-max scaling: Normalize relevance scores to 0-1 range
31
+ - Sorting: Sort documents by relevance score in descending order
32
+ - Ranking: Add rank information to document metadata
33
+
34
+ The finisher preserves the document annotation structure while adding ranking information
35
+ to the metadata and optionally filtering/sorting the documents.
36
+
37
+ For extended examples of usage, see the `Examples
38
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/examples/python/finisher/gguf_ranking_finisher_example.py>`__.
39
+
40
+ ====================== ======================
41
+ Input Annotation types Output Annotation type
42
+ ====================== ======================
43
+ ``DOCUMENT`` ``DOCUMENT``
44
+ ====================== ======================
45
+
46
+ Parameters
47
+ ----------
48
+ inputCols
49
+ Name of input annotation columns containing reranked documents
50
+ outputCol
51
+ Name of output annotation column containing ranked documents, by default "ranked_documents"
52
+ topK
53
+ Maximum number of top documents to return based on relevance score (-1 for no limit), by default -1
54
+ minRelevanceScore
55
+ Minimum relevance score threshold for filtering documents, by default Double.MinValue
56
+ minMaxScaling
57
+ Whether to apply min-max scaling to normalize relevance scores to 0-1 range, by default False
58
+
59
+ Examples
60
+ --------
61
+ >>> import sparknlp
62
+ >>> from sparknlp.base import *
63
+ >>> from sparknlp.annotator import *
64
+ >>> from pyspark.ml import Pipeline
65
+ >>> documentAssembler = DocumentAssembler() \\
66
+ ... .setInputCol("text") \\
67
+ ... .setOutputCol("document")
68
+ >>> reranker = AutoGGUFReranker.pretrained() \\
69
+ ... .setInputCols("document") \\
70
+ ... .setOutputCol("reranked_documents") \\
71
+ ... .setQuery("A man is eating pasta.")
72
+ >>> finisher = GGUFRankingFinisher() \\
73
+ ... .setInputCols("reranked_documents") \\
74
+ ... .setOutputCol("ranked_documents") \\
75
+ ... .setTopK(3) \\
76
+ ... .setMinMaxScaling(True)
77
+ >>> pipeline = Pipeline().setStages([documentAssembler, reranker, finisher])
78
+ >>> data = spark.createDataFrame([
79
+ ... ("A man is eating food.",),
80
+ ... ("A man is eating a piece of bread.",),
81
+ ... ("The girl is carrying a baby.",),
82
+ ... ("A man is riding a horse.",)
83
+ ... ], ["text"])
84
+ >>> result = pipeline.fit(data).transform(data)
85
+ >>> result.select("ranked_documents").show(truncate=False)
86
+ # Documents will be sorted by relevance with rank information in metadata
87
+ """
88
+
89
+ name = "GGUFRankingFinisher"
90
+
91
+ inputCols = Param(Params._dummy(),
92
+ "inputCols",
93
+ "Name of input annotation columns containing reranked documents",
94
+ typeConverter=TypeConverters.toListString)
95
+
96
+ outputCol = Param(Params._dummy(),
97
+ "outputCol",
98
+ "Name of output annotation column containing ranked documents",
99
+ typeConverter=TypeConverters.toListString)
100
+
101
+ topK = Param(Params._dummy(),
102
+ "topK",
103
+ "Maximum number of top documents to return based on relevance score (-1 for no limit)",
104
+ typeConverter=TypeConverters.toInt)
105
+
106
+ minRelevanceScore = Param(Params._dummy(),
107
+ "minRelevanceScore",
108
+ "Minimum relevance score threshold for filtering documents",
109
+ typeConverter=TypeConverters.toFloat)
110
+
111
+ minMaxScaling = Param(Params._dummy(),
112
+ "minMaxScaling",
113
+ "Whether to apply min-max scaling to normalize relevance scores to 0-1 range",
114
+ typeConverter=TypeConverters.toBoolean)
115
+
116
+ @keyword_only
117
+ def __init__(self):
118
+ super(GGUFRankingFinisher, self).__init__(
119
+ classname="com.johnsnowlabs.nlp.finisher.GGUFRankingFinisher")
120
+ self._setDefault(
121
+ topK=-1,
122
+ minRelevanceScore=float('-inf'), # Equivalent to Double.MinValue
123
+ minMaxScaling=False,
124
+ outputCol=["ranked_documents"]
125
+ )
126
+
127
+ @keyword_only
128
+ def setParams(self):
129
+ kwargs = self._input_kwargs
130
+ return self._set(**kwargs)
131
+
132
+ def setInputCols(self, *value):
133
+ """Sets input annotation column names.
134
+
135
+ Parameters
136
+ ----------
137
+ value : List[str]
138
+ Input annotation column names containing reranked documents
139
+ """
140
+ if len(value) == 1 and isinstance(value[0], list):
141
+ return self._set(inputCols=value[0])
142
+ else:
143
+ return self._set(inputCols=list(value))
144
+
145
+ def getInputCols(self):
146
+ """Gets input annotation column names.
147
+
148
+ Returns
149
+ -------
150
+ List[str]
151
+ Input annotation column names
152
+ """
153
+ return self.getOrDefault(self.inputCols)
154
+
155
+ def setOutputCol(self, value):
156
+ """Sets output annotation column name.
157
+
158
+ Parameters
159
+ ----------
160
+ value : str
161
+ Output annotation column name
162
+ """
163
+ return self._set(outputCol=[value])
164
+
165
+ def getOutputCol(self):
166
+ """Gets output annotation column name.
167
+
168
+ Returns
169
+ -------
170
+ str
171
+ Output annotation column name
172
+ """
173
+ output_cols = self.getOrDefault(self.outputCol)
174
+ return output_cols[0] if output_cols else "ranked_documents"
175
+
176
+ def setTopK(self, value):
177
+ """Sets maximum number of top documents to return.
178
+
179
+ Parameters
180
+ ----------
181
+ value : int
182
+ Maximum number of top documents to return (-1 for no limit)
183
+ """
184
+ return self._set(topK=value)
185
+
186
+ def getTopK(self):
187
+ """Gets maximum number of top documents to return.
188
+
189
+ Returns
190
+ -------
191
+ int
192
+ Maximum number of top documents to return
193
+ """
194
+ return self.getOrDefault(self.topK)
195
+
196
+ def setMinRelevanceScore(self, value):
197
+ """Sets minimum relevance score threshold.
198
+
199
+ Parameters
200
+ ----------
201
+ value : float
202
+ Minimum relevance score threshold
203
+ """
204
+ return self._set(minRelevanceScore=value)
205
+
206
+ def getMinRelevanceScore(self):
207
+ """Gets minimum relevance score threshold.
208
+
209
+ Returns
210
+ -------
211
+ float
212
+ Minimum relevance score threshold
213
+ """
214
+ return self.getOrDefault(self.minRelevanceScore)
215
+
216
+ def setMinMaxScaling(self, value):
217
+ """Sets whether to apply min-max scaling.
218
+
219
+ Parameters
220
+ ----------
221
+ value : bool
222
+ Whether to apply min-max scaling to normalize scores
223
+ """
224
+ return self._set(minMaxScaling=value)
225
+
226
+ def getMinMaxScaling(self):
227
+ """Gets whether to apply min-max scaling.
228
+
229
+ Returns
230
+ -------
231
+ bool
232
+ Whether min-max scaling is enabled
233
+ """
234
+ return self.getOrDefault(self.minMaxScaling)
@@ -1191,4 +1191,9 @@ class _Phi4Loader(ExtendedJavaWrapper):
1191
1191
  path,
1192
1192
  jspark,
1193
1193
  use_openvino,
1194
- )
1194
+ )
1195
+
1196
+ class _AutoGGUFRerankerLoader(ExtendedJavaWrapper):
1197
+ def __init__(self, path, jspark):
1198
+ super(_AutoGGUFRerankerLoader, self).__init__(
1199
+ "com.johnsnowlabs.nlp.annotators.seq2seq.AutoGGUFReranker.loadSavedModel", path, jspark)
@@ -122,6 +122,20 @@ class Reader2Doc(
122
122
  typeConverter=TypeConverters.toString
123
123
  )
124
124
 
125
+ outputAsDocument = Param(
126
+ Params._dummy(),
127
+ "outputAsDocument",
128
+ "Whether to return all sentences joined into a single document",
129
+ typeConverter=TypeConverters.toBoolean
130
+ )
131
+
132
+ excludeNonText = Param(
133
+ Params._dummy(),
134
+ "excludeNonText",
135
+ "Whether to exclude non-text content from the output. Default is False.",
136
+ typeConverter=TypeConverters.toBoolean
137
+ )
138
+
125
139
  @keyword_only
126
140
  def __init__(self):
127
141
  super(Reader2Doc, self).__init__(classname="com.johnsnowlabs.reader.Reader2Doc")
@@ -182,7 +196,7 @@ class Reader2Doc(
182
196
  def setFlattenOutput(self, value):
183
197
  """Sets whether to flatten the output to plain text with minimal metadata.
184
198
 
185
- Parameters
199
+ ParametersF
186
200
  ----------
187
201
  value : bool
188
202
  If true, output is flattened to plain text with minimal metadata
@@ -208,3 +222,23 @@ class Reader2Doc(
208
222
  Output format for the table content. Options are 'plain-text' or 'html-table'. Default is 'json-table'.
209
223
  """
210
224
  return self._set(outputFormat=value)
225
+
226
+ def setOutputAsDocument(self, value):
227
+ """Sets whether to return all sentences joined into a single document.
228
+
229
+ Parameters
230
+ ----------
231
+ value : bool
232
+ Whether to return all sentences joined into a single document
233
+ """
234
+ return self._set(outputAsDocument=value)
235
+
236
+ def setExcludeNonText(self, value):
237
+ """Sets whether to exclude non-text content from the output.
238
+
239
+ Parameters
240
+ ----------
241
+ value : bool
242
+ Whether to exclude non-text content from the output. Default is False.
243
+ """
244
+ return self._set(excludeNonText=value)