spark-nlp 6.1.2__py2.py3-none-any.whl → 6.1.3rc1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of spark-nlp might be problematic. Click here for more details.
- {spark_nlp-6.1.2.dist-info → spark_nlp-6.1.3rc1.dist-info}/METADATA +5 -5
- {spark_nlp-6.1.2.dist-info → spark_nlp-6.1.3rc1.dist-info}/RECORD +11 -5
- sparknlp/__init__.py +1 -1
- sparknlp/annotator/classifier_dl/roberta_bert_for_zero_shot_classification.py +225 -0
- sparknlp/annotator/extractor.py +174 -0
- sparknlp/annotator/openai_completion.py +352 -0
- sparknlp/annotator/openai_embeddings.py +132 -0
- sparknlp/base/token2_chunk.py +76 -0
- sparknlp/reader/reader2image.py +110 -0
- {spark_nlp-6.1.2.dist-info → spark_nlp-6.1.3rc1.dist-info}/WHEEL +0 -0
- {spark_nlp-6.1.2.dist-info → spark_nlp-6.1.3rc1.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: spark-nlp
|
|
3
|
-
Version: 6.1.
|
|
3
|
+
Version: 6.1.3rc1
|
|
4
4
|
Summary: John Snow Labs Spark NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment.
|
|
5
5
|
Home-page: https://github.com/JohnSnowLabs/spark-nlp
|
|
6
6
|
Author: John Snow Labs
|
|
@@ -102,7 +102,7 @@ $ java -version
|
|
|
102
102
|
$ conda create -n sparknlp python=3.7 -y
|
|
103
103
|
$ conda activate sparknlp
|
|
104
104
|
# spark-nlp by default is based on pyspark 3.x
|
|
105
|
-
$ pip install spark-nlp==6.1.
|
|
105
|
+
$ pip install spark-nlp==6.1.3 pyspark==3.3.1
|
|
106
106
|
```
|
|
107
107
|
|
|
108
108
|
In Python console or Jupyter `Python3` kernel:
|
|
@@ -168,7 +168,7 @@ For a quick example of using pipelines and models take a look at our official [d
|
|
|
168
168
|
|
|
169
169
|
### Apache Spark Support
|
|
170
170
|
|
|
171
|
-
Spark NLP *6.1.
|
|
171
|
+
Spark NLP *6.1.3* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x
|
|
172
172
|
|
|
173
173
|
| Spark NLP | Apache Spark 3.5.x | Apache Spark 3.4.x | Apache Spark 3.3.x | Apache Spark 3.2.x | Apache Spark 3.1.x | Apache Spark 3.0.x | Apache Spark 2.4.x | Apache Spark 2.3.x |
|
|
174
174
|
|-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|
|
@@ -198,7 +198,7 @@ Find out more about 4.x `SparkNLP` versions in our official [documentation](http
|
|
|
198
198
|
|
|
199
199
|
### Databricks Support
|
|
200
200
|
|
|
201
|
-
Spark NLP 6.1.
|
|
201
|
+
Spark NLP 6.1.3 has been tested and is compatible with the following runtimes:
|
|
202
202
|
|
|
203
203
|
| **CPU** | **GPU** |
|
|
204
204
|
|--------------------|--------------------|
|
|
@@ -216,7 +216,7 @@ We are compatible with older runtimes. For a full list check databricks support
|
|
|
216
216
|
|
|
217
217
|
### EMR Support
|
|
218
218
|
|
|
219
|
-
Spark NLP 6.1.
|
|
219
|
+
Spark NLP 6.1.3 has been tested and is compatible with the following EMR releases:
|
|
220
220
|
|
|
221
221
|
| **EMR Release** |
|
|
222
222
|
|--------------------|
|
|
@@ -3,7 +3,7 @@ com/johnsnowlabs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,
|
|
|
3
3
|
com/johnsnowlabs/ml/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
4
4
|
com/johnsnowlabs/ml/ai/__init__.py,sha256=YQiK2M7U4d8y5irPy_HB8ae0mSpqS9583MH44pnKJXc,295
|
|
5
5
|
com/johnsnowlabs/nlp/__init__.py,sha256=DPIVXtONO5xXyOk-HB0-sNiHAcco17NN13zPS_6Uw8c,294
|
|
6
|
-
sparknlp/__init__.py,sha256=
|
|
6
|
+
sparknlp/__init__.py,sha256=UR0dRykX67j-Ksuzk5Xe-Mod5qCK24iBjHHa0omOp2w,13814
|
|
7
7
|
sparknlp/annotation.py,sha256=I5zOxG5vV2RfPZfqN9enT1i4mo6oBcn3Lrzs37QiOiA,5635
|
|
8
8
|
sparknlp/annotation_audio.py,sha256=iRV_InSVhgvAwSRe9NTbUH9v6OGvTM-FPCpSAKVu0mE,1917
|
|
9
9
|
sparknlp/annotation_image.py,sha256=xhCe8Ko-77XqWVuuYHFrjKqF6zPd8Z-RY_rmZXNwCXU,2547
|
|
@@ -19,10 +19,13 @@ sparknlp/annotator/document_character_text_splitter.py,sha256=oNrOKJAKO2h1wr0bEu
|
|
|
19
19
|
sparknlp/annotator/document_normalizer.py,sha256=hU2fG6vaPfdngQapoeSu-_zS_LiBZNp2tcVBGl6eTpk,10973
|
|
20
20
|
sparknlp/annotator/document_token_splitter.py,sha256=-9xbQ9pVAjcKHQQrSk6Cb7f8W1cblCLwWXTNR8kFptA,7499
|
|
21
21
|
sparknlp/annotator/document_token_splitter_test.py,sha256=NWO9mwhAIUJFuxPofB3c39iUm_6vKp4pteDsBOTH8ng,2684
|
|
22
|
+
sparknlp/annotator/extractor.py,sha256=GObGwyl602jrt6EbnhZO2-KptrzVRop_5uA8HewpWcc,5303
|
|
22
23
|
sparknlp/annotator/graph_extraction.py,sha256=b4SB3B_hFgCJT4e5Jcscyxdzfbvw3ujKTa6UNgX5Lhc,14471
|
|
23
24
|
sparknlp/annotator/lemmatizer.py,sha256=w1nNMln2HgM4O1DOaISo5AGyzzFHuaIDQqWFcr4JmcA,8970
|
|
24
25
|
sparknlp/annotator/n_gram_generator.py,sha256=KRX5xfxmorOfYQkQHZWkkXjwjC13gDTAXnukwgz6hKU,5274
|
|
25
26
|
sparknlp/annotator/normalizer.py,sha256=7AkAOB-e8b2uyUBwYoq9HvMPijOwV3wEoxcB3BVsr4w,8780
|
|
27
|
+
sparknlp/annotator/openai_completion.py,sha256=kigEY5G2lZl2THezx-WDDByJKY1Wx99CPoZdkpik9x4,16899
|
|
28
|
+
sparknlp/annotator/openai_embeddings.py,sha256=eVnLK9t1jDOS58K2YHOyHakILG_4rGtzTIWelqieY9g,109860
|
|
26
29
|
sparknlp/annotator/stemmer.py,sha256=Tl48voyG9wqbT5MAA1hDKW90NorU8rIDhttJxOo1s3Q,2948
|
|
27
30
|
sparknlp/annotator/stop_words_cleaner.py,sha256=Z9yI9AWDIAXbPM2X6n84voiW31Z20XofCL-tTQNo5ro,7015
|
|
28
31
|
sparknlp/annotator/tf_ner_dl_graph_builder.py,sha256=ovsRBUfw9lJkuetmrcYRmW1Ll-33sdDPi4xJ0M_Fs7k,6379
|
|
@@ -64,6 +67,7 @@ sparknlp/annotator/classifier_dl/mpnet_for_question_answering.py,sha256=w9hHLrQb
|
|
|
64
67
|
sparknlp/annotator/classifier_dl/mpnet_for_sequence_classification.py,sha256=M__giFElL6Q3I88QD6OoXDzdQDk_Zp5sS__Kh_XpLdo,7308
|
|
65
68
|
sparknlp/annotator/classifier_dl/mpnet_for_token_classification.py,sha256=SgFAJcv7ZE3BmJOehK_CjAaueqaaK6PR33zA5aE9-Ww,6754
|
|
66
69
|
sparknlp/annotator/classifier_dl/multi_classifier_dl.py,sha256=ylKQzS7ROyeKeiOF4BZiIkQV1sfrnfUUQ9LXFSFK_Vo,16045
|
|
70
|
+
sparknlp/annotator/classifier_dl/roberta_bert_for_zero_shot_classification.py,sha256=nP0D_jg8xPFUMP9uGNvmACIqfwAneDddVXbioHLHFJ0,8818
|
|
67
71
|
sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py,sha256=SlzkA_fKurWOQDhvWlEBiMUfLgIoaRRglIdENMv7u38,6008
|
|
68
72
|
sparknlp/annotator/classifier_dl/roberta_for_question_answering.py,sha256=WRxu1uhXnY9C4UHdtJ8qiVGhPSX7sCdSaML0AWHOdJw,6471
|
|
69
73
|
sparknlp/annotator/classifier_dl/roberta_for_sequence_classification.py,sha256=z97uH5WkG8kPX1Y9qtpLwD7egl0kzbVmxtq4xzZgNNI,7857
|
|
@@ -216,6 +220,7 @@ sparknlp/base/multi_document_assembler.py,sha256=4htET1fRAeOB6zhsNXsBq5rKZvn-LGD
|
|
|
216
220
|
sparknlp/base/prompt_assembler.py,sha256=_C_9MdHqsxUjSOa3TqCV-6sSfSiRyhfHBQG5m7RlqxY,11578
|
|
217
221
|
sparknlp/base/recursive_pipeline.py,sha256=V9rTnu8KMwgjoceykN9pF1mKGtOkkuiC_n9v8dE3LDk,4279
|
|
218
222
|
sparknlp/base/table_assembler.py,sha256=Kxu3R2fY6JgCxEc07ibsMsjip6dgcPDHLiWAZ8gC_d8,5102
|
|
223
|
+
sparknlp/base/token2_chunk.py,sha256=FtS2Doav9xL1IrC9ZUU4iXqyipp-iT3g68kZt-7YCcQ,2674
|
|
219
224
|
sparknlp/base/token_assembler.py,sha256=qiHry07L7mVCqeHSH6hHxLygv1AsfZIE4jy1L75L3Do,5075
|
|
220
225
|
sparknlp/common/__init__.py,sha256=MJuE__T1YS8f3As7X5sgzHibGjDeiFkQ5vc2bEEf0Ww,1148
|
|
221
226
|
sparknlp/common/annotator_approach.py,sha256=CbkyaWl6rRX_VaXz2xJCjofijRGJGeJCsqQTDQgNTAw,1765
|
|
@@ -249,6 +254,7 @@ sparknlp/reader/__init__.py,sha256=-Toj3AIBki-zXPpV8ezFTI2LX1yP_rK2bhpoa8nBkTw,6
|
|
|
249
254
|
sparknlp/reader/enums.py,sha256=MNGug9oJ1BBLM1Pbske13kAabalDzHa2kucF5xzFpHs,770
|
|
250
255
|
sparknlp/reader/pdf_to_text.py,sha256=eWw-cwjosmcSZ9eHso0F5QQoeGBBnwsOhzhCXXvMjZA,7169
|
|
251
256
|
sparknlp/reader/reader2doc.py,sha256=LRqfaL9nidhlPkJIwTJo7SnGYmNNfOqwEdrsWYGEdnI,7146
|
|
257
|
+
sparknlp/reader/reader2image.py,sha256=JIwgVtznBpSExLl3JX7QY3BT4CUmZf1JWbsSwKLV1aY,3099
|
|
252
258
|
sparknlp/reader/reader2table.py,sha256=GC6Yz0gQ83S6XKOi329TUNQuAvLrBxysqDkDRZPvcYA,4759
|
|
253
259
|
sparknlp/reader/sparknlp_reader.py,sha256=MJs8v_ECYaV1SOabI1L_2MkVYEDVImtwgbYypO7DJSY,20623
|
|
254
260
|
sparknlp/training/__init__.py,sha256=qREi9u-5Vc2VjpL6-XZsyvu5jSEIdIhowW7_kKaqMqo,852
|
|
@@ -281,7 +287,7 @@ sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py,sha256=R4yHFN3
|
|
|
281
287
|
sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py,sha256=EoCSdcIjqQ3wv13MAuuWrKV8wyVBP0SbOEW41omHlR0,23189
|
|
282
288
|
sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py,sha256=k5CQ7gKV6HZbZMB8cKLUJuZxoZWlP_DFWdZ--aIDwsc,2356
|
|
283
289
|
sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py,sha256=pAxjWhjazSX8Vg0MFqJiuRVw1IbnQNSs-8Xp26L4nko,870
|
|
284
|
-
spark_nlp-6.1.
|
|
285
|
-
spark_nlp-6.1.
|
|
286
|
-
spark_nlp-6.1.
|
|
287
|
-
spark_nlp-6.1.
|
|
290
|
+
spark_nlp-6.1.3rc1.dist-info/METADATA,sha256=q-hbjHon_67zz6Zp0s7KhdoSSIQw0z9l-tzYPDs6pfU,19777
|
|
291
|
+
spark_nlp-6.1.3rc1.dist-info/WHEEL,sha256=JNWh1Fm1UdwIQV075glCn4MVuCRs0sotJIq-J6rbxCU,109
|
|
292
|
+
spark_nlp-6.1.3rc1.dist-info/top_level.txt,sha256=uuytur4pyMRw2H_txNY2ZkaucZHUs22QF8-R03ch_-E,13
|
|
293
|
+
spark_nlp-6.1.3rc1.dist-info/RECORD,,
|
sparknlp/__init__.py
CHANGED
|
@@ -0,0 +1,225 @@
|
|
|
1
|
+
# Copyright 2017-2023 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for RoBertaForZeroShotClassification."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class RoBertaForZeroShotClassification(AnnotatorModel,
|
|
20
|
+
HasCaseSensitiveProperties,
|
|
21
|
+
HasBatchedAnnotate,
|
|
22
|
+
HasClassifierActivationProperties,
|
|
23
|
+
HasCandidateLabelsProperties,
|
|
24
|
+
HasEngine):
|
|
25
|
+
"""RoBertaForZeroShotClassification using a `ModelForSequenceClassification` trained on NLI (natural language
|
|
26
|
+
inference) tasks. Equivalent of `RoBertaForSequenceClassification` models, but these models don't require a hardcoded
|
|
27
|
+
number of potential classes, they can be chosen at runtime. It usually means it's slower but it is much more
|
|
28
|
+
flexible.
|
|
29
|
+
|
|
30
|
+
Note that the model will loop through all provided labels. So the more labels you have, the
|
|
31
|
+
longer this process will take.
|
|
32
|
+
|
|
33
|
+
Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis
|
|
34
|
+
pair and passed to the pretrained model.
|
|
35
|
+
|
|
36
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
37
|
+
object:
|
|
38
|
+
|
|
39
|
+
>>> sequenceClassifier = RoBertaForZeroShotClassification.pretrained() \\
|
|
40
|
+
... .setInputCols(["token", "document"]) \\
|
|
41
|
+
... .setOutputCol("label")
|
|
42
|
+
|
|
43
|
+
The default model is ``"roberta_base_zero_shot_classifier_nli"``, if no name is
|
|
44
|
+
provided.
|
|
45
|
+
|
|
46
|
+
For available pretrained models please see the `Models Hub
|
|
47
|
+
<https://sparknlp.orgtask=Text+Classification>`__.
|
|
48
|
+
|
|
49
|
+
To see which models are compatible and how to import them see
|
|
50
|
+
`Import Transformers into Spark NLP 🚀
|
|
51
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
52
|
+
|
|
53
|
+
====================== ======================
|
|
54
|
+
Input Annotation types Output Annotation type
|
|
55
|
+
====================== ======================
|
|
56
|
+
``DOCUMENT, TOKEN`` ``CATEGORY``
|
|
57
|
+
====================== ======================
|
|
58
|
+
|
|
59
|
+
Parameters
|
|
60
|
+
----------
|
|
61
|
+
batchSize
|
|
62
|
+
Batch size. Large values allows faster processing but requires more
|
|
63
|
+
memory, by default 8
|
|
64
|
+
caseSensitive
|
|
65
|
+
Whether to ignore case in tokens for embeddings matching, by default
|
|
66
|
+
True
|
|
67
|
+
configProtoBytes
|
|
68
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
69
|
+
maxSentenceLength
|
|
70
|
+
Max sentence length to process, by default 128
|
|
71
|
+
coalesceSentences
|
|
72
|
+
Instead of 1 class per sentence (if inputCols is `sentence`) output 1
|
|
73
|
+
class per document by averaging probabilities in all sentences, by
|
|
74
|
+
default False
|
|
75
|
+
activation
|
|
76
|
+
Whether to calculate logits via Softmax or Sigmoid, by default
|
|
77
|
+
`"softmax"`.
|
|
78
|
+
|
|
79
|
+
Examples
|
|
80
|
+
--------
|
|
81
|
+
>>> import sparknlp
|
|
82
|
+
>>> from sparknlp.base import *
|
|
83
|
+
>>> from sparknlp.annotator import *
|
|
84
|
+
>>> from pyspark.ml import Pipeline
|
|
85
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
86
|
+
... .setInputCol("text") \\
|
|
87
|
+
... .setOutputCol("document")
|
|
88
|
+
>>> tokenizer = Tokenizer() \\
|
|
89
|
+
... .setInputCols(["document"]) \\
|
|
90
|
+
... .setOutputCol("token")
|
|
91
|
+
>>> sequenceClassifier = RoBertaForZeroShotClassification.pretrained() \\
|
|
92
|
+
... .setInputCols(["token", "document"]) \\
|
|
93
|
+
... .setOutputCol("label") \\
|
|
94
|
+
... .setCaseSensitive(True)
|
|
95
|
+
>>> pipeline = Pipeline().setStages([
|
|
96
|
+
... documentAssembler,
|
|
97
|
+
... tokenizer,
|
|
98
|
+
... sequenceClassifier
|
|
99
|
+
... ])
|
|
100
|
+
>>> data = spark.createDataFrame([["I loved this movie when I was a child.", "It was pretty boring."]]).toDF("text")
|
|
101
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
102
|
+
>>> result.select("label.result").show(truncate=False)
|
|
103
|
+
+------+
|
|
104
|
+
|result|
|
|
105
|
+
+------+
|
|
106
|
+
|[pos] |
|
|
107
|
+
|[neg] |
|
|
108
|
+
+------+
|
|
109
|
+
"""
|
|
110
|
+
name = "RoBertaForZeroShotClassification"
|
|
111
|
+
|
|
112
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
|
|
113
|
+
|
|
114
|
+
outputAnnotatorType = AnnotatorType.CATEGORY
|
|
115
|
+
|
|
116
|
+
maxSentenceLength = Param(Params._dummy(),
|
|
117
|
+
"maxSentenceLength",
|
|
118
|
+
"Max sentence length to process",
|
|
119
|
+
typeConverter=TypeConverters.toInt)
|
|
120
|
+
|
|
121
|
+
configProtoBytes = Param(Params._dummy(),
|
|
122
|
+
"configProtoBytes",
|
|
123
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
124
|
+
TypeConverters.toListInt)
|
|
125
|
+
|
|
126
|
+
coalesceSentences = Param(Params._dummy(), "coalesceSentences",
|
|
127
|
+
"Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging probabilities in all sentences.",
|
|
128
|
+
TypeConverters.toBoolean)
|
|
129
|
+
|
|
130
|
+
def getClasses(self):
|
|
131
|
+
"""
|
|
132
|
+
Returns labels used to train this model
|
|
133
|
+
"""
|
|
134
|
+
return self._call_java("getClasses")
|
|
135
|
+
|
|
136
|
+
def setConfigProtoBytes(self, b):
|
|
137
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
138
|
+
|
|
139
|
+
Parameters
|
|
140
|
+
----------
|
|
141
|
+
b : List[int]
|
|
142
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
143
|
+
"""
|
|
144
|
+
return self._set(configProtoBytes=b)
|
|
145
|
+
|
|
146
|
+
def setMaxSentenceLength(self, value):
|
|
147
|
+
"""Sets max sentence length to process, by default 128.
|
|
148
|
+
|
|
149
|
+
Parameters
|
|
150
|
+
----------
|
|
151
|
+
value : int
|
|
152
|
+
Max sentence length to process
|
|
153
|
+
"""
|
|
154
|
+
return self._set(maxSentenceLength=value)
|
|
155
|
+
|
|
156
|
+
def setCoalesceSentences(self, value):
|
|
157
|
+
"""Instead of 1 class per sentence (if inputCols is '''sentence''') output 1 class per document by averaging
|
|
158
|
+
probabilities in all sentences. Due to max sequence length limit in almost all transformer models such as RoBerta
|
|
159
|
+
(512 tokens), this parameter helps to feed all the sentences into the model and averaging all the probabilities
|
|
160
|
+
for the entire document instead of probabilities per sentence. (Default: true)
|
|
161
|
+
|
|
162
|
+
Parameters
|
|
163
|
+
----------
|
|
164
|
+
value : bool
|
|
165
|
+
If the output of all sentences will be averaged to one output
|
|
166
|
+
"""
|
|
167
|
+
return self._set(coalesceSentences=value)
|
|
168
|
+
|
|
169
|
+
@keyword_only
|
|
170
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.RoBertaForZeroShotClassification",
|
|
171
|
+
java_model=None):
|
|
172
|
+
super(RoBertaForZeroShotClassification, self).__init__(
|
|
173
|
+
classname=classname,
|
|
174
|
+
java_model=java_model
|
|
175
|
+
)
|
|
176
|
+
self._setDefault(
|
|
177
|
+
batchSize=8,
|
|
178
|
+
maxSentenceLength=128,
|
|
179
|
+
caseSensitive=True,
|
|
180
|
+
coalesceSentences=False,
|
|
181
|
+
activation="softmax"
|
|
182
|
+
)
|
|
183
|
+
|
|
184
|
+
@staticmethod
|
|
185
|
+
def loadSavedModel(folder, spark_session):
|
|
186
|
+
"""Loads a locally saved model.
|
|
187
|
+
|
|
188
|
+
Parameters
|
|
189
|
+
----------
|
|
190
|
+
folder : str
|
|
191
|
+
Folder of the saved model
|
|
192
|
+
spark_session : pyspark.sql.SparkSession
|
|
193
|
+
The current SparkSession
|
|
194
|
+
|
|
195
|
+
Returns
|
|
196
|
+
-------
|
|
197
|
+
RoBertaForZeroShotClassification
|
|
198
|
+
The restored model
|
|
199
|
+
"""
|
|
200
|
+
from sparknlp.internal import _RoBertaForZeroShotClassification
|
|
201
|
+
jModel = _RoBertaForZeroShotClassification(folder, spark_session._jsparkSession)._java_obj
|
|
202
|
+
return RoBertaForZeroShotClassification(java_model=jModel)
|
|
203
|
+
|
|
204
|
+
@staticmethod
|
|
205
|
+
def pretrained(name="roberta_base_zero_shot_classifier_nli", lang="en", remote_loc=None):
|
|
206
|
+
"""Downloads and loads a pretrained model.
|
|
207
|
+
|
|
208
|
+
Parameters
|
|
209
|
+
----------
|
|
210
|
+
name : str, optional
|
|
211
|
+
Name of the pretrained model, by default
|
|
212
|
+
"roberta_base_zero_shot_classifier_nli"
|
|
213
|
+
lang : str, optional
|
|
214
|
+
Language of the pretrained model, by default "en"
|
|
215
|
+
remote_loc : str, optional
|
|
216
|
+
Optional remote address of the resource, by default None. Will use
|
|
217
|
+
Spark NLPs repositories otherwise.
|
|
218
|
+
|
|
219
|
+
Returns
|
|
220
|
+
-------
|
|
221
|
+
RoBertaForZeroShotClassification
|
|
222
|
+
The restored model
|
|
223
|
+
"""
|
|
224
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
225
|
+
return ResourceDownloader.downloadModel(RoBertaForZeroShotClassification, name, lang, remote_loc)
|
|
@@ -0,0 +1,174 @@
|
|
|
1
|
+
# Copyright 2017-2025 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for Extractor."""
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
class Extractor(AnnotatorModel):
|
|
18
|
+
name = "Extractor"
|
|
19
|
+
|
|
20
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
21
|
+
|
|
22
|
+
outputAnnotatorType = AnnotatorType.CHUNK
|
|
23
|
+
|
|
24
|
+
emailDateTimeTzPattern = Param(Params._dummy(),
|
|
25
|
+
"emailDateTimeTzPattern",
|
|
26
|
+
"Specifies the date-time pattern for email timestamps, including time zone formatting.",
|
|
27
|
+
typeConverter=TypeConverters.toString)
|
|
28
|
+
|
|
29
|
+
emailAddress = Param(
|
|
30
|
+
Params._dummy(),
|
|
31
|
+
"emailAddress",
|
|
32
|
+
"Specifies the pattern for email addresses.",
|
|
33
|
+
typeConverter=TypeConverters.toString
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
ipAddressPattern = Param(
|
|
37
|
+
Params._dummy(),
|
|
38
|
+
"ipAddressPattern",
|
|
39
|
+
"Specifies the pattern for IP addresses.",
|
|
40
|
+
typeConverter=TypeConverters.toString
|
|
41
|
+
)
|
|
42
|
+
|
|
43
|
+
ipAddressNamePattern = Param(
|
|
44
|
+
Params._dummy(),
|
|
45
|
+
"ipAddressNamePattern",
|
|
46
|
+
"Specifies the pattern for IP addresses with names.",
|
|
47
|
+
typeConverter=TypeConverters.toString
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
mapiIdPattern = Param(
|
|
51
|
+
Params._dummy(),
|
|
52
|
+
"mapiIdPattern",
|
|
53
|
+
"Specifies the pattern for MAPI IDs.",
|
|
54
|
+
typeConverter=TypeConverters.toString
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
usPhoneNumbersPattern = Param(
|
|
58
|
+
Params._dummy(),
|
|
59
|
+
"usPhoneNumbersPattern",
|
|
60
|
+
"Specifies the pattern for US phone numbers.",
|
|
61
|
+
typeConverter=TypeConverters.toString
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
imageUrlPattern = Param(
|
|
65
|
+
Params._dummy(),
|
|
66
|
+
"imageUrlPattern",
|
|
67
|
+
"Specifies the pattern for image URLs.",
|
|
68
|
+
typeConverter=TypeConverters.toString
|
|
69
|
+
)
|
|
70
|
+
|
|
71
|
+
textPattern = Param(
|
|
72
|
+
Params._dummy(),
|
|
73
|
+
"textPattern",
|
|
74
|
+
"Specifies the pattern for text after and before.",
|
|
75
|
+
typeConverter=TypeConverters.toString
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
extractorMode = Param(
|
|
79
|
+
Params._dummy(),
|
|
80
|
+
"extractorMode",
|
|
81
|
+
"possible values: " +
|
|
82
|
+
"email_date, email_address, ip_address, ip_address_name, mapi_id, us_phone_numbers, image_urls, bullets, text_after, text_before",
|
|
83
|
+
typeConverter=TypeConverters.toString
|
|
84
|
+
)
|
|
85
|
+
|
|
86
|
+
def setEmailDateTimeTzPattern(self, value):
|
|
87
|
+
"""Sets specifies the date-time pattern for email timestamps, including time zone formatting.
|
|
88
|
+
|
|
89
|
+
Parameters
|
|
90
|
+
----------
|
|
91
|
+
value : str
|
|
92
|
+
Specifies the date-time pattern for email timestamps, including time zone formatting.
|
|
93
|
+
"""
|
|
94
|
+
return self._set(emailDateTimeTzPattern=value)
|
|
95
|
+
|
|
96
|
+
def setEmailAddress(self, value):
|
|
97
|
+
"""Sets the pattern for email addresses.
|
|
98
|
+
|
|
99
|
+
Parameters
|
|
100
|
+
----------
|
|
101
|
+
value : str
|
|
102
|
+
Specifies the pattern for email addresses.
|
|
103
|
+
"""
|
|
104
|
+
return self._set(emailAddress=value)
|
|
105
|
+
|
|
106
|
+
def setIpAddressPattern(self, value):
|
|
107
|
+
"""Sets the pattern for IP addresses.
|
|
108
|
+
|
|
109
|
+
Parameters
|
|
110
|
+
----------
|
|
111
|
+
value : str
|
|
112
|
+
Specifies the pattern for IP addresses.
|
|
113
|
+
"""
|
|
114
|
+
return self._set(ipAddressPattern=value)
|
|
115
|
+
|
|
116
|
+
def setIpAddressNamePattern(self, value):
|
|
117
|
+
"""Sets the pattern for IP addresses with names.
|
|
118
|
+
|
|
119
|
+
Parameters
|
|
120
|
+
----------
|
|
121
|
+
value : str
|
|
122
|
+
Specifies the pattern for IP addresses with names.
|
|
123
|
+
"""
|
|
124
|
+
return self._set(ipAddressNamePattern=value)
|
|
125
|
+
|
|
126
|
+
def setMapiIdPattern(self, value):
|
|
127
|
+
"""Sets the pattern for MAPI IDs.
|
|
128
|
+
|
|
129
|
+
Parameters
|
|
130
|
+
----------
|
|
131
|
+
value : str
|
|
132
|
+
Specifies the pattern for MAPI IDs.
|
|
133
|
+
"""
|
|
134
|
+
return self._set(mapiIdPattern=value)
|
|
135
|
+
|
|
136
|
+
def setUsPhoneNumbersPattern(self, value):
|
|
137
|
+
"""Sets the pattern for US phone numbers.
|
|
138
|
+
|
|
139
|
+
Parameters
|
|
140
|
+
----------
|
|
141
|
+
value : str
|
|
142
|
+
Specifies the pattern for US phone numbers.
|
|
143
|
+
"""
|
|
144
|
+
return self._set(usPhoneNumbersPattern=value)
|
|
145
|
+
|
|
146
|
+
def setImageUrlPattern(self, value):
|
|
147
|
+
"""Sets the pattern for image URLs.
|
|
148
|
+
|
|
149
|
+
Parameters
|
|
150
|
+
----------
|
|
151
|
+
value : str
|
|
152
|
+
Specifies the pattern for image URLs.
|
|
153
|
+
"""
|
|
154
|
+
return self._set(imageUrlPattern=value)
|
|
155
|
+
|
|
156
|
+
def setTextPattern(self, value):
|
|
157
|
+
"""Sets the pattern for text after and before.
|
|
158
|
+
|
|
159
|
+
Parameters
|
|
160
|
+
----------
|
|
161
|
+
value : str
|
|
162
|
+
Specifies the pattern for text after and before.
|
|
163
|
+
"""
|
|
164
|
+
return self._set(textPattern=value)
|
|
165
|
+
|
|
166
|
+
def setExtractorMode(self, value):
|
|
167
|
+
return self._set(extractorMode=value)
|
|
168
|
+
|
|
169
|
+
@keyword_only
|
|
170
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.Extractor", java_model=None):
|
|
171
|
+
super(Extractor, self).__init__(
|
|
172
|
+
classname=classname,
|
|
173
|
+
java_model=java_model
|
|
174
|
+
)
|