spark-nlp 6.1.1__py2.py3-none-any.whl → 6.1.2rc1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of spark-nlp might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: spark-nlp
3
- Version: 6.1.1
3
+ Version: 6.1.2rc1
4
4
  Summary: John Snow Labs Spark NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment.
5
5
  Home-page: https://github.com/JohnSnowLabs/spark-nlp
6
6
  Author: John Snow Labs
@@ -168,8 +168,8 @@ sparknlp/annotator/sentiment/__init__.py,sha256=Lq3vKaZS1YATLMg0VNXSVtkWL5q5G9ta
168
168
  sparknlp/annotator/sentiment/sentiment_detector.py,sha256=m545NGU0Xzg_PO6_qIfpli1uZj7JQcyFgqe9R6wAPFI,8154
169
169
  sparknlp/annotator/sentiment/vivekn_sentiment.py,sha256=4rpXWDgzU6ddnbrSCp9VdLb2epCc9oZ3c6XcqxEw8nk,9655
170
170
  sparknlp/annotator/seq2seq/__init__.py,sha256=Aj43G1MuQE0mW7LakCWPjiTkIGl7iHPAnKIwT_DfdIM,1781
171
- sparknlp/annotator/seq2seq/auto_gguf_model.py,sha256=upwOpLteRWY0-Kp50aaQQTzRa2jylgJsAtvFRrWIULw,11758
172
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py,sha256=F2tMQNA_bsKsXq_ohkdFKRnp5GdcbkQD0TEVSjnXBlc,15379
171
+ sparknlp/annotator/seq2seq/auto_gguf_model.py,sha256=yhZQHMHfp88rQvLHTWyS-8imZrwqp-8RQQwnw6PmHfc,11749
172
+ sparknlp/annotator/seq2seq/auto_gguf_vision_model.py,sha256=swBek2026dW6BOX5O9P8Uq41X2GC71VGW0ADFeUIvs0,15299
173
173
  sparknlp/annotator/seq2seq/bart_transformer.py,sha256=I1flM4yeCzEAKOdQllBC30XuedxVJ7ferkFhZ6gwEbE,18481
174
174
  sparknlp/annotator/seq2seq/cohere_transformer.py,sha256=43LZBVazZMgJRCsN7HaYjVYfJ5hRMV95QZyxMtXq-m4,13496
175
175
  sparknlp/annotator/seq2seq/cpm_transformer.py,sha256=0CnBFMlxMu0pD2QZMHyoGtIYgXqfUQm68vr6zEAa6Eg,13290
@@ -280,7 +280,7 @@ sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py,sha256=R4yHFN3
280
280
  sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py,sha256=EoCSdcIjqQ3wv13MAuuWrKV8wyVBP0SbOEW41omHlR0,23189
281
281
  sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py,sha256=k5CQ7gKV6HZbZMB8cKLUJuZxoZWlP_DFWdZ--aIDwsc,2356
282
282
  sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py,sha256=pAxjWhjazSX8Vg0MFqJiuRVw1IbnQNSs-8Xp26L4nko,870
283
- spark_nlp-6.1.1.dist-info/METADATA,sha256=OertmOupEEb_RIxRDn5V743bbzlD6lQr8RsGUWwYYtY,19774
284
- spark_nlp-6.1.1.dist-info/WHEEL,sha256=JNWh1Fm1UdwIQV075glCn4MVuCRs0sotJIq-J6rbxCU,109
285
- spark_nlp-6.1.1.dist-info/top_level.txt,sha256=uuytur4pyMRw2H_txNY2ZkaucZHUs22QF8-R03ch_-E,13
286
- spark_nlp-6.1.1.dist-info/RECORD,,
283
+ spark_nlp-6.1.2rc1.dist-info/METADATA,sha256=4qK5_LPihfkDmSrLBQgH38R_VE5lzDnsygPpOccUTdc,19777
284
+ spark_nlp-6.1.2rc1.dist-info/WHEEL,sha256=JNWh1Fm1UdwIQV075glCn4MVuCRs0sotJIq-J6rbxCU,109
285
+ spark_nlp-6.1.2rc1.dist-info/top_level.txt,sha256=uuytur4pyMRw2H_txNY2ZkaucZHUs22QF8-R03ch_-E,13
286
+ spark_nlp-6.1.2rc1.dist-info/RECORD,,
@@ -260,13 +260,13 @@ class AutoGGUFModel(AnnotatorModel, HasBatchedAnnotate, HasLlamaCppProperties):
260
260
  )
261
261
 
262
262
  @staticmethod
263
- def loadSavedModel(folder, spark_session):
263
+ def loadSavedModel(path, spark_session):
264
264
  """Loads a locally saved model.
265
265
 
266
266
  Parameters
267
267
  ----------
268
- folder : str
269
- Folder of the saved model
268
+ path : str
269
+ Path to the gguf model
270
270
  spark_session : pyspark.sql.SparkSession
271
271
  The current SparkSession
272
272
 
@@ -276,7 +276,7 @@ class AutoGGUFModel(AnnotatorModel, HasBatchedAnnotate, HasLlamaCppProperties):
276
276
  The restored model
277
277
  """
278
278
  from sparknlp.internal import _AutoGGUFLoader
279
- jModel = _AutoGGUFLoader(folder, spark_session._jsparkSession)._java_obj
279
+ jModel = _AutoGGUFLoader(path, spark_session._jsparkSession)._java_obj
280
280
  return AutoGGUFModel(java_model=jModel)
281
281
 
282
282
  @staticmethod
@@ -116,8 +116,6 @@ class AutoGGUFVisionModel(AnnotatorModel, HasBatchedAnnotate, HasLlamaCppPropert
116
116
  Set optimization strategies that help on some NUMA systems (if available)
117
117
  ropeScalingType
118
118
  Set the RoPE frequency scaling method, defaults to linear unless specified by the model
119
- poolingType
120
- Set the pooling type for embeddings, use model default if unspecified
121
119
  modelDraft
122
120
  Set the draft model for speculative decoding
123
121
  modelAlias
@@ -126,8 +124,6 @@ class AutoGGUFVisionModel(AnnotatorModel, HasBatchedAnnotate, HasLlamaCppPropert
126
124
  Set path to static lookup cache to use for lookup decoding (not updated by generation)
127
125
  lookupCacheDynamicFilePath
128
126
  Set path to dynamic lookup cache to use for lookup decoding (updated by generation)
129
- embedding
130
- Whether to load model with embedding support
131
127
  flashAttention
132
128
  Whether to enable Flash Attention
133
129
  inputPrefixBos
@@ -284,8 +280,10 @@ class AutoGGUFVisionModel(AnnotatorModel, HasBatchedAnnotate, HasLlamaCppPropert
284
280
  useChatTemplate=True,
285
281
  nCtx=4096,
286
282
  nBatch=512,
287
- embedding=False,
288
- nPredict=100
283
+ nPredict=100,
284
+ nGpuLayers=99,
285
+ systemPrompt="You are a helpful assistant.",
286
+ batchSize=2,
289
287
  )
290
288
 
291
289
  @staticmethod