spark-nlp 6.0.1rc1__py2.py3-none-any.whl → 6.0.3__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of spark-nlp might be problematic. Click here for more details.
- {spark_nlp-6.0.1rc1.dist-info → spark_nlp-6.0.3.dist-info}/METADATA +13 -6
- {spark_nlp-6.0.1rc1.dist-info → spark_nlp-6.0.3.dist-info}/RECORD +39 -32
- {spark_nlp-6.0.1rc1.dist-info → spark_nlp-6.0.3.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +4 -2
- sparknlp/annotator/cv/__init__.py +2 -0
- sparknlp/annotator/cv/florence2_transformer.py +180 -0
- sparknlp/annotator/cv/gemma3_for_multimodal.py +5 -10
- sparknlp/annotator/cv/internvl_for_multimodal.py +280 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +8 -13
- sparknlp/annotator/cv/llava_for_multimodal.py +1 -1
- sparknlp/annotator/cv/paligemma_for_multimodal.py +7 -7
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +1 -1
- sparknlp/annotator/cv/qwen2vl_transformer.py +1 -1
- sparknlp/annotator/cv/smolvlm_transformer.py +7 -13
- sparknlp/annotator/date2_chunk.py +1 -1
- sparknlp/annotator/document_character_text_splitter.py +8 -8
- sparknlp/annotator/document_token_splitter.py +7 -7
- sparknlp/annotator/embeddings/__init__.py +1 -0
- sparknlp/annotator/embeddings/bge_embeddings.py +21 -19
- sparknlp/annotator/embeddings/e5v_embeddings.py +138 -0
- sparknlp/annotator/embeddings/snowflake_embeddings.py +15 -15
- sparknlp/annotator/openai/openai_completion.py +3 -4
- sparknlp/annotator/seq2seq/m2m100_transformer.py +1 -1
- sparknlp/annotator/seq2seq/mistral_transformer.py +2 -3
- sparknlp/annotator/seq2seq/nllb_transformer.py +1 -1
- sparknlp/annotator/seq2seq/qwen_transformer.py +26 -25
- sparknlp/annotator/spell_check/context_spell_checker.py +1 -1
- sparknlp/base/prompt_assembler.py +1 -1
- sparknlp/common/properties.py +7 -7
- sparknlp/internal/__init__.py +27 -0
- sparknlp/partition/__init__.py +16 -0
- sparknlp/partition/partition.py +244 -0
- sparknlp/partition/partition_properties.py +319 -0
- sparknlp/partition/partition_transformer.py +200 -0
- sparknlp/reader/pdf_to_text.py +50 -4
- sparknlp/reader/sparknlp_reader.py +101 -52
- sparknlp/training/spacy_to_annotation.py +7 -7
- sparknlp/util.py +26 -0
- {spark_nlp-6.0.1rc1.dist-info → spark_nlp-6.0.3.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: spark-nlp
|
|
3
|
-
Version: 6.0.
|
|
3
|
+
Version: 6.0.3
|
|
4
4
|
Summary: John Snow Labs Spark NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment.
|
|
5
5
|
Home-page: https://github.com/JohnSnowLabs/spark-nlp
|
|
6
6
|
Author: John Snow Labs
|
|
@@ -29,6 +29,13 @@ Classifier: Topic :: Text Processing :: Linguistic
|
|
|
29
29
|
Classifier: Topic :: Scientific/Engineering
|
|
30
30
|
Classifier: Typing :: Typed
|
|
31
31
|
Description-Content-Type: text/markdown
|
|
32
|
+
Dynamic: author
|
|
33
|
+
Dynamic: classifier
|
|
34
|
+
Dynamic: description
|
|
35
|
+
Dynamic: description-content-type
|
|
36
|
+
Dynamic: home-page
|
|
37
|
+
Dynamic: keywords
|
|
38
|
+
Dynamic: summary
|
|
32
39
|
|
|
33
40
|
# Spark NLP: State-of-the-Art Natural Language Processing & LLMs Library
|
|
34
41
|
|
|
@@ -95,7 +102,7 @@ $ java -version
|
|
|
95
102
|
$ conda create -n sparknlp python=3.7 -y
|
|
96
103
|
$ conda activate sparknlp
|
|
97
104
|
# spark-nlp by default is based on pyspark 3.x
|
|
98
|
-
$ pip install spark-nlp==6.0.
|
|
105
|
+
$ pip install spark-nlp==6.0.3 pyspark==3.3.1
|
|
99
106
|
```
|
|
100
107
|
|
|
101
108
|
In Python console or Jupyter `Python3` kernel:
|
|
@@ -161,7 +168,7 @@ For a quick example of using pipelines and models take a look at our official [d
|
|
|
161
168
|
|
|
162
169
|
### Apache Spark Support
|
|
163
170
|
|
|
164
|
-
Spark NLP *6.0.
|
|
171
|
+
Spark NLP *6.0.3* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x
|
|
165
172
|
|
|
166
173
|
| Spark NLP | Apache Spark 3.5.x | Apache Spark 3.4.x | Apache Spark 3.3.x | Apache Spark 3.2.x | Apache Spark 3.1.x | Apache Spark 3.0.x | Apache Spark 2.4.x | Apache Spark 2.3.x |
|
|
167
174
|
|-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|
|
@@ -191,7 +198,7 @@ Find out more about 4.x `SparkNLP` versions in our official [documentation](http
|
|
|
191
198
|
|
|
192
199
|
### Databricks Support
|
|
193
200
|
|
|
194
|
-
Spark NLP 6.0.
|
|
201
|
+
Spark NLP 6.0.3 has been tested and is compatible with the following runtimes:
|
|
195
202
|
|
|
196
203
|
| **CPU** | **GPU** |
|
|
197
204
|
|--------------------|--------------------|
|
|
@@ -208,7 +215,7 @@ We are compatible with older runtimes. For a full list check databricks support
|
|
|
208
215
|
|
|
209
216
|
### EMR Support
|
|
210
217
|
|
|
211
|
-
Spark NLP 6.0.
|
|
218
|
+
Spark NLP 6.0.3 has been tested and is compatible with the following EMR releases:
|
|
212
219
|
|
|
213
220
|
| **EMR Release** |
|
|
214
221
|
|--------------------|
|
|
@@ -3,20 +3,20 @@ com/johnsnowlabs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,
|
|
|
3
3
|
com/johnsnowlabs/ml/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
4
4
|
com/johnsnowlabs/ml/ai/__init__.py,sha256=YQiK2M7U4d8y5irPy_HB8ae0mSpqS9583MH44pnKJXc,295
|
|
5
5
|
com/johnsnowlabs/nlp/__init__.py,sha256=DPIVXtONO5xXyOk-HB0-sNiHAcco17NN13zPS_6Uw8c,294
|
|
6
|
-
sparknlp/__init__.py,sha256=
|
|
6
|
+
sparknlp/__init__.py,sha256=wE5XbgWtMI8X1kifJLQ43sFkaUAyfmkZj-wiBtT3YKU,13814
|
|
7
7
|
sparknlp/annotation.py,sha256=I5zOxG5vV2RfPZfqN9enT1i4mo6oBcn3Lrzs37QiOiA,5635
|
|
8
8
|
sparknlp/annotation_audio.py,sha256=iRV_InSVhgvAwSRe9NTbUH9v6OGvTM-FPCpSAKVu0mE,1917
|
|
9
9
|
sparknlp/annotation_image.py,sha256=xhCe8Ko-77XqWVuuYHFrjKqF6zPd8Z-RY_rmZXNwCXU,2547
|
|
10
10
|
sparknlp/functions.py,sha256=4cVRyBjlF1YttcMNs5z7gf9NPW7q9qzGb5KOf44Phgs,12120
|
|
11
11
|
sparknlp/upload_to_hub.py,sha256=toULNLeXK3MmTpmza9dR8R8od2QJEw1eTgBDM-O9_I0,6018
|
|
12
|
-
sparknlp/util.py,sha256=
|
|
12
|
+
sparknlp/util.py,sha256=2Z499Psal-NuEJ4CHQNgHnAJrS73QQNyCzKPo1MavU8,2279
|
|
13
13
|
sparknlp/annotator/__init__.py,sha256=G746SY8dRM_AOf-gaoSKlh7D-2TKGpqqHhGr4XF-b2A,3534
|
|
14
14
|
sparknlp/annotator/chunk2_doc.py,sha256=IJ3_vQHvzjqono90AZUzZ67QSYjwquuMYbN9_HSOVcg,3141
|
|
15
15
|
sparknlp/annotator/chunker.py,sha256=8nz9B7R_mxKxcfJRfKvz2x_T29W3u4izE9k0wfYPzgE,5174
|
|
16
|
-
sparknlp/annotator/date2_chunk.py,sha256=
|
|
17
|
-
sparknlp/annotator/document_character_text_splitter.py,sha256=
|
|
16
|
+
sparknlp/annotator/date2_chunk.py,sha256=tW3m_LExmhx8LMFWOGXqMyfNRXSr2dnoEHD-6DrnpXI,3153
|
|
17
|
+
sparknlp/annotator/document_character_text_splitter.py,sha256=oNrOKJAKO2h1wr0bEuSqYrrltIU_Y6J6cTHy70yKy6s,9877
|
|
18
18
|
sparknlp/annotator/document_normalizer.py,sha256=hU2fG6vaPfdngQapoeSu-_zS_LiBZNp2tcVBGl6eTpk,10973
|
|
19
|
-
sparknlp/annotator/document_token_splitter.py,sha256
|
|
19
|
+
sparknlp/annotator/document_token_splitter.py,sha256=-9xbQ9pVAjcKHQQrSk6Cb7f8W1cblCLwWXTNR8kFptA,7499
|
|
20
20
|
sparknlp/annotator/document_token_splitter_test.py,sha256=NWO9mwhAIUJFuxPofB3c39iUm_6vKp4pteDsBOTH8ng,2684
|
|
21
21
|
sparknlp/annotator/graph_extraction.py,sha256=b4SB3B_hFgCJT4e5Jcscyxdzfbvw3ujKTa6UNgX5Lhc,14471
|
|
22
22
|
sparknlp/annotator/lemmatizer.py,sha256=w1nNMln2HgM4O1DOaISo5AGyzzFHuaIDQqWFcr4JmcA,8970
|
|
@@ -82,36 +82,39 @@ sparknlp/annotator/cleaners/cleaner.py,sha256=r_0ImrtGT-S-ytOknKoP844FVSv0J9YVKQ
|
|
|
82
82
|
sparknlp/annotator/cleaners/extractor.py,sha256=nml8mnOToZYPF5fTp9VWdDfnWTXryLDzp3RWfQoJkWY,5805
|
|
83
83
|
sparknlp/annotator/coref/__init__.py,sha256=SG8MAaVxQpoYYAsyKaoOlvlHjorDzj3DHt4nnEdBWm8,53
|
|
84
84
|
sparknlp/annotator/coref/spanbert_coref.py,sha256=AXWJhvVquY2uoApO_Np1fz7_KyJhxnZB4i-xk78sBfc,8407
|
|
85
|
-
sparknlp/annotator/cv/__init__.py,sha256=
|
|
85
|
+
sparknlp/annotator/cv/__init__.py,sha256=hUeHb0iTDBZCS3sDAjypgs8PzU3eMgKtBa8xDkCueWE,1591
|
|
86
86
|
sparknlp/annotator/cv/blip_for_question_answering.py,sha256=At7L5pPBNDR1r-JGLKM5b3dTrq5Ecz9r0M1gToUVZTs,6551
|
|
87
87
|
sparknlp/annotator/cv/clip_for_zero_shot_classification.py,sha256=_1pLc9BiFrFN10eJPCDJLJT-vdnTSG9OnB25Y_kKJIA,7528
|
|
88
88
|
sparknlp/annotator/cv/convnext_for_image_classification.py,sha256=KzaAlYW5M2l73zUozzgg8_p14eGDz9k9PYVAUZLN25k,11874
|
|
89
|
-
sparknlp/annotator/cv/
|
|
90
|
-
sparknlp/annotator/cv/
|
|
91
|
-
sparknlp/annotator/cv/
|
|
89
|
+
sparknlp/annotator/cv/florence2_transformer.py,sha256=jyXTY0om_8J_9GwlH5Dkussb1g6ra642ATzLaqv7TSI,8525
|
|
90
|
+
sparknlp/annotator/cv/gemma3_for_multimodal.py,sha256=475lYkf05Naw3tsdTScTs-tnHgFkbcCab7r6UwEXzvg,13017
|
|
91
|
+
sparknlp/annotator/cv/internvl_for_multimodal.py,sha256=1j_lZwZw4Mt9_EucxemuPo2buq_uj5aIkniE9mbegag,10851
|
|
92
|
+
sparknlp/annotator/cv/janus_for_multimodal.py,sha256=BGkXGvIf-upDai216m12-WHJCUmv-NRQ9ArEW2Wt0V0,14502
|
|
93
|
+
sparknlp/annotator/cv/llava_for_multimodal.py,sha256=okfBIuWgPK7VhRxznZDoPXNIIxc6g_NM0l5aH4yibVY,12068
|
|
92
94
|
sparknlp/annotator/cv/mllama_for_multimodal.py,sha256=e4_bOGycy-gPYrl8en0mOP3eF8p17Xt85nwE5kmez5g,13071
|
|
93
|
-
sparknlp/annotator/cv/paligemma_for_multimodal.py,sha256=
|
|
94
|
-
sparknlp/annotator/cv/phi3_vision_for_multimodal.py,sha256=
|
|
95
|
-
sparknlp/annotator/cv/qwen2vl_transformer.py,sha256=
|
|
96
|
-
sparknlp/annotator/cv/smolvlm_transformer.py,sha256=
|
|
95
|
+
sparknlp/annotator/cv/paligemma_for_multimodal.py,sha256=C2fRsppihEJK4YK-hoGrirGUyof4fV_r28HWOYb4Yms,11214
|
|
96
|
+
sparknlp/annotator/cv/phi3_vision_for_multimodal.py,sha256=94nlNbcDgJW0zX2QIjJl1cMXi1i6wqQeNG61CdoPLKA,12131
|
|
97
|
+
sparknlp/annotator/cv/qwen2vl_transformer.py,sha256=q2BCs1qA8fyqbMsnW4-6wbGJim4QjVUuDHOXhtMXJcY,12570
|
|
98
|
+
sparknlp/annotator/cv/smolvlm_transformer.py,sha256=g7eypRcMrPW4pYyTHmxBjP8tA_B_4rRwPbUCe3XHz-0,16964
|
|
97
99
|
sparknlp/annotator/cv/swin_for_image_classification.py,sha256=iZ1KY0GInbQmGzkmuNbds4PGPwCheLXc-Syv2HRmqug,10694
|
|
98
100
|
sparknlp/annotator/cv/vision_encoder_decoder_for_image_captioning.py,sha256=rEWJte-qN6PI6ML2cGhsZ37wAzjHUtN_WD5pcKAez7M,10167
|
|
99
101
|
sparknlp/annotator/cv/vit_for_image_classification.py,sha256=D2V3pxAd3rBi1817lxVOqaVvCw4trcVyorQgIPdLNAE,9148
|
|
100
102
|
sparknlp/annotator/dependency/__init__.py,sha256=eV43oXAGaYl2N1XKIEAAZJLNP8gpHm8VxuXDeDlQzR4,774
|
|
101
103
|
sparknlp/annotator/dependency/dependency_parser.py,sha256=SxyvHPp8Hs1Xnm5X1nLTMi095XoQMtfL8pbys15mYAI,11212
|
|
102
104
|
sparknlp/annotator/dependency/typed_dependency_parser.py,sha256=60vPdYkbFk9MPGegg3m9Uik9cMXpMZd8tBvXG39gNww,12456
|
|
103
|
-
sparknlp/annotator/embeddings/__init__.py,sha256=
|
|
105
|
+
sparknlp/annotator/embeddings/__init__.py,sha256=mp1Nb6xooX6YYyJt9xVpYrSPseuJrEpnNKCpp2QiFWo,2466
|
|
104
106
|
sparknlp/annotator/embeddings/albert_embeddings.py,sha256=6Rd1LIn8oFIpq_ALcJh-RUjPEO7Ht8wsHY6JHSFyMkw,9995
|
|
105
107
|
sparknlp/annotator/embeddings/auto_gguf_embeddings.py,sha256=IlqkPGOH2lmZvxEyDSGX-G90DtTFOe2Rvujfbg5zvlU,20185
|
|
106
108
|
sparknlp/annotator/embeddings/bert_embeddings.py,sha256=HVUjkg56kBcpGZCo-fmPG5uatMDF3swW_lnbpy1SgSI,8463
|
|
107
109
|
sparknlp/annotator/embeddings/bert_sentence_embeddings.py,sha256=NQy9KuXT9aKsTpYCR5RAeoFWI2YqEGorbdYrf_0KKmw,9148
|
|
108
|
-
sparknlp/annotator/embeddings/bge_embeddings.py,sha256=
|
|
110
|
+
sparknlp/annotator/embeddings/bge_embeddings.py,sha256=ZGbxssjJFaSfbcgqAPV5hsu81SnC0obgCVNOoJkArDA,8105
|
|
109
111
|
sparknlp/annotator/embeddings/camembert_embeddings.py,sha256=dBTXas-2Tas_JUR9Xt_GtHLcyqi_cdvT5EHRnyVrSSQ,8817
|
|
110
112
|
sparknlp/annotator/embeddings/chunk_embeddings.py,sha256=WUmkJimSuFkdcLJnvcxOV0QlCLgGlhub29ZTrZb70WE,6052
|
|
111
113
|
sparknlp/annotator/embeddings/deberta_embeddings.py,sha256=_b5nzLb7heFQNN-uT2oBNO6-YmM8bHmAdnGXg47HOWw,8649
|
|
112
114
|
sparknlp/annotator/embeddings/distil_bert_embeddings.py,sha256=4pyMCsbvvXYeTGIMVUir9wCDKR_1f_HKtXZrTDO1Thc,9275
|
|
113
115
|
sparknlp/annotator/embeddings/doc2vec.py,sha256=Xk3MdEkXatX9lRgbFbAdnIDrLgIxzUIGWFBZeo9BTq0,13226
|
|
114
116
|
sparknlp/annotator/embeddings/e5_embeddings.py,sha256=Esuvrq9JlogGaSSzFVVDkOFMwgYwFwr17I62ZiCDm0k,7858
|
|
117
|
+
sparknlp/annotator/embeddings/e5v_embeddings.py,sha256=NFHO2nxDcgVzyKQ6yz1BWyqtjwt9QHwlkKbBXFwhsO8,5951
|
|
115
118
|
sparknlp/annotator/embeddings/elmo_embeddings.py,sha256=KV-KPs0Pq_OpPaHsnqBz2k_S7VdzyFZ4632IeFNKqJ8,9858
|
|
116
119
|
sparknlp/annotator/embeddings/instructor_embeddings.py,sha256=CTKmbuBOx_KBM4JM-Y1U5LyR-6rrnpoBGbgGE_axS1c,8670
|
|
117
120
|
sparknlp/annotator/embeddings/longformer_embeddings.py,sha256=jS4fxB5O0-d9ta9VKv8ai-17n5YHt5rML8QxUw7K4Io,8754
|
|
@@ -121,7 +124,7 @@ sparknlp/annotator/embeddings/nomic_embeddings.py,sha256=WTllH3htx9wDD2Le8pZgKVP
|
|
|
121
124
|
sparknlp/annotator/embeddings/roberta_embeddings.py,sha256=q_WHby2lDcPc5bVHkGc6X_GwT3qyDUBLUVz5ZW4HCSY,9229
|
|
122
125
|
sparknlp/annotator/embeddings/roberta_sentence_embeddings.py,sha256=KVrD4z_tIU-sphK6dmbbnHBBt8-Y89C_BFQAkN99kZo,8181
|
|
123
126
|
sparknlp/annotator/embeddings/sentence_embeddings.py,sha256=azuA1FKMtTJ9suwJqTEHeWHumT6kYdfURTe_1fsqcB8,5402
|
|
124
|
-
sparknlp/annotator/embeddings/snowflake_embeddings.py,sha256=
|
|
127
|
+
sparknlp/annotator/embeddings/snowflake_embeddings.py,sha256=QzMSzmgSTedEAk0TlpHHBMjV0pPj8efLqVAVJqKgTgs,7253
|
|
125
128
|
sparknlp/annotator/embeddings/uae_embeddings.py,sha256=sqTT67vcegVxcyoATISLPJSmOnA6J_otB6iREKOb6e4,8794
|
|
126
129
|
sparknlp/annotator/embeddings/universal_sentence_encoder.py,sha256=_fTo-K78RjxiIKptpsI32mpW87RFCdXM16epHv4RVQY,8571
|
|
127
130
|
sparknlp/annotator/embeddings/word2vec.py,sha256=UBhA4qUczQOx1t82Eu51lxx1-wJ_RLnCb__ncowSNhk,13229
|
|
@@ -149,7 +152,7 @@ sparknlp/annotator/ner/ner_dl.py,sha256=ght1W6-ArjLRiNHCv_bKpozkyNd8HVIb8SDGhcbp
|
|
|
149
152
|
sparknlp/annotator/ner/ner_overwriter.py,sha256=en5OxXIP46yTXokIE96YDP9kcHA9oxiRPgwXMo0otew,6798
|
|
150
153
|
sparknlp/annotator/ner/zero_shot_ner_model.py,sha256=DohhnkGSG-JxjW72t8AOx3GY7R_qT-LA3I0KF9TBz-Y,7501
|
|
151
154
|
sparknlp/annotator/openai/__init__.py,sha256=u6SpV_xS8UpBE95WnTl0IefOI5TrTRl7ZHuYoeTetiA,759
|
|
152
|
-
sparknlp/annotator/openai/openai_completion.py,sha256=
|
|
155
|
+
sparknlp/annotator/openai/openai_completion.py,sha256=vetyDRGs-ge0pxMojEaNFhVy50Sf7Sm0tsh0I71i2Ss,16867
|
|
153
156
|
sparknlp/annotator/openai/openai_embeddings.py,sha256=i1ABDRmK6vMzzWP1rVxFiWnvXG4zfrTGGDjq4lvWQeE,108802
|
|
154
157
|
sparknlp/annotator/param/__init__.py,sha256=MKBZs6NWRKxrpeof3Jr4PVmoa75wyRSdWzSt0A9lpfY,750
|
|
155
158
|
sparknlp/annotator/param/classifier_encoder.py,sha256=PDyOdUX2GOFVr6MLtB7RUPBdtDrzDNJNRe_r9bY5JpE,3005
|
|
@@ -171,20 +174,20 @@ sparknlp/annotator/seq2seq/cpm_transformer.py,sha256=0CnBFMlxMu0pD2QZMHyoGtIYgXq
|
|
|
171
174
|
sparknlp/annotator/seq2seq/gpt2_transformer.py,sha256=Oz95R_NRR4tWHu_bW6Ak2832ZILXycp3ify7LfRSi8o,15310
|
|
172
175
|
sparknlp/annotator/seq2seq/llama2_transformer.py,sha256=3LzTR0VerFdFmOizsrs2Q7HTnjELJ5WtfUgx5XnOqGM,13898
|
|
173
176
|
sparknlp/annotator/seq2seq/llama3_transformer.py,sha256=wmhgWQkO__H1vIGnAMjUU14Gtit4qOcE1m9YpM6YkB4,14950
|
|
174
|
-
sparknlp/annotator/seq2seq/m2m100_transformer.py,sha256=
|
|
177
|
+
sparknlp/annotator/seq2seq/m2m100_transformer.py,sha256=brlOWjvdbDPfycTUMWnXnQjA9qY9I8ljJJpEd1Gwq5Q,16128
|
|
175
178
|
sparknlp/annotator/seq2seq/marian_transformer.py,sha256=mQ4Ylh7ZzXAOue8f-x0gqzfS3vAz3XUdD7eQ2XhcEs4,13781
|
|
176
|
-
sparknlp/annotator/seq2seq/mistral_transformer.py,sha256=
|
|
177
|
-
sparknlp/annotator/seq2seq/nllb_transformer.py,sha256=
|
|
179
|
+
sparknlp/annotator/seq2seq/mistral_transformer.py,sha256=6lVrhWvW8b_3DaQtpegigFL25tELThRHZQRxxNhZuAU,14250
|
|
180
|
+
sparknlp/annotator/seq2seq/nllb_transformer.py,sha256=1ys01yaC0nVzXETy8oD2wZHyombfLzK1cetKrVGTVyY,19546
|
|
178
181
|
sparknlp/annotator/seq2seq/olmo_transformer.py,sha256=B_zhYkAfYycw5uBq1tVNPmaKuYtpJOxRC6PArit7XiE,13634
|
|
179
182
|
sparknlp/annotator/seq2seq/phi2_transformer.py,sha256=WwKCUOH8qGFv62YF63HjuT7bMVldh06gHvaZH3tbSDk,13787
|
|
180
183
|
sparknlp/annotator/seq2seq/phi3_transformer.py,sha256=arIcw5NDMv3ubBwWz3KYRdLMsspTiEI8vk4s00lyq1c,14293
|
|
181
|
-
sparknlp/annotator/seq2seq/qwen_transformer.py,sha256=
|
|
184
|
+
sparknlp/annotator/seq2seq/qwen_transformer.py,sha256=IYxveoHGWWoiwzJ_VMLMgUBe6jr1JSHKSY0PApnTCOI,14640
|
|
182
185
|
sparknlp/annotator/seq2seq/starcoder_transformer.py,sha256=BTXbSMRpXnDvrfh-6iFS5k6g6EcPV9zBl4U-SSC19wA,14293
|
|
183
186
|
sparknlp/annotator/seq2seq/t5_transformer.py,sha256=wDVxNLluIU1HGZFqaKKc4YTt4l-elPlAtQ7EEa0f5tg,17308
|
|
184
187
|
sparknlp/annotator/similarity/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
185
188
|
sparknlp/annotator/similarity/document_similarity_ranker.py,sha256=BHV2XWA18YvBn_OKOVvR0TmPPnHSgiAgpZpaPz7ar_s,15826
|
|
186
189
|
sparknlp/annotator/spell_check/__init__.py,sha256=sdnPR3f3Q9mHiv-n4g_O7KpRWPRPweyATSF6Tth_Niw,830
|
|
187
|
-
sparknlp/annotator/spell_check/context_spell_checker.py,sha256
|
|
190
|
+
sparknlp/annotator/spell_check/context_spell_checker.py,sha256=-YFymfJoMr_4yTSoiWMcrPq4JbyygaRONX-tMQXHw9k,31989
|
|
188
191
|
sparknlp/annotator/spell_check/norvig_sweeting.py,sha256=6ET9KnAqXIQDJ5U9px1ixUbC6R63ln_ljruvh_oLiwA,13197
|
|
189
192
|
sparknlp/annotator/spell_check/symmetric_delete.py,sha256=ms8BPrFOITqppShZmEEiqVhjE-pwVb7jI5NSCQ4XM0A,11058
|
|
190
193
|
sparknlp/annotator/token/__init__.py,sha256=cu5njC9peW4_toFOvnHgYzHXsMqxlpPf1p7C4VxoDMk,861
|
|
@@ -206,7 +209,7 @@ sparknlp/base/has_recursive_transform.py,sha256=UkGNgo4LMsjQC-Coeefg4bJcg7FoPcPi
|
|
|
206
209
|
sparknlp/base/image_assembler.py,sha256=-ylzVaDdjJBDQNkTixsCn7WvFB8cqC3_lPdvdiJu0aM,6168
|
|
207
210
|
sparknlp/base/light_pipeline.py,sha256=2lOstyyK0o6L3BHPIZWQBpIKtJ7LcSz3Pvgo6eZDs5U,17023
|
|
208
211
|
sparknlp/base/multi_document_assembler.py,sha256=4htET1fRAeOB6zhsNXsBq5rKZvn-LGD4vrFRjPZeqow,7070
|
|
209
|
-
sparknlp/base/prompt_assembler.py,sha256=
|
|
212
|
+
sparknlp/base/prompt_assembler.py,sha256=_C_9MdHqsxUjSOa3TqCV-6sSfSiRyhfHBQG5m7RlqxY,11578
|
|
210
213
|
sparknlp/base/recursive_pipeline.py,sha256=V9rTnu8KMwgjoceykN9pF1mKGtOkkuiC_n9v8dE3LDk,4279
|
|
211
214
|
sparknlp/base/table_assembler.py,sha256=Kxu3R2fY6JgCxEc07ibsMsjip6dgcPDHLiWAZ8gC_d8,5102
|
|
212
215
|
sparknlp/base/token_assembler.py,sha256=qiHry07L7mVCqeHSH6hHxLygv1AsfZIE4jy1L75L3Do,5075
|
|
@@ -217,12 +220,12 @@ sparknlp/common/annotator_properties.py,sha256=7B1os7pBUfHo6b7IPQAXQ-nir0u3tQLzD
|
|
|
217
220
|
sparknlp/common/annotator_type.py,sha256=ash2Ip1IOOiJamPVyy_XQj8Ja_DRHm0b9Vj4Ni75oKM,1225
|
|
218
221
|
sparknlp/common/coverage_result.py,sha256=No4PSh1HSs3PyRI1zC47x65tWgfirqPI290icHQoXEI,823
|
|
219
222
|
sparknlp/common/match_strategy.py,sha256=kt1MUPqU1wCwk5qCdYk6jubHbU-5yfAYxb9jjAOrdnY,1678
|
|
220
|
-
sparknlp/common/properties.py,sha256=
|
|
223
|
+
sparknlp/common/properties.py,sha256=v8PUB0YqeiZRzP8mX3kXSFoQVMZOg_ips0Y5M54hUIc,51493
|
|
221
224
|
sparknlp/common/read_as.py,sha256=imxPGwV7jr4Li_acbo0OAHHRGCBbYv-akzEGaBWEfcY,1226
|
|
222
225
|
sparknlp/common/recursive_annotator_approach.py,sha256=vqugBw22cE3Ff7PIpRlnYFuOlchgL0nM26D8j-NdpqU,1449
|
|
223
226
|
sparknlp/common/storage.py,sha256=D91H3p8EIjNspjqAYu6ephRpCUtdcAir4_PrAbkIQWE,4842
|
|
224
227
|
sparknlp/common/utils.py,sha256=Yne6yYcwKxhOZC-U4qfYoDhWUP_6BIaAjI5X_P_df1E,1306
|
|
225
|
-
sparknlp/internal/__init__.py,sha256=
|
|
228
|
+
sparknlp/internal/__init__.py,sha256=ALwce14xOPRxfAPFhlINH4BVH0w3Mjp4_VWV4hSxNJ8,40146
|
|
226
229
|
sparknlp/internal/annotator_java_ml.py,sha256=UGPoThG0rGXUOXGSQnDzEDW81Mu1s5RPF29v7DFyE3c,1187
|
|
227
230
|
sparknlp/internal/annotator_transformer.py,sha256=fXmc2IWXGybqZpbEU9obmbdBYPc798y42zvSB4tqV9U,1448
|
|
228
231
|
sparknlp/internal/extended_java_wrapper.py,sha256=hwP0133-hDiDf5sBF-P3MtUsuuDj1PpQbtGZQIRwzfk,2240
|
|
@@ -230,20 +233,24 @@ sparknlp/internal/params_getters_setters.py,sha256=LtaKAzD8fEupEPy9vYOI2St7A3PcZ
|
|
|
230
233
|
sparknlp/internal/recursive.py,sha256=YfsjOmUUccFOHxheIXf-rps8yc4PPqFCje94_7dS4iw,2756
|
|
231
234
|
sparknlp/logging/__init__.py,sha256=DoROFF5KLZe4t4Q-OHxqk1nhqbw9NQ-wb64y8icNwgw,642
|
|
232
235
|
sparknlp/logging/comet.py,sha256=_ZBi9-hlilCAnd4lvdYMWiq4Vqsppv8kow3k0cf-NG4,15958
|
|
236
|
+
sparknlp/partition/__init__.py,sha256=L0w-yv_HnnvoKlSX5MzI2GKHW3RLLfGyq8bgWYVeKjU,749
|
|
237
|
+
sparknlp/partition/partition.py,sha256=GXEAUvOea04Vc_JK0z112cAKFrJ4AEpjLJ8xlzZt6Kw,8551
|
|
238
|
+
sparknlp/partition/partition_properties.py,sha256=xhAMhlsTBg-WS6KWDyVbRPwO7IzpowVVhJNR-ZGhvdo,9520
|
|
239
|
+
sparknlp/partition/partition_transformer.py,sha256=lRR1h-IMlHR8M0VeB50SbU39GHHF5PgMaJ42qOriS6A,6855
|
|
233
240
|
sparknlp/pretrained/__init__.py,sha256=GV-x9UBK8F2_IR6zYatrzFcVJtkSUIMbxqWsxRUePmQ,793
|
|
234
241
|
sparknlp/pretrained/pretrained_pipeline.py,sha256=lquxiaABuA68Rmu7csamJPqBoRJqMUO0oNHsmEZDAIs,5740
|
|
235
242
|
sparknlp/pretrained/resource_downloader.py,sha256=8_-rpvO2LsX_Lq4wMPif2ca3RlJZWEabt8pDm2xymiI,7806
|
|
236
243
|
sparknlp/pretrained/utils.py,sha256=T1MrvW_DaWk_jcOjVLOea0NMFE9w8fe0ZT_5urZ_nEY,1099
|
|
237
244
|
sparknlp/reader/__init__.py,sha256=-Toj3AIBki-zXPpV8ezFTI2LX1yP_rK2bhpoa8nBkTw,685
|
|
238
245
|
sparknlp/reader/enums.py,sha256=MNGug9oJ1BBLM1Pbske13kAabalDzHa2kucF5xzFpHs,770
|
|
239
|
-
sparknlp/reader/pdf_to_text.py,sha256=
|
|
240
|
-
sparknlp/reader/sparknlp_reader.py,sha256=
|
|
246
|
+
sparknlp/reader/pdf_to_text.py,sha256=pI1BBQ44tXn8GIMv--_kZJ3bPP8R9Q1lYejkfhi5pMQ,5739
|
|
247
|
+
sparknlp/reader/sparknlp_reader.py,sha256=ybnMlwJaBOVbjDw7ng39jcrshlQzexwq98_PTwVeM8g,16779
|
|
241
248
|
sparknlp/training/__init__.py,sha256=qREi9u-5Vc2VjpL6-XZsyvu5jSEIdIhowW7_kKaqMqo,852
|
|
242
249
|
sparknlp/training/conll.py,sha256=wKBiSTrjc6mjsl7Nyt6B8f4yXsDJkZb-sn8iOjix9cE,6961
|
|
243
250
|
sparknlp/training/conllu.py,sha256=8r3i-tmyrLsyk1DtZ9uo2mMDCWb1yw2Y5W6UsV13MkY,4953
|
|
244
251
|
sparknlp/training/pos.py,sha256=YchvPWksMAYvM6XPLNzbS-Kr96CRpLMSr21qe76m1PY,4091
|
|
245
252
|
sparknlp/training/pub_tator.py,sha256=2DWuNJqAl81_Izaa_qoQMHkpeqDP8sA7mhehc6vI7Gw,3331
|
|
246
|
-
sparknlp/training/spacy_to_annotation.py,sha256=
|
|
253
|
+
sparknlp/training/spacy_to_annotation.py,sha256=b8WCqwr0kBRWa695ajDAxNVFg_z0yD1U1_dS3ryMY0I,6826
|
|
247
254
|
sparknlp/training/tfgraphs.py,sha256=Hl3vp9VhLX_IinqOvtIH0r9Bf2BgcGrFKG5wBu3qTmc,244
|
|
248
255
|
sparknlp/training/_tf_graph_builders/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
249
256
|
sparknlp/training/_tf_graph_builders/graph_builders.py,sha256=0WqVTRnZValftGpGm6tYJCOQmJUL_B2pjZSQu8dLqs0,10819
|
|
@@ -268,7 +275,7 @@ sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py,sha256=R4yHFN3
|
|
|
268
275
|
sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py,sha256=EoCSdcIjqQ3wv13MAuuWrKV8wyVBP0SbOEW41omHlR0,23189
|
|
269
276
|
sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py,sha256=k5CQ7gKV6HZbZMB8cKLUJuZxoZWlP_DFWdZ--aIDwsc,2356
|
|
270
277
|
sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py,sha256=pAxjWhjazSX8Vg0MFqJiuRVw1IbnQNSs-8Xp26L4nko,870
|
|
271
|
-
spark_nlp-6.0.
|
|
272
|
-
spark_nlp-6.0.
|
|
273
|
-
spark_nlp-6.0.
|
|
274
|
-
spark_nlp-6.0.
|
|
278
|
+
spark_nlp-6.0.3.dist-info/METADATA,sha256=qMqGlXdyZgzm8D3KkC03Jl73y7S_cAh24necRw1G_Qc,19722
|
|
279
|
+
spark_nlp-6.0.3.dist-info/WHEEL,sha256=JNWh1Fm1UdwIQV075glCn4MVuCRs0sotJIq-J6rbxCU,109
|
|
280
|
+
spark_nlp-6.0.3.dist-info/top_level.txt,sha256=uuytur4pyMRw2H_txNY2ZkaucZHUs22QF8-R03ch_-E,13
|
|
281
|
+
spark_nlp-6.0.3.dist-info/RECORD,,
|
sparknlp/__init__.py
CHANGED
|
@@ -66,6 +66,8 @@ sys.modules['com.johnsnowlabs.ml.ai'] = annotator
|
|
|
66
66
|
annotators = annotator
|
|
67
67
|
embeddings = annotator
|
|
68
68
|
|
|
69
|
+
__version__ = "6.0.3"
|
|
70
|
+
|
|
69
71
|
|
|
70
72
|
def start(gpu=False,
|
|
71
73
|
apple_silicon=False,
|
|
@@ -132,7 +134,7 @@ def start(gpu=False,
|
|
|
132
134
|
The initiated Spark session.
|
|
133
135
|
|
|
134
136
|
"""
|
|
135
|
-
current_version =
|
|
137
|
+
current_version = __version__
|
|
136
138
|
|
|
137
139
|
if params is None:
|
|
138
140
|
params = {}
|
|
@@ -316,4 +318,4 @@ def version():
|
|
|
316
318
|
str
|
|
317
319
|
The current Spark NLP version.
|
|
318
320
|
"""
|
|
319
|
-
return
|
|
321
|
+
return __version__
|
|
@@ -25,3 +25,5 @@ from sparknlp.annotator.cv.phi3_vision_for_multimodal import *
|
|
|
25
25
|
from sparknlp.annotator.cv.smolvlm_transformer import *
|
|
26
26
|
from sparknlp.annotator.cv.paligemma_for_multimodal import *
|
|
27
27
|
from sparknlp.annotator.cv.gemma3_for_multimodal import *
|
|
28
|
+
from sparknlp.annotator.cv.internvl_for_multimodal import *
|
|
29
|
+
from sparknlp.annotator.cv.florence2_transformer import *
|
|
@@ -0,0 +1,180 @@
|
|
|
1
|
+
# Copyright 2017-2024 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
class Florence2Transformer(AnnotatorModel,
|
|
18
|
+
HasBatchedAnnotateImage,
|
|
19
|
+
HasImageFeatureProperties,
|
|
20
|
+
HasEngine):
|
|
21
|
+
"""Florence2Transformer can load Florence-2 models for a variety of vision and vision-language tasks using prompt-based inference.
|
|
22
|
+
|
|
23
|
+
The model supports image captioning, object detection, segmentation, OCR, and more, using prompt tokens as described in the Florence-2 documentation.
|
|
24
|
+
|
|
25
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion object:
|
|
26
|
+
|
|
27
|
+
>>> florence2 = Florence2Transformer.pretrained() \
|
|
28
|
+
... .setInputCols(["image_assembler"]) \
|
|
29
|
+
... .setOutputCol("answer")
|
|
30
|
+
|
|
31
|
+
The default model is ``"florence2_base_ft_int4"``, if no name is provided.
|
|
32
|
+
|
|
33
|
+
For available pretrained models please see the `Models Hub <https://sparknlp.org/models?task=Vision+Tasks>`__.
|
|
34
|
+
|
|
35
|
+
====================== ======================
|
|
36
|
+
Input Annotation types Output Annotation type
|
|
37
|
+
====================== ======================
|
|
38
|
+
``IMAGE`` ``DOCUMENT``
|
|
39
|
+
====================== ======================
|
|
40
|
+
|
|
41
|
+
Parameters
|
|
42
|
+
----------
|
|
43
|
+
batchSize
|
|
44
|
+
Batch size. Large values allows faster processing but requires more memory, by default 2
|
|
45
|
+
maxOutputLength
|
|
46
|
+
Maximum length of output text, by default 200
|
|
47
|
+
minOutputLength
|
|
48
|
+
Minimum length of the sequence to be generated, by default 10
|
|
49
|
+
doSample
|
|
50
|
+
Whether or not to use sampling; use greedy decoding otherwise, by default False
|
|
51
|
+
temperature
|
|
52
|
+
The value used to module the next token probabilities, by default 1.0
|
|
53
|
+
topK
|
|
54
|
+
The number of highest probability vocabulary tokens to keep for top-k-filtering, by default 50
|
|
55
|
+
topP
|
|
56
|
+
If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation, by default 1.0
|
|
57
|
+
repetitionPenalty
|
|
58
|
+
The parameter for repetition penalty. 1.0 means no penalty, by default 1.0
|
|
59
|
+
noRepeatNgramSize
|
|
60
|
+
If set to int > 0, all ngrams of that size can only occur once, by default 3
|
|
61
|
+
ignoreTokenIds
|
|
62
|
+
A list of token ids which are ignored in the decoder's output, by default []
|
|
63
|
+
beamSize
|
|
64
|
+
The Number of beams for beam search, by default 1
|
|
65
|
+
|
|
66
|
+
Examples
|
|
67
|
+
--------
|
|
68
|
+
>>> import sparknlp
|
|
69
|
+
>>> from sparknlp.base import *
|
|
70
|
+
>>> from sparknlp.annotator import *
|
|
71
|
+
>>> from pyspark.ml import Pipeline
|
|
72
|
+
>>> image_df = spark.read.format("image").load(path=images_path)
|
|
73
|
+
>>> test_df = image_df.withColumn("text", lit("<OD>"))
|
|
74
|
+
>>> imageAssembler = ImageAssembler() \
|
|
75
|
+
... .setInputCol("image") \
|
|
76
|
+
... .setOutputCol("image_assembler")
|
|
77
|
+
>>> florence2 = Florence2Transformer.pretrained() \
|
|
78
|
+
... .setInputCols(["image_assembler"]) \
|
|
79
|
+
... .setOutputCol("answer")
|
|
80
|
+
>>> pipeline = Pipeline().setStages([
|
|
81
|
+
... imageAssembler,
|
|
82
|
+
... florence2
|
|
83
|
+
... ])
|
|
84
|
+
>>> result = pipeline.fit(test_df).transform(test_df)
|
|
85
|
+
>>> result.select("image_assembler.origin", "answer.result").show(False)
|
|
86
|
+
"""
|
|
87
|
+
|
|
88
|
+
name = "Florence2Transformer"
|
|
89
|
+
|
|
90
|
+
inputAnnotatorTypes = [AnnotatorType.IMAGE]
|
|
91
|
+
outputAnnotatorType = AnnotatorType.DOCUMENT
|
|
92
|
+
|
|
93
|
+
minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated", typeConverter=TypeConverters.toInt)
|
|
94
|
+
maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text", typeConverter=TypeConverters.toInt)
|
|
95
|
+
doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise", typeConverter=TypeConverters.toBoolean)
|
|
96
|
+
temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities", typeConverter=TypeConverters.toFloat)
|
|
97
|
+
topK = Param(Params._dummy(), "topK", "The number of highest probability vocabulary tokens to keep for top-k-filtering", typeConverter=TypeConverters.toInt)
|
|
98
|
+
topP = Param(Params._dummy(), "topP", "If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation", typeConverter=TypeConverters.toFloat)
|
|
99
|
+
repetitionPenalty = Param(Params._dummy(), "repetitionPenalty", "The parameter for repetition penalty. 1.0 means no penalty.", typeConverter=TypeConverters.toFloat)
|
|
100
|
+
noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize", "If set to int > 0, all ngrams of that size can only occur once", typeConverter=TypeConverters.toInt)
|
|
101
|
+
ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds", "A list of token ids which are ignored in the decoder's output", typeConverter=TypeConverters.toListInt)
|
|
102
|
+
beamSize = Param(Params._dummy(), "beamSize", "The Number of beams for beam search.", typeConverter=TypeConverters.toInt)
|
|
103
|
+
batchSize = Param(Params._dummy(), "batchSize", "Batch size. Large values allows faster processing but requires more memory", typeConverter=TypeConverters.toInt)
|
|
104
|
+
|
|
105
|
+
@keyword_only
|
|
106
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.Florence2Transformer", java_model=None):
|
|
107
|
+
super(Florence2Transformer, self).__init__(
|
|
108
|
+
classname=classname,
|
|
109
|
+
java_model=java_model
|
|
110
|
+
)
|
|
111
|
+
self._setDefault(
|
|
112
|
+
batchSize=2,
|
|
113
|
+
minOutputLength=10,
|
|
114
|
+
maxOutputLength=200,
|
|
115
|
+
doSample=False,
|
|
116
|
+
temperature=1.0,
|
|
117
|
+
topK=50,
|
|
118
|
+
topP=1.0,
|
|
119
|
+
repetitionPenalty=1.0,
|
|
120
|
+
noRepeatNgramSize=3,
|
|
121
|
+
ignoreTokenIds=[],
|
|
122
|
+
beamSize=1,
|
|
123
|
+
)
|
|
124
|
+
|
|
125
|
+
def setMinOutputLength(self, value):
|
|
126
|
+
"""Sets minimum length of the sequence to be generated."""
|
|
127
|
+
return self._set(minOutputLength=value)
|
|
128
|
+
|
|
129
|
+
def setMaxOutputLength(self, value):
|
|
130
|
+
"""Sets maximum length of output text."""
|
|
131
|
+
return self._set(maxOutputLength=value)
|
|
132
|
+
|
|
133
|
+
def setDoSample(self, value):
|
|
134
|
+
"""Sets whether or not to use sampling; use greedy decoding otherwise."""
|
|
135
|
+
return self._set(doSample=value)
|
|
136
|
+
|
|
137
|
+
def setTemperature(self, value):
|
|
138
|
+
"""Sets the value used to module the next token probabilities."""
|
|
139
|
+
return self._set(temperature=value)
|
|
140
|
+
|
|
141
|
+
def setTopK(self, value):
|
|
142
|
+
"""Sets the number of highest probability vocabulary tokens to keep for top-k-filtering."""
|
|
143
|
+
return self._set(topK=value)
|
|
144
|
+
|
|
145
|
+
def setTopP(self, value):
|
|
146
|
+
"""Sets the top cumulative probability for vocabulary tokens."""
|
|
147
|
+
return self._set(topP=value)
|
|
148
|
+
|
|
149
|
+
def setRepetitionPenalty(self, value):
|
|
150
|
+
"""Sets the parameter for repetition penalty. 1.0 means no penalty."""
|
|
151
|
+
return self._set(repetitionPenalty=value)
|
|
152
|
+
|
|
153
|
+
def setNoRepeatNgramSize(self, value):
|
|
154
|
+
"""Sets size of n-grams that can only occur once."""
|
|
155
|
+
return self._set(noRepeatNgramSize=value)
|
|
156
|
+
|
|
157
|
+
def setIgnoreTokenIds(self, value):
|
|
158
|
+
"""A list of token ids which are ignored in the decoder's output."""
|
|
159
|
+
return self._set(ignoreTokenIds=value)
|
|
160
|
+
|
|
161
|
+
def setBeamSize(self, value):
|
|
162
|
+
"""Sets the number of beams for beam search."""
|
|
163
|
+
return self._set(beamSize=value)
|
|
164
|
+
|
|
165
|
+
def setBatchSize(self, value):
|
|
166
|
+
"""Sets the batch size."""
|
|
167
|
+
return self._set(batchSize=value)
|
|
168
|
+
|
|
169
|
+
@staticmethod
|
|
170
|
+
def loadSavedModel(folder, spark_session, use_openvino=False):
|
|
171
|
+
"""Loads a locally saved model."""
|
|
172
|
+
from sparknlp.internal import _Florence2TransformerLoader
|
|
173
|
+
jModel = _Florence2TransformerLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
|
|
174
|
+
return Florence2Transformer(java_model=jModel)
|
|
175
|
+
|
|
176
|
+
@staticmethod
|
|
177
|
+
def pretrained(name="florence2_base_ft_int4", lang="en", remote_loc=None):
|
|
178
|
+
"""Downloads and loads a pretrained model."""
|
|
179
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
180
|
+
return ResourceDownloader.downloadModel(Florence2Transformer, name, lang, remote_loc)
|
|
@@ -83,23 +83,18 @@ class Gemma3ForMultiModal(AnnotatorModel,
|
|
|
83
83
|
>>> from sparknlp.annotator import *
|
|
84
84
|
>>> from pyspark.ml import Pipeline
|
|
85
85
|
>>> from pyspark.sql.functions import lit
|
|
86
|
-
>>>
|
|
87
86
|
>>> imageDF = spark.read.format("image").load(images_path)
|
|
88
|
-
>>> testDF = imageDF.withColumn("text", lit("<bos><start_of_turn>user
|
|
89
|
-
>>>
|
|
90
|
-
|
|
91
|
-
... .setInputCol("image") \
|
|
87
|
+
>>> testDF = imageDF.withColumn("text", lit("<bos><start_of_turn>user\\nYou are a helpful assistant.\\n\\n<start_of_image>Describe this image in detail.<end_of_turn>\\n<start_of_turn>model\\n"))
|
|
88
|
+
>>> imageAssembler = ImageAssembler() \\
|
|
89
|
+
... .setInputCol("image") \\
|
|
92
90
|
... .setOutputCol("image_assembler")
|
|
93
|
-
>>>
|
|
94
|
-
|
|
95
|
-
... .setInputCols("image_assembler") \
|
|
91
|
+
>>> visualQA = Gemma3ForMultiModal.pretrained() \\
|
|
92
|
+
... .setInputCols("image_assembler") \\
|
|
96
93
|
... .setOutputCol("answer")
|
|
97
|
-
>>>
|
|
98
94
|
>>> pipeline = Pipeline().setStages([
|
|
99
95
|
... imageAssembler,
|
|
100
96
|
... visualQA
|
|
101
97
|
... ])
|
|
102
|
-
>>>
|
|
103
98
|
>>> result = pipeline.fit(testDF).transform(testDF)
|
|
104
99
|
>>> result.select("image_assembler.origin", "answer.result").show(truncate=False)
|
|
105
100
|
"""
|