spark-nlp 5.5.3__py2.py3-none-any.whl → 6.0.1rc1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of spark-nlp might be problematic. Click here for more details.
- {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.1rc1.dist-info}/METADATA +20 -11
- {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.1rc1.dist-info}/RECORD +36 -17
- {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.1rc1.dist-info}/WHEEL +1 -1
- sparknlp/__init__.py +2 -2
- sparknlp/annotator/classifier_dl/__init__.py +4 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +2 -2
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/cv/__init__.py +9 -1
- sparknlp/annotator/cv/gemma3_for_multimodal.py +351 -0
- sparknlp/annotator/cv/janus_for_multimodal.py +356 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/paligemma_for_multimodal.py +308 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/cv/smolvlm_transformer.py +432 -0
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +10 -6
- sparknlp/annotator/seq2seq/__init__.py +3 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +8 -503
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +333 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +4 -4
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/base/image_assembler.py +58 -0
- sparknlp/common/properties.py +605 -96
- sparknlp/internal/__init__.py +127 -2
- sparknlp/reader/enums.py +19 -0
- sparknlp/reader/pdf_to_text.py +111 -0
- sparknlp/reader/sparknlp_reader.py +222 -14
- spark_nlp-5.5.3.dist-info/.uuid +0 -1
- {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.1rc1.dist-info}/top_level.txt +0 -0
sparknlp/common/properties.py
CHANGED
|
@@ -12,6 +12,7 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
"""Contains classes for Annotator properties."""
|
|
15
|
+
from typing import List, Dict
|
|
15
16
|
|
|
16
17
|
from pyspark.ml.param import Param, Params, TypeConverters
|
|
17
18
|
|
|
@@ -628,133 +629,641 @@ class HasGeneratorProperties:
|
|
|
628
629
|
typeConverter=TypeConverters.toInt)
|
|
629
630
|
|
|
630
631
|
|
|
631
|
-
def setTask(self, value):
|
|
632
|
-
|
|
632
|
+
def setTask(self, value):
|
|
633
|
+
"""Sets the transformer's task, e.g. ``summarize:``.
|
|
633
634
|
|
|
634
|
-
|
|
635
|
-
|
|
636
|
-
|
|
637
|
-
|
|
638
|
-
|
|
639
|
-
|
|
635
|
+
Parameters
|
|
636
|
+
----------
|
|
637
|
+
value : str
|
|
638
|
+
The transformer's task
|
|
639
|
+
"""
|
|
640
|
+
return self._set(task=value)
|
|
640
641
|
|
|
641
642
|
|
|
642
|
-
def setMinOutputLength(self, value):
|
|
643
|
-
|
|
643
|
+
def setMinOutputLength(self, value):
|
|
644
|
+
"""Sets minimum length of the sequence to be generated.
|
|
644
645
|
|
|
645
|
-
|
|
646
|
-
|
|
647
|
-
|
|
648
|
-
|
|
649
|
-
|
|
650
|
-
|
|
646
|
+
Parameters
|
|
647
|
+
----------
|
|
648
|
+
value : int
|
|
649
|
+
Minimum length of the sequence to be generated
|
|
650
|
+
"""
|
|
651
|
+
return self._set(minOutputLength=value)
|
|
651
652
|
|
|
652
653
|
|
|
653
|
-
def setMaxOutputLength(self, value):
|
|
654
|
-
|
|
654
|
+
def setMaxOutputLength(self, value):
|
|
655
|
+
"""Sets maximum length of output text.
|
|
655
656
|
|
|
656
|
-
|
|
657
|
-
|
|
658
|
-
|
|
659
|
-
|
|
660
|
-
|
|
661
|
-
|
|
657
|
+
Parameters
|
|
658
|
+
----------
|
|
659
|
+
value : int
|
|
660
|
+
Maximum length of output text
|
|
661
|
+
"""
|
|
662
|
+
return self._set(maxOutputLength=value)
|
|
662
663
|
|
|
663
664
|
|
|
664
|
-
def setDoSample(self, value):
|
|
665
|
-
|
|
665
|
+
def setDoSample(self, value):
|
|
666
|
+
"""Sets whether or not to use sampling, use greedy decoding otherwise.
|
|
666
667
|
|
|
667
|
-
|
|
668
|
-
|
|
669
|
-
|
|
670
|
-
|
|
671
|
-
|
|
672
|
-
|
|
668
|
+
Parameters
|
|
669
|
+
----------
|
|
670
|
+
value : bool
|
|
671
|
+
Whether or not to use sampling; use greedy decoding otherwise
|
|
672
|
+
"""
|
|
673
|
+
return self._set(doSample=value)
|
|
673
674
|
|
|
674
675
|
|
|
675
|
-
def setTemperature(self, value):
|
|
676
|
-
|
|
676
|
+
def setTemperature(self, value):
|
|
677
|
+
"""Sets the value used to module the next token probabilities.
|
|
677
678
|
|
|
678
|
-
|
|
679
|
-
|
|
680
|
-
|
|
681
|
-
|
|
682
|
-
|
|
683
|
-
|
|
679
|
+
Parameters
|
|
680
|
+
----------
|
|
681
|
+
value : float
|
|
682
|
+
The value used to module the next token probabilities
|
|
683
|
+
"""
|
|
684
|
+
return self._set(temperature=value)
|
|
684
685
|
|
|
685
686
|
|
|
686
|
-
def setTopK(self, value):
|
|
687
|
-
|
|
688
|
-
|
|
687
|
+
def setTopK(self, value):
|
|
688
|
+
"""Sets the number of highest probability vocabulary tokens to keep for
|
|
689
|
+
top-k-filtering.
|
|
689
690
|
|
|
690
|
-
|
|
691
|
-
|
|
692
|
-
|
|
693
|
-
|
|
694
|
-
|
|
695
|
-
|
|
691
|
+
Parameters
|
|
692
|
+
----------
|
|
693
|
+
value : int
|
|
694
|
+
Number of highest probability vocabulary tokens to keep
|
|
695
|
+
"""
|
|
696
|
+
return self._set(topK=value)
|
|
696
697
|
|
|
697
698
|
|
|
698
|
-
def setTopP(self, value):
|
|
699
|
-
|
|
699
|
+
def setTopP(self, value):
|
|
700
|
+
"""Sets the top cumulative probability for vocabulary tokens.
|
|
700
701
|
|
|
701
|
-
|
|
702
|
-
|
|
702
|
+
If set to float < 1, only the most probable tokens with probabilities
|
|
703
|
+
that add up to ``topP`` or higher are kept for generation.
|
|
703
704
|
|
|
704
|
-
|
|
705
|
-
|
|
706
|
-
|
|
707
|
-
|
|
708
|
-
|
|
709
|
-
|
|
705
|
+
Parameters
|
|
706
|
+
----------
|
|
707
|
+
value : float
|
|
708
|
+
Cumulative probability for vocabulary tokens
|
|
709
|
+
"""
|
|
710
|
+
return self._set(topP=value)
|
|
710
711
|
|
|
711
712
|
|
|
712
|
-
def setRepetitionPenalty(self, value):
|
|
713
|
-
|
|
713
|
+
def setRepetitionPenalty(self, value):
|
|
714
|
+
"""Sets the parameter for repetition penalty. 1.0 means no penalty.
|
|
714
715
|
|
|
715
|
-
|
|
716
|
-
|
|
717
|
-
|
|
718
|
-
|
|
716
|
+
Parameters
|
|
717
|
+
----------
|
|
718
|
+
value : float
|
|
719
|
+
The repetition penalty
|
|
719
720
|
|
|
720
|
-
|
|
721
|
-
|
|
722
|
-
|
|
723
|
-
|
|
724
|
-
|
|
725
|
-
|
|
721
|
+
References
|
|
722
|
+
----------
|
|
723
|
+
See `Ctrl: A Conditional Transformer Language Model For Controllable
|
|
724
|
+
Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
|
|
725
|
+
"""
|
|
726
|
+
return self._set(repetitionPenalty=value)
|
|
726
727
|
|
|
727
728
|
|
|
728
|
-
def setNoRepeatNgramSize(self, value):
|
|
729
|
-
|
|
729
|
+
def setNoRepeatNgramSize(self, value):
|
|
730
|
+
"""Sets size of n-grams that can only occur once.
|
|
730
731
|
|
|
731
|
-
|
|
732
|
+
If set to int > 0, all ngrams of that size can only occur once.
|
|
732
733
|
|
|
733
|
-
|
|
734
|
-
|
|
735
|
-
|
|
736
|
-
|
|
737
|
-
|
|
738
|
-
|
|
734
|
+
Parameters
|
|
735
|
+
----------
|
|
736
|
+
value : int
|
|
737
|
+
N-gram size can only occur once
|
|
738
|
+
"""
|
|
739
|
+
return self._set(noRepeatNgramSize=value)
|
|
740
|
+
|
|
741
|
+
|
|
742
|
+
def setBeamSize(self, value):
|
|
743
|
+
"""Sets the number of beam size for beam search.
|
|
744
|
+
|
|
745
|
+
Parameters
|
|
746
|
+
----------
|
|
747
|
+
value : int
|
|
748
|
+
Number of beam size for beam search
|
|
749
|
+
"""
|
|
750
|
+
return self._set(beamSize=value)
|
|
751
|
+
|
|
752
|
+
|
|
753
|
+
def setNReturnSequences(self, value):
|
|
754
|
+
"""Sets the number of sequences to return from the beam search.
|
|
755
|
+
|
|
756
|
+
Parameters
|
|
757
|
+
----------
|
|
758
|
+
value : int
|
|
759
|
+
Number of sequences to return
|
|
760
|
+
"""
|
|
761
|
+
return self._set(nReturnSequences=value)
|
|
762
|
+
|
|
763
|
+
|
|
764
|
+
class HasLlamaCppProperties:
|
|
765
|
+
# -------- MODEl PARAMETERS --------
|
|
766
|
+
nThreads = Param(Params._dummy(), "nThreads", "Set the number of threads to use during generation",
|
|
767
|
+
typeConverter=TypeConverters.toInt)
|
|
768
|
+
nThreadsDraft = Param(Params._dummy(), "nThreadsDraft", "Set the number of threads to use during draft generation",
|
|
769
|
+
typeConverter=TypeConverters.toInt)
|
|
770
|
+
nThreadsBatch = Param(Params._dummy(), "nThreadsBatch",
|
|
771
|
+
"Set the number of threads to use during batch and prompt processing",
|
|
772
|
+
typeConverter=TypeConverters.toInt)
|
|
773
|
+
nThreadsBatchDraft = Param(Params._dummy(), "nThreadsBatchDraft",
|
|
774
|
+
"Set the number of threads to use during batch and prompt processing",
|
|
775
|
+
typeConverter=TypeConverters.toInt)
|
|
776
|
+
nCtx = Param(Params._dummy(), "nCtx", "Set the size of the prompt context", typeConverter=TypeConverters.toInt)
|
|
777
|
+
nBatch = Param(Params._dummy(), "nBatch",
|
|
778
|
+
"Set the logical batch size for prompt processing (must be >=32 to use BLAS)",
|
|
779
|
+
typeConverter=TypeConverters.toInt)
|
|
780
|
+
nUbatch = Param(Params._dummy(), "nUbatch",
|
|
781
|
+
"Set the physical batch size for prompt processing (must be >=32 to use BLAS)",
|
|
782
|
+
typeConverter=TypeConverters.toInt)
|
|
783
|
+
nDraft = Param(Params._dummy(), "nDraft", "Set the number of tokens to draft for speculative decoding",
|
|
784
|
+
typeConverter=TypeConverters.toInt)
|
|
785
|
+
nChunks = Param(Params._dummy(), "nChunks", "Set the maximal number of chunks to process",
|
|
786
|
+
typeConverter=TypeConverters.toInt)
|
|
787
|
+
nSequences = Param(Params._dummy(), "nSequences", "Set the number of sequences to decode",
|
|
788
|
+
typeConverter=TypeConverters.toInt)
|
|
789
|
+
pSplit = Param(Params._dummy(), "pSplit", "Set the speculative decoding split probability",
|
|
790
|
+
typeConverter=TypeConverters.toFloat)
|
|
791
|
+
nGpuLayers = Param(Params._dummy(), "nGpuLayers", "Set the number of layers to store in VRAM (-1 - use default)",
|
|
792
|
+
typeConverter=TypeConverters.toInt)
|
|
793
|
+
nGpuLayersDraft = Param(Params._dummy(), "nGpuLayersDraft",
|
|
794
|
+
"Set the number of layers to store in VRAM for the draft model (-1 - use default)",
|
|
795
|
+
typeConverter=TypeConverters.toInt)
|
|
796
|
+
# Set how to split the model across GPUs
|
|
797
|
+
#
|
|
798
|
+
# - NONE: No GPU split
|
|
799
|
+
# - LAYER: Split the model across GPUs by layer
|
|
800
|
+
# - ROW: Split the model across GPUs by rows
|
|
801
|
+
gpuSplitMode = Param(Params._dummy(), "gpuSplitMode", "Set how to split the model across GPUs",
|
|
802
|
+
typeConverter=TypeConverters.toString)
|
|
803
|
+
mainGpu = Param(Params._dummy(), "mainGpu", "Set the main GPU that is used for scratch and small tensors.",
|
|
804
|
+
typeConverter=TypeConverters.toInt)
|
|
805
|
+
tensorSplit = Param(Params._dummy(), "tensorSplit", "Set how split tensors should be distributed across GPUs",
|
|
806
|
+
typeConverter=TypeConverters.toListFloat)
|
|
807
|
+
grpAttnN = Param(Params._dummy(), "grpAttnN", "Set the group-attention factor", typeConverter=TypeConverters.toInt)
|
|
808
|
+
grpAttnW = Param(Params._dummy(), "grpAttnW", "Set the group-attention width", typeConverter=TypeConverters.toInt)
|
|
809
|
+
ropeFreqBase = Param(Params._dummy(), "ropeFreqBase", "Set the RoPE base frequency, used by NTK-aware scaling",
|
|
810
|
+
typeConverter=TypeConverters.toFloat)
|
|
811
|
+
ropeFreqScale = Param(Params._dummy(), "ropeFreqScale",
|
|
812
|
+
"Set the RoPE frequency scaling factor, expands context by a factor of 1/N",
|
|
813
|
+
typeConverter=TypeConverters.toFloat)
|
|
814
|
+
yarnExtFactor = Param(Params._dummy(), "yarnExtFactor", "Set the YaRN extrapolation mix factor",
|
|
815
|
+
typeConverter=TypeConverters.toFloat)
|
|
816
|
+
yarnAttnFactor = Param(Params._dummy(), "yarnAttnFactor", "Set the YaRN scale sqrt(t) or attention magnitude",
|
|
817
|
+
typeConverter=TypeConverters.toFloat)
|
|
818
|
+
yarnBetaFast = Param(Params._dummy(), "yarnBetaFast", "Set the YaRN low correction dim or beta",
|
|
819
|
+
typeConverter=TypeConverters.toFloat)
|
|
820
|
+
yarnBetaSlow = Param(Params._dummy(), "yarnBetaSlow", "Set the YaRN high correction dim or alpha",
|
|
821
|
+
typeConverter=TypeConverters.toFloat)
|
|
822
|
+
yarnOrigCtx = Param(Params._dummy(), "yarnOrigCtx", "Set the YaRN original context size of model",
|
|
823
|
+
typeConverter=TypeConverters.toInt)
|
|
824
|
+
defragmentationThreshold = Param(Params._dummy(), "defragmentationThreshold",
|
|
825
|
+
"Set the KV cache defragmentation threshold", typeConverter=TypeConverters.toFloat)
|
|
826
|
+
# Set optimization strategies that help on some NUMA systems (if available)
|
|
827
|
+
#
|
|
828
|
+
# Available Strategies:
|
|
829
|
+
#
|
|
830
|
+
# - DISABLED: No NUMA optimizations
|
|
831
|
+
# - DISTRIBUTE: Spread execution evenly over all
|
|
832
|
+
# - ISOLATE: Only spawn threads on CPUs on the node that execution started on
|
|
833
|
+
# - NUMA_CTL: Use the CPU map provided by numactl
|
|
834
|
+
# - MIRROR: Mirrors the model across NUMA nodes
|
|
835
|
+
numaStrategy = Param(Params._dummy(), "numaStrategy",
|
|
836
|
+
"Set optimization strategies that help on some NUMA systems (if available)",
|
|
837
|
+
typeConverter=TypeConverters.toString)
|
|
838
|
+
# Set the RoPE frequency scaling method, defaults to linear unless specified by the model.
|
|
839
|
+
#
|
|
840
|
+
# - UNSPECIFIED: Don't use any scaling
|
|
841
|
+
# - LINEAR: Linear scaling
|
|
842
|
+
# - YARN: YaRN RoPE scaling
|
|
843
|
+
ropeScalingType = Param(Params._dummy(), "ropeScalingType",
|
|
844
|
+
"Set the RoPE frequency scaling method, defaults to linear unless specified by the model",
|
|
845
|
+
typeConverter=TypeConverters.toString)
|
|
846
|
+
# Set the pooling type for embeddings, use model default if unspecified
|
|
847
|
+
#
|
|
848
|
+
# - 0 NONE: Don't use any pooling
|
|
849
|
+
# - 1 MEAN: Mean Pooling
|
|
850
|
+
# - 2 CLS: CLS Pooling
|
|
851
|
+
poolingType = Param(Params._dummy(), "poolingType",
|
|
852
|
+
"Set the pooling type for embeddings, use model default if unspecified",
|
|
853
|
+
typeConverter=TypeConverters.toString)
|
|
854
|
+
modelDraft = Param(Params._dummy(), "modelDraft", "Set the draft model for speculative decoding",
|
|
855
|
+
typeConverter=TypeConverters.toString)
|
|
856
|
+
modelAlias = Param(Params._dummy(), "modelAlias", "Set a model alias", typeConverter=TypeConverters.toString)
|
|
857
|
+
lookupCacheStaticFilePath = Param(Params._dummy(), "lookupCacheStaticFilePath",
|
|
858
|
+
"Set path to static lookup cache to use for lookup decoding (not updated by generation)",
|
|
859
|
+
typeConverter=TypeConverters.toString)
|
|
860
|
+
lookupCacheDynamicFilePath = Param(Params._dummy(), "lookupCacheDynamicFilePath",
|
|
861
|
+
"Set path to dynamic lookup cache to use for lookup decoding (updated by generation)",
|
|
862
|
+
typeConverter=TypeConverters.toString)
|
|
863
|
+
# loraAdapters = new StructFeature[Map[String, Float]](this, "loraAdapters")
|
|
864
|
+
embedding = Param(Params._dummy(), "embedding", "Whether to load model with embedding support",
|
|
865
|
+
typeConverter=TypeConverters.toBoolean)
|
|
866
|
+
flashAttention = Param(Params._dummy(), "flashAttention", "Whether to enable Flash Attention",
|
|
867
|
+
typeConverter=TypeConverters.toBoolean)
|
|
868
|
+
inputPrefixBos = Param(Params._dummy(), "inputPrefixBos",
|
|
869
|
+
"Whether to add prefix BOS to user inputs, preceding the `--in-prefix` string",
|
|
870
|
+
typeConverter=TypeConverters.toBoolean)
|
|
871
|
+
useMmap = Param(Params._dummy(), "useMmap",
|
|
872
|
+
"Whether to use memory-map model (faster load but may increase pageouts if not using mlock)",
|
|
873
|
+
typeConverter=TypeConverters.toBoolean)
|
|
874
|
+
useMlock = Param(Params._dummy(), "useMlock",
|
|
875
|
+
"Whether to force the system to keep model in RAM rather than swapping or compressing",
|
|
876
|
+
typeConverter=TypeConverters.toBoolean)
|
|
877
|
+
noKvOffload = Param(Params._dummy(), "noKvOffload", "Whether to disable KV offload",
|
|
878
|
+
typeConverter=TypeConverters.toBoolean)
|
|
879
|
+
systemPrompt = Param(Params._dummy(), "systemPrompt", "Set a system prompt to use",
|
|
880
|
+
typeConverter=TypeConverters.toString)
|
|
881
|
+
chatTemplate = Param(Params._dummy(), "chatTemplate", "The chat template to use",
|
|
882
|
+
typeConverter=TypeConverters.toString)
|
|
883
|
+
|
|
884
|
+
# -------- INFERENCE PARAMETERS --------
|
|
885
|
+
inputPrefix = Param(Params._dummy(), "inputPrefix", "Set the prompt to start generation with",
|
|
886
|
+
typeConverter=TypeConverters.toString)
|
|
887
|
+
inputSuffix = Param(Params._dummy(), "inputSuffix", "Set a suffix for infilling",
|
|
888
|
+
typeConverter=TypeConverters.toString)
|
|
889
|
+
cachePrompt = Param(Params._dummy(), "cachePrompt", "Whether to remember the prompt to avoid reprocessing it",
|
|
890
|
+
typeConverter=TypeConverters.toBoolean)
|
|
891
|
+
nPredict = Param(Params._dummy(), "nPredict", "Set the number of tokens to predict",
|
|
892
|
+
typeConverter=TypeConverters.toInt)
|
|
893
|
+
topK = Param(Params._dummy(), "topK", "Set top-k sampling", typeConverter=TypeConverters.toInt)
|
|
894
|
+
topP = Param(Params._dummy(), "topP", "Set top-p sampling", typeConverter=TypeConverters.toFloat)
|
|
895
|
+
minP = Param(Params._dummy(), "minP", "Set min-p sampling", typeConverter=TypeConverters.toFloat)
|
|
896
|
+
tfsZ = Param(Params._dummy(), "tfsZ", "Set tail free sampling, parameter z", typeConverter=TypeConverters.toFloat)
|
|
897
|
+
typicalP = Param(Params._dummy(), "typicalP", "Set locally typical sampling, parameter p",
|
|
898
|
+
typeConverter=TypeConverters.toFloat)
|
|
899
|
+
temperature = Param(Params._dummy(), "temperature", "Set the temperature", typeConverter=TypeConverters.toFloat)
|
|
900
|
+
dynamicTemperatureRange = Param(Params._dummy(), "dynatempRange", "Set the dynamic temperature range",
|
|
901
|
+
typeConverter=TypeConverters.toFloat)
|
|
902
|
+
dynamicTemperatureExponent = Param(Params._dummy(), "dynatempExponent", "Set the dynamic temperature exponent",
|
|
903
|
+
typeConverter=TypeConverters.toFloat)
|
|
904
|
+
repeatLastN = Param(Params._dummy(), "repeatLastN", "Set the last n tokens to consider for penalties",
|
|
905
|
+
typeConverter=TypeConverters.toInt)
|
|
906
|
+
repeatPenalty = Param(Params._dummy(), "repeatPenalty", "Set the penalty of repeated sequences of tokens",
|
|
907
|
+
typeConverter=TypeConverters.toFloat)
|
|
908
|
+
frequencyPenalty = Param(Params._dummy(), "frequencyPenalty", "Set the repetition alpha frequency penalty",
|
|
909
|
+
typeConverter=TypeConverters.toFloat)
|
|
910
|
+
presencePenalty = Param(Params._dummy(), "presencePenalty", "Set the repetition alpha presence penalty",
|
|
911
|
+
typeConverter=TypeConverters.toFloat)
|
|
912
|
+
miroStat = Param(Params._dummy(), "miroStat", "Set MiroStat sampling strategies.",
|
|
913
|
+
typeConverter=TypeConverters.toString)
|
|
914
|
+
miroStatTau = Param(Params._dummy(), "mirostatTau", "Set the MiroStat target entropy, parameter tau",
|
|
915
|
+
typeConverter=TypeConverters.toFloat)
|
|
916
|
+
miroStatEta = Param(Params._dummy(), "mirostatEta", "Set the MiroStat learning rate, parameter eta",
|
|
917
|
+
typeConverter=TypeConverters.toFloat)
|
|
918
|
+
penalizeNl = Param(Params._dummy(), "penalizeNl", "Whether to penalize newline tokens",
|
|
919
|
+
typeConverter=TypeConverters.toBoolean)
|
|
920
|
+
nKeep = Param(Params._dummy(), "nKeep", "Set the number of tokens to keep from the initial prompt",
|
|
921
|
+
typeConverter=TypeConverters.toInt)
|
|
922
|
+
seed = Param(Params._dummy(), "seed", "Set the RNG seed", typeConverter=TypeConverters.toInt)
|
|
923
|
+
nProbs = Param(Params._dummy(), "nProbs", "Set the amount top tokens probabilities to output if greater than 0.",
|
|
924
|
+
typeConverter=TypeConverters.toInt)
|
|
925
|
+
minKeep = Param(Params._dummy(), "minKeep",
|
|
926
|
+
"Set the amount of tokens the samplers should return at least (0 = disabled)",
|
|
927
|
+
typeConverter=TypeConverters.toInt)
|
|
928
|
+
grammar = Param(Params._dummy(), "grammar", "Set BNF-like grammar to constrain generations",
|
|
929
|
+
typeConverter=TypeConverters.toString)
|
|
930
|
+
penaltyPrompt = Param(Params._dummy(), "penaltyPrompt",
|
|
931
|
+
"Override which part of the prompt is penalized for repetition.",
|
|
932
|
+
typeConverter=TypeConverters.toString)
|
|
933
|
+
ignoreEos = Param(Params._dummy(), "ignoreEos",
|
|
934
|
+
"Set whether to ignore end of stream token and continue generating (implies --logit-bias 2-inf)",
|
|
935
|
+
typeConverter=TypeConverters.toBoolean)
|
|
936
|
+
disableTokenIds = Param(Params._dummy(), "disableTokenIds", "Set the token ids to disable in the completion",
|
|
937
|
+
typeConverter=TypeConverters.toListInt)
|
|
938
|
+
stopStrings = Param(Params._dummy(), "stopStrings", "Set strings upon seeing which token generation is stopped",
|
|
939
|
+
typeConverter=TypeConverters.toListString)
|
|
940
|
+
samplers = Param(Params._dummy(), "samplers", "Set which samplers to use for token generation in the given order",
|
|
941
|
+
typeConverter=TypeConverters.toListString)
|
|
942
|
+
useChatTemplate = Param(Params._dummy(), "useChatTemplate",
|
|
943
|
+
"Set whether or not generate should apply a chat template",
|
|
944
|
+
typeConverter=TypeConverters.toBoolean)
|
|
945
|
+
|
|
946
|
+
# -------- MODEL SETTERS --------
|
|
947
|
+
def setNThreads(self, nThreads: int):
|
|
948
|
+
"""Set the number of threads to use during generation"""
|
|
949
|
+
return self._set(nThreads=nThreads)
|
|
950
|
+
|
|
951
|
+
def setNThreadsDraft(self, nThreadsDraft: int):
|
|
952
|
+
"""Set the number of threads to use during draft generation"""
|
|
953
|
+
return self._set(nThreadsDraft=nThreadsDraft)
|
|
954
|
+
|
|
955
|
+
def setNThreadsBatch(self, nThreadsBatch: int):
|
|
956
|
+
"""Set the number of threads to use during batch and prompt processing"""
|
|
957
|
+
return self._set(nThreadsBatch=nThreadsBatch)
|
|
958
|
+
|
|
959
|
+
def setNThreadsBatchDraft(self, nThreadsBatchDraft: int):
|
|
960
|
+
"""Set the number of threads to use during batch and prompt processing"""
|
|
961
|
+
return self._set(nThreadsBatchDraft=nThreadsBatchDraft)
|
|
962
|
+
|
|
963
|
+
def setNCtx(self, nCtx: int):
|
|
964
|
+
"""Set the size of the prompt context"""
|
|
965
|
+
return self._set(nCtx=nCtx)
|
|
966
|
+
|
|
967
|
+
def setNBatch(self, nBatch: int):
|
|
968
|
+
"""Set the logical batch size for prompt processing (must be >=32 to use BLAS)"""
|
|
969
|
+
return self._set(nBatch=nBatch)
|
|
970
|
+
|
|
971
|
+
def setNUbatch(self, nUbatch: int):
|
|
972
|
+
"""Set the physical batch size for prompt processing (must be >=32 to use BLAS)"""
|
|
973
|
+
return self._set(nUbatch=nUbatch)
|
|
974
|
+
|
|
975
|
+
def setNDraft(self, nDraft: int):
|
|
976
|
+
"""Set the number of tokens to draft for speculative decoding"""
|
|
977
|
+
return self._set(nDraft=nDraft)
|
|
978
|
+
|
|
979
|
+
def setNChunks(self, nChunks: int):
|
|
980
|
+
"""Set the maximal number of chunks to process"""
|
|
981
|
+
return self._set(nChunks=nChunks)
|
|
982
|
+
|
|
983
|
+
def setNSequences(self, nSequences: int):
|
|
984
|
+
"""Set the number of sequences to decode"""
|
|
985
|
+
return self._set(nSequences=nSequences)
|
|
986
|
+
|
|
987
|
+
def setPSplit(self, pSplit: float):
|
|
988
|
+
"""Set the speculative decoding split probability"""
|
|
989
|
+
return self._set(pSplit=pSplit)
|
|
990
|
+
|
|
991
|
+
def setNGpuLayers(self, nGpuLayers: int):
|
|
992
|
+
"""Set the number of layers to store in VRAM (-1 - use default)"""
|
|
993
|
+
return self._set(nGpuLayers=nGpuLayers)
|
|
994
|
+
|
|
995
|
+
def setNGpuLayersDraft(self, nGpuLayersDraft: int):
|
|
996
|
+
"""Set the number of layers to store in VRAM for the draft model (-1 - use default)"""
|
|
997
|
+
return self._set(nGpuLayersDraft=nGpuLayersDraft)
|
|
998
|
+
|
|
999
|
+
def setGpuSplitMode(self, gpuSplitMode: str):
|
|
1000
|
+
"""Set how to split the model across GPUs"""
|
|
1001
|
+
return self._set(gpuSplitMode=gpuSplitMode)
|
|
1002
|
+
|
|
1003
|
+
def setMainGpu(self, mainGpu: int):
|
|
1004
|
+
"""Set the main GPU that is used for scratch and small tensors."""
|
|
1005
|
+
return self._set(mainGpu=mainGpu)
|
|
1006
|
+
|
|
1007
|
+
def setTensorSplit(self, tensorSplit: List[float]):
|
|
1008
|
+
"""Set how split tensors should be distributed across GPUs"""
|
|
1009
|
+
return self._set(tensorSplit=tensorSplit)
|
|
1010
|
+
|
|
1011
|
+
def setGrpAttnN(self, grpAttnN: int):
|
|
1012
|
+
"""Set the group-attention factor"""
|
|
1013
|
+
return self._set(grpAttnN=grpAttnN)
|
|
1014
|
+
|
|
1015
|
+
def setGrpAttnW(self, grpAttnW: int):
|
|
1016
|
+
"""Set the group-attention width"""
|
|
1017
|
+
return self._set(grpAttnW=grpAttnW)
|
|
1018
|
+
|
|
1019
|
+
def setRopeFreqBase(self, ropeFreqBase: float):
|
|
1020
|
+
"""Set the RoPE base frequency, used by NTK-aware scaling"""
|
|
1021
|
+
return self._set(ropeFreqBase=ropeFreqBase)
|
|
1022
|
+
|
|
1023
|
+
def setRopeFreqScale(self, ropeFreqScale: float):
|
|
1024
|
+
"""Set the RoPE frequency scaling factor, expands context by a factor of 1/N"""
|
|
1025
|
+
return self._set(ropeFreqScale=ropeFreqScale)
|
|
1026
|
+
|
|
1027
|
+
def setYarnExtFactor(self, yarnExtFactor: float):
|
|
1028
|
+
"""Set the YaRN extrapolation mix factor"""
|
|
1029
|
+
return self._set(yarnExtFactor=yarnExtFactor)
|
|
1030
|
+
|
|
1031
|
+
def setYarnAttnFactor(self, yarnAttnFactor: float):
|
|
1032
|
+
"""Set the YaRN scale sqrt(t) or attention magnitude"""
|
|
1033
|
+
return self._set(yarnAttnFactor=yarnAttnFactor)
|
|
1034
|
+
|
|
1035
|
+
def setYarnBetaFast(self, yarnBetaFast: float):
|
|
1036
|
+
"""Set the YaRN low correction dim or beta"""
|
|
1037
|
+
return self._set(yarnBetaFast=yarnBetaFast)
|
|
1038
|
+
|
|
1039
|
+
def setYarnBetaSlow(self, yarnBetaSlow: float):
|
|
1040
|
+
"""Set the YaRN high correction dim or alpha"""
|
|
1041
|
+
return self._set(yarnBetaSlow=yarnBetaSlow)
|
|
1042
|
+
|
|
1043
|
+
def setYarnOrigCtx(self, yarnOrigCtx: int):
|
|
1044
|
+
"""Set the YaRN original context size of model"""
|
|
1045
|
+
return self._set(yarnOrigCtx=yarnOrigCtx)
|
|
1046
|
+
|
|
1047
|
+
def setDefragmentationThreshold(self, defragmentationThreshold: float):
|
|
1048
|
+
"""Set the KV cache defragmentation threshold"""
|
|
1049
|
+
return self._set(defragmentationThreshold=defragmentationThreshold)
|
|
739
1050
|
|
|
1051
|
+
def setNumaStrategy(self, numaStrategy: str):
|
|
1052
|
+
"""Set optimization strategies that help on some NUMA systems (if available)"""
|
|
1053
|
+
numaUpper = numaStrategy.upper()
|
|
1054
|
+
numaStrategies = ["DISABLED", "DISTRIBUTE", "ISOLATE", "NUMA_CTL", "MIRROR"]
|
|
1055
|
+
if numaUpper not in numaStrategies:
|
|
1056
|
+
raise ValueError(
|
|
1057
|
+
f"Invalid NUMA strategy: {numaUpper}. "
|
|
1058
|
+
+ f"Valid values are: {numaStrategies}"
|
|
1059
|
+
)
|
|
1060
|
+
return self._set(numaStrategy=numaStrategy)
|
|
1061
|
+
|
|
1062
|
+
def setRopeScalingType(self, ropeScalingType: str):
|
|
1063
|
+
"""Set the RoPE frequency scaling method, defaults to linear unless specified by the model"""
|
|
1064
|
+
return self._set(ropeScalingType=ropeScalingType)
|
|
1065
|
+
|
|
1066
|
+
def setPoolingType(self, poolingType: str):
|
|
1067
|
+
"""Set the pooling type for embeddings, use model default if unspecified"""
|
|
1068
|
+
poolingTypeUpper = poolingType.upper()
|
|
1069
|
+
poolingTypes = ["NONE", "MEAN", "CLS", "LAST"]
|
|
1070
|
+
if poolingTypeUpper not in poolingTypes:
|
|
1071
|
+
raise ValueError(
|
|
1072
|
+
f"Invalid pooling type: {poolingType}. "
|
|
1073
|
+
+ f"Valid values are: {poolingTypes}"
|
|
1074
|
+
)
|
|
1075
|
+
return self._set(poolingType=poolingType)
|
|
1076
|
+
|
|
1077
|
+
def setModelDraft(self, modelDraft: str):
|
|
1078
|
+
"""Set the draft model for speculative decoding"""
|
|
1079
|
+
return self._set(modelDraft=modelDraft)
|
|
1080
|
+
|
|
1081
|
+
def setModelAlias(self, modelAlias: str):
|
|
1082
|
+
"""Set a model alias"""
|
|
1083
|
+
return self._set(modelAlias=modelAlias)
|
|
1084
|
+
|
|
1085
|
+
def setLookupCacheStaticFilePath(self, lookupCacheStaticFilePath: str):
|
|
1086
|
+
"""Set path to static lookup cache to use for lookup decoding (not updated by generation)"""
|
|
1087
|
+
return self._set(lookupCacheStaticFilePath=lookupCacheStaticFilePath)
|
|
1088
|
+
|
|
1089
|
+
def setLookupCacheDynamicFilePath(self, lookupCacheDynamicFilePath: str):
|
|
1090
|
+
"""Set path to dynamic lookup cache to use for lookup decoding (updated by generation)"""
|
|
1091
|
+
return self._set(lookupCacheDynamicFilePath=lookupCacheDynamicFilePath)
|
|
1092
|
+
|
|
1093
|
+
def setEmbedding(self, embedding: bool):
|
|
1094
|
+
"""Whether to load model with embedding support"""
|
|
1095
|
+
return self._set(embedding=embedding)
|
|
1096
|
+
|
|
1097
|
+
def setFlashAttention(self, flashAttention: bool):
|
|
1098
|
+
"""Whether to enable Flash Attention"""
|
|
1099
|
+
return self._set(flashAttention=flashAttention)
|
|
1100
|
+
|
|
1101
|
+
def setInputPrefixBos(self, inputPrefixBos: bool):
|
|
1102
|
+
"""Whether to add prefix BOS to user inputs, preceding the `--in-prefix` bool"""
|
|
1103
|
+
return self._set(inputPrefixBos=inputPrefixBos)
|
|
1104
|
+
|
|
1105
|
+
def setUseMmap(self, useMmap: bool):
|
|
1106
|
+
"""Whether to use memory-map model (faster load but may increase pageouts if not using mlock)"""
|
|
1107
|
+
return self._set(useMmap=useMmap)
|
|
1108
|
+
|
|
1109
|
+
def setUseMlock(self, useMlock: bool):
|
|
1110
|
+
"""Whether to force the system to keep model in RAM rather than swapping or compressing"""
|
|
1111
|
+
return self._set(useMlock=useMlock)
|
|
1112
|
+
|
|
1113
|
+
def setNoKvOffload(self, noKvOffload: bool):
|
|
1114
|
+
"""Whether to disable KV offload"""
|
|
1115
|
+
return self._set(noKvOffload=noKvOffload)
|
|
1116
|
+
|
|
1117
|
+
def setSystemPrompt(self, systemPrompt: bool):
|
|
1118
|
+
"""Set a system prompt to use"""
|
|
1119
|
+
return self._set(systemPrompt=systemPrompt)
|
|
1120
|
+
|
|
1121
|
+
def setChatTemplate(self, chatTemplate: str):
|
|
1122
|
+
"""The chat template to use"""
|
|
1123
|
+
return self._set(chatTemplate=chatTemplate)
|
|
1124
|
+
|
|
1125
|
+
# -------- INFERENCE SETTERS --------
|
|
1126
|
+
def setInputPrefix(self, inputPrefix: str):
|
|
1127
|
+
"""Set the prompt to start generation with"""
|
|
1128
|
+
return self._set(inputPrefix=inputPrefix)
|
|
740
1129
|
|
|
741
|
-
def
|
|
742
|
-
|
|
1130
|
+
def setInputSuffix(self, inputSuffix: str):
|
|
1131
|
+
"""Set a suffix for infilling"""
|
|
1132
|
+
return self._set(inputSuffix=inputSuffix)
|
|
743
1133
|
|
|
744
|
-
|
|
745
|
-
|
|
746
|
-
|
|
747
|
-
Number of beam size for beam search
|
|
748
|
-
"""
|
|
749
|
-
return self._set(beamSize=value)
|
|
1134
|
+
def setCachePrompt(self, cachePrompt: bool):
|
|
1135
|
+
"""Whether to remember the prompt to avoid reprocessing it"""
|
|
1136
|
+
return self._set(cachePrompt=cachePrompt)
|
|
750
1137
|
|
|
1138
|
+
def setNPredict(self, nPredict: int):
|
|
1139
|
+
"""Set the number of tokens to predict"""
|
|
1140
|
+
return self._set(nPredict=nPredict)
|
|
751
1141
|
|
|
752
|
-
def
|
|
753
|
-
|
|
1142
|
+
def setTopK(self, topK: int):
|
|
1143
|
+
"""Set top-k sampling"""
|
|
1144
|
+
return self._set(topK=topK)
|
|
754
1145
|
|
|
755
|
-
|
|
756
|
-
|
|
757
|
-
|
|
758
|
-
|
|
759
|
-
|
|
760
|
-
|
|
1146
|
+
def setTopP(self, topP: float):
|
|
1147
|
+
"""Set top-p sampling"""
|
|
1148
|
+
return self._set(topP=topP)
|
|
1149
|
+
|
|
1150
|
+
def setMinP(self, minP: float):
|
|
1151
|
+
"""Set min-p sampling"""
|
|
1152
|
+
return self._set(minP=minP)
|
|
1153
|
+
|
|
1154
|
+
def setTfsZ(self, tfsZ: float):
|
|
1155
|
+
"""Set tail free sampling, parameter z"""
|
|
1156
|
+
return self._set(tfsZ=tfsZ)
|
|
1157
|
+
|
|
1158
|
+
def setTypicalP(self, typicalP: float):
|
|
1159
|
+
"""Set locally typical sampling, parameter p"""
|
|
1160
|
+
return self._set(typicalP=typicalP)
|
|
1161
|
+
|
|
1162
|
+
def setTemperature(self, temperature: float):
|
|
1163
|
+
"""Set the temperature"""
|
|
1164
|
+
return self._set(temperature=temperature)
|
|
1165
|
+
|
|
1166
|
+
def setDynamicTemperatureRange(self, dynamicTemperatureRange: float):
|
|
1167
|
+
"""Set the dynamic temperature range"""
|
|
1168
|
+
return self._set(dynamicTemperatureRange=dynamicTemperatureRange)
|
|
1169
|
+
|
|
1170
|
+
def setDynamicTemperatureExponent(self, dynamicTemperatureExponent: float):
|
|
1171
|
+
"""Set the dynamic temperature exponent"""
|
|
1172
|
+
return self._set(dynamicTemperatureExponent=dynamicTemperatureExponent)
|
|
1173
|
+
|
|
1174
|
+
def setRepeatLastN(self, repeatLastN: int):
|
|
1175
|
+
"""Set the last n tokens to consider for penalties"""
|
|
1176
|
+
return self._set(repeatLastN=repeatLastN)
|
|
1177
|
+
|
|
1178
|
+
def setRepeatPenalty(self, repeatPenalty: float):
|
|
1179
|
+
"""Set the penalty of repeated sequences of tokens"""
|
|
1180
|
+
return self._set(repeatPenalty=repeatPenalty)
|
|
1181
|
+
|
|
1182
|
+
def setFrequencyPenalty(self, frequencyPenalty: float):
|
|
1183
|
+
"""Set the repetition alpha frequency penalty"""
|
|
1184
|
+
return self._set(frequencyPenalty=frequencyPenalty)
|
|
1185
|
+
|
|
1186
|
+
def setPresencePenalty(self, presencePenalty: float):
|
|
1187
|
+
"""Set the repetition alpha presence penalty"""
|
|
1188
|
+
return self._set(presencePenalty=presencePenalty)
|
|
1189
|
+
|
|
1190
|
+
def setMiroStat(self, miroStat: str):
|
|
1191
|
+
"""Set MiroStat sampling strategies."""
|
|
1192
|
+
return self._set(miroStat=miroStat)
|
|
1193
|
+
|
|
1194
|
+
def setMiroStatTau(self, miroStatTau: float):
|
|
1195
|
+
"""Set the MiroStat target entropy, parameter tau"""
|
|
1196
|
+
return self._set(miroStatTau=miroStatTau)
|
|
1197
|
+
|
|
1198
|
+
def setMiroStatEta(self, miroStatEta: float):
|
|
1199
|
+
"""Set the MiroStat learning rate, parameter eta"""
|
|
1200
|
+
return self._set(miroStatEta=miroStatEta)
|
|
1201
|
+
|
|
1202
|
+
def setPenalizeNl(self, penalizeNl: bool):
|
|
1203
|
+
"""Whether to penalize newline tokens"""
|
|
1204
|
+
return self._set(penalizeNl=penalizeNl)
|
|
1205
|
+
|
|
1206
|
+
def setNKeep(self, nKeep: int):
|
|
1207
|
+
"""Set the number of tokens to keep from the initial prompt"""
|
|
1208
|
+
return self._set(nKeep=nKeep)
|
|
1209
|
+
|
|
1210
|
+
def setSeed(self, seed: int):
|
|
1211
|
+
"""Set the RNG seed"""
|
|
1212
|
+
return self._set(seed=seed)
|
|
1213
|
+
|
|
1214
|
+
def setNProbs(self, nProbs: int):
|
|
1215
|
+
"""Set the amount top tokens probabilities to output if greater than 0."""
|
|
1216
|
+
return self._set(nProbs=nProbs)
|
|
1217
|
+
|
|
1218
|
+
def setMinKeep(self, minKeep: int):
|
|
1219
|
+
"""Set the amount of tokens the samplers should return at least (0 = disabled)"""
|
|
1220
|
+
return self._set(minKeep=minKeep)
|
|
1221
|
+
|
|
1222
|
+
def setGrammar(self, grammar: bool):
|
|
1223
|
+
"""Set BNF-like grammar to constrain generations"""
|
|
1224
|
+
return self._set(grammar=grammar)
|
|
1225
|
+
|
|
1226
|
+
def setPenaltyPrompt(self, penaltyPrompt: str):
|
|
1227
|
+
"""Override which part of the prompt is penalized for repetition."""
|
|
1228
|
+
return self._set(penaltyPrompt=penaltyPrompt)
|
|
1229
|
+
|
|
1230
|
+
def setIgnoreEos(self, ignoreEos: bool):
|
|
1231
|
+
"""Set whether to ignore end of stream token and continue generating (implies --logit-bias 2-inf)"""
|
|
1232
|
+
return self._set(ignoreEos=ignoreEos)
|
|
1233
|
+
|
|
1234
|
+
def setDisableTokenIds(self, disableTokenIds: List[int]):
|
|
1235
|
+
"""Set the token ids to disable in the completion"""
|
|
1236
|
+
return self._set(disableTokenIds=disableTokenIds)
|
|
1237
|
+
|
|
1238
|
+
def setStopStrings(self, stopStrings: List[str]):
|
|
1239
|
+
"""Set strings upon seeing which token generation is stopped"""
|
|
1240
|
+
return self._set(stopStrings=stopStrings)
|
|
1241
|
+
|
|
1242
|
+
def setSamplers(self, samplers: List[str]):
|
|
1243
|
+
"""Set which samplers to use for token generation in the given order"""
|
|
1244
|
+
return self._set(samplers=samplers)
|
|
1245
|
+
|
|
1246
|
+
def setUseChatTemplate(self, useChatTemplate: bool):
|
|
1247
|
+
"""Set whether generate should apply a chat template"""
|
|
1248
|
+
return self._set(useChatTemplate=useChatTemplate)
|
|
1249
|
+
|
|
1250
|
+
def setNParallel(self, nParallel: int):
|
|
1251
|
+
"""Sets the number of parallel processes for decoding. This is an alias for `setBatchSize`."""
|
|
1252
|
+
return self.setBatchSize(nParallel)
|
|
1253
|
+
|
|
1254
|
+
# -------- JAVA SETTERS --------
|
|
1255
|
+
def setTokenIdBias(self, tokenIdBias: Dict[int, float]):
|
|
1256
|
+
"""Set token id bias"""
|
|
1257
|
+
return self._call_java("setTokenIdBias", tokenIdBias)
|
|
1258
|
+
|
|
1259
|
+
def setTokenBias(self, tokenBias: Dict[str, float]):
|
|
1260
|
+
"""Set token id bias"""
|
|
1261
|
+
return self._call_java("setTokenBias", tokenBias)
|
|
1262
|
+
|
|
1263
|
+
def setLoraAdapters(self, loraAdapters: Dict[str, float]):
|
|
1264
|
+
"""Set token id bias"""
|
|
1265
|
+
return self._call_java("setLoraAdapters", loraAdapters)
|
|
1266
|
+
|
|
1267
|
+
def getMetadata(self):
|
|
1268
|
+
"""Gets the metadata of the model"""
|
|
1269
|
+
return self._call_java("getMetadata")
|