spark-nlp 5.5.3__py2.py3-none-any.whl → 6.0.0__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of spark-nlp might be problematic. Click here for more details.

Files changed (33) hide show
  1. {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.0.dist-info}/METADATA +20 -11
  2. {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.0.dist-info}/RECORD +32 -17
  3. sparknlp/__init__.py +2 -2
  4. sparknlp/annotator/classifier_dl/__init__.py +4 -0
  5. sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
  6. sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +2 -2
  7. sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
  8. sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
  9. sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
  10. sparknlp/annotator/cleaners/__init__.py +15 -0
  11. sparknlp/annotator/cleaners/cleaner.py +202 -0
  12. sparknlp/annotator/cleaners/extractor.py +191 -0
  13. sparknlp/annotator/cv/__init__.py +6 -1
  14. sparknlp/annotator/cv/janus_for_multimodal.py +356 -0
  15. sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
  16. sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
  17. sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
  18. sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
  19. sparknlp/annotator/embeddings/auto_gguf_embeddings.py +10 -6
  20. sparknlp/annotator/seq2seq/__init__.py +3 -0
  21. sparknlp/annotator/seq2seq/auto_gguf_model.py +8 -503
  22. sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +333 -0
  23. sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
  24. sparknlp/annotator/seq2seq/llama3_transformer.py +4 -4
  25. sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
  26. sparknlp/base/image_assembler.py +58 -0
  27. sparknlp/common/properties.py +605 -96
  28. sparknlp/internal/__init__.py +100 -2
  29. sparknlp/reader/pdf_to_text.py +65 -0
  30. sparknlp/reader/sparknlp_reader.py +222 -14
  31. spark_nlp-5.5.3.dist-info/.uuid +0 -1
  32. {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.0.dist-info}/WHEEL +0 -0
  33. {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,191 @@
1
+ # Copyright 2017-2025 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for Extractor."""
15
+ from sparknlp.common import *
16
+
17
+ class Extractor(AnnotatorModel):
18
+ name = "Extractor"
19
+
20
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
21
+
22
+ outputAnnotatorType = AnnotatorType.CHUNK
23
+
24
+ emailDateTimeTzPattern = Param(Params._dummy(),
25
+ "emailDateTimeTzPattern",
26
+ "Specifies the date-time pattern for email timestamps, including time zone formatting.",
27
+ typeConverter=TypeConverters.toString)
28
+
29
+ emailAddress = Param(
30
+ Params._dummy(),
31
+ "emailAddress",
32
+ "Specifies the pattern for email addresses.",
33
+ typeConverter=TypeConverters.toString
34
+ )
35
+
36
+ ipAddressPattern = Param(
37
+ Params._dummy(),
38
+ "ipAddressPattern",
39
+ "Specifies the pattern for IP addresses.",
40
+ typeConverter=TypeConverters.toString
41
+ )
42
+
43
+ ipAddressNamePattern = Param(
44
+ Params._dummy(),
45
+ "ipAddressNamePattern",
46
+ "Specifies the pattern for IP addresses with names.",
47
+ typeConverter=TypeConverters.toString
48
+ )
49
+
50
+ mapiIdPattern = Param(
51
+ Params._dummy(),
52
+ "mapiIdPattern",
53
+ "Specifies the pattern for MAPI IDs.",
54
+ typeConverter=TypeConverters.toString
55
+ )
56
+
57
+ usPhoneNumbersPattern = Param(
58
+ Params._dummy(),
59
+ "usPhoneNumbersPattern",
60
+ "Specifies the pattern for US phone numbers.",
61
+ typeConverter=TypeConverters.toString
62
+ )
63
+
64
+ imageUrlPattern = Param(
65
+ Params._dummy(),
66
+ "imageUrlPattern",
67
+ "Specifies the pattern for image URLs.",
68
+ typeConverter=TypeConverters.toString
69
+ )
70
+
71
+ textPattern = Param(
72
+ Params._dummy(),
73
+ "textPattern",
74
+ "Specifies the pattern for text after and before.",
75
+ typeConverter=TypeConverters.toString
76
+ )
77
+
78
+ extractorMode = Param(
79
+ Params._dummy(),
80
+ "extractorMode",
81
+ "possible values: " +
82
+ "email_date, email_address, ip_address, ip_address_name, mapi_id, us_phone_numbers, image_urls, bullets, text_after, text_before",
83
+ typeConverter=TypeConverters.toString
84
+ )
85
+
86
+ index = Param(
87
+ Params._dummy(),
88
+ "index",
89
+ "Specifies the index of the pattern to extract in text after or before",
90
+ typeConverter=TypeConverters.toInt
91
+ )
92
+
93
+ def setEmailDateTimeTzPattern(self, value):
94
+ """Sets specifies the date-time pattern for email timestamps, including time zone formatting.
95
+
96
+ Parameters
97
+ ----------
98
+ value : str
99
+ Specifies the date-time pattern for email timestamps, including time zone formatting.
100
+ """
101
+ return self._set(emailDateTimeTzPattern=value)
102
+
103
+ def setEmailAddress(self, value):
104
+ """Sets the pattern for email addresses.
105
+
106
+ Parameters
107
+ ----------
108
+ value : str
109
+ Specifies the pattern for email addresses.
110
+ """
111
+ return self._set(emailAddress=value)
112
+
113
+ def setIpAddressPattern(self, value):
114
+ """Sets the pattern for IP addresses.
115
+
116
+ Parameters
117
+ ----------
118
+ value : str
119
+ Specifies the pattern for IP addresses.
120
+ """
121
+ return self._set(ipAddressPattern=value)
122
+
123
+ def setIpAddressNamePattern(self, value):
124
+ """Sets the pattern for IP addresses with names.
125
+
126
+ Parameters
127
+ ----------
128
+ value : str
129
+ Specifies the pattern for IP addresses with names.
130
+ """
131
+ return self._set(ipAddressNamePattern=value)
132
+
133
+ def setMapiIdPattern(self, value):
134
+ """Sets the pattern for MAPI IDs.
135
+
136
+ Parameters
137
+ ----------
138
+ value : str
139
+ Specifies the pattern for MAPI IDs.
140
+ """
141
+ return self._set(mapiIdPattern=value)
142
+
143
+ def setUsPhoneNumbersPattern(self, value):
144
+ """Sets the pattern for US phone numbers.
145
+
146
+ Parameters
147
+ ----------
148
+ value : str
149
+ Specifies the pattern for US phone numbers.
150
+ """
151
+ return self._set(usPhoneNumbersPattern=value)
152
+
153
+ def setImageUrlPattern(self, value):
154
+ """Sets the pattern for image URLs.
155
+
156
+ Parameters
157
+ ----------
158
+ value : str
159
+ Specifies the pattern for image URLs.
160
+ """
161
+ return self._set(imageUrlPattern=value)
162
+
163
+ def setTextPattern(self, value):
164
+ """Sets the pattern for text after and before.
165
+
166
+ Parameters
167
+ ----------
168
+ value : str
169
+ Specifies the pattern for text after and before.
170
+ """
171
+ return self._set(textPattern=value)
172
+
173
+ def setExtractorMode(self, value):
174
+ return self._set(extractorMode=value)
175
+
176
+ def setIndex(self, value):
177
+ """Sets the index of the pattern to extract in text after or before.
178
+
179
+ Parameters
180
+ ----------
181
+ value : int
182
+ Specifies the index of the pattern to extract in text after or before.
183
+ """
184
+ return self._set(index=value)
185
+
186
+ @keyword_only
187
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cleaners.Extractor", java_model=None):
188
+ super(Extractor, self).__init__(
189
+ classname=classname,
190
+ java_model=java_model
191
+ )
@@ -16,4 +16,9 @@ from sparknlp.annotator.cv.swin_for_image_classification import *
16
16
  from sparknlp.annotator.cv.convnext_for_image_classification import *
17
17
  from sparknlp.annotator.cv.vision_encoder_decoder_for_image_captioning import *
18
18
  from sparknlp.annotator.cv.clip_for_zero_shot_classification import *
19
- from sparknlp.annotator.cv.blip_for_question_answering import *
19
+ from sparknlp.annotator.cv.blip_for_question_answering import *
20
+ from sparknlp.annotator.cv.janus_for_multimodal import *
21
+ from sparknlp.annotator.cv.mllama_for_multimodal import *
22
+ from sparknlp.annotator.cv.qwen2vl_transformer import *
23
+ from sparknlp.annotator.cv.llava_for_multimodal import *
24
+ from sparknlp.annotator.cv.phi3_vision_for_multimodal import *
@@ -0,0 +1,356 @@
1
+ # Copyright 2017-2024 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from sparknlp.common import *
16
+
17
+ class JanusForMultiModal(AnnotatorModel,
18
+ HasBatchedAnnotateImage,
19
+ HasImageFeatureProperties,
20
+ HasEngine,
21
+ HasCandidateLabelsProperties,
22
+ HasRescaleFactor):
23
+ """
24
+ JanusForMultiModal can load Janus Vision models for visual question answering.
25
+ The model consists of a vision encoder, a text encoder, and a text decoder.
26
+ The vision encoder encodes the input image, the text encoder processes the input question
27
+ alongside the image encoding, and the text decoder generates the answer to the question.
28
+
29
+ Janus is a novel autoregressive framework that unifies multimodal understanding and generation.
30
+ It decouples visual encoding into separate pathways while utilizing a single, unified transformer architecture for processing.
31
+ This decoupling alleviates conflicts between the visual encoder’s roles in understanding and generation, enhancing the framework’s flexibility.
32
+
33
+ Janus surpasses previous unified models and matches or exceeds the performance of task-specific models.
34
+ It uses the DeepSeek-LLM-1.3b-base trained on approximately 500B text tokens.
35
+ For multimodal understanding, it employs the SigLIP-L vision encoder supporting 384 x 384 image input,
36
+ and for image generation, it uses a tokenizer with a downsample rate of 16.
37
+
38
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion object:
39
+ >>> visualQAClassifier = JanusForMultiModal.pretrained() \
40
+ ... .setInputCols(["image_assembler"]) \
41
+ ... .setOutputCol("answer")
42
+
43
+ The default model is `"janus_1_3b_int4"`, if no name is provided.
44
+ For available pretrained models, refer to the `Models Hub
45
+ <https://sparknlp.org/models?task=Question+Answering>`__.
46
+
47
+ Models from the HuggingFace 🧧 Transformers library are also compatible with Spark NLP 🚀.
48
+ To check compatibility and learn how to import them, see `Import Transformers into Spark NLP 🚀
49
+ <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
50
+ For extended examples, refer to the `JanusForMultiModal Test Suite
51
+ <https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/cv/JanusForMultiModalTest.scala>`_.
52
+
53
+ ====================== ======================
54
+ Input Annotation types Output Annotation type
55
+ ====================== ======================
56
+ ``IMAGE`` ``DOCUMENT``
57
+ ====================== ======================
58
+
59
+ Parameters
60
+ ----------
61
+ batchSize : int, optional
62
+ Batch size. Larger values allow faster processing but require more memory,
63
+ by default 2.
64
+ configProtoBytes : bytes, optional
65
+ ConfigProto from TensorFlow, serialized into a byte array.
66
+ maxSentenceLength : int, optional
67
+ Maximum sentence length to process, by default 50.
68
+
69
+ Examples
70
+ --------
71
+ >>> import sparknlp
72
+ >>> from sparknlp.base import *
73
+ >>> from sparknlp.annotator import *
74
+ >>> from pyspark.ml import Pipeline
75
+ >>> from pyspark.sql.functions import lit
76
+
77
+ >>> image_df = SparkSessionForTest.spark.read.format("image").load(path=images_path)
78
+ >>> test_df = image_df.withColumn(
79
+ ... "text",
80
+ ... lit("User: <image_placeholder>Describe image in details\n\nAssistant:")
81
+ ... )
82
+
83
+ >>> imageAssembler = ImageAssembler() \
84
+ ... .setInputCol("image") \
85
+ ... .setOutputCol("image_assembler")
86
+
87
+ >>> visualQAClassifier = JanusForMultiModal.pretrained() \
88
+ ... .setInputCols("image_assembler") \
89
+ ... .setOutputCol("answer")
90
+
91
+ >>> pipeline = Pipeline().setStages([
92
+ ... imageAssembler,
93
+ ... visualQAClassifier
94
+ ... ])
95
+
96
+ >>> result = pipeline.fit(test_df).transform(test_df)
97
+ >>> result.select("image_assembler.origin", "answer.result").show(truncate=False)
98
+
99
+ +--------------------------------------+----------------------------------------------------------------------+
100
+ |origin |result |
101
+ +--------------------------------------+----------------------------------------------------------------------+
102
+ |[file:///content/images/cat_image.jpg]|[The unusual aspect of this picture is the presence of two cats lying on a pink couch]|
103
+ +--------------------------------------+----------------------------------------------------------------------+
104
+ """
105
+
106
+
107
+
108
+ name = "JanusForMultiModal"
109
+
110
+ inputAnnotatorTypes = [AnnotatorType.IMAGE]
111
+
112
+ outputAnnotatorType = AnnotatorType.DOCUMENT
113
+
114
+ configProtoBytes = Param(Params._dummy(),
115
+ "configProtoBytes",
116
+ "ConfigProto from tensorflow, serialized into byte array. Get with "
117
+ "config_proto.SerializeToString()",
118
+ TypeConverters.toListInt)
119
+
120
+ minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
121
+ typeConverter=TypeConverters.toInt)
122
+
123
+ maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
124
+ typeConverter=TypeConverters.toInt)
125
+
126
+ doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
127
+ typeConverter=TypeConverters.toBoolean)
128
+
129
+ temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
130
+ typeConverter=TypeConverters.toFloat)
131
+
132
+ topK = Param(Params._dummy(), "topK",
133
+ "The number of highest probability vocabulary tokens to keep for top-k-filtering",
134
+ typeConverter=TypeConverters.toInt)
135
+
136
+ topP = Param(Params._dummy(), "topP",
137
+ "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
138
+ typeConverter=TypeConverters.toFloat)
139
+
140
+ repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
141
+ "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
142
+ typeConverter=TypeConverters.toFloat)
143
+
144
+ noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
145
+ "If set to int > 0, all ngrams of that size can only occur once",
146
+ typeConverter=TypeConverters.toInt)
147
+
148
+ ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
149
+ "A list of token ids which are ignored in the decoder's output",
150
+ typeConverter=TypeConverters.toListInt)
151
+ beamSize = Param(Params._dummy(), "beamSize",
152
+ "The Number of beams for beam search.",
153
+ typeConverter=TypeConverters.toInt)
154
+ imageGenerateMode = Param(Params._dummy(), "imageGenerateMode",
155
+ "Image generation mode",
156
+ typeConverter=TypeConverters.toBoolean)
157
+ numOfParallelImages = Param(Params._dummy(), "numOfParallelImages",
158
+ "Number of parallel images to Generate",
159
+ typeConverter=TypeConverters.toInt)
160
+
161
+ def setMaxSentenceSize(self, value):
162
+ """Sets Maximum sentence length that the annotator will process, by
163
+ default 50.
164
+ Parameters
165
+ ----------
166
+ value : int
167
+ Maximum sentence length that the annotator will process
168
+ """
169
+ return self._set(maxSentenceLength=value)
170
+
171
+ def setIgnoreTokenIds(self, value):
172
+ """A list of token ids which are ignored in the decoder's output.
173
+ Parameters
174
+ ----------
175
+ value : List[int]
176
+ The words to be filtered out
177
+ """
178
+ return self._set(ignoreTokenIds=value)
179
+
180
+ def setConfigProtoBytes(self, b):
181
+ """Sets configProto from tensorflow, serialized into byte array.
182
+ Parameters
183
+ ----------
184
+ b : List[int]
185
+ ConfigProto from tensorflow, serialized into byte array
186
+ """
187
+ return self._set(configProtoBytes=b)
188
+
189
+ def setMinOutputLength(self, value):
190
+ """Sets minimum length of the sequence to be generated.
191
+ Parameters
192
+ ----------
193
+ value : int
194
+ Minimum length of the sequence to be generated
195
+ """
196
+ return self._set(minOutputLength=value)
197
+
198
+ def setMaxOutputLength(self, value):
199
+ """Sets maximum length of output text.
200
+ Parameters
201
+ ----------
202
+ value : int
203
+ Maximum length of output text
204
+ """
205
+ return self._set(maxOutputLength=value)
206
+
207
+ def setDoSample(self, value):
208
+ """Sets whether or not to use sampling, use greedy decoding otherwise.
209
+ Parameters
210
+ ----------
211
+ value : bool
212
+ Whether or not to use sampling; use greedy decoding otherwise
213
+ """
214
+ return self._set(doSample=value)
215
+
216
+ def setTemperature(self, value):
217
+ """Sets the value used to module the next token probabilities.
218
+ Parameters
219
+ ----------
220
+ value : float
221
+ The value used to module the next token probabilities
222
+ """
223
+ return self._set(temperature=value)
224
+
225
+ def setTopK(self, value):
226
+ """Sets the number of highest probability vocabulary tokens to keep for
227
+ top-k-filtering.
228
+ Parameters
229
+ ----------
230
+ value : int
231
+ Number of highest probability vocabulary tokens to keep
232
+ """
233
+ return self._set(topK=value)
234
+
235
+ def setTopP(self, value):
236
+ """Sets the top cumulative probability for vocabulary tokens.
237
+ If set to float < 1, only the most probable tokens with probabilities
238
+ that add up to ``topP`` or higher are kept for generation.
239
+ Parameters
240
+ ----------
241
+ value : float
242
+ Cumulative probability for vocabulary tokens
243
+ """
244
+ return self._set(topP=value)
245
+
246
+ def setRepetitionPenalty(self, value):
247
+ """Sets the parameter for repetition penalty. 1.0 means no penalty.
248
+ Parameters
249
+ ----------
250
+ value : float
251
+ The repetition penalty
252
+ References
253
+ ----------
254
+ See `Ctrl: A Conditional Transformer Language Model For Controllable
255
+ Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
256
+ """
257
+ return self._set(repetitionPenalty=value)
258
+
259
+ def setNoRepeatNgramSize(self, value):
260
+ """Sets size of n-grams that can only occur once.
261
+ If set to int > 0, all ngrams of that size can only occur once.
262
+ Parameters
263
+ ----------
264
+ value : int
265
+ N-gram size can only occur once
266
+ """
267
+ return self._set(noRepeatNgramSize=value)
268
+
269
+ def setBeamSize(self, value):
270
+ """Sets the number of beam size for beam search, by default `4`.
271
+ Parameters
272
+ ----------
273
+ value : int
274
+ Number of beam size for beam search
275
+ """
276
+ return self._set(beamSize=value)
277
+
278
+ def setImageGenerateMode(self, value):
279
+ """Sets the image generation mode.
280
+ Parameters
281
+ ----------
282
+ value : bool
283
+ Image generation mode
284
+ """
285
+ return self._set(imageGenerateMode=value)
286
+
287
+ def setNumOfParallelImages(self, value):
288
+ """Sets the number of parallel images to generate.
289
+ Parameters
290
+ ----------
291
+ value : int
292
+ Number of parallel images to generate
293
+ """
294
+ return self._set(numOfParallelImages=value)
295
+
296
+ @keyword_only
297
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.JanusForMultiModal",
298
+ java_model=None):
299
+ super(JanusForMultiModal, self).__init__(
300
+ classname=classname,
301
+ java_model=java_model
302
+ )
303
+ self._setDefault(
304
+ batchSize=1,
305
+ minOutputLength=0,
306
+ maxOutputLength=50,
307
+ doSample=False,
308
+ temperature=1,
309
+ topK=50,
310
+ topP=1,
311
+ repetitionPenalty=1.0,
312
+ noRepeatNgramSize=0,
313
+ ignoreTokenIds=[],
314
+ beamSize=1,
315
+ imageGenerateMode=False,
316
+ numOfParallelImages=1
317
+ )
318
+
319
+ @staticmethod
320
+ def loadSavedModel(folder, spark_session, use_openvino=False):
321
+ """Loads a locally saved model.
322
+ Parameters
323
+ ----------
324
+ folder : str
325
+ Folder of the saved model
326
+ spark_session : pyspark.sql.SparkSession
327
+ The current SparkSession
328
+ Returns
329
+ -------
330
+ CLIPForZeroShotClassification
331
+ The restored model
332
+ """
333
+ from sparknlp.internal import _JanusForMultiModalLoader
334
+ jModel = _JanusForMultiModalLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
335
+ return JanusForMultiModal(java_model=jModel)
336
+
337
+ @staticmethod
338
+ def pretrained(name="janus_1_3b_int4", lang="en", remote_loc=None):
339
+ """Downloads and loads a pretrained model.
340
+ Parameters
341
+ ----------
342
+ name : str, optional
343
+ Name of the pretrained model, by default
344
+ "janus_1_3b_int4"
345
+ lang : str, optional
346
+ Language of the pretrained model, by default "en"
347
+ remote_loc : str, optional
348
+ Optional remote address of the resource, by default None. Will use
349
+ Spark NLPs repositories otherwise.
350
+ Returns
351
+ -------
352
+ CLIPForZeroShotClassification
353
+ The restored model
354
+ """
355
+ from sparknlp.pretrained import ResourceDownloader
356
+ return ResourceDownloader.downloadModel(JanusForMultiModal, name, lang, remote_loc)