spark-nlp 5.5.3__py2.py3-none-any.whl → 6.0.0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of spark-nlp might be problematic. Click here for more details.
- {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.0.dist-info}/METADATA +20 -11
- {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.0.dist-info}/RECORD +32 -17
- sparknlp/__init__.py +2 -2
- sparknlp/annotator/classifier_dl/__init__.py +4 -0
- sparknlp/annotator/classifier_dl/albert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py +2 -2
- sparknlp/annotator/classifier_dl/distilbert_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/roberta_for_multiple_choice.py +161 -0
- sparknlp/annotator/classifier_dl/xlm_roberta_for_multiple_choice.py +149 -0
- sparknlp/annotator/cleaners/__init__.py +15 -0
- sparknlp/annotator/cleaners/cleaner.py +202 -0
- sparknlp/annotator/cleaners/extractor.py +191 -0
- sparknlp/annotator/cv/__init__.py +6 -1
- sparknlp/annotator/cv/janus_for_multimodal.py +356 -0
- sparknlp/annotator/cv/llava_for_multimodal.py +328 -0
- sparknlp/annotator/cv/mllama_for_multimodal.py +340 -0
- sparknlp/annotator/cv/phi3_vision_for_multimodal.py +328 -0
- sparknlp/annotator/cv/qwen2vl_transformer.py +332 -0
- sparknlp/annotator/embeddings/auto_gguf_embeddings.py +10 -6
- sparknlp/annotator/seq2seq/__init__.py +3 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +8 -503
- sparknlp/annotator/seq2seq/auto_gguf_vision_model.py +333 -0
- sparknlp/annotator/seq2seq/cohere_transformer.py +357 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +4 -4
- sparknlp/annotator/seq2seq/olmo_transformer.py +326 -0
- sparknlp/base/image_assembler.py +58 -0
- sparknlp/common/properties.py +605 -96
- sparknlp/internal/__init__.py +100 -2
- sparknlp/reader/pdf_to_text.py +65 -0
- sparknlp/reader/sparknlp_reader.py +222 -14
- spark_nlp-5.5.3.dist-info/.uuid +0 -1
- {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.0.dist-info}/WHEEL +0 -0
- {spark_nlp-5.5.3.dist-info → spark_nlp-6.0.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,191 @@
|
|
|
1
|
+
# Copyright 2017-2025 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for Extractor."""
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
class Extractor(AnnotatorModel):
|
|
18
|
+
name = "Extractor"
|
|
19
|
+
|
|
20
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
21
|
+
|
|
22
|
+
outputAnnotatorType = AnnotatorType.CHUNK
|
|
23
|
+
|
|
24
|
+
emailDateTimeTzPattern = Param(Params._dummy(),
|
|
25
|
+
"emailDateTimeTzPattern",
|
|
26
|
+
"Specifies the date-time pattern for email timestamps, including time zone formatting.",
|
|
27
|
+
typeConverter=TypeConverters.toString)
|
|
28
|
+
|
|
29
|
+
emailAddress = Param(
|
|
30
|
+
Params._dummy(),
|
|
31
|
+
"emailAddress",
|
|
32
|
+
"Specifies the pattern for email addresses.",
|
|
33
|
+
typeConverter=TypeConverters.toString
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
ipAddressPattern = Param(
|
|
37
|
+
Params._dummy(),
|
|
38
|
+
"ipAddressPattern",
|
|
39
|
+
"Specifies the pattern for IP addresses.",
|
|
40
|
+
typeConverter=TypeConverters.toString
|
|
41
|
+
)
|
|
42
|
+
|
|
43
|
+
ipAddressNamePattern = Param(
|
|
44
|
+
Params._dummy(),
|
|
45
|
+
"ipAddressNamePattern",
|
|
46
|
+
"Specifies the pattern for IP addresses with names.",
|
|
47
|
+
typeConverter=TypeConverters.toString
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
mapiIdPattern = Param(
|
|
51
|
+
Params._dummy(),
|
|
52
|
+
"mapiIdPattern",
|
|
53
|
+
"Specifies the pattern for MAPI IDs.",
|
|
54
|
+
typeConverter=TypeConverters.toString
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
usPhoneNumbersPattern = Param(
|
|
58
|
+
Params._dummy(),
|
|
59
|
+
"usPhoneNumbersPattern",
|
|
60
|
+
"Specifies the pattern for US phone numbers.",
|
|
61
|
+
typeConverter=TypeConverters.toString
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
imageUrlPattern = Param(
|
|
65
|
+
Params._dummy(),
|
|
66
|
+
"imageUrlPattern",
|
|
67
|
+
"Specifies the pattern for image URLs.",
|
|
68
|
+
typeConverter=TypeConverters.toString
|
|
69
|
+
)
|
|
70
|
+
|
|
71
|
+
textPattern = Param(
|
|
72
|
+
Params._dummy(),
|
|
73
|
+
"textPattern",
|
|
74
|
+
"Specifies the pattern for text after and before.",
|
|
75
|
+
typeConverter=TypeConverters.toString
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
extractorMode = Param(
|
|
79
|
+
Params._dummy(),
|
|
80
|
+
"extractorMode",
|
|
81
|
+
"possible values: " +
|
|
82
|
+
"email_date, email_address, ip_address, ip_address_name, mapi_id, us_phone_numbers, image_urls, bullets, text_after, text_before",
|
|
83
|
+
typeConverter=TypeConverters.toString
|
|
84
|
+
)
|
|
85
|
+
|
|
86
|
+
index = Param(
|
|
87
|
+
Params._dummy(),
|
|
88
|
+
"index",
|
|
89
|
+
"Specifies the index of the pattern to extract in text after or before",
|
|
90
|
+
typeConverter=TypeConverters.toInt
|
|
91
|
+
)
|
|
92
|
+
|
|
93
|
+
def setEmailDateTimeTzPattern(self, value):
|
|
94
|
+
"""Sets specifies the date-time pattern for email timestamps, including time zone formatting.
|
|
95
|
+
|
|
96
|
+
Parameters
|
|
97
|
+
----------
|
|
98
|
+
value : str
|
|
99
|
+
Specifies the date-time pattern for email timestamps, including time zone formatting.
|
|
100
|
+
"""
|
|
101
|
+
return self._set(emailDateTimeTzPattern=value)
|
|
102
|
+
|
|
103
|
+
def setEmailAddress(self, value):
|
|
104
|
+
"""Sets the pattern for email addresses.
|
|
105
|
+
|
|
106
|
+
Parameters
|
|
107
|
+
----------
|
|
108
|
+
value : str
|
|
109
|
+
Specifies the pattern for email addresses.
|
|
110
|
+
"""
|
|
111
|
+
return self._set(emailAddress=value)
|
|
112
|
+
|
|
113
|
+
def setIpAddressPattern(self, value):
|
|
114
|
+
"""Sets the pattern for IP addresses.
|
|
115
|
+
|
|
116
|
+
Parameters
|
|
117
|
+
----------
|
|
118
|
+
value : str
|
|
119
|
+
Specifies the pattern for IP addresses.
|
|
120
|
+
"""
|
|
121
|
+
return self._set(ipAddressPattern=value)
|
|
122
|
+
|
|
123
|
+
def setIpAddressNamePattern(self, value):
|
|
124
|
+
"""Sets the pattern for IP addresses with names.
|
|
125
|
+
|
|
126
|
+
Parameters
|
|
127
|
+
----------
|
|
128
|
+
value : str
|
|
129
|
+
Specifies the pattern for IP addresses with names.
|
|
130
|
+
"""
|
|
131
|
+
return self._set(ipAddressNamePattern=value)
|
|
132
|
+
|
|
133
|
+
def setMapiIdPattern(self, value):
|
|
134
|
+
"""Sets the pattern for MAPI IDs.
|
|
135
|
+
|
|
136
|
+
Parameters
|
|
137
|
+
----------
|
|
138
|
+
value : str
|
|
139
|
+
Specifies the pattern for MAPI IDs.
|
|
140
|
+
"""
|
|
141
|
+
return self._set(mapiIdPattern=value)
|
|
142
|
+
|
|
143
|
+
def setUsPhoneNumbersPattern(self, value):
|
|
144
|
+
"""Sets the pattern for US phone numbers.
|
|
145
|
+
|
|
146
|
+
Parameters
|
|
147
|
+
----------
|
|
148
|
+
value : str
|
|
149
|
+
Specifies the pattern for US phone numbers.
|
|
150
|
+
"""
|
|
151
|
+
return self._set(usPhoneNumbersPattern=value)
|
|
152
|
+
|
|
153
|
+
def setImageUrlPattern(self, value):
|
|
154
|
+
"""Sets the pattern for image URLs.
|
|
155
|
+
|
|
156
|
+
Parameters
|
|
157
|
+
----------
|
|
158
|
+
value : str
|
|
159
|
+
Specifies the pattern for image URLs.
|
|
160
|
+
"""
|
|
161
|
+
return self._set(imageUrlPattern=value)
|
|
162
|
+
|
|
163
|
+
def setTextPattern(self, value):
|
|
164
|
+
"""Sets the pattern for text after and before.
|
|
165
|
+
|
|
166
|
+
Parameters
|
|
167
|
+
----------
|
|
168
|
+
value : str
|
|
169
|
+
Specifies the pattern for text after and before.
|
|
170
|
+
"""
|
|
171
|
+
return self._set(textPattern=value)
|
|
172
|
+
|
|
173
|
+
def setExtractorMode(self, value):
|
|
174
|
+
return self._set(extractorMode=value)
|
|
175
|
+
|
|
176
|
+
def setIndex(self, value):
|
|
177
|
+
"""Sets the index of the pattern to extract in text after or before.
|
|
178
|
+
|
|
179
|
+
Parameters
|
|
180
|
+
----------
|
|
181
|
+
value : int
|
|
182
|
+
Specifies the index of the pattern to extract in text after or before.
|
|
183
|
+
"""
|
|
184
|
+
return self._set(index=value)
|
|
185
|
+
|
|
186
|
+
@keyword_only
|
|
187
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cleaners.Extractor", java_model=None):
|
|
188
|
+
super(Extractor, self).__init__(
|
|
189
|
+
classname=classname,
|
|
190
|
+
java_model=java_model
|
|
191
|
+
)
|
|
@@ -16,4 +16,9 @@ from sparknlp.annotator.cv.swin_for_image_classification import *
|
|
|
16
16
|
from sparknlp.annotator.cv.convnext_for_image_classification import *
|
|
17
17
|
from sparknlp.annotator.cv.vision_encoder_decoder_for_image_captioning import *
|
|
18
18
|
from sparknlp.annotator.cv.clip_for_zero_shot_classification import *
|
|
19
|
-
from sparknlp.annotator.cv.blip_for_question_answering import *
|
|
19
|
+
from sparknlp.annotator.cv.blip_for_question_answering import *
|
|
20
|
+
from sparknlp.annotator.cv.janus_for_multimodal import *
|
|
21
|
+
from sparknlp.annotator.cv.mllama_for_multimodal import *
|
|
22
|
+
from sparknlp.annotator.cv.qwen2vl_transformer import *
|
|
23
|
+
from sparknlp.annotator.cv.llava_for_multimodal import *
|
|
24
|
+
from sparknlp.annotator.cv.phi3_vision_for_multimodal import *
|
|
@@ -0,0 +1,356 @@
|
|
|
1
|
+
# Copyright 2017-2024 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from sparknlp.common import *
|
|
16
|
+
|
|
17
|
+
class JanusForMultiModal(AnnotatorModel,
|
|
18
|
+
HasBatchedAnnotateImage,
|
|
19
|
+
HasImageFeatureProperties,
|
|
20
|
+
HasEngine,
|
|
21
|
+
HasCandidateLabelsProperties,
|
|
22
|
+
HasRescaleFactor):
|
|
23
|
+
"""
|
|
24
|
+
JanusForMultiModal can load Janus Vision models for visual question answering.
|
|
25
|
+
The model consists of a vision encoder, a text encoder, and a text decoder.
|
|
26
|
+
The vision encoder encodes the input image, the text encoder processes the input question
|
|
27
|
+
alongside the image encoding, and the text decoder generates the answer to the question.
|
|
28
|
+
|
|
29
|
+
Janus is a novel autoregressive framework that unifies multimodal understanding and generation.
|
|
30
|
+
It decouples visual encoding into separate pathways while utilizing a single, unified transformer architecture for processing.
|
|
31
|
+
This decoupling alleviates conflicts between the visual encoder’s roles in understanding and generation, enhancing the framework’s flexibility.
|
|
32
|
+
|
|
33
|
+
Janus surpasses previous unified models and matches or exceeds the performance of task-specific models.
|
|
34
|
+
It uses the DeepSeek-LLM-1.3b-base trained on approximately 500B text tokens.
|
|
35
|
+
For multimodal understanding, it employs the SigLIP-L vision encoder supporting 384 x 384 image input,
|
|
36
|
+
and for image generation, it uses a tokenizer with a downsample rate of 16.
|
|
37
|
+
|
|
38
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion object:
|
|
39
|
+
>>> visualQAClassifier = JanusForMultiModal.pretrained() \
|
|
40
|
+
... .setInputCols(["image_assembler"]) \
|
|
41
|
+
... .setOutputCol("answer")
|
|
42
|
+
|
|
43
|
+
The default model is `"janus_1_3b_int4"`, if no name is provided.
|
|
44
|
+
For available pretrained models, refer to the `Models Hub
|
|
45
|
+
<https://sparknlp.org/models?task=Question+Answering>`__.
|
|
46
|
+
|
|
47
|
+
Models from the HuggingFace 🧧 Transformers library are also compatible with Spark NLP 🚀.
|
|
48
|
+
To check compatibility and learn how to import them, see `Import Transformers into Spark NLP 🚀
|
|
49
|
+
<https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
|
|
50
|
+
For extended examples, refer to the `JanusForMultiModal Test Suite
|
|
51
|
+
<https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/cv/JanusForMultiModalTest.scala>`_.
|
|
52
|
+
|
|
53
|
+
====================== ======================
|
|
54
|
+
Input Annotation types Output Annotation type
|
|
55
|
+
====================== ======================
|
|
56
|
+
``IMAGE`` ``DOCUMENT``
|
|
57
|
+
====================== ======================
|
|
58
|
+
|
|
59
|
+
Parameters
|
|
60
|
+
----------
|
|
61
|
+
batchSize : int, optional
|
|
62
|
+
Batch size. Larger values allow faster processing but require more memory,
|
|
63
|
+
by default 2.
|
|
64
|
+
configProtoBytes : bytes, optional
|
|
65
|
+
ConfigProto from TensorFlow, serialized into a byte array.
|
|
66
|
+
maxSentenceLength : int, optional
|
|
67
|
+
Maximum sentence length to process, by default 50.
|
|
68
|
+
|
|
69
|
+
Examples
|
|
70
|
+
--------
|
|
71
|
+
>>> import sparknlp
|
|
72
|
+
>>> from sparknlp.base import *
|
|
73
|
+
>>> from sparknlp.annotator import *
|
|
74
|
+
>>> from pyspark.ml import Pipeline
|
|
75
|
+
>>> from pyspark.sql.functions import lit
|
|
76
|
+
|
|
77
|
+
>>> image_df = SparkSessionForTest.spark.read.format("image").load(path=images_path)
|
|
78
|
+
>>> test_df = image_df.withColumn(
|
|
79
|
+
... "text",
|
|
80
|
+
... lit("User: <image_placeholder>Describe image in details\n\nAssistant:")
|
|
81
|
+
... )
|
|
82
|
+
|
|
83
|
+
>>> imageAssembler = ImageAssembler() \
|
|
84
|
+
... .setInputCol("image") \
|
|
85
|
+
... .setOutputCol("image_assembler")
|
|
86
|
+
|
|
87
|
+
>>> visualQAClassifier = JanusForMultiModal.pretrained() \
|
|
88
|
+
... .setInputCols("image_assembler") \
|
|
89
|
+
... .setOutputCol("answer")
|
|
90
|
+
|
|
91
|
+
>>> pipeline = Pipeline().setStages([
|
|
92
|
+
... imageAssembler,
|
|
93
|
+
... visualQAClassifier
|
|
94
|
+
... ])
|
|
95
|
+
|
|
96
|
+
>>> result = pipeline.fit(test_df).transform(test_df)
|
|
97
|
+
>>> result.select("image_assembler.origin", "answer.result").show(truncate=False)
|
|
98
|
+
|
|
99
|
+
+--------------------------------------+----------------------------------------------------------------------+
|
|
100
|
+
|origin |result |
|
|
101
|
+
+--------------------------------------+----------------------------------------------------------------------+
|
|
102
|
+
|[file:///content/images/cat_image.jpg]|[The unusual aspect of this picture is the presence of two cats lying on a pink couch]|
|
|
103
|
+
+--------------------------------------+----------------------------------------------------------------------+
|
|
104
|
+
"""
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
name = "JanusForMultiModal"
|
|
109
|
+
|
|
110
|
+
inputAnnotatorTypes = [AnnotatorType.IMAGE]
|
|
111
|
+
|
|
112
|
+
outputAnnotatorType = AnnotatorType.DOCUMENT
|
|
113
|
+
|
|
114
|
+
configProtoBytes = Param(Params._dummy(),
|
|
115
|
+
"configProtoBytes",
|
|
116
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with "
|
|
117
|
+
"config_proto.SerializeToString()",
|
|
118
|
+
TypeConverters.toListInt)
|
|
119
|
+
|
|
120
|
+
minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
|
|
121
|
+
typeConverter=TypeConverters.toInt)
|
|
122
|
+
|
|
123
|
+
maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
|
|
124
|
+
typeConverter=TypeConverters.toInt)
|
|
125
|
+
|
|
126
|
+
doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
|
|
127
|
+
typeConverter=TypeConverters.toBoolean)
|
|
128
|
+
|
|
129
|
+
temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
|
|
130
|
+
typeConverter=TypeConverters.toFloat)
|
|
131
|
+
|
|
132
|
+
topK = Param(Params._dummy(), "topK",
|
|
133
|
+
"The number of highest probability vocabulary tokens to keep for top-k-filtering",
|
|
134
|
+
typeConverter=TypeConverters.toInt)
|
|
135
|
+
|
|
136
|
+
topP = Param(Params._dummy(), "topP",
|
|
137
|
+
"If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
|
|
138
|
+
typeConverter=TypeConverters.toFloat)
|
|
139
|
+
|
|
140
|
+
repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
|
|
141
|
+
"The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
|
|
142
|
+
typeConverter=TypeConverters.toFloat)
|
|
143
|
+
|
|
144
|
+
noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
|
|
145
|
+
"If set to int > 0, all ngrams of that size can only occur once",
|
|
146
|
+
typeConverter=TypeConverters.toInt)
|
|
147
|
+
|
|
148
|
+
ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
|
|
149
|
+
"A list of token ids which are ignored in the decoder's output",
|
|
150
|
+
typeConverter=TypeConverters.toListInt)
|
|
151
|
+
beamSize = Param(Params._dummy(), "beamSize",
|
|
152
|
+
"The Number of beams for beam search.",
|
|
153
|
+
typeConverter=TypeConverters.toInt)
|
|
154
|
+
imageGenerateMode = Param(Params._dummy(), "imageGenerateMode",
|
|
155
|
+
"Image generation mode",
|
|
156
|
+
typeConverter=TypeConverters.toBoolean)
|
|
157
|
+
numOfParallelImages = Param(Params._dummy(), "numOfParallelImages",
|
|
158
|
+
"Number of parallel images to Generate",
|
|
159
|
+
typeConverter=TypeConverters.toInt)
|
|
160
|
+
|
|
161
|
+
def setMaxSentenceSize(self, value):
|
|
162
|
+
"""Sets Maximum sentence length that the annotator will process, by
|
|
163
|
+
default 50.
|
|
164
|
+
Parameters
|
|
165
|
+
----------
|
|
166
|
+
value : int
|
|
167
|
+
Maximum sentence length that the annotator will process
|
|
168
|
+
"""
|
|
169
|
+
return self._set(maxSentenceLength=value)
|
|
170
|
+
|
|
171
|
+
def setIgnoreTokenIds(self, value):
|
|
172
|
+
"""A list of token ids which are ignored in the decoder's output.
|
|
173
|
+
Parameters
|
|
174
|
+
----------
|
|
175
|
+
value : List[int]
|
|
176
|
+
The words to be filtered out
|
|
177
|
+
"""
|
|
178
|
+
return self._set(ignoreTokenIds=value)
|
|
179
|
+
|
|
180
|
+
def setConfigProtoBytes(self, b):
|
|
181
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
182
|
+
Parameters
|
|
183
|
+
----------
|
|
184
|
+
b : List[int]
|
|
185
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
186
|
+
"""
|
|
187
|
+
return self._set(configProtoBytes=b)
|
|
188
|
+
|
|
189
|
+
def setMinOutputLength(self, value):
|
|
190
|
+
"""Sets minimum length of the sequence to be generated.
|
|
191
|
+
Parameters
|
|
192
|
+
----------
|
|
193
|
+
value : int
|
|
194
|
+
Minimum length of the sequence to be generated
|
|
195
|
+
"""
|
|
196
|
+
return self._set(minOutputLength=value)
|
|
197
|
+
|
|
198
|
+
def setMaxOutputLength(self, value):
|
|
199
|
+
"""Sets maximum length of output text.
|
|
200
|
+
Parameters
|
|
201
|
+
----------
|
|
202
|
+
value : int
|
|
203
|
+
Maximum length of output text
|
|
204
|
+
"""
|
|
205
|
+
return self._set(maxOutputLength=value)
|
|
206
|
+
|
|
207
|
+
def setDoSample(self, value):
|
|
208
|
+
"""Sets whether or not to use sampling, use greedy decoding otherwise.
|
|
209
|
+
Parameters
|
|
210
|
+
----------
|
|
211
|
+
value : bool
|
|
212
|
+
Whether or not to use sampling; use greedy decoding otherwise
|
|
213
|
+
"""
|
|
214
|
+
return self._set(doSample=value)
|
|
215
|
+
|
|
216
|
+
def setTemperature(self, value):
|
|
217
|
+
"""Sets the value used to module the next token probabilities.
|
|
218
|
+
Parameters
|
|
219
|
+
----------
|
|
220
|
+
value : float
|
|
221
|
+
The value used to module the next token probabilities
|
|
222
|
+
"""
|
|
223
|
+
return self._set(temperature=value)
|
|
224
|
+
|
|
225
|
+
def setTopK(self, value):
|
|
226
|
+
"""Sets the number of highest probability vocabulary tokens to keep for
|
|
227
|
+
top-k-filtering.
|
|
228
|
+
Parameters
|
|
229
|
+
----------
|
|
230
|
+
value : int
|
|
231
|
+
Number of highest probability vocabulary tokens to keep
|
|
232
|
+
"""
|
|
233
|
+
return self._set(topK=value)
|
|
234
|
+
|
|
235
|
+
def setTopP(self, value):
|
|
236
|
+
"""Sets the top cumulative probability for vocabulary tokens.
|
|
237
|
+
If set to float < 1, only the most probable tokens with probabilities
|
|
238
|
+
that add up to ``topP`` or higher are kept for generation.
|
|
239
|
+
Parameters
|
|
240
|
+
----------
|
|
241
|
+
value : float
|
|
242
|
+
Cumulative probability for vocabulary tokens
|
|
243
|
+
"""
|
|
244
|
+
return self._set(topP=value)
|
|
245
|
+
|
|
246
|
+
def setRepetitionPenalty(self, value):
|
|
247
|
+
"""Sets the parameter for repetition penalty. 1.0 means no penalty.
|
|
248
|
+
Parameters
|
|
249
|
+
----------
|
|
250
|
+
value : float
|
|
251
|
+
The repetition penalty
|
|
252
|
+
References
|
|
253
|
+
----------
|
|
254
|
+
See `Ctrl: A Conditional Transformer Language Model For Controllable
|
|
255
|
+
Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
|
|
256
|
+
"""
|
|
257
|
+
return self._set(repetitionPenalty=value)
|
|
258
|
+
|
|
259
|
+
def setNoRepeatNgramSize(self, value):
|
|
260
|
+
"""Sets size of n-grams that can only occur once.
|
|
261
|
+
If set to int > 0, all ngrams of that size can only occur once.
|
|
262
|
+
Parameters
|
|
263
|
+
----------
|
|
264
|
+
value : int
|
|
265
|
+
N-gram size can only occur once
|
|
266
|
+
"""
|
|
267
|
+
return self._set(noRepeatNgramSize=value)
|
|
268
|
+
|
|
269
|
+
def setBeamSize(self, value):
|
|
270
|
+
"""Sets the number of beam size for beam search, by default `4`.
|
|
271
|
+
Parameters
|
|
272
|
+
----------
|
|
273
|
+
value : int
|
|
274
|
+
Number of beam size for beam search
|
|
275
|
+
"""
|
|
276
|
+
return self._set(beamSize=value)
|
|
277
|
+
|
|
278
|
+
def setImageGenerateMode(self, value):
|
|
279
|
+
"""Sets the image generation mode.
|
|
280
|
+
Parameters
|
|
281
|
+
----------
|
|
282
|
+
value : bool
|
|
283
|
+
Image generation mode
|
|
284
|
+
"""
|
|
285
|
+
return self._set(imageGenerateMode=value)
|
|
286
|
+
|
|
287
|
+
def setNumOfParallelImages(self, value):
|
|
288
|
+
"""Sets the number of parallel images to generate.
|
|
289
|
+
Parameters
|
|
290
|
+
----------
|
|
291
|
+
value : int
|
|
292
|
+
Number of parallel images to generate
|
|
293
|
+
"""
|
|
294
|
+
return self._set(numOfParallelImages=value)
|
|
295
|
+
|
|
296
|
+
@keyword_only
|
|
297
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.JanusForMultiModal",
|
|
298
|
+
java_model=None):
|
|
299
|
+
super(JanusForMultiModal, self).__init__(
|
|
300
|
+
classname=classname,
|
|
301
|
+
java_model=java_model
|
|
302
|
+
)
|
|
303
|
+
self._setDefault(
|
|
304
|
+
batchSize=1,
|
|
305
|
+
minOutputLength=0,
|
|
306
|
+
maxOutputLength=50,
|
|
307
|
+
doSample=False,
|
|
308
|
+
temperature=1,
|
|
309
|
+
topK=50,
|
|
310
|
+
topP=1,
|
|
311
|
+
repetitionPenalty=1.0,
|
|
312
|
+
noRepeatNgramSize=0,
|
|
313
|
+
ignoreTokenIds=[],
|
|
314
|
+
beamSize=1,
|
|
315
|
+
imageGenerateMode=False,
|
|
316
|
+
numOfParallelImages=1
|
|
317
|
+
)
|
|
318
|
+
|
|
319
|
+
@staticmethod
|
|
320
|
+
def loadSavedModel(folder, spark_session, use_openvino=False):
|
|
321
|
+
"""Loads a locally saved model.
|
|
322
|
+
Parameters
|
|
323
|
+
----------
|
|
324
|
+
folder : str
|
|
325
|
+
Folder of the saved model
|
|
326
|
+
spark_session : pyspark.sql.SparkSession
|
|
327
|
+
The current SparkSession
|
|
328
|
+
Returns
|
|
329
|
+
-------
|
|
330
|
+
CLIPForZeroShotClassification
|
|
331
|
+
The restored model
|
|
332
|
+
"""
|
|
333
|
+
from sparknlp.internal import _JanusForMultiModalLoader
|
|
334
|
+
jModel = _JanusForMultiModalLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
|
|
335
|
+
return JanusForMultiModal(java_model=jModel)
|
|
336
|
+
|
|
337
|
+
@staticmethod
|
|
338
|
+
def pretrained(name="janus_1_3b_int4", lang="en", remote_loc=None):
|
|
339
|
+
"""Downloads and loads a pretrained model.
|
|
340
|
+
Parameters
|
|
341
|
+
----------
|
|
342
|
+
name : str, optional
|
|
343
|
+
Name of the pretrained model, by default
|
|
344
|
+
"janus_1_3b_int4"
|
|
345
|
+
lang : str, optional
|
|
346
|
+
Language of the pretrained model, by default "en"
|
|
347
|
+
remote_loc : str, optional
|
|
348
|
+
Optional remote address of the resource, by default None. Will use
|
|
349
|
+
Spark NLPs repositories otherwise.
|
|
350
|
+
Returns
|
|
351
|
+
-------
|
|
352
|
+
CLIPForZeroShotClassification
|
|
353
|
+
The restored model
|
|
354
|
+
"""
|
|
355
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
356
|
+
return ResourceDownloader.downloadModel(JanusForMultiModal, name, lang, remote_loc)
|