spark-nlp 5.5.1__py2.py3-none-any.whl → 5.5.3__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of spark-nlp might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: spark-nlp
3
- Version: 5.5.1
3
+ Version: 5.5.3
4
4
  Summary: John Snow Labs Spark NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment.
5
5
  Home-page: https://github.com/JohnSnowLabs/spark-nlp
6
6
  Author: John Snow Labs
@@ -95,7 +95,7 @@ $ java -version
95
95
  $ conda create -n sparknlp python=3.7 -y
96
96
  $ conda activate sparknlp
97
97
  # spark-nlp by default is based on pyspark 3.x
98
- $ pip install spark-nlp==5.5.1 pyspark==3.3.1
98
+ $ pip install spark-nlp==5.5.3 pyspark==3.3.1
99
99
  ```
100
100
 
101
101
  In Python console or Jupyter `Python3` kernel:
@@ -161,7 +161,7 @@ For a quick example of using pipelines and models take a look at our official [d
161
161
 
162
162
  ### Apache Spark Support
163
163
 
164
- Spark NLP *5.5.1* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x
164
+ Spark NLP *5.5.3* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x
165
165
 
166
166
  | Spark NLP | Apache Spark 3.5.x | Apache Spark 3.4.x | Apache Spark 3.3.x | Apache Spark 3.2.x | Apache Spark 3.1.x | Apache Spark 3.0.x | Apache Spark 2.4.x | Apache Spark 2.3.x |
167
167
  |-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
@@ -189,7 +189,7 @@ Find out more about 4.x `SparkNLP` versions in our official [documentation](http
189
189
 
190
190
  ### Databricks Support
191
191
 
192
- Spark NLP 5.5.1 has been tested and is compatible with the following runtimes:
192
+ Spark NLP 5.5.3 has been tested and is compatible with the following runtimes:
193
193
 
194
194
  | **CPU** | **GPU** |
195
195
  |--------------------|--------------------|
@@ -206,7 +206,7 @@ We are compatible with older runtimes. For a full list check databricks support
206
206
 
207
207
  ### EMR Support
208
208
 
209
- Spark NLP 5.5.1 has been tested and is compatible with the following EMR releases:
209
+ Spark NLP 5.5.3 has been tested and is compatible with the following EMR releases:
210
210
 
211
211
  | **EMR Release** |
212
212
  |--------------------|
@@ -237,7 +237,7 @@ deployed to Maven central. To add any of our packages as a dependency in your ap
237
237
  from our official documentation.
238
238
 
239
239
  If you are interested, there is a simple SBT project for Spark NLP to guide you on how to use it in your
240
- projects [Spark NLP SBT S5.5.1r](https://github.com/maziyarpanahi/spark-nlp-starter)
240
+ projects [Spark NLP SBT S5.5.3r](https://github.com/maziyarpanahi/spark-nlp-starter)
241
241
 
242
242
  ### Python
243
243
 
@@ -282,7 +282,7 @@ In Spark NLP we can define S3 locations to:
282
282
 
283
283
  Please check [these instructions](https://sparknlp.org/docs/en/install#s3-integration) from our official documentation.
284
284
 
285
- ## Document5.5.1
285
+ ## Document5.5.3
286
286
 
287
287
  ### Examples
288
288
 
@@ -315,7 +315,7 @@ the Spark NLP library:
315
315
  keywords = {Spark, Natural language processing, Deep learning, Tensorflow, Cluster},
316
316
  abstract = {Spark NLP is a Natural Language Processing (NLP) library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines that can scale easily in a distributed environment. Spark NLP comes with 1100+ pretrained pipelines and models in more than 192+ languages. It supports nearly all the NLP tasks and modules that can be used seamlessly in a cluster. Downloaded more than 2.7 million times and experiencing 9x growth since January 2020, Spark NLP is used by 54% of healthcare organizations as the world’s most widely used NLP library in the enterprise.}
317
317
  }
318
- }5.5.1
318
+ }5.5.3
319
319
  ```
320
320
 
321
321
  ## Community support
@@ -3,7 +3,7 @@ com/johnsnowlabs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,
3
3
  com/johnsnowlabs/ml/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  com/johnsnowlabs/ml/ai/__init__.py,sha256=YQiK2M7U4d8y5irPy_HB8ae0mSpqS9583MH44pnKJXc,295
5
5
  com/johnsnowlabs/nlp/__init__.py,sha256=DPIVXtONO5xXyOk-HB0-sNiHAcco17NN13zPS_6Uw8c,294
6
- sparknlp/__init__.py,sha256=26U34YGDYCBbYHr3rpxvy71snUYuoFhl5XfUvxkPv7M,13638
6
+ sparknlp/__init__.py,sha256=Wmw9AZuFatQEjZ0WucHWPO4yF4HTsEZOVZ27IaEAbok,13783
7
7
  sparknlp/annotation.py,sha256=I5zOxG5vV2RfPZfqN9enT1i4mo6oBcn3Lrzs37QiOiA,5635
8
8
  sparknlp/annotation_audio.py,sha256=iRV_InSVhgvAwSRe9NTbUH9v6OGvTM-FPCpSAKVu0mE,1917
9
9
  sparknlp/annotation_image.py,sha256=xhCe8Ko-77XqWVuuYHFrjKqF6zPd8Z-RY_rmZXNwCXU,2547
@@ -75,7 +75,8 @@ sparknlp/annotator/classifier_dl/xlnet_for_sequence_classification.py,sha256=CI9
75
75
  sparknlp/annotator/classifier_dl/xlnet_for_token_classification.py,sha256=SndQpIfslsSYEOX-myLjpUS6-wVIeDG8MOhJYcu2_7M,6739
76
76
  sparknlp/annotator/coref/__init__.py,sha256=SG8MAaVxQpoYYAsyKaoOlvlHjorDzj3DHt4nnEdBWm8,53
77
77
  sparknlp/annotator/coref/spanbert_coref.py,sha256=AXWJhvVquY2uoApO_Np1fz7_KyJhxnZB4i-xk78sBfc,8407
78
- sparknlp/annotator/cv/__init__.py,sha256=LYbR0X-Wl-NkoWpSzovmhSQzk8zcCBAhqZfVd6YLnKs,943
78
+ sparknlp/annotator/cv/__init__.py,sha256=194aJ5N5eE3HOYRzAAdroHTTQ0o1qyCrgyRLddvqBp0,1006
79
+ sparknlp/annotator/cv/blip_for_question_answering.py,sha256=At7L5pPBNDR1r-JGLKM5b3dTrq5Ecz9r0M1gToUVZTs,6551
79
80
  sparknlp/annotator/cv/clip_for_zero_shot_classification.py,sha256=_1pLc9BiFrFN10eJPCDJLJT-vdnTSG9OnB25Y_kKJIA,7528
80
81
  sparknlp/annotator/cv/convnext_for_image_classification.py,sha256=KzaAlYW5M2l73zUozzgg8_p14eGDz9k9PYVAUZLN25k,11874
81
82
  sparknlp/annotator/cv/swin_for_image_classification.py,sha256=iZ1KY0GInbQmGzkmuNbds4PGPwCheLXc-Syv2HRmqug,10694
@@ -84,11 +85,12 @@ sparknlp/annotator/cv/vit_for_image_classification.py,sha256=D2V3pxAd3rBi1817lxV
84
85
  sparknlp/annotator/dependency/__init__.py,sha256=eV43oXAGaYl2N1XKIEAAZJLNP8gpHm8VxuXDeDlQzR4,774
85
86
  sparknlp/annotator/dependency/dependency_parser.py,sha256=SxyvHPp8Hs1Xnm5X1nLTMi095XoQMtfL8pbys15mYAI,11212
86
87
  sparknlp/annotator/dependency/typed_dependency_parser.py,sha256=60vPdYkbFk9MPGegg3m9Uik9cMXpMZd8tBvXG39gNww,12456
87
- sparknlp/annotator/embeddings/__init__.py,sha256=WifjEILUN6lZs4_WIX80xl5hrrsSrBK-4oVaLh-tONc,2343
88
+ sparknlp/annotator/embeddings/__init__.py,sha256=KHDCHb8SMlkSGGSu69SfKneUDDUlBdMGdMzDrYp_cis,2408
88
89
  sparknlp/annotator/embeddings/albert_embeddings.py,sha256=6Rd1LIn8oFIpq_ALcJh-RUjPEO7Ht8wsHY6JHSFyMkw,9995
90
+ sparknlp/annotator/embeddings/auto_gguf_embeddings.py,sha256=ngqjiXUqkL3xOrmt42bY8pp7azgbIWqXGfbKud1CijM,19981
89
91
  sparknlp/annotator/embeddings/bert_embeddings.py,sha256=HVUjkg56kBcpGZCo-fmPG5uatMDF3swW_lnbpy1SgSI,8463
90
92
  sparknlp/annotator/embeddings/bert_sentence_embeddings.py,sha256=NQy9KuXT9aKsTpYCR5RAeoFWI2YqEGorbdYrf_0KKmw,9148
91
- sparknlp/annotator/embeddings/bge_embeddings.py,sha256=hXFFd9HOru1w2L9N5YGSZlaKyxqMsZccpaI4Z8-bNUE,7919
93
+ sparknlp/annotator/embeddings/bge_embeddings.py,sha256=Y4b6QzRJGc_Z9_R6SYq-P5NxcvI9XzJlBzwCLLHJpRo,8103
92
94
  sparknlp/annotator/embeddings/camembert_embeddings.py,sha256=dBTXas-2Tas_JUR9Xt_GtHLcyqi_cdvT5EHRnyVrSSQ,8817
93
95
  sparknlp/annotator/embeddings/chunk_embeddings.py,sha256=WUmkJimSuFkdcLJnvcxOV0QlCLgGlhub29ZTrZb70WE,6052
94
96
  sparknlp/annotator/embeddings/deberta_embeddings.py,sha256=_b5nzLb7heFQNN-uT2oBNO6-YmM8bHmAdnGXg47HOWw,8649
@@ -100,7 +102,7 @@ sparknlp/annotator/embeddings/instructor_embeddings.py,sha256=CTKmbuBOx_KBM4JM-Y
100
102
  sparknlp/annotator/embeddings/longformer_embeddings.py,sha256=jS4fxB5O0-d9ta9VKv8ai-17n5YHt5rML8QxUw7K4Io,8754
101
103
  sparknlp/annotator/embeddings/mpnet_embeddings.py,sha256=7d6E4lS7jjkppDPvty1UHNNrbykkriFiysrxZ_RzL0U,7875
102
104
  sparknlp/annotator/embeddings/mxbai_embeddings.py,sha256=kCaYcM3lLYJjhElLK5isdxzJqIvoGZlUKKNkySMUkE8,6017
103
- sparknlp/annotator/embeddings/nomic_embeddings.py,sha256=SfiTTpx0MqeHGC_nyoFNxJbfEQL4v-PrNH6hAOFsd8c,7338
105
+ sparknlp/annotator/embeddings/nomic_embeddings.py,sha256=WTllH3htx9wDD2Le8pZgKVPM_U8XNmroJb6f4PeVeP8,7347
104
106
  sparknlp/annotator/embeddings/roberta_embeddings.py,sha256=q_WHby2lDcPc5bVHkGc6X_GwT3qyDUBLUVz5ZW4HCSY,9229
105
107
  sparknlp/annotator/embeddings/roberta_sentence_embeddings.py,sha256=KVrD4z_tIU-sphK6dmbbnHBBt8-Y89C_BFQAkN99kZo,8181
106
108
  sparknlp/annotator/embeddings/sentence_embeddings.py,sha256=azuA1FKMtTJ9suwJqTEHeWHumT6kYdfURTe_1fsqcB8,5402
@@ -146,19 +148,19 @@ sparknlp/annotator/sentiment/__init__.py,sha256=Lq3vKaZS1YATLMg0VNXSVtkWL5q5G9ta
146
148
  sparknlp/annotator/sentiment/sentiment_detector.py,sha256=m545NGU0Xzg_PO6_qIfpli1uZj7JQcyFgqe9R6wAPFI,8154
147
149
  sparknlp/annotator/sentiment/vivekn_sentiment.py,sha256=4rpXWDgzU6ddnbrSCp9VdLb2epCc9oZ3c6XcqxEw8nk,9655
148
150
  sparknlp/annotator/seq2seq/__init__.py,sha256=Fdz1zsxpB6vM2a0sKuGCSMD1ZgqeVqAez0-AtppMGB4,1541
149
- sparknlp/annotator/seq2seq/auto_gguf_model.py,sha256=IrhVFUh8SFodJBl5k_V6_7qCu_Ib1l223t3dzp3HsZI,39402
151
+ sparknlp/annotator/seq2seq/auto_gguf_model.py,sha256=pTQq3KztHQq3fybdCmXEq5wTlb0t-5ANCfdQ_-7oQRg,38343
150
152
  sparknlp/annotator/seq2seq/bart_transformer.py,sha256=I1flM4yeCzEAKOdQllBC30XuedxVJ7ferkFhZ6gwEbE,18481
151
- sparknlp/annotator/seq2seq/cpm_transformer.py,sha256=zRbw_xAsaRnhuyYAW8UAGhz7mIyhpqk09nCsJb8-7rg,13298
153
+ sparknlp/annotator/seq2seq/cpm_transformer.py,sha256=0CnBFMlxMu0pD2QZMHyoGtIYgXqfUQm68vr6zEAa6Eg,13290
152
154
  sparknlp/annotator/seq2seq/gpt2_transformer.py,sha256=Oz95R_NRR4tWHu_bW6Ak2832ZILXycp3ify7LfRSi8o,15310
153
155
  sparknlp/annotator/seq2seq/llama2_transformer.py,sha256=3LzTR0VerFdFmOizsrs2Q7HTnjELJ5WtfUgx5XnOqGM,13898
154
156
  sparknlp/annotator/seq2seq/llama3_transformer.py,sha256=dA3rIEVOLmlnJwhqkYmL_GrrcRVpoUY_i7QIyA5N2jM,14920
155
157
  sparknlp/annotator/seq2seq/m2m100_transformer.py,sha256=uIL9RZuuryTIdAy9TbJf9wbz6RekhW8S079bJhaB6i4,16116
156
158
  sparknlp/annotator/seq2seq/marian_transformer.py,sha256=mQ4Ylh7ZzXAOue8f-x0gqzfS3vAz3XUdD7eQ2XhcEs4,13781
157
159
  sparknlp/annotator/seq2seq/mistral_transformer.py,sha256=PJegrSQts_58rkt96xaHlqU1fKIaz8hxt7DTPkGS10A,14254
158
- sparknlp/annotator/seq2seq/nllb_transformer.py,sha256=hbE2k5YDAZUWPk0qyx6-5xIZi3nBFeFqLcr6lEU9LZ8,19474
160
+ sparknlp/annotator/seq2seq/nllb_transformer.py,sha256=hOmdJOgl_-_PxoADrV-tVYmlfFrqNwvn6Vn2RC4siZM,19534
159
161
  sparknlp/annotator/seq2seq/phi2_transformer.py,sha256=WwKCUOH8qGFv62YF63HjuT7bMVldh06gHvaZH3tbSDk,13787
160
- sparknlp/annotator/seq2seq/phi3_transformer.py,sha256=rIFSS0sit9kUazUvMvwGFSRRsIuFNqpLH28bVKkFzx4,14219
161
- sparknlp/annotator/seq2seq/qwen_transformer.py,sha256=UmxF84gQsqFVyofuki9TxaPTS_fP71WTj-ylCMLKsYY,14624
162
+ sparknlp/annotator/seq2seq/phi3_transformer.py,sha256=arIcw5NDMv3ubBwWz3KYRdLMsspTiEI8vk4s00lyq1c,14293
163
+ sparknlp/annotator/seq2seq/qwen_transformer.py,sha256=cOpOlz5r_apmVHZgp7uFjybSzVj2yxv8QYlYcGwFyKg,14645
162
164
  sparknlp/annotator/seq2seq/starcoder_transformer.py,sha256=BTXbSMRpXnDvrfh-6iFS5k6g6EcPV9zBl4U-SSC19wA,14293
163
165
  sparknlp/annotator/seq2seq/t5_transformer.py,sha256=wDVxNLluIU1HGZFqaKKc4YTt4l-elPlAtQ7EEa0f5tg,17308
164
166
  sparknlp/annotator/similarity/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -183,8 +185,8 @@ sparknlp/base/finisher.py,sha256=V4wkMm9Ug09q4zTQc9T9Wr-awmu2Hu-eNaJ039YgZXM,858
183
185
  sparknlp/base/graph_finisher.py,sha256=a8fxk3ei2YQw6s0Y9Yy8oMOF1i1XUrgqaiwVE0VPt4w,4834
184
186
  sparknlp/base/has_recursive_fit.py,sha256=P55rSHLIXhihXWS2bOC_DskcQTc3njieVD1JkjS2bcA,849
185
187
  sparknlp/base/has_recursive_transform.py,sha256=UkGNgo4LMsjQC-Coeefg4bJcg7FoPcPiG382zEa6Ywk,841
186
- sparknlp/base/image_assembler.py,sha256=HytRoYJTLMqGtvScHoFnp6CasG9IVNYAHYiT2_rrmeE,3719
187
- sparknlp/base/light_pipeline.py,sha256=Jk2DLpT4PLHCANlOo_WetTdPba_5lYs3ywiyY3lM-PE,16577
188
+ sparknlp/base/image_assembler.py,sha256=HH7ZJ-iZCXnBXVXekQLb1ei_HJuVxhYNVb94OrVLmeY,4068
189
+ sparknlp/base/light_pipeline.py,sha256=2lOstyyK0o6L3BHPIZWQBpIKtJ7LcSz3Pvgo6eZDs5U,17023
188
190
  sparknlp/base/multi_document_assembler.py,sha256=4htET1fRAeOB6zhsNXsBq5rKZvn-LGD4vrFRjPZeqow,7070
189
191
  sparknlp/base/prompt_assembler.py,sha256=ysU4Vbmnuv2UBHK0JBkYrxiZiJ7_GTcVMip1-QRmheI,11570
190
192
  sparknlp/base/recursive_pipeline.py,sha256=V9rTnu8KMwgjoceykN9pF1mKGtOkkuiC_n9v8dE3LDk,4279
@@ -197,12 +199,12 @@ sparknlp/common/annotator_properties.py,sha256=7B1os7pBUfHo6b7IPQAXQ-nir0u3tQLzD
197
199
  sparknlp/common/annotator_type.py,sha256=ash2Ip1IOOiJamPVyy_XQj8Ja_DRHm0b9Vj4Ni75oKM,1225
198
200
  sparknlp/common/coverage_result.py,sha256=No4PSh1HSs3PyRI1zC47x65tWgfirqPI290icHQoXEI,823
199
201
  sparknlp/common/match_strategy.py,sha256=kt1MUPqU1wCwk5qCdYk6jubHbU-5yfAYxb9jjAOrdnY,1678
200
- sparknlp/common/properties.py,sha256=454BAfebYhg_l7lfjXSCKPWzmCgmU3IT-r2yLGG22DI,22912
202
+ sparknlp/common/properties.py,sha256=TMUpY0EQ3b-GXO9iuctkKrunLhRYePqu2fbmHfocr2w,23870
201
203
  sparknlp/common/read_as.py,sha256=imxPGwV7jr4Li_acbo0OAHHRGCBbYv-akzEGaBWEfcY,1226
202
204
  sparknlp/common/recursive_annotator_approach.py,sha256=vqugBw22cE3Ff7PIpRlnYFuOlchgL0nM26D8j-NdpqU,1449
203
205
  sparknlp/common/storage.py,sha256=D91H3p8EIjNspjqAYu6ephRpCUtdcAir4_PrAbkIQWE,4842
204
206
  sparknlp/common/utils.py,sha256=Yne6yYcwKxhOZC-U4qfYoDhWUP_6BIaAjI5X_P_df1E,1306
205
- sparknlp/internal/__init__.py,sha256=ljEf4IUraCdKU7gKFxNwFxlX-FHcnkG6sqs1MxEhLSQ,33967
207
+ sparknlp/internal/__init__.py,sha256=BttGS21n2-LGjx8udi7f4_nNt_BeUnfif9WpeZchuFE,34502
206
208
  sparknlp/internal/annotator_java_ml.py,sha256=UGPoThG0rGXUOXGSQnDzEDW81Mu1s5RPF29v7DFyE3c,1187
207
209
  sparknlp/internal/annotator_transformer.py,sha256=fXmc2IWXGybqZpbEU9obmbdBYPc798y42zvSB4tqV9U,1448
208
210
  sparknlp/internal/extended_java_wrapper.py,sha256=hwP0133-hDiDf5sBF-P3MtUsuuDj1PpQbtGZQIRwzfk,2240
@@ -214,6 +216,8 @@ sparknlp/pretrained/__init__.py,sha256=GV-x9UBK8F2_IR6zYatrzFcVJtkSUIMbxqWsxRUeP
214
216
  sparknlp/pretrained/pretrained_pipeline.py,sha256=lquxiaABuA68Rmu7csamJPqBoRJqMUO0oNHsmEZDAIs,5740
215
217
  sparknlp/pretrained/resource_downloader.py,sha256=8_-rpvO2LsX_Lq4wMPif2ca3RlJZWEabt8pDm2xymiI,7806
216
218
  sparknlp/pretrained/utils.py,sha256=T1MrvW_DaWk_jcOjVLOea0NMFE9w8fe0ZT_5urZ_nEY,1099
219
+ sparknlp/reader/__init__.py,sha256=-Toj3AIBki-zXPpV8ezFTI2LX1yP_rK2bhpoa8nBkTw,685
220
+ sparknlp/reader/sparknlp_reader.py,sha256=cMliB2zDcmhxp44mu8aRcm5nFK2BXeFCuGgVUkhI8YQ,3825
217
221
  sparknlp/training/__init__.py,sha256=qREi9u-5Vc2VjpL6-XZsyvu5jSEIdIhowW7_kKaqMqo,852
218
222
  sparknlp/training/conll.py,sha256=wKBiSTrjc6mjsl7Nyt6B8f4yXsDJkZb-sn8iOjix9cE,6961
219
223
  sparknlp/training/conllu.py,sha256=8r3i-tmyrLsyk1DtZ9uo2mMDCWb1yw2Y5W6UsV13MkY,4953
@@ -244,8 +248,8 @@ sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py,sha256=R4yHFN3
244
248
  sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py,sha256=EoCSdcIjqQ3wv13MAuuWrKV8wyVBP0SbOEW41omHlR0,23189
245
249
  sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py,sha256=k5CQ7gKV6HZbZMB8cKLUJuZxoZWlP_DFWdZ--aIDwsc,2356
246
250
  sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py,sha256=pAxjWhjazSX8Vg0MFqJiuRVw1IbnQNSs-8Xp26L4nko,870
247
- spark_nlp-5.5.1.dist-info/.uuid,sha256=1f6hF51aIuv9yCvh31NU9lOpS34NE-h3a0Et7R9yR6A,36
248
- spark_nlp-5.5.1.dist-info/METADATA,sha256=Y7Y0nf18tO2RfHzagHWWZpn4QRrF50d5wP3hXG1eFyw,19156
249
- spark_nlp-5.5.1.dist-info/WHEEL,sha256=bb2Ot9scclHKMOLDEHY6B2sicWOgugjFKaJsT7vwMQo,110
250
- spark_nlp-5.5.1.dist-info/top_level.txt,sha256=uuytur4pyMRw2H_txNY2ZkaucZHUs22QF8-R03ch_-E,13
251
- spark_nlp-5.5.1.dist-info/RECORD,,
251
+ spark_nlp-5.5.3.dist-info/.uuid,sha256=1f6hF51aIuv9yCvh31NU9lOpS34NE-h3a0Et7R9yR6A,36
252
+ spark_nlp-5.5.3.dist-info/METADATA,sha256=rZJcS1xIcl3Vota-hC2wHauvrHO45e9c8Y86MjVt4go,19156
253
+ spark_nlp-5.5.3.dist-info/WHEEL,sha256=bb2Ot9scclHKMOLDEHY6B2sicWOgugjFKaJsT7vwMQo,110
254
+ spark_nlp-5.5.3.dist-info/top_level.txt,sha256=uuytur4pyMRw2H_txNY2ZkaucZHUs22QF8-R03ch_-E,13
255
+ spark_nlp-5.5.3.dist-info/RECORD,,
sparknlp/__init__.py CHANGED
@@ -12,17 +12,20 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
- import sys
16
15
  import subprocess
16
+ import sys
17
17
  import threading
18
+
19
+ from pyspark.conf import SparkConf
20
+ from pyspark.context import SparkContext
21
+ from pyspark.java_gateway import launch_gateway
18
22
  from pyspark.sql import SparkSession
23
+
19
24
  from sparknlp import annotator
20
25
  # Must be declared here one by one or else PretrainedPipeline will fail with AttributeError
21
26
  from sparknlp.base import DocumentAssembler, MultiDocumentAssembler, Finisher, EmbeddingsFinisher, TokenAssembler, \
22
27
  Doc2Chunk, AudioAssembler, GraphFinisher, ImageAssembler, TableAssembler
23
- from pyspark.conf import SparkConf
24
- from pyspark.context import SparkContext
25
- from pyspark.java_gateway import launch_gateway
28
+ from sparknlp.reader import SparkNLPReader
26
29
 
27
30
  sys.modules['com.johnsnowlabs.nlp.annotators'] = annotator
28
31
  sys.modules['com.johnsnsowlabs.nlp.annotators.tokenizer'] = annotator
@@ -129,7 +132,7 @@ def start(gpu=False,
129
132
  The initiated Spark session.
130
133
 
131
134
  """
132
- current_version = "5.5.1"
135
+ current_version = "5.5.3"
133
136
 
134
137
  if params is None:
135
138
  params = {}
@@ -301,6 +304,9 @@ def start(gpu=False,
301
304
  spark_session = start_without_realtime_output()
302
305
  return spark_session
303
306
 
307
+ def read(params=None):
308
+ spark_session = start()
309
+ return SparkNLPReader(spark_session, params)
304
310
 
305
311
  def version():
306
312
  """Returns the current Spark NLP version.
@@ -310,4 +316,4 @@ def version():
310
316
  str
311
317
  The current Spark NLP version.
312
318
  """
313
- return '5.5.1'
319
+ return '5.5.3'
@@ -16,3 +16,4 @@ from sparknlp.annotator.cv.swin_for_image_classification import *
16
16
  from sparknlp.annotator.cv.convnext_for_image_classification import *
17
17
  from sparknlp.annotator.cv.vision_encoder_decoder_for_image_captioning import *
18
18
  from sparknlp.annotator.cv.clip_for_zero_shot_classification import *
19
+ from sparknlp.annotator.cv.blip_for_question_answering import *
@@ -0,0 +1,172 @@
1
+ # Copyright 2017-2024 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from sparknlp.common import *
16
+
17
+ class BLIPForQuestionAnswering(AnnotatorModel,
18
+ HasBatchedAnnotateImage,
19
+ HasImageFeatureProperties,
20
+ HasEngine,
21
+ HasCandidateLabelsProperties,
22
+ HasRescaleFactor):
23
+ """BLIPForQuestionAnswering can load BLIP models for visual question answering.
24
+ The model consists of a vision encoder, a text encoder as well as a text decoder.
25
+ The vision encoder will encode the input image, the text encoder will encode the input question together
26
+ with the encoding of the image, and the text decoder will output the answer to the question.
27
+
28
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
29
+ object:
30
+
31
+ >>> visualQAClassifier = BLIPForQuestionAnswering.pretrained() \\
32
+ ... .setInputCols(["image_assembler"]) \\
33
+ ... .setOutputCol("answer")
34
+
35
+ The default model is ``"blip_vqa_base"``, if no name is
36
+ provided.
37
+
38
+ For available pretrained models please see the `Models Hub
39
+ <https://sparknlp.org/models?task=Question+Answering>`__.
40
+
41
+ To see which models are compatible and how to import them see
42
+ `Import Transformers into Spark NLP 🚀
43
+ <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
44
+
45
+ ====================== ======================
46
+ Input Annotation types Output Annotation type
47
+ ====================== ======================
48
+ ``IMAGE`` ``DOCUMENT``
49
+ ====================== ======================
50
+
51
+ Parameters
52
+ ----------
53
+ batchSize
54
+ Batch size. Large values allows faster processing but requires more
55
+ memory, by default 2
56
+ configProtoBytes
57
+ ConfigProto from tensorflow, serialized into byte array.
58
+ maxSentenceLength
59
+ Max sentence length to process, by default 50
60
+
61
+ Examples
62
+ --------
63
+ >>> import sparknlp
64
+ >>> from sparknlp.base import *
65
+ >>> from sparknlp.annotator import *
66
+ >>> from pyspark.ml import Pipeline
67
+ >>> image_df = SparkSessionForTest.spark.read.format("image").load(path=images_path)
68
+ >>> test_df = image_df.withColumn("text", lit("What's this picture about?"))
69
+ >>> imageAssembler = ImageAssembler() \\
70
+ ... .setInputCol("image") \\
71
+ ... .setOutputCol("image_assembler")
72
+ >>> visualQAClassifier = BLIPForQuestionAnswering.pretrained() \\
73
+ ... .setInputCols("image_assembler") \\
74
+ ... .setOutputCol("answer") \\
75
+ ... .setSize(384)
76
+ >>> pipeline = Pipeline().setStages([
77
+ ... imageAssembler,
78
+ ... visualQAClassifier
79
+ ... ])
80
+ >>> result = pipeline.fit(test_df).transform(test_df)
81
+ >>> result.select("image_assembler.origin", "answer.result").show(false)
82
+ +--------------------------------------+------+
83
+ |origin |result|
84
+ +--------------------------------------+------+
85
+ |[file:///content/images/cat_image.jpg]|[cats]|
86
+ +--------------------------------------+------+
87
+ """
88
+
89
+ name = "BLIPForQuestionAnswering"
90
+
91
+ inputAnnotatorTypes = [AnnotatorType.IMAGE]
92
+
93
+ outputAnnotatorType = AnnotatorType.DOCUMENT
94
+
95
+ configProtoBytes = Param(Params._dummy(),
96
+ "configProtoBytes",
97
+ "ConfigProto from tensorflow, serialized into byte array. Get with "
98
+ "config_proto.SerializeToString()",
99
+ TypeConverters.toListInt)
100
+
101
+ maxSentenceLength = Param(Params._dummy(),
102
+ "maxSentenceLength",
103
+ "Maximum sentence length that the annotator will process. Above this, the sentence is skipped",
104
+ typeConverter=TypeConverters.toInt)
105
+
106
+ def setMaxSentenceSize(self, value):
107
+ """Sets Maximum sentence length that the annotator will process, by
108
+ default 50.
109
+
110
+ Parameters
111
+ ----------
112
+ value : int
113
+ Maximum sentence length that the annotator will process
114
+ """
115
+ return self._set(maxSentenceLength=value)
116
+
117
+
118
+ @keyword_only
119
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.cv.BLIPForQuestionAnswering",
120
+ java_model=None):
121
+ super(BLIPForQuestionAnswering, self).__init__(
122
+ classname=classname,
123
+ java_model=java_model
124
+ )
125
+ self._setDefault(
126
+ batchSize=2,
127
+ size=384,
128
+ maxSentenceLength=50
129
+ )
130
+
131
+ @staticmethod
132
+ def loadSavedModel(folder, spark_session):
133
+ """Loads a locally saved model.
134
+
135
+ Parameters
136
+ ----------
137
+ folder : str
138
+ Folder of the saved model
139
+ spark_session : pyspark.sql.SparkSession
140
+ The current SparkSession
141
+
142
+ Returns
143
+ -------
144
+ CLIPForZeroShotClassification
145
+ The restored model
146
+ """
147
+ from sparknlp.internal import _BLIPForQuestionAnswering
148
+ jModel = _BLIPForQuestionAnswering(folder, spark_session._jsparkSession)._java_obj
149
+ return BLIPForQuestionAnswering(java_model=jModel)
150
+
151
+ @staticmethod
152
+ def pretrained(name="blip_vqa_base", lang="en", remote_loc=None):
153
+ """Downloads and loads a pretrained model.
154
+
155
+ Parameters
156
+ ----------
157
+ name : str, optional
158
+ Name of the pretrained model, by default
159
+ "blip_vqa_tf"
160
+ lang : str, optional
161
+ Language of the pretrained model, by default "en"
162
+ remote_loc : str, optional
163
+ Optional remote address of the resource, by default None. Will use
164
+ Spark NLPs repositories otherwise.
165
+
166
+ Returns
167
+ -------
168
+ CLIPForZeroShotClassification
169
+ The restored model
170
+ """
171
+ from sparknlp.pretrained import ResourceDownloader
172
+ return ResourceDownloader.downloadModel(BLIPForQuestionAnswering, name, lang, remote_loc)
@@ -40,3 +40,4 @@ from sparknlp.annotator.embeddings.uae_embeddings import *
40
40
  from sparknlp.annotator.embeddings.mxbai_embeddings import *
41
41
  from sparknlp.annotator.embeddings.snowflake_embeddings import *
42
42
  from sparknlp.annotator.embeddings.nomic_embeddings import *
43
+ from sparknlp.annotator.embeddings.auto_gguf_embeddings import *