spark-nlp 5.5.0rc1__py2.py3-none-any.whl → 5.5.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of spark-nlp might be problematic. Click here for more details.

@@ -0,0 +1,345 @@
1
+ Metadata-Version: 2.1
2
+ Name: spark-nlp
3
+ Version: 5.5.1
4
+ Summary: John Snow Labs Spark NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment.
5
+ Home-page: https://github.com/JohnSnowLabs/spark-nlp
6
+ Author: John Snow Labs
7
+ Keywords: NLP spark vision speech deep learning transformer tensorflow BERT GPT-2 Wav2Vec2 ViT
8
+ Classifier: Development Status :: 5 - Production/Stable
9
+ Classifier: Intended Audience :: Developers
10
+ Classifier: Intended Audience :: Information Technology
11
+ Classifier: Intended Audience :: Science/Research
12
+ Classifier: License :: OSI Approved :: Apache Software License
13
+ Classifier: Operating System :: OS Independent
14
+ Classifier: Operating System :: POSIX :: Linux
15
+ Classifier: Operating System :: MacOS :: MacOS X
16
+ Classifier: Operating System :: Microsoft :: Windows
17
+ Classifier: Programming Language :: Python :: 3
18
+ Classifier: Programming Language :: Python :: 3.6
19
+ Classifier: Programming Language :: Python :: 3.7
20
+ Classifier: Programming Language :: Python :: 3.8
21
+ Classifier: Programming Language :: Python :: 3.9
22
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
23
+ Classifier: Topic :: Scientific/Engineering :: Information Analysis
24
+ Classifier: Topic :: Software Development :: Libraries :: Python Modules
25
+ Classifier: Topic :: Software Development :: Internationalization
26
+ Classifier: Topic :: Software Development :: Localization
27
+ Classifier: Topic :: Software Development :: Build Tools
28
+ Classifier: Topic :: Text Processing :: Linguistic
29
+ Classifier: Topic :: Scientific/Engineering
30
+ Classifier: Typing :: Typed
31
+ Description-Content-Type: text/markdown
32
+
33
+ # Spark NLP: State-of-the-Art Natural Language Processing & LLMs Library
34
+
35
+ <p align="center">
36
+ <a href="https://github.com/JohnSnowLabs/spark-nlp/actions" alt="build">
37
+ <img src="https://github.com/JohnSnowLabs/spark-nlp/workflows/build/badge.svg" /></a>
38
+ <a href="https://github.com/JohnSnowLabs/spark-nlp/releases" alt="Current Release Version">
39
+ <img src="https://img.shields.io/github/v/release/JohnSnowLabs/spark-nlp.svg?style=flat-square&logo=github" /></a>
40
+ <a href="https://search.maven.org/artifact/com.johnsnowlabs.nlp/spark-nlp_2.12" alt="Maven Central">
41
+ <img src="https://maven-badges.herokuapp.com/maven-central/com.johnsnowlabs.nlp/spark-nlp_2.12/badge.svg" /></a>
42
+ <a href="https://badge.fury.io/py/spark-nlp" alt="PyPI version">
43
+ <img src="https://badge.fury.io/py/spark-nlp.svg" /></a>
44
+ <a href="https://anaconda.org/JohnSnowLabs/spark-nlp" alt="Anaconda-Cloud">
45
+ <img src="https://anaconda.org/johnsnowlabs/spark-nlp/badges/version.svg" /></a>
46
+ <a href="https://github.com/JohnSnowLabs/spark-nlp/blob/master/LICENSE" alt="License">
47
+ <img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg" /></a>
48
+ <a href="https://pypi.org/project/spark-nlp/" alt="PyPi downloads">
49
+ <img src="https://static.pepy.tech/personalized-badge/spark-nlp?period=total&units=international_system&left_color=grey&right_color=orange&left_text=pip%20downloads" /></a>
50
+ </p>
51
+
52
+ Spark NLP is a state-of-the-art Natural Language Processing library built on top of Apache Spark. It provides **simple**, **performant** & **accurate** NLP annotations for machine learning pipelines that **scale** easily in a distributed environment.
53
+
54
+ Spark NLP comes with **83000+** pretrained **pipelines** and **models** in more than **200+** languages.
55
+ It also offers tasks such as **Tokenization**, **Word Segmentation**, **Part-of-Speech Tagging**, Word and Sentence **Embeddings**, **Named Entity Recognition**, **Dependency Parsing**, **Spell Checking**, **Text Classification**, **Sentiment Analysis**, **Token Classification**, **Machine Translation** (+180 languages), **Summarization**, **Question Answering**, **Table Question Answering**, **Text Generation**, **Image Classification**, **Image to Text (captioning)**, **Automatic Speech Recognition**, **Zero-Shot Learning**, and many more [NLP tasks](#features).
56
+
57
+ **Spark NLP** is the only open-source NLP library in **production** that offers state-of-the-art transformers such as **BERT**, **CamemBERT**, **ALBERT**, **ELECTRA**, **XLNet**, **DistilBERT**, **RoBERTa**, **DeBERTa**, **XLM-RoBERTa**, **Longformer**, **ELMO**, **Universal Sentence Encoder**, **Llama-2**, **M2M100**, **BART**, **Instructor**, **E5**, **Google T5**, **MarianMT**, **OpenAI GPT2**, **Vision Transformers (ViT)**, **OpenAI Whisper**, **Llama**, **Mistral**, **Phi**, **Qwen2**, and many more not only to **Python** and **R**, but also to **JVM** ecosystem (**Java**, **Scala**, and **Kotlin**) at **scale** by extending **Apache Spark** natively.
58
+
59
+ ## Model Importing Support
60
+
61
+ Spark NLP provides easy support for importing models from various popular frameworks:
62
+
63
+ - **TensorFlow**
64
+ - **ONNX**
65
+ - **OpenVINO**
66
+ - **Llama.cpp (GGUF)**
67
+
68
+ This wide range of support allows you to seamlessly integrate models from different sources into your Spark NLP workflows, enhancing flexibility and compatibility with existing machine learning ecosystems.
69
+
70
+ ## Project's website
71
+
72
+ Take a look at our official Spark NLP page: [https://sparknlp.org/](https://sparknlp.org/) for user
73
+ documentation and examples
74
+
75
+ ## Features
76
+
77
+ - [Text Preprocessing](https://sparknlp.org/docs/en/features#text-preproccesing)
78
+ - [Parsing and Analysis](https://sparknlp.org/docs/en/features#parsing-and-analysis)
79
+ - [Sentiment and Classification](https://sparknlp.org/docs/en/features#sentiment-and-classification)
80
+ - [Embeddings](https://sparknlp.org/docs/en/features#embeddings)
81
+ - [Classification and Question Answering](https://sparknlp.org/docs/en/features#classification-and-question-answering-models)
82
+ - [Machine Translation and Generation](https://sparknlp.org/docs/en/features#machine-translation-and-generation)
83
+ - [Image and Speech](https://sparknlp.org/docs/en/features#image-and-speech)
84
+ - [Integration and Interoperability (ONNX, OpenVINO)](https://sparknlp.org/docs/en/features#integration-and-interoperability)
85
+ - [Pre-trained Models (36000+ in +200 languages)](https://sparknlp.org/docs/en/features#pre-trained-models)
86
+ - [Multi-lingual Support](https://sparknlp.org/docs/en/features#multi-lingual-support)
87
+
88
+ ## Quick Start
89
+
90
+ This is a quick example of how to use Spark NLP pre-trained pipeline in Python and PySpark:
91
+
92
+ ```sh
93
+ $ java -version
94
+ # should be Java 8 or 11 (Oracle or OpenJDK)
95
+ $ conda create -n sparknlp python=3.7 -y
96
+ $ conda activate sparknlp
97
+ # spark-nlp by default is based on pyspark 3.x
98
+ $ pip install spark-nlp==5.5.1 pyspark==3.3.1
99
+ ```
100
+
101
+ In Python console or Jupyter `Python3` kernel:
102
+
103
+ ```python
104
+ # Import Spark NLP
105
+ from sparknlp.base import *
106
+ from sparknlp.annotator import *
107
+ from sparknlp.pretrained import PretrainedPipeline
108
+ import sparknlp
109
+
110
+ # Start SparkSession with Spark NLP
111
+ # start() functions has 3 parameters: gpu, apple_silicon, and memory
112
+ # sparknlp.start(gpu=True) will start the session with GPU support
113
+ # sparknlp.start(apple_silicon=True) will start the session with macOS M1 & M2 support
114
+ # sparknlp.start(memory="16G") to change the default driver memory in SparkSession
115
+ spark = sparknlp.start()
116
+
117
+ # Download a pre-trained pipeline
118
+ pipeline = PretrainedPipeline('explain_document_dl', lang='en')
119
+
120
+ # Your testing dataset
121
+ text = """
122
+ The Mona Lisa is a 16th century oil painting created by Leonardo.
123
+ It's held at the Louvre in Paris.
124
+ """
125
+
126
+ # Annotate your testing dataset
127
+ result = pipeline.annotate(text)
128
+
129
+ # What's in the pipeline
130
+ list(result.keys())
131
+ Output: ['entities', 'stem', 'checked', 'lemma', 'document',
132
+ 'pos', 'token', 'ner', 'embeddings', 'sentence']
133
+
134
+ # Check the results
135
+ result['entities']
136
+ Output: ['Mona Lisa', 'Leonardo', 'Louvre', 'Paris']
137
+ ```
138
+
139
+ For more examples, you can visit our dedicated [examples](https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples) to showcase all Spark NLP use cases!
140
+
141
+ ### Packages Cheatsheet
142
+
143
+ This is a cheatsheet for corresponding Spark NLP Maven package to Apache Spark / PySpark major version:
144
+
145
+ | Apache Spark | Spark NLP on CPU | Spark NLP on GPU | Spark NLP on AArch64 (linux) | Spark NLP on Apple Silicon |
146
+ |-------------------------|--------------------|----------------------------|--------------------------------|--------------------------------------|
147
+ | 3.0/3.1/3.2/3.3/3.4/3.5 | `spark-nlp` | `spark-nlp-gpu` | `spark-nlp-aarch64` | `spark-nlp-silicon` |
148
+ | Start Function | `sparknlp.start()` | `sparknlp.start(gpu=True)` | `sparknlp.start(aarch64=True)` | `sparknlp.start(apple_silicon=True)` |
149
+
150
+ NOTE: `M1/M2` and `AArch64` are under `experimental` support. Access and support to these architectures are limited by the
151
+ community and we had to build most of the dependencies by ourselves to make them compatible. We support these two
152
+ architectures, however, they may not work in some environments.
153
+
154
+ ## Pipelines and Models
155
+
156
+ For a quick example of using pipelines and models take a look at our official [documentation](https://sparknlp.org/docs/en/install#pipelines-and-models)
157
+
158
+ #### Please check out our Models Hub for the full list of [pre-trained models](https://sparknlp.org/models) with examples, demo, benchmark, and more
159
+
160
+ ## Platform and Ecosystem Support
161
+
162
+ ### Apache Spark Support
163
+
164
+ Spark NLP *5.5.1* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, 3.4.x, and 3.5.x
165
+
166
+ | Spark NLP | Apache Spark 3.5.x | Apache Spark 3.4.x | Apache Spark 3.3.x | Apache Spark 3.2.x | Apache Spark 3.1.x | Apache Spark 3.0.x | Apache Spark 2.4.x | Apache Spark 2.3.x |
167
+ |-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
168
+ | 5.5.x | YES | YES | YES | YES | YES | YES | NO | NO |
169
+ | 5.4.x | YES | YES | YES | YES | YES | YES | NO | NO |
170
+ | 5.3.x | YES | YES | YES | YES | YES | YES | NO | NO |
171
+ | 5.2.x | YES | YES | YES | YES | YES | YES | NO | NO |
172
+ | 5.1.x | Partially | YES | YES | YES | YES | YES | NO | NO |
173
+ | 5.0.x | YES | YES | YES | YES | YES | YES | NO | NO |
174
+
175
+ Find out more about `Spark NLP` versions from our [release notes](https://github.com/JohnSnowLabs/spark-nlp/releases).
176
+
177
+ ### Scala and Python Support
178
+
179
+ | Spark NLP | Python 3.6 | Python 3.7 | Python 3.8 | Python 3.9 | Python 3.10| Scala 2.11 | Scala 2.12 |
180
+ |-----------|------------|------------|------------|------------|------------|------------|------------|
181
+ | 5.5.x | NO | YES | YES | YES | YES | NO | YES |
182
+ | 5.4.x | NO | YES | YES | YES | YES | NO | YES |
183
+ | 5.3.x | NO | YES | YES | YES | YES | NO | YES |
184
+ | 5.2.x | NO | YES | YES | YES | YES | NO | YES |
185
+ | 5.1.x | NO | YES | YES | YES | YES | NO | YES |
186
+ | 5.0.x | NO | YES | YES | YES | YES | NO | YES |
187
+
188
+ Find out more about 4.x `SparkNLP` versions in our official [documentation](https://sparknlp.org/docs/en/install#apache-spark-support)
189
+
190
+ ### Databricks Support
191
+
192
+ Spark NLP 5.5.1 has been tested and is compatible with the following runtimes:
193
+
194
+ | **CPU** | **GPU** |
195
+ |--------------------|--------------------|
196
+ | 14.1 / 14.1 ML | 14.1 ML & GPU |
197
+ | 14.2 / 14.2 ML | 14.2 ML & GPU |
198
+ | 14.3 / 14.3 ML | 14.3 ML & GPU |
199
+ | 15.0 / 15.0 ML | 15.0 ML & GPU |
200
+ | 15.1 / 15.0 ML | 15.1 ML & GPU |
201
+ | 15.2 / 15.0 ML | 15.2 ML & GPU |
202
+ | 15.3 / 15.0 ML | 15.3 ML & GPU |
203
+ | 15.4 / 15.0 ML | 15.4 ML & GPU |
204
+
205
+ We are compatible with older runtimes. For a full list check databricks support in our official [documentation](https://sparknlp.org/docs/en/install#databricks-support)
206
+
207
+ ### EMR Support
208
+
209
+ Spark NLP 5.5.1 has been tested and is compatible with the following EMR releases:
210
+
211
+ | **EMR Release** |
212
+ |--------------------|
213
+ | emr-6.13.0 |
214
+ | emr-6.14.0 |
215
+ | emr-6.15.0 |
216
+ | emr-7.0.0 |
217
+ | emr-7.1.0 |
218
+ | emr-7.2.0 |
219
+
220
+ We are compatible with older EMR releases. For a full list check EMR support in our official [documentation](https://sparknlp.org/docs/en/install#emr-support)
221
+
222
+ Full list of [Amazon EMR 6.x releases](https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-6x.html)
223
+ Full list of [Amazon EMR 7.x releases](https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-7x.html)
224
+
225
+ NOTE: The EMR 6.1.0 and 6.1.1 are not supported.
226
+
227
+ ## Installation
228
+
229
+ ### Command line (requires internet connection)
230
+
231
+ To install spark-nlp packages through command line follow [these instructions](https://sparknlp.org/docs/en/install#command-line) from our official documentation
232
+
233
+ ### Scala
234
+
235
+ Spark NLP supports Scala 2.12.15 if you are using Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x versions. Our packages are
236
+ deployed to Maven central. To add any of our packages as a dependency in your application you can follow [these instructions](https://sparknlp.org/docs/en/install#scala-and-java)
237
+ from our official documentation.
238
+
239
+ If you are interested, there is a simple SBT project for Spark NLP to guide you on how to use it in your
240
+ projects [Spark NLP SBT S5.5.1r](https://github.com/maziyarpanahi/spark-nlp-starter)
241
+
242
+ ### Python
243
+
244
+ Spark NLP supports Python 3.7.x and above depending on your major PySpark version.
245
+ Check all available installations for Python in our official [documentation](https://sparknlp.org/docs/en/install#python)
246
+
247
+ ### Compiled JARs
248
+
249
+ To compile the jars from source follow [these instructions](https://sparknlp.org/docs/en/compiled#jars) from our official documenation
250
+
251
+ ## Platform-Specific Instructions
252
+
253
+ For detailed instructions on how to use Spark NLP on supported platforms, please refer to our official documentation:
254
+
255
+ | Platform | Supported Language(s) |
256
+ |-------------------------|-----------------------|
257
+ | [Apache Zeppelin](https://sparknlp.org/docs/en/install#apache-zeppelin) | Scala, Python |
258
+ | [Jupyter Notebook](https://sparknlp.org/docs/en/install#jupter-notebook) | Python |
259
+ | [Google Colab Notebook](https://sparknlp.org/docs/en/install#google-colab-notebook) | Python |
260
+ | [Kaggle Kernel](https://sparknlp.org/docs/en/install#kaggle-kernel) | Python |
261
+ | [Databricks Cluster](https://sparknlp.org/docs/en/install#databricks-cluster) | Scala, Python |
262
+ | [EMR Cluster](https://sparknlp.org/docs/en/install#emr-cluster) | Scala, Python |
263
+ | [GCP Dataproc Cluster](https://sparknlp.org/docs/en/install#gcp-dataproc) | Scala, Python |
264
+
265
+ ### Offline
266
+
267
+ Spark NLP library and all the pre-trained models/pipelines can be used entirely offline with no access to the Internet.
268
+ Please check [these instructions](https://sparknlp.org/docs/en/install#s3-integration) from our official documentation
269
+ to use Spark NLP offline
270
+
271
+ ## Advanced Settings
272
+
273
+ You can change Spark NLP configurations via Spark properties configuration.
274
+ Please check [these instructions](https://sparknlp.org/docs/en/install#sparknlp-properties) from our official documentation.
275
+
276
+ ### S3 Integration
277
+
278
+ In Spark NLP we can define S3 locations to:
279
+
280
+ - Export log files of training models
281
+ - Store tensorflow graphs used in `NerDLApproach`
282
+
283
+ Please check [these instructions](https://sparknlp.org/docs/en/install#s3-integration) from our official documentation.
284
+
285
+ ## Document5.5.1
286
+
287
+ ### Examples
288
+
289
+ Need more **examples**? Check out our dedicated [Spark NLP Examples](https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples)
290
+ repository to showcase all Spark NLP use cases!
291
+
292
+ Also, don't forget to check [Spark NLP in Action](https://sparknlp.org/demo) built by Streamlit.
293
+
294
+ #### All examples: [spark-nlp/examples](https://github.com/JohnSnowLabs/spark-nlp/tree/master/examples)
295
+
296
+ ### FAQ
297
+
298
+ [Check our Articles and Videos page here](https://sparknlp.org/learn)
299
+
300
+ ### Citation
301
+
302
+ We have published a [paper](https://www.sciencedirect.com/science/article/pii/S2665963821000063) that you can cite for
303
+ the Spark NLP library:
304
+
305
+ ```bibtex
306
+ @article{KOCAMAN2021100058,
307
+ title = {Spark NLP: Natural language understanding at scale},
308
+ journal = {Software Impacts},
309
+ pages = {100058},
310
+ year = {2021},
311
+ issn = {2665-9638},
312
+ doi = {https://doi.org/10.1016/j.simpa.2021.100058},
313
+ url = {https://www.sciencedirect.com/science/article/pii/S2665963.2.300063},
314
+ author = {Veysel Kocaman and David Talby},
315
+ keywords = {Spark, Natural language processing, Deep learning, Tensorflow, Cluster},
316
+ abstract = {Spark NLP is a Natural Language Processing (NLP) library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines that can scale easily in a distributed environment. Spark NLP comes with 1100+ pretrained pipelines and models in more than 192+ languages. It supports nearly all the NLP tasks and modules that can be used seamlessly in a cluster. Downloaded more than 2.7 million times and experiencing 9x growth since January 2020, Spark NLP is used by 54% of healthcare organizations as the world’s most widely used NLP library in the enterprise.}
317
+ }
318
+ }5.5.1
319
+ ```
320
+
321
+ ## Community support
322
+
323
+ - [Slack](https://join.slack.com/t/spark-nlp/shared_invite/zt-198dipu77-L3UWNe_AJ8xqDk0ivmih5Q) For live discussion with the Spark NLP community and the team
324
+ - [GitHub](https://github.com/JohnSnowLabs/spark-nlp) Bug reports, feature requests, and contributions
325
+ - [Discussions](https://github.com/JohnSnowLabs/spark-nlp/discussions) Engage with other community members, share ideas,
326
+ and show off how you use Spark NLP!
327
+ - [Medium](https://medium.com/spark-nlp) Spark NLP articles
328
+ - [YouTube](https://www.youtube.com/channel/UCmFOjlpYEhxf_wJUDuz6xxQ/videos) Spark NLP video tutorials
329
+
330
+ ## Contributing
331
+
332
+ We appreciate any sort of contributions:
333
+
334
+ - ideas
335
+ - feedback
336
+ - documentation
337
+ - bug reports
338
+ - NLP training and testing corpora
339
+ - Development and testing
340
+
341
+ Clone the repo and submit your pull-requests! Or directly create issues in this repo.
342
+
343
+ ## John Snow Labs
344
+
345
+ [http://johnsnowlabs.com](http://johnsnowlabs.com)
@@ -3,7 +3,7 @@ com/johnsnowlabs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,
3
3
  com/johnsnowlabs/ml/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  com/johnsnowlabs/ml/ai/__init__.py,sha256=YQiK2M7U4d8y5irPy_HB8ae0mSpqS9583MH44pnKJXc,295
5
5
  com/johnsnowlabs/nlp/__init__.py,sha256=DPIVXtONO5xXyOk-HB0-sNiHAcco17NN13zPS_6Uw8c,294
6
- sparknlp/__init__.py,sha256=KDifiXnwBik4d6cz2zhtUwi3nicSAxEoD1Pht3ELBo0,13646
6
+ sparknlp/__init__.py,sha256=26U34YGDYCBbYHr3rpxvy71snUYuoFhl5XfUvxkPv7M,13638
7
7
  sparknlp/annotation.py,sha256=I5zOxG5vV2RfPZfqN9enT1i4mo6oBcn3Lrzs37QiOiA,5635
8
8
  sparknlp/annotation_audio.py,sha256=iRV_InSVhgvAwSRe9NTbUH9v6OGvTM-FPCpSAKVu0mE,1917
9
9
  sparknlp/annotation_image.py,sha256=xhCe8Ko-77XqWVuuYHFrjKqF6zPd8Z-RY_rmZXNwCXU,2547
@@ -30,12 +30,13 @@ sparknlp/annotator/audio/__init__.py,sha256=dXjtvi5c0aTZFq1Q_JciUd1uFTBVSJoUdcq0
30
30
  sparknlp/annotator/audio/hubert_for_ctc.py,sha256=76PfwPZZvOHU5kfDqLueCFbmqa4W8pMNRGoCvOqjsEA,7859
31
31
  sparknlp/annotator/audio/wav2vec2_for_ctc.py,sha256=K78P1U6vA4O1UufsLYzy0H7arsKNmwPcIV7kzDFsA5Q,6210
32
32
  sparknlp/annotator/audio/whisper_for_ctc.py,sha256=uII51umuohqwnAW0Q7VdxEFyr_j5LMnfpcRlf8TbetA,9800
33
- sparknlp/annotator/classifier_dl/__init__.py,sha256=Oa5v2kInquQXLy3_Qs0bJAS_JJiTgqy9W0zeBF6y3B4,3933
33
+ sparknlp/annotator/classifier_dl/__init__.py,sha256=4v2_3kSWQFFBc_KzaJ0gEC6ANVJpy5tsHa6CJGc4nCw,4005
34
34
  sparknlp/annotator/classifier_dl/albert_for_question_answering.py,sha256=LG2dL6Fky1T35yXTUZBfIihIIGnkRFQ7ECQ3HRXXEG8,6517
35
35
  sparknlp/annotator/classifier_dl/albert_for_sequence_classification.py,sha256=kWx7f9pcKE2qw319gn8FN0Md5dX38gbmfeoY9gWCLNk,7842
36
36
  sparknlp/annotator/classifier_dl/albert_for_token_classification.py,sha256=5rdsjWnsAVmtP-idU7ATKJ8lkH2rtlKZLnpi4Mq27eI,6839
37
37
  sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py,sha256=_TgV6EiIOiD_djA3fxfoz-o37mzMeKbn6iL2kZ6GzO0,8366
38
38
  sparknlp/annotator/classifier_dl/bart_for_zero_shot_classification.py,sha256=yqQeDdpLbNOKuSZejZjSAjT8ydYyxsTVf2aFDgSSDfc,8767
39
+ sparknlp/annotator/classifier_dl/bert_for_multiple_choice.py,sha256=Ew_NGBj7F5ApgK3SyQh2HIfjD7ZTqTs0LZEQxjwoyto,5936
39
40
  sparknlp/annotator/classifier_dl/bert_for_question_answering.py,sha256=2euY_RAdMPA4IHJXZAd5MkQojFOtFNhB_hSc1iVQ5DQ,6433
40
41
  sparknlp/annotator/classifier_dl/bert_for_sequence_classification.py,sha256=AzD3RQcRuQc0DDTbL6vGiacTtHlZnbAqksNvRQq7EQE,7800
41
42
  sparknlp/annotator/classifier_dl/bert_for_token_classification.py,sha256=uJXoDLPfPWiRmKqtw_3lLBvneIirj87S2JWwfd33zq8,6668
@@ -145,7 +146,7 @@ sparknlp/annotator/sentiment/__init__.py,sha256=Lq3vKaZS1YATLMg0VNXSVtkWL5q5G9ta
145
146
  sparknlp/annotator/sentiment/sentiment_detector.py,sha256=m545NGU0Xzg_PO6_qIfpli1uZj7JQcyFgqe9R6wAPFI,8154
146
147
  sparknlp/annotator/sentiment/vivekn_sentiment.py,sha256=4rpXWDgzU6ddnbrSCp9VdLb2epCc9oZ3c6XcqxEw8nk,9655
147
148
  sparknlp/annotator/seq2seq/__init__.py,sha256=Fdz1zsxpB6vM2a0sKuGCSMD1ZgqeVqAez0-AtppMGB4,1541
148
- sparknlp/annotator/seq2seq/auto_gguf_model.py,sha256=YSWr2doOp9pwiodW_7qWgnQ2xdnl_WNEECBwxI6uq_c,39396
149
+ sparknlp/annotator/seq2seq/auto_gguf_model.py,sha256=IrhVFUh8SFodJBl5k_V6_7qCu_Ib1l223t3dzp3HsZI,39402
149
150
  sparknlp/annotator/seq2seq/bart_transformer.py,sha256=I1flM4yeCzEAKOdQllBC30XuedxVJ7ferkFhZ6gwEbE,18481
150
151
  sparknlp/annotator/seq2seq/cpm_transformer.py,sha256=zRbw_xAsaRnhuyYAW8UAGhz7mIyhpqk09nCsJb8-7rg,13298
151
152
  sparknlp/annotator/seq2seq/gpt2_transformer.py,sha256=Oz95R_NRR4tWHu_bW6Ak2832ZILXycp3ify7LfRSi8o,15310
@@ -173,7 +174,7 @@ sparknlp/annotator/token/regex_tokenizer.py,sha256=FG2HvFwMb1G_4grfyIQaeBpaAgKv_
173
174
  sparknlp/annotator/token/tokenizer.py,sha256=Me3P3wogUKUJ7O7_2wLdPzF00vKpp_sHuiztpGWRVpU,19939
174
175
  sparknlp/annotator/ws/__init__.py,sha256=-l8bnl8Z6lGXWOBdRIBZ6958fzTHt4o87QhhLHIFF8A,693
175
176
  sparknlp/annotator/ws/word_segmenter.py,sha256=rrbshwn5wzXIHpCCDji6ZcsmiARpuA82_p_6TgNHfRc,16365
176
- sparknlp/base/__init__.py,sha256=iC4b4NzTDsqEu3eE_f5QL8JD-uoig4Pn2h1ZMyPHR6Q,1266
177
+ sparknlp/base/__init__.py,sha256=fCL-kReIavZceUa1OC99pSRH7MsXzqGB8BXgzVS_f7s,1311
177
178
  sparknlp/base/audio_assembler.py,sha256=HKa9mXvmuMUrjTihUZkppGj-WJjcUrm2BGapNuPifyI,3320
178
179
  sparknlp/base/doc2_chunk.py,sha256=TyvbdJNkVo9favHlOEoH5JwKbjpk5ZVJ75p8Cilp9jM,6551
179
180
  sparknlp/base/document_assembler.py,sha256=zl-SXWMTR3B0EZ8z6SWYchCwEo-61FhU6u7dHUKDIOg,6697
@@ -185,6 +186,7 @@ sparknlp/base/has_recursive_transform.py,sha256=UkGNgo4LMsjQC-Coeefg4bJcg7FoPcPi
185
186
  sparknlp/base/image_assembler.py,sha256=HytRoYJTLMqGtvScHoFnp6CasG9IVNYAHYiT2_rrmeE,3719
186
187
  sparknlp/base/light_pipeline.py,sha256=Jk2DLpT4PLHCANlOo_WetTdPba_5lYs3ywiyY3lM-PE,16577
187
188
  sparknlp/base/multi_document_assembler.py,sha256=4htET1fRAeOB6zhsNXsBq5rKZvn-LGD4vrFRjPZeqow,7070
189
+ sparknlp/base/prompt_assembler.py,sha256=ysU4Vbmnuv2UBHK0JBkYrxiZiJ7_GTcVMip1-QRmheI,11570
188
190
  sparknlp/base/recursive_pipeline.py,sha256=V9rTnu8KMwgjoceykN9pF1mKGtOkkuiC_n9v8dE3LDk,4279
189
191
  sparknlp/base/table_assembler.py,sha256=Kxu3R2fY6JgCxEc07ibsMsjip6dgcPDHLiWAZ8gC_d8,5102
190
192
  sparknlp/base/token_assembler.py,sha256=qiHry07L7mVCqeHSH6hHxLygv1AsfZIE4jy1L75L3Do,5075
@@ -200,7 +202,7 @@ sparknlp/common/read_as.py,sha256=imxPGwV7jr4Li_acbo0OAHHRGCBbYv-akzEGaBWEfcY,12
200
202
  sparknlp/common/recursive_annotator_approach.py,sha256=vqugBw22cE3Ff7PIpRlnYFuOlchgL0nM26D8j-NdpqU,1449
201
203
  sparknlp/common/storage.py,sha256=D91H3p8EIjNspjqAYu6ephRpCUtdcAir4_PrAbkIQWE,4842
202
204
  sparknlp/common/utils.py,sha256=Yne6yYcwKxhOZC-U4qfYoDhWUP_6BIaAjI5X_P_df1E,1306
203
- sparknlp/internal/__init__.py,sha256=nK-9lncAVRXmyP8ATbiMwRnLJVe4IEd_r5Z3gEqDK3g,33672
205
+ sparknlp/internal/__init__.py,sha256=ljEf4IUraCdKU7gKFxNwFxlX-FHcnkG6sqs1MxEhLSQ,33967
204
206
  sparknlp/internal/annotator_java_ml.py,sha256=UGPoThG0rGXUOXGSQnDzEDW81Mu1s5RPF29v7DFyE3c,1187
205
207
  sparknlp/internal/annotator_transformer.py,sha256=fXmc2IWXGybqZpbEU9obmbdBYPc798y42zvSB4tqV9U,1448
206
208
  sparknlp/internal/extended_java_wrapper.py,sha256=hwP0133-hDiDf5sBF-P3MtUsuuDj1PpQbtGZQIRwzfk,2240
@@ -242,8 +244,8 @@ sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py,sha256=R4yHFN3
242
244
  sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py,sha256=EoCSdcIjqQ3wv13MAuuWrKV8wyVBP0SbOEW41omHlR0,23189
243
245
  sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py,sha256=k5CQ7gKV6HZbZMB8cKLUJuZxoZWlP_DFWdZ--aIDwsc,2356
244
246
  sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py,sha256=pAxjWhjazSX8Vg0MFqJiuRVw1IbnQNSs-8Xp26L4nko,870
245
- spark_nlp-5.5.0rc1.dist-info/.uuid,sha256=1f6hF51aIuv9yCvh31NU9lOpS34NE-h3a0Et7R9yR6A,36
246
- spark_nlp-5.5.0rc1.dist-info/METADATA,sha256=c9a30g4ogelUAj-Np3naOPq4lWx6mGRgXD59IjQlr1M,55774
247
- spark_nlp-5.5.0rc1.dist-info/WHEEL,sha256=bb2Ot9scclHKMOLDEHY6B2sicWOgugjFKaJsT7vwMQo,110
248
- spark_nlp-5.5.0rc1.dist-info/top_level.txt,sha256=uuytur4pyMRw2H_txNY2ZkaucZHUs22QF8-R03ch_-E,13
249
- spark_nlp-5.5.0rc1.dist-info/RECORD,,
247
+ spark_nlp-5.5.1.dist-info/.uuid,sha256=1f6hF51aIuv9yCvh31NU9lOpS34NE-h3a0Et7R9yR6A,36
248
+ spark_nlp-5.5.1.dist-info/METADATA,sha256=Y7Y0nf18tO2RfHzagHWWZpn4QRrF50d5wP3hXG1eFyw,19156
249
+ spark_nlp-5.5.1.dist-info/WHEEL,sha256=bb2Ot9scclHKMOLDEHY6B2sicWOgugjFKaJsT7vwMQo,110
250
+ spark_nlp-5.5.1.dist-info/top_level.txt,sha256=uuytur4pyMRw2H_txNY2ZkaucZHUs22QF8-R03ch_-E,13
251
+ spark_nlp-5.5.1.dist-info/RECORD,,
sparknlp/__init__.py CHANGED
@@ -129,7 +129,7 @@ def start(gpu=False,
129
129
  The initiated Spark session.
130
130
 
131
131
  """
132
- current_version = "5.5.0-rc1"
132
+ current_version = "5.5.1"
133
133
 
134
134
  if params is None:
135
135
  params = {}
@@ -310,4 +310,4 @@ def version():
310
310
  str
311
311
  The current Spark NLP version.
312
312
  """
313
- return '5.5.0-rc1'
313
+ return '5.5.1'
@@ -54,3 +54,4 @@ from sparknlp.annotator.classifier_dl.mpnet_for_question_answering import *
54
54
  from sparknlp.annotator.classifier_dl.mpnet_for_token_classification import *
55
55
  from sparknlp.annotator.classifier_dl.albert_for_zero_shot_classification import *
56
56
  from sparknlp.annotator.classifier_dl.camembert_for_zero_shot_classification import *
57
+ from sparknlp.annotator.classifier_dl.bert_for_multiple_choice import *
@@ -0,0 +1,161 @@
1
+ # Copyright 2017-2024 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from sparknlp.common import *
16
+
17
+ class BertForMultipleChoice(AnnotatorModel,
18
+ HasCaseSensitiveProperties,
19
+ HasBatchedAnnotate,
20
+ HasEngine,
21
+ HasMaxSentenceLengthLimit):
22
+ """BertForMultipleChoice can load BERT Models with a multiple choice classification head on top
23
+ (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
24
+
25
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
26
+ object:
27
+
28
+ >>> spanClassifier = BertForMultipleChoice.pretrained() \\
29
+ ... .setInputCols(["document_question", "document_context"]) \\
30
+ ... .setOutputCol("answer")
31
+
32
+ The default model is ``"bert_base_uncased_multiple_choice"``, if no name is
33
+ provided.
34
+
35
+ For available pretrained models please see the `Models Hub
36
+ <https://sparknlp.org/models?task=Multiple+Choice>`__.
37
+
38
+ To see which models are compatible and how to import them see
39
+ `Import Transformers into Spark NLP 🚀
40
+ <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
41
+
42
+ ====================== ======================
43
+ Input Annotation types Output Annotation type
44
+ ====================== ======================
45
+ ``DOCUMENT, DOCUMENT`` ``CHUNK``
46
+ ====================== ======================
47
+
48
+ Parameters
49
+ ----------
50
+ batchSize
51
+ Batch size. Large values allows faster processing but requires more
52
+ memory, by default 8
53
+ caseSensitive
54
+ Whether to ignore case in tokens for embeddings matching, by default
55
+ False
56
+ maxSentenceLength
57
+ Max sentence length to process, by default 512
58
+
59
+ Examples
60
+ --------
61
+ >>> import sparknlp
62
+ >>> from sparknlp.base import *
63
+ >>> from sparknlp.annotator import *
64
+ >>> from pyspark.ml import Pipeline
65
+ >>> documentAssembler = MultiDocumentAssembler() \\
66
+ ... .setInputCols(["question", "context"]) \\
67
+ ... .setOutputCols(["document_question", "document_context"])
68
+ >>> questionAnswering = BertForMultipleChoice.pretrained() \\
69
+ ... .setInputCols(["document_question", "document_context"]) \\
70
+ ... .setOutputCol("answer") \\
71
+ ... .setCaseSensitive(False)
72
+ >>> pipeline = Pipeline().setStages([
73
+ ... documentAssembler,
74
+ ... questionAnswering
75
+ ... ])
76
+ >>> data = spark.createDataFrame([["The Eiffel Tower is located in which country??", "Germany, France, Italy"]]).toDF("question", "context")
77
+ >>> result = pipeline.fit(data).transform(data)
78
+ >>> result.select("answer.result").show(truncate=False)
79
+ +--------------------+
80
+ |result |
81
+ +--------------------+
82
+ |[France] |
83
+ +--------------------+
84
+ """
85
+ name = "BertForMultipleChoice"
86
+
87
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.DOCUMENT]
88
+
89
+ outputAnnotatorType = AnnotatorType.CHUNK
90
+
91
+ choicesDelimiter = Param(Params._dummy(),
92
+ "choicesDelimiter",
93
+ "Delimiter character use to split the choices",
94
+ TypeConverters.toString)
95
+
96
+ def setChoicesDelimiter(self, value):
97
+ """Sets delimiter character use to split the choices
98
+
99
+ Parameters
100
+ ----------
101
+ value : string
102
+ Delimiter character use to split the choices
103
+ """
104
+ return self._set(caseSensitive=value)
105
+
106
+ @keyword_only
107
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.BertForMultipleChoice",
108
+ java_model=None):
109
+ super(BertForMultipleChoice, self).__init__(
110
+ classname=classname,
111
+ java_model=java_model
112
+ )
113
+ self._setDefault(
114
+ batchSize=4,
115
+ maxSentenceLength=512,
116
+ caseSensitive=False,
117
+ choicesDelimiter = ","
118
+ )
119
+
120
+ @staticmethod
121
+ def loadSavedModel(folder, spark_session):
122
+ """Loads a locally saved model.
123
+
124
+ Parameters
125
+ ----------
126
+ folder : str
127
+ Folder of the saved model
128
+ spark_session : pyspark.sql.SparkSession
129
+ The current SparkSession
130
+
131
+ Returns
132
+ -------
133
+ BertForQuestionAnswering
134
+ The restored model
135
+ """
136
+ from sparknlp.internal import _BertMultipleChoiceLoader
137
+ jModel = _BertMultipleChoiceLoader(folder, spark_session._jsparkSession)._java_obj
138
+ return BertForMultipleChoice(java_model=jModel)
139
+
140
+ @staticmethod
141
+ def pretrained(name="bert_base_uncased_multiple_choice", lang="en", remote_loc=None):
142
+ """Downloads and loads a pretrained model.
143
+
144
+ Parameters
145
+ ----------
146
+ name : str, optional
147
+ Name of the pretrained model, by default
148
+ "bert_base_uncased_multiple_choice"
149
+ lang : str, optional
150
+ Language of the pretrained model, by default "en"
151
+ remote_loc : str, optional
152
+ Optional remote address of the resource, by default None. Will use
153
+ Spark NLPs repositories otherwise.
154
+
155
+ Returns
156
+ -------
157
+ BertForQuestionAnswering
158
+ The restored model
159
+ """
160
+ from sparknlp.pretrained import ResourceDownloader
161
+ return ResourceDownloader.downloadModel(BertForMultipleChoice, name, lang, remote_loc)
@@ -37,7 +37,7 @@ class AutoGGUFModel(AnnotatorModel, HasBatchedAnnotate):
37
37
  ... .setInputCols(["document"]) \\
38
38
  ... .setOutputCol("completions")
39
39
 
40
- The default model is ``"gguf-phi3-mini-4k-instruct-q4"``, if no name is provided.
40
+ The default model is ``"phi3.5_mini_4k_instruct_q4_gguf"``, if no name is provided.
41
41
 
42
42
  For extended examples of usage, see the
43
43
  `AutoGGUFModelTest <https://github.com/JohnSnowLabs/spark-nlp/tree/master/src/test/scala/com/johnsnowlabs/nlp/annotators/seq2seq/AutoGGUFModelTest.scala>`__
@@ -782,13 +782,13 @@ class AutoGGUFModel(AnnotatorModel, HasBatchedAnnotate):
782
782
  return AutoGGUFModel(java_model=jModel)
783
783
 
784
784
  @staticmethod
785
- def pretrained(name="gguf-phi3-mini-4k-instruct-q4", lang="en", remote_loc=None):
785
+ def pretrained(name="phi3.5_mini_4k_instruct_q4_gguf", lang="en", remote_loc=None):
786
786
  """Downloads and loads a pretrained model.
787
787
 
788
788
  Parameters
789
789
  ----------
790
790
  name : str, optional
791
- Name of the pretrained model, by default "gguf-phi3-mini-4k-instruct-q4"
791
+ Name of the pretrained model, by default "phi3.5_mini_4k_instruct_q4_gguf"
792
792
  lang : str, optional
793
793
  Language of the pretrained model, by default "en"
794
794
  remote_loc : str, optional
sparknlp/base/__init__.py CHANGED
@@ -26,3 +26,4 @@ from sparknlp.base.token_assembler import *
26
26
  from sparknlp.base.image_assembler import *
27
27
  from sparknlp.base.audio_assembler import *
28
28
  from sparknlp.base.table_assembler import *
29
+ from sparknlp.base.prompt_assembler import *