spark-nlp 5.4.2__py2.py3-none-any.whl → 5.5.0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of spark-nlp might be problematic. Click here for more details.
- spark_nlp-5.5.0.dist-info/METADATA +345 -0
- {spark_nlp-5.4.2.dist-info → spark_nlp-5.5.0.dist-info}/RECORD +23 -11
- sparknlp/__init__.py +2 -2
- sparknlp/annotator/classifier_dl/__init__.py +4 -1
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +2 -15
- sparknlp/annotator/embeddings/__init__.py +3 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/seq2seq/__init__.py +7 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +804 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +339 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/internal/__init__.py +89 -0
- spark_nlp-5.4.2.dist-info/METADATA +0 -1357
- {spark_nlp-5.4.2.dist-info → spark_nlp-5.5.0.dist-info}/.uuid +0 -0
- {spark_nlp-5.4.2.dist-info → spark_nlp-5.5.0.dist-info}/WHEEL +0 -0
- {spark_nlp-5.4.2.dist-info → spark_nlp-5.5.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,335 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for the StarCoderTransformer."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class StarCoderTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
|
|
20
|
+
"""StarCoder2: The Versatile Code Companion.
|
|
21
|
+
|
|
22
|
+
StarCoder2 is a Transformer model designed specifically for code generation and understanding.
|
|
23
|
+
With 13 billion parameters, it builds upon the advancements of its predecessors and is trained
|
|
24
|
+
on a diverse dataset that includes multiple programming languages. This extensive training
|
|
25
|
+
allows StarCoder2 to support a wide array of coding tasks, from code completion to generation.
|
|
26
|
+
|
|
27
|
+
StarCoder2 was developed to assist developers in writing and understanding code more efficiently,
|
|
28
|
+
making it a valuable tool for various software development and data science tasks.
|
|
29
|
+
|
|
30
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
31
|
+
object:
|
|
32
|
+
|
|
33
|
+
>>> starcoder2 = StarCoder2Transformer.pretrained() \\
|
|
34
|
+
... .setInputCols(["document"]) \\
|
|
35
|
+
... .setOutputCol("generation")
|
|
36
|
+
|
|
37
|
+
The default model is ``"starcoder2-13b"``, if no name is provided. For available
|
|
38
|
+
pretrained models please see the `Models Hub
|
|
39
|
+
<https://sparknlp.org/models?q=starcoder2>`__.
|
|
40
|
+
|
|
41
|
+
====================== ======================
|
|
42
|
+
Input Annotation types Output Annotation type
|
|
43
|
+
====================== ======================
|
|
44
|
+
``DOCUMENT`` ``DOCUMENT``
|
|
45
|
+
====================== ======================
|
|
46
|
+
|
|
47
|
+
Parameters
|
|
48
|
+
----------
|
|
49
|
+
configProtoBytes
|
|
50
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
51
|
+
minOutputLength
|
|
52
|
+
Minimum length of the sequence to be generated, by default 0
|
|
53
|
+
maxOutputLength
|
|
54
|
+
Maximum length of output text, by default 20
|
|
55
|
+
doSample
|
|
56
|
+
Whether or not to use sampling; use greedy decoding otherwise, by default False
|
|
57
|
+
temperature
|
|
58
|
+
The value used to modulate the next token probabilities, by default 1.0
|
|
59
|
+
topK
|
|
60
|
+
The number of highest probability vocabulary tokens to keep for
|
|
61
|
+
top-k-filtering, by default 50
|
|
62
|
+
topP
|
|
63
|
+
Top cumulative probability for vocabulary tokens, by default 1.0
|
|
64
|
+
|
|
65
|
+
If set to float < 1, only the most probable tokens with probabilities
|
|
66
|
+
that add up to ``topP`` or higher are kept for generation.
|
|
67
|
+
repetitionPenalty
|
|
68
|
+
The parameter for repetition penalty, 1.0 means no penalty. , by default
|
|
69
|
+
1.0
|
|
70
|
+
noRepeatNgramSize
|
|
71
|
+
If set to int > 0, all ngrams of that size can only occur once, by
|
|
72
|
+
default 0
|
|
73
|
+
ignoreTokenIds
|
|
74
|
+
A list of token ids which are ignored in the decoder's output, by
|
|
75
|
+
default []
|
|
76
|
+
|
|
77
|
+
Notes
|
|
78
|
+
-----
|
|
79
|
+
This is a very computationally expensive module especially on larger
|
|
80
|
+
sequence. The use of an accelerator such as GPU is recommended.
|
|
81
|
+
|
|
82
|
+
References
|
|
83
|
+
----------
|
|
84
|
+
- `StarCoder2: The Versatile Code Companion.
|
|
85
|
+
<https://huggingface.co/blog/starcoder>`__
|
|
86
|
+
- https://github.com/bigcode-project/starcoder
|
|
87
|
+
|
|
88
|
+
**Paper Abstract:**
|
|
89
|
+
|
|
90
|
+
*The BigCode project, an open-scientific collaboration focused on the responsible
|
|
91
|
+
development of Large Language Models for Code (Code LLMs), introduces StarCoder2. In
|
|
92
|
+
partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons
|
|
93
|
+
of their source code archive. Alongside the SWH repositories spanning 619 programming
|
|
94
|
+
languages, we carefully select other high-quality data sources, such as GitHub pull requests,
|
|
95
|
+
Kaggle notebooks, and code documentation. This results in a training set that is 4× larger
|
|
96
|
+
than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters
|
|
97
|
+
on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM
|
|
98
|
+
benchmarks.*
|
|
99
|
+
|
|
100
|
+
*We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on
|
|
101
|
+
most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2-15B,
|
|
102
|
+
significantly outperforms other models of comparable size. In addition, it matches or
|
|
103
|
+
outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder-33B is
|
|
104
|
+
the best-performing model at code completion for high-resource languages, we find that
|
|
105
|
+
StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several
|
|
106
|
+
low-resource languages. We make the model weights available under an OpenRAIL license and
|
|
107
|
+
ensure full transparency regarding the training data by releasing the Software Heritage
|
|
108
|
+
persistent Identifiers (SWHIDs) of the source code data.*
|
|
109
|
+
|
|
110
|
+
Examples
|
|
111
|
+
--------
|
|
112
|
+
>>> import sparknlp
|
|
113
|
+
>>> from sparknlp.base import *
|
|
114
|
+
>>> from sparknlp.annotator import *
|
|
115
|
+
>>> from pyspark.ml import Pipeline
|
|
116
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
117
|
+
... .setInputCol("text") \\
|
|
118
|
+
... .setOutputCol("documents")
|
|
119
|
+
>>> starcoder2 = StarCoder2Transformer.pretrained("starcoder2") \\
|
|
120
|
+
... .setInputCols(["documents"]) \\
|
|
121
|
+
... .setMaxOutputLength(50) \\
|
|
122
|
+
... .setOutputCol("generation")
|
|
123
|
+
>>> pipeline = Pipeline().setStages([documentAssembler, starcoder2])
|
|
124
|
+
>>> data = spark.createDataFrame([["def add(a, b):"]]).toDF("text")
|
|
125
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
126
|
+
>>> result.select("generation.result").show(truncate=False)
|
|
127
|
+
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
|
128
|
+
|result |
|
|
129
|
+
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
|
130
|
+
|[def add(a, b): return a + b] |
|
|
131
|
+
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
|
132
|
+
"""
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
name = "StarCoderTransformer"
|
|
137
|
+
|
|
138
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
139
|
+
|
|
140
|
+
outputAnnotatorType = AnnotatorType.DOCUMENT
|
|
141
|
+
|
|
142
|
+
configProtoBytes = Param(Params._dummy(), "configProtoBytes",
|
|
143
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
144
|
+
TypeConverters.toListInt)
|
|
145
|
+
|
|
146
|
+
minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
|
|
147
|
+
typeConverter=TypeConverters.toInt)
|
|
148
|
+
|
|
149
|
+
maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
|
|
150
|
+
typeConverter=TypeConverters.toInt)
|
|
151
|
+
|
|
152
|
+
doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
|
|
153
|
+
typeConverter=TypeConverters.toBoolean)
|
|
154
|
+
|
|
155
|
+
temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
|
|
156
|
+
typeConverter=TypeConverters.toFloat)
|
|
157
|
+
|
|
158
|
+
topK = Param(Params._dummy(), "topK",
|
|
159
|
+
"The number of highest probability vocabulary tokens to keep for top-k-filtering",
|
|
160
|
+
typeConverter=TypeConverters.toInt)
|
|
161
|
+
|
|
162
|
+
topP = Param(Params._dummy(), "topP",
|
|
163
|
+
"If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
|
|
164
|
+
typeConverter=TypeConverters.toFloat)
|
|
165
|
+
|
|
166
|
+
repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
|
|
167
|
+
"The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
|
|
168
|
+
typeConverter=TypeConverters.toFloat)
|
|
169
|
+
|
|
170
|
+
noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
|
|
171
|
+
"If set to int > 0, all ngrams of that size can only occur once",
|
|
172
|
+
typeConverter=TypeConverters.toInt)
|
|
173
|
+
|
|
174
|
+
ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
|
|
175
|
+
"A list of token ids which are ignored in the decoder's output",
|
|
176
|
+
typeConverter=TypeConverters.toListInt)
|
|
177
|
+
|
|
178
|
+
def setIgnoreTokenIds(self, value):
|
|
179
|
+
"""A list of token ids which are ignored in the decoder's output.
|
|
180
|
+
|
|
181
|
+
Parameters
|
|
182
|
+
----------
|
|
183
|
+
value : List[int]
|
|
184
|
+
The words to be filtered out
|
|
185
|
+
"""
|
|
186
|
+
return self._set(ignoreTokenIds=value)
|
|
187
|
+
|
|
188
|
+
def setConfigProtoBytes(self, b):
|
|
189
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
190
|
+
|
|
191
|
+
Parameters
|
|
192
|
+
----------
|
|
193
|
+
b : List[int]
|
|
194
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
195
|
+
"""
|
|
196
|
+
return self._set(configProtoBytes=b)
|
|
197
|
+
|
|
198
|
+
def setMinOutputLength(self, value):
|
|
199
|
+
"""Sets minimum length of the sequence to be generated.
|
|
200
|
+
|
|
201
|
+
Parameters
|
|
202
|
+
----------
|
|
203
|
+
value : int
|
|
204
|
+
Minimum length of the sequence to be generated
|
|
205
|
+
"""
|
|
206
|
+
return self._set(minOutputLength=value)
|
|
207
|
+
|
|
208
|
+
def setMaxOutputLength(self, value):
|
|
209
|
+
"""Sets maximum length of output text.
|
|
210
|
+
|
|
211
|
+
Parameters
|
|
212
|
+
----------
|
|
213
|
+
value : int
|
|
214
|
+
Maximum length of output text
|
|
215
|
+
"""
|
|
216
|
+
return self._set(maxOutputLength=value)
|
|
217
|
+
|
|
218
|
+
def setDoSample(self, value):
|
|
219
|
+
"""Sets whether or not to use sampling, use greedy decoding otherwise.
|
|
220
|
+
|
|
221
|
+
Parameters
|
|
222
|
+
----------
|
|
223
|
+
value : bool
|
|
224
|
+
Whether or not to use sampling; use greedy decoding otherwise
|
|
225
|
+
"""
|
|
226
|
+
return self._set(doSample=value)
|
|
227
|
+
|
|
228
|
+
def setTemperature(self, value):
|
|
229
|
+
"""Sets the value used to module the next token probabilities.
|
|
230
|
+
|
|
231
|
+
Parameters
|
|
232
|
+
----------
|
|
233
|
+
value : float
|
|
234
|
+
The value used to module the next token probabilities
|
|
235
|
+
"""
|
|
236
|
+
return self._set(temperature=value)
|
|
237
|
+
|
|
238
|
+
def setTopK(self, value):
|
|
239
|
+
"""Sets the number of highest probability vocabulary tokens to keep for
|
|
240
|
+
top-k-filtering.
|
|
241
|
+
|
|
242
|
+
Parameters
|
|
243
|
+
----------
|
|
244
|
+
value : int
|
|
245
|
+
Number of highest probability vocabulary tokens to keep
|
|
246
|
+
"""
|
|
247
|
+
return self._set(topK=value)
|
|
248
|
+
|
|
249
|
+
def setTopP(self, value):
|
|
250
|
+
"""Sets the top cumulative probability for vocabulary tokens.
|
|
251
|
+
|
|
252
|
+
If set to float < 1, only the most probable tokens with probabilities
|
|
253
|
+
that add up to ``topP`` or higher are kept for generation.
|
|
254
|
+
|
|
255
|
+
Parameters
|
|
256
|
+
----------
|
|
257
|
+
value : float
|
|
258
|
+
Cumulative probability for vocabulary tokens
|
|
259
|
+
"""
|
|
260
|
+
return self._set(topP=value)
|
|
261
|
+
|
|
262
|
+
def setRepetitionPenalty(self, value):
|
|
263
|
+
"""Sets the parameter for repetition penalty. 1.0 means no penalty.
|
|
264
|
+
|
|
265
|
+
Parameters
|
|
266
|
+
----------
|
|
267
|
+
value : float
|
|
268
|
+
The repetition penalty
|
|
269
|
+
|
|
270
|
+
References
|
|
271
|
+
----------
|
|
272
|
+
See `Ctrl: A Conditional Transformer Language Model For Controllable
|
|
273
|
+
Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
|
|
274
|
+
"""
|
|
275
|
+
return self._set(repetitionPenalty=value)
|
|
276
|
+
|
|
277
|
+
def setNoRepeatNgramSize(self, value):
|
|
278
|
+
"""Sets size of n-grams that can only occur once.
|
|
279
|
+
|
|
280
|
+
If set to int > 0, all ngrams of that size can only occur once.
|
|
281
|
+
|
|
282
|
+
Parameters
|
|
283
|
+
----------
|
|
284
|
+
value : int
|
|
285
|
+
N-gram size can only occur once
|
|
286
|
+
"""
|
|
287
|
+
return self._set(noRepeatNgramSize=value)
|
|
288
|
+
|
|
289
|
+
@keyword_only
|
|
290
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.StarCoderTransformer", java_model=None):
|
|
291
|
+
super(StarCoderTransformer, self).__init__(classname=classname, java_model=java_model)
|
|
292
|
+
self._setDefault(minOutputLength=0, maxOutputLength=20, doSample=False, temperature=0.6, topK=50, topP=0.9,
|
|
293
|
+
repetitionPenalty=1.0, noRepeatNgramSize=0, ignoreTokenIds=[], batchSize=1)
|
|
294
|
+
|
|
295
|
+
@staticmethod
|
|
296
|
+
def loadSavedModel(folder, spark_session, use_openvino=False):
|
|
297
|
+
"""Loads a locally saved model.
|
|
298
|
+
|
|
299
|
+
Parameters
|
|
300
|
+
----------
|
|
301
|
+
folder : str
|
|
302
|
+
Folder of the saved model
|
|
303
|
+
spark_session : pyspark.sql.SparkSession
|
|
304
|
+
The current SparkSession
|
|
305
|
+
|
|
306
|
+
Returns
|
|
307
|
+
-------
|
|
308
|
+
StarCoderTransformer
|
|
309
|
+
The restored model
|
|
310
|
+
"""
|
|
311
|
+
from sparknlp.internal import _StarCoderLoader
|
|
312
|
+
jModel = _StarCoderLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
|
|
313
|
+
return StarCoderTransformer(java_model=jModel)
|
|
314
|
+
|
|
315
|
+
@staticmethod
|
|
316
|
+
def pretrained(name="starcoder", lang="en", remote_loc=None):
|
|
317
|
+
"""Downloads and loads a pretrained model.
|
|
318
|
+
|
|
319
|
+
Parameters
|
|
320
|
+
----------
|
|
321
|
+
name : str, optional
|
|
322
|
+
Name of the pretrained model, by default "starcoder"
|
|
323
|
+
lang : str, optional
|
|
324
|
+
Language of the pretrained model, by default "en"
|
|
325
|
+
remote_loc : str, optional
|
|
326
|
+
Optional remote address of the resource, by default None. Will use
|
|
327
|
+
Spark NLPs repositories otherwise.
|
|
328
|
+
|
|
329
|
+
Returns
|
|
330
|
+
-------
|
|
331
|
+
StarCoderTransformer
|
|
332
|
+
The restored model
|
|
333
|
+
"""
|
|
334
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
335
|
+
return ResourceDownloader.downloadModel(StarCoderTransformer, name, lang, remote_loc)
|
sparknlp/internal/__init__.py
CHANGED
|
@@ -58,6 +58,15 @@ class _AlbertQuestionAnsweringLoader(ExtendedJavaWrapper):
|
|
|
58
58
|
)
|
|
59
59
|
|
|
60
60
|
|
|
61
|
+
class _AlbertForZeroShotClassificationLoader(ExtendedJavaWrapper):
|
|
62
|
+
def __init__(self, path, jspark):
|
|
63
|
+
super(_AlbertForZeroShotClassificationLoader, self).__init__(
|
|
64
|
+
"com.johnsnowlabs.nlp.annotators.classifier.dl.AlbertForZeroShotClassification.loadSavedModel",
|
|
65
|
+
path,
|
|
66
|
+
jspark,
|
|
67
|
+
)
|
|
68
|
+
|
|
69
|
+
|
|
61
70
|
class _BertLoader(ExtendedJavaWrapper):
|
|
62
71
|
def __init__(self, path, jspark, use_openvino=False):
|
|
63
72
|
super(_BertLoader, self).__init__(
|
|
@@ -149,6 +158,15 @@ class _CamemBertLoader(ExtendedJavaWrapper):
|
|
|
149
158
|
jspark,
|
|
150
159
|
)
|
|
151
160
|
|
|
161
|
+
class _CPMLoader(ExtendedJavaWrapper):
|
|
162
|
+
def __init__(self, path, jspark, use_openvino=False):
|
|
163
|
+
super(_CPMLoader, self).__init__(
|
|
164
|
+
"com.johnsnowlabs.nlp.annotators.seq2seq.CPMTransformer.loadSavedModel",
|
|
165
|
+
path,
|
|
166
|
+
jspark,
|
|
167
|
+
use_openvino
|
|
168
|
+
)
|
|
169
|
+
|
|
152
170
|
|
|
153
171
|
class _DistilBertLoader(ExtendedJavaWrapper):
|
|
154
172
|
def __init__(self, path, jspark):
|
|
@@ -230,6 +248,14 @@ class _LLAMA2Loader(ExtendedJavaWrapper):
|
|
|
230
248
|
use_openvino,
|
|
231
249
|
)
|
|
232
250
|
|
|
251
|
+
class _LLAMA3Loader(ExtendedJavaWrapper):
|
|
252
|
+
def __init__(self, path, jspark, use_openvino=False):
|
|
253
|
+
super(_LLAMA3Loader, self).__init__(
|
|
254
|
+
"com.johnsnowlabs.nlp.annotators.seq2seq.LLAMA3Transformer.loadSavedModel",
|
|
255
|
+
path,
|
|
256
|
+
jspark,
|
|
257
|
+
use_openvino,
|
|
258
|
+
)
|
|
233
259
|
|
|
234
260
|
class _LongformerLoader(ExtendedJavaWrapper):
|
|
235
261
|
def __init__(self, path, jspark):
|
|
@@ -286,6 +312,14 @@ class _MistralLoader(ExtendedJavaWrapper):
|
|
|
286
312
|
)
|
|
287
313
|
|
|
288
314
|
|
|
315
|
+
class _NLLBLoader(ExtendedJavaWrapper):
|
|
316
|
+
def __init__(self, path, jspark, use_openvino=False):
|
|
317
|
+
super(_NLLBLoader, self).__init__(
|
|
318
|
+
"com.johnsnowlabs.nlp.annotators.seq2seq.NLLBTransformer.loadSavedModel",
|
|
319
|
+
path,
|
|
320
|
+
jspark,
|
|
321
|
+
use_openvino)
|
|
322
|
+
|
|
289
323
|
class _MarianLoader(ExtendedJavaWrapper):
|
|
290
324
|
def __init__(self, path, jspark):
|
|
291
325
|
super(_MarianLoader, self).__init__(
|
|
@@ -313,6 +347,14 @@ class _Phi2Loader(ExtendedJavaWrapper):
|
|
|
313
347
|
use_openvino,
|
|
314
348
|
)
|
|
315
349
|
|
|
350
|
+
class _Phi3Loader(ExtendedJavaWrapper):
|
|
351
|
+
def __init__(self, path, jspark, use_openvino=False):
|
|
352
|
+
super(_Phi3Loader, self).__init__(
|
|
353
|
+
"com.johnsnowlabs.nlp.annotators.seq2seq.Phi3Transformer.loadSavedModel",
|
|
354
|
+
path,
|
|
355
|
+
jspark,
|
|
356
|
+
use_openvino,
|
|
357
|
+
)
|
|
316
358
|
|
|
317
359
|
class _RoBertaLoader(ExtendedJavaWrapper):
|
|
318
360
|
def __init__(self, path, jspark, use_openvino=False):
|
|
@@ -360,6 +402,15 @@ class _RoBertaQuestionAnsweringLoader(ExtendedJavaWrapper):
|
|
|
360
402
|
)
|
|
361
403
|
|
|
362
404
|
|
|
405
|
+
class _StarCoderLoader(ExtendedJavaWrapper):
|
|
406
|
+
def __init__(self, path, jspark, use_openvino=False):
|
|
407
|
+
super(_StarCoderLoader, self).__init__(
|
|
408
|
+
"com.johnsnowlabs.nlp.annotators.seq2seq.StarCoderTransformer.loadSavedModel",
|
|
409
|
+
path,
|
|
410
|
+
jspark,
|
|
411
|
+
use_openvino,
|
|
412
|
+
)
|
|
413
|
+
|
|
363
414
|
class _T5Loader(ExtendedJavaWrapper):
|
|
364
415
|
def __init__(self, path, jspark):
|
|
365
416
|
super(_T5Loader, self).__init__(
|
|
@@ -379,6 +430,17 @@ class _BartLoader(ExtendedJavaWrapper):
|
|
|
379
430
|
)
|
|
380
431
|
|
|
381
432
|
|
|
433
|
+
class _NomicLoader(ExtendedJavaWrapper):
|
|
434
|
+
def __init__(self, path, jspark, use_openvino=False):
|
|
435
|
+
super(_NomicLoader, self).__init__("com.johnsnowlabs.nlp.embeddings.NomicEmbeddings.loadSavedModel", path, jspark, use_openvino)
|
|
436
|
+
|
|
437
|
+
|
|
438
|
+
class _QwenLoader(ExtendedJavaWrapper):
|
|
439
|
+
def __init__(self, path, jspark, use_openvino=False):
|
|
440
|
+
super(_QwenLoader, self).__init__(
|
|
441
|
+
"com.johnsnowlabs.nlp.annotators.seq2seq.QwenTransformer.loadSavedModel", path, jspark, use_openvino)
|
|
442
|
+
|
|
443
|
+
|
|
382
444
|
class _USELoader(ExtendedJavaWrapper):
|
|
383
445
|
def __init__(self, path, jspark, loadsp):
|
|
384
446
|
super(_USELoader, self).__init__(
|
|
@@ -798,6 +860,13 @@ class _CamemBertQuestionAnsweringLoader(ExtendedJavaWrapper):
|
|
|
798
860
|
jspark,
|
|
799
861
|
)
|
|
800
862
|
|
|
863
|
+
class _CamemBertForZeroShotClassificationLoader(ExtendedJavaWrapper):
|
|
864
|
+
def __init__(self, path, jspark):
|
|
865
|
+
super(_CamemBertForZeroShotClassificationLoader, self).__init__(
|
|
866
|
+
"com.johnsnowlabs.nlp.annotators.classifier.dl.CamemBertForZeroShotClassification.loadSavedModel",
|
|
867
|
+
path,
|
|
868
|
+
jspark,
|
|
869
|
+
)
|
|
801
870
|
|
|
802
871
|
class _RobertaQAToZeroShotNerLoader(ExtendedJavaWrapper):
|
|
803
872
|
def __init__(self, path):
|
|
@@ -910,3 +979,23 @@ class _UAEEmbeddingsLoader(ExtendedJavaWrapper):
|
|
|
910
979
|
super(_UAEEmbeddingsLoader, self).__init__(
|
|
911
980
|
"com.johnsnowlabs.nlp.embeddings.UAEEmbeddings.loadSavedModel", path, jspark
|
|
912
981
|
)
|
|
982
|
+
|
|
983
|
+
|
|
984
|
+
class _AutoGGUFLoader(ExtendedJavaWrapper):
|
|
985
|
+
def __init__(self, path, jspark):
|
|
986
|
+
super(_AutoGGUFLoader, self).__init__(
|
|
987
|
+
"com.johnsnowlabs.nlp.annotators.seq2seq.AutoGGUFModel.loadSavedModel", path, jspark)
|
|
988
|
+
|
|
989
|
+
|
|
990
|
+
class _MxbaiEmbeddingsLoader(ExtendedJavaWrapper):
|
|
991
|
+
def __init__(self, path, jspark):
|
|
992
|
+
super(_MxbaiEmbeddingsLoader, self).__init__(
|
|
993
|
+
"com.johnsnowlabs.nlp.embeddings.MxbaiEmbeddings.loadSavedModel", path, jspark
|
|
994
|
+
)
|
|
995
|
+
|
|
996
|
+
|
|
997
|
+
class _SnowFlakeEmbeddingsLoader(ExtendedJavaWrapper):
|
|
998
|
+
def __init__(self, path, jspark):
|
|
999
|
+
super(_SnowFlakeEmbeddingsLoader, self).__init__(
|
|
1000
|
+
"com.johnsnowlabs.nlp.embeddings.SnowFlakeEmbeddings.loadSavedModel", path, jspark
|
|
1001
|
+
)
|