spark-nlp 5.4.1__py2.py3-none-any.whl → 5.5.0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of spark-nlp might be problematic. Click here for more details.
- spark_nlp-5.5.0.dist-info/METADATA +345 -0
- {spark_nlp-5.4.1.dist-info → spark_nlp-5.5.0.dist-info}/RECORD +25 -13
- sparknlp/__init__.py +2 -2
- sparknlp/annotator/classifier_dl/__init__.py +4 -1
- sparknlp/annotator/classifier_dl/albert_for_zero_shot_classification.py +211 -0
- sparknlp/annotator/classifier_dl/camembert_for_zero_shot_classification.py +202 -0
- sparknlp/annotator/classifier_dl/deberta_for_zero_shot_classification.py +2 -15
- sparknlp/annotator/embeddings/__init__.py +3 -0
- sparknlp/annotator/embeddings/mxbai_embeddings.py +184 -0
- sparknlp/annotator/embeddings/nomic_embeddings.py +181 -0
- sparknlp/annotator/embeddings/snowflake_embeddings.py +202 -0
- sparknlp/annotator/matcher/date_matcher.py +15 -0
- sparknlp/annotator/seq2seq/__init__.py +7 -0
- sparknlp/annotator/seq2seq/auto_gguf_model.py +804 -0
- sparknlp/annotator/seq2seq/cpm_transformer.py +321 -0
- sparknlp/annotator/seq2seq/llama3_transformer.py +381 -0
- sparknlp/annotator/seq2seq/nllb_transformer.py +420 -0
- sparknlp/annotator/seq2seq/phi3_transformer.py +330 -0
- sparknlp/annotator/seq2seq/qwen_transformer.py +339 -0
- sparknlp/annotator/seq2seq/starcoder_transformer.py +335 -0
- sparknlp/annotator/similarity/document_similarity_ranker.py +22 -0
- sparknlp/internal/__init__.py +89 -0
- spark_nlp-5.4.1.dist-info/METADATA +0 -1357
- {spark_nlp-5.4.1.dist-info → spark_nlp-5.5.0.dist-info}/.uuid +0 -0
- {spark_nlp-5.4.1.dist-info → spark_nlp-5.5.0.dist-info}/WHEEL +0 -0
- {spark_nlp-5.4.1.dist-info → spark_nlp-5.5.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,181 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for E5Embeddings."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class NomicEmbeddings(AnnotatorModel, HasEmbeddingsProperties, HasCaseSensitiveProperties, HasStorageRef,
|
|
20
|
+
HasBatchedAnnotate, HasMaxSentenceLengthLimit):
|
|
21
|
+
"""Sentence embeddings using NomicEmbeddings.
|
|
22
|
+
|
|
23
|
+
nomic-embed-text-v1 is 8192 context length text encoder that surpasses OpenAI
|
|
24
|
+
text-embedding-ada-002 and text-embedding-3-small performance on short and long context tasks.
|
|
25
|
+
|
|
26
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
27
|
+
object:
|
|
28
|
+
|
|
29
|
+
>>> embeddings = NomicEmbeddings.pretrained() \\
|
|
30
|
+
... .setInputCols(["document"]) \\
|
|
31
|
+
... .setOutputCol("nomic_embeddings")
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
The default model is ``"nomic_small"``, if no name is provided.
|
|
35
|
+
|
|
36
|
+
For available pretrained models please see the
|
|
37
|
+
`Models Hub <https://sparknlp.org/models?q=Nomic>`__.
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
====================== ======================
|
|
41
|
+
Input Annotation types Output Annotation type
|
|
42
|
+
====================== ======================
|
|
43
|
+
``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
|
|
44
|
+
====================== ======================
|
|
45
|
+
|
|
46
|
+
Parameters
|
|
47
|
+
----------
|
|
48
|
+
batchSize
|
|
49
|
+
Size of every batch , by default 8
|
|
50
|
+
dimension
|
|
51
|
+
Number of embedding dimensions, by default 768
|
|
52
|
+
caseSensitive
|
|
53
|
+
Whether to ignore case in tokens for embeddings matching, by default False
|
|
54
|
+
maxSentenceLength
|
|
55
|
+
Max sentence length to process, by default 512
|
|
56
|
+
configProtoBytes
|
|
57
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
58
|
+
|
|
59
|
+
References
|
|
60
|
+
----------
|
|
61
|
+
`Text Embeddings by Weakly-Supervised Contrastive Pre-training <https://arxiv.org/pdf/2212.03533>`__
|
|
62
|
+
|
|
63
|
+
https://github.com/microsoft/unilm/tree/master/nomic
|
|
64
|
+
|
|
65
|
+
**Paper abstract**
|
|
66
|
+
|
|
67
|
+
*This technical report describes the training
|
|
68
|
+
of nomic-embed-text-v1, the first fully reproducible,
|
|
69
|
+
open-source, open-weights, opendata, 8192 context length
|
|
70
|
+
English text embedding model that outperforms both OpenAI
|
|
71
|
+
Ada-002 and OpenAI text-embedding-3-small
|
|
72
|
+
on short and long-context tasks. We release
|
|
73
|
+
the training code and model weights under
|
|
74
|
+
an Apache 2 license. In contrast with other
|
|
75
|
+
open-source models, we release a training data
|
|
76
|
+
loader with 235 million curated text pairs that
|
|
77
|
+
allows for the full replication of nomic-embedtext-v1.
|
|
78
|
+
You can find code and data to replicate the
|
|
79
|
+
model at https://github.com/nomicai/contrastors.*
|
|
80
|
+
|
|
81
|
+
Examples
|
|
82
|
+
--------
|
|
83
|
+
>>> import sparknlp
|
|
84
|
+
>>> from sparknlp.base import *
|
|
85
|
+
>>> from sparknlp.annotator import *
|
|
86
|
+
>>> from pyspark.ml import Pipeline
|
|
87
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
88
|
+
... .setInputCol("text") \\
|
|
89
|
+
... .setOutputCol("document")
|
|
90
|
+
>>> embeddings = NomicEmbeddings.pretrained() \\
|
|
91
|
+
... .setInputCols(["document"]) \\
|
|
92
|
+
... .setOutputCol("nomic_embeddings")
|
|
93
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
94
|
+
... .setInputCols(["nomic_embeddings"]) \\
|
|
95
|
+
... .setOutputCols("finished_embeddings") \\
|
|
96
|
+
... .setOutputAsVector(True)
|
|
97
|
+
>>> pipeline = Pipeline().setStages([
|
|
98
|
+
... documentAssembler,
|
|
99
|
+
... embeddings,
|
|
100
|
+
... embeddingsFinisher
|
|
101
|
+
... ])
|
|
102
|
+
>>> data = spark.createDataFrame([["query: how much protein should a female eat",
|
|
103
|
+
... "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day." + \
|
|
104
|
+
... "But, as you can see from this chart, you'll need to increase that if you're expecting or training for a" + \
|
|
105
|
+
... "marathon. Check out the chart below to see how much protein you should be eating each day.",
|
|
106
|
+
... ]]).toDF("text")
|
|
107
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
108
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
|
|
109
|
+
+--------------------------------------------------------------------------------+
|
|
110
|
+
| result|
|
|
111
|
+
+--------------------------------------------------------------------------------+
|
|
112
|
+
|[[8.0190285E-4, -0.005974853, -0.072875895, 0.007944068, 0.026059335, -0.0080...|
|
|
113
|
+
|[[0.050514214, 0.010061974, -0.04340176, -0.020937217, 0.05170225, 0.01157857...|
|
|
114
|
+
+--------------------------------------------------------------------------------+
|
|
115
|
+
"""
|
|
116
|
+
|
|
117
|
+
name = "NomicEmbeddings"
|
|
118
|
+
|
|
119
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
120
|
+
|
|
121
|
+
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
|
|
122
|
+
configProtoBytes = Param(Params._dummy(), "configProtoBytes",
|
|
123
|
+
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
|
|
124
|
+
TypeConverters.toListInt)
|
|
125
|
+
|
|
126
|
+
def setConfigProtoBytes(self, b):
|
|
127
|
+
"""Sets configProto from tensorflow, serialized into byte array.
|
|
128
|
+
|
|
129
|
+
Parameters
|
|
130
|
+
----------
|
|
131
|
+
b : List[int]
|
|
132
|
+
ConfigProto from tensorflow, serialized into byte array
|
|
133
|
+
"""
|
|
134
|
+
return self._set(configProtoBytes=b)
|
|
135
|
+
|
|
136
|
+
@keyword_only
|
|
137
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.NomicEmbeddings", java_model=None):
|
|
138
|
+
super(NomicEmbeddings, self).__init__(classname=classname, java_model=java_model)
|
|
139
|
+
self._setDefault(dimension=768, batchSize=8, maxSentenceLength=512, caseSensitive=False, )
|
|
140
|
+
|
|
141
|
+
@staticmethod
|
|
142
|
+
def loadSavedModel(folder, spark_session, use_openvino=False):
|
|
143
|
+
"""Loads a locally saved model.
|
|
144
|
+
|
|
145
|
+
Parameters
|
|
146
|
+
----------
|
|
147
|
+
folder : str
|
|
148
|
+
Folder of the saved model
|
|
149
|
+
spark_session : pyspark.sql.SparkSession
|
|
150
|
+
The current SparkSession
|
|
151
|
+
|
|
152
|
+
Returns
|
|
153
|
+
-------
|
|
154
|
+
NomicEmbeddings
|
|
155
|
+
The restored model
|
|
156
|
+
"""
|
|
157
|
+
from sparknlp.internal import _NomicLoader
|
|
158
|
+
jModel = _NomicLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj
|
|
159
|
+
return NomicEmbeddings(java_model=jModel)
|
|
160
|
+
|
|
161
|
+
@staticmethod
|
|
162
|
+
def pretrained(name="nomic_small", lang="en", remote_loc=None):
|
|
163
|
+
"""Downloads and loads a pretrained model.
|
|
164
|
+
|
|
165
|
+
Parameters
|
|
166
|
+
----------
|
|
167
|
+
name : str, optional
|
|
168
|
+
Name of the pretrained model, by default "nomic_small"
|
|
169
|
+
lang : str, optional
|
|
170
|
+
Language of the pretrained model, by default "en"
|
|
171
|
+
remote_loc : str, optional
|
|
172
|
+
Optional remote address of the resource, by default None. Will use
|
|
173
|
+
Spark NLPs repositories otherwise.
|
|
174
|
+
|
|
175
|
+
Returns
|
|
176
|
+
-------
|
|
177
|
+
NomicEmbeddings
|
|
178
|
+
The restored model
|
|
179
|
+
"""
|
|
180
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
181
|
+
return ResourceDownloader.downloadModel(NomicEmbeddings, name, lang, remote_loc)
|
|
@@ -0,0 +1,202 @@
|
|
|
1
|
+
# Copyright 2017-2022 John Snow Labs
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
"""Contains classes for SnowFlakeEmbeddings."""
|
|
15
|
+
|
|
16
|
+
from sparknlp.common import *
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class SnowFlakeEmbeddings(AnnotatorModel,
|
|
20
|
+
HasEmbeddingsProperties,
|
|
21
|
+
HasCaseSensitiveProperties,
|
|
22
|
+
HasStorageRef,
|
|
23
|
+
HasBatchedAnnotate,
|
|
24
|
+
HasMaxSentenceLengthLimit):
|
|
25
|
+
"""Sentence embeddings using SnowFlake.
|
|
26
|
+
|
|
27
|
+
snowflake-arctic-embed is a suite of text embedding models that focuses on creating
|
|
28
|
+
high-quality retrieval models optimized for performance.
|
|
29
|
+
|
|
30
|
+
Pretrained models can be loaded with :meth:`.pretrained` of the companion
|
|
31
|
+
object:
|
|
32
|
+
|
|
33
|
+
>>> embeddings = SnowFlakeEmbeddings.pretrained() \\
|
|
34
|
+
... .setInputCols(["document"]) \\
|
|
35
|
+
... .setOutputCol("SnowFlake_embeddings")
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
The default model is ``"snowflake_artic_m"``, if no name is provided.
|
|
39
|
+
|
|
40
|
+
For available pretrained models please see the
|
|
41
|
+
`Models Hub <https://sparknlp.org/models?q=SnowFlake>`__.
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
====================== ======================
|
|
45
|
+
Input Annotation types Output Annotation type
|
|
46
|
+
====================== ======================
|
|
47
|
+
``DOCUMENT`` ``SENTENCE_EMBEDDINGS``
|
|
48
|
+
====================== ======================
|
|
49
|
+
|
|
50
|
+
Parameters
|
|
51
|
+
----------
|
|
52
|
+
batchSize
|
|
53
|
+
Size of every batch , by default 8
|
|
54
|
+
dimension
|
|
55
|
+
Number of embedding dimensions, by default 768
|
|
56
|
+
caseSensitive
|
|
57
|
+
Whether to ignore case in tokens for embeddings matching, by default False
|
|
58
|
+
maxSentenceLength
|
|
59
|
+
Max sentence length to process, by default 512
|
|
60
|
+
configProtoBytes
|
|
61
|
+
ConfigProto from tensorflow, serialized into byte array.
|
|
62
|
+
|
|
63
|
+
References
|
|
64
|
+
----------
|
|
65
|
+
|
|
66
|
+
`Arctic-Embed: Scalable, Efficient, and Accurate Text Embedding Models <https://arxiv.org/abs/2405.05374>`__
|
|
67
|
+
`Snowflake Arctic-Embed Models <https://github.com/Snowflake-Labs/arctic-embed>`__
|
|
68
|
+
|
|
69
|
+
**Paper abstract**
|
|
70
|
+
|
|
71
|
+
*The models are trained by leveraging existing open-source text representation models, such
|
|
72
|
+
as bert-base-uncased, and are trained in a multi-stage pipeline to optimize their retrieval
|
|
73
|
+
performance. First, the models are trained with large batches of query-document pairs where
|
|
74
|
+
negatives are derived in-batch—pretraining leverages about 400m samples of a mix of public
|
|
75
|
+
datasets and proprietary web search data. Following pretraining models are further optimized
|
|
76
|
+
with long training on a smaller dataset (about 1m samples) of triplets of query, positive
|
|
77
|
+
document, and negative document derived from hard harmful mining. Mining of the negatives and
|
|
78
|
+
data curation is crucial to retrieval accuracy. A detailed technical report will be available
|
|
79
|
+
shortly. *
|
|
80
|
+
|
|
81
|
+
Examples
|
|
82
|
+
--------
|
|
83
|
+
>>> import sparknlp
|
|
84
|
+
>>> from sparknlp.base import *
|
|
85
|
+
>>> from sparknlp.annotator import *
|
|
86
|
+
>>> from pyspark.ml import Pipeline
|
|
87
|
+
>>> documentAssembler = DocumentAssembler() \\
|
|
88
|
+
... .setInputCol("text") \\
|
|
89
|
+
... .setOutputCol("document")
|
|
90
|
+
>>> embeddings = SnowFlakeEmbeddings.pretrained() \\
|
|
91
|
+
... .setInputCols(["document"]) \\
|
|
92
|
+
... .setOutputCol("embeddings")
|
|
93
|
+
>>> embeddingsFinisher = EmbeddingsFinisher() \\
|
|
94
|
+
... .setInputCols("embeddings") \\
|
|
95
|
+
... .setOutputCols("finished_embeddings") \\
|
|
96
|
+
... .setOutputAsVector(True)
|
|
97
|
+
>>> pipeline = Pipeline().setStages([
|
|
98
|
+
... documentAssembler,
|
|
99
|
+
... embeddings,
|
|
100
|
+
... embeddingsFinisher
|
|
101
|
+
... ])
|
|
102
|
+
>>> data = spark.createDataFrame([["hello world", "hello moon"]]).toDF("text")
|
|
103
|
+
>>> result = pipeline.fit(data).transform(data)
|
|
104
|
+
>>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
|
|
105
|
+
+--------------------------------------------------------------------------------+
|
|
106
|
+
| result|
|
|
107
|
+
+--------------------------------------------------------------------------------+
|
|
108
|
+
|[0.50387806, 0.5861606, 0.35129607, -0.76046336, -0.32446072, -0.117674336, 0...|
|
|
109
|
+
|[0.6660665, 0.961762, 0.24854276, -0.1018044, -0.6569202, 0.027635604, 0.1915...|
|
|
110
|
+
+--------------------------------------------------------------------------------+
|
|
111
|
+
"""
|
|
112
|
+
|
|
113
|
+
name = "SnowFlakeEmbeddings"
|
|
114
|
+
|
|
115
|
+
inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
|
|
116
|
+
|
|
117
|
+
outputAnnotatorType = AnnotatorType.SENTENCE_EMBEDDINGS
|
|
118
|
+
poolingStrategy = Param(Params._dummy(),
|
|
119
|
+
"poolingStrategy",
|
|
120
|
+
"Pooling strategy to use for sentence embeddings",
|
|
121
|
+
TypeConverters.toString)
|
|
122
|
+
|
|
123
|
+
def setPoolingStrategy(self, value):
|
|
124
|
+
"""Pooling strategy to use for sentence embeddings.
|
|
125
|
+
|
|
126
|
+
Available pooling strategies for sentence embeddings are:
|
|
127
|
+
- `"cls"`: leading `[CLS]` token
|
|
128
|
+
- `"cls_avg"`: leading `[CLS]` token + mean of all other tokens
|
|
129
|
+
- `"last"`: embeddings of the last token in the sequence
|
|
130
|
+
- `"avg"`: mean of all tokens
|
|
131
|
+
- `"max"`: max of all embedding features of the entire token sequence
|
|
132
|
+
- `"int"`: An integer number, which represents the index of the token to use as the
|
|
133
|
+
embedding
|
|
134
|
+
|
|
135
|
+
Parameters
|
|
136
|
+
----------
|
|
137
|
+
value : str
|
|
138
|
+
Pooling strategy to use for sentence embeddings
|
|
139
|
+
"""
|
|
140
|
+
|
|
141
|
+
valid_strategies = {"cls", "cls_avg", "last", "avg", "max"}
|
|
142
|
+
if value in valid_strategies or value.isdigit():
|
|
143
|
+
return self._set(poolingStrategy=value)
|
|
144
|
+
else:
|
|
145
|
+
raise ValueError(f"Invalid pooling strategy: {value}. "
|
|
146
|
+
f"Valid strategies are: {', '.join(self.valid_strategies)} or an integer.")
|
|
147
|
+
|
|
148
|
+
@keyword_only
|
|
149
|
+
def __init__(self, classname="com.johnsnowlabs.nlp.embeddings.SnowFlakeEmbeddings", java_model=None):
|
|
150
|
+
super(SnowFlakeEmbeddings, self).__init__(
|
|
151
|
+
classname=classname,
|
|
152
|
+
java_model=java_model
|
|
153
|
+
)
|
|
154
|
+
self._setDefault(
|
|
155
|
+
dimension=1024,
|
|
156
|
+
batchSize=8,
|
|
157
|
+
maxSentenceLength=512,
|
|
158
|
+
caseSensitive=False,
|
|
159
|
+
poolingStrategy="cls"
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
@staticmethod
|
|
163
|
+
def loadSavedModel(folder, spark_session):
|
|
164
|
+
"""Loads a locally saved model.
|
|
165
|
+
|
|
166
|
+
Parameters
|
|
167
|
+
----------
|
|
168
|
+
folder : str
|
|
169
|
+
Folder of the saved model
|
|
170
|
+
spark_session : pyspark.sql.SparkSession
|
|
171
|
+
The current SparkSession
|
|
172
|
+
|
|
173
|
+
Returns
|
|
174
|
+
-------
|
|
175
|
+
SnowFlakeEmbeddings
|
|
176
|
+
The restored model
|
|
177
|
+
"""
|
|
178
|
+
from sparknlp.internal import _SnowFlakeEmbeddingsLoader
|
|
179
|
+
jModel = _SnowFlakeEmbeddingsLoader(folder, spark_session._jsparkSession)._java_obj
|
|
180
|
+
return SnowFlakeEmbeddings(java_model=jModel)
|
|
181
|
+
|
|
182
|
+
@staticmethod
|
|
183
|
+
def pretrained(name="snowflake_artic_m", lang="en", remote_loc=None):
|
|
184
|
+
"""Downloads and loads a pretrained model.
|
|
185
|
+
|
|
186
|
+
Parameters
|
|
187
|
+
----------
|
|
188
|
+
name : str, optional
|
|
189
|
+
Name of the pretrained model, by default "snowflake_artic_m"
|
|
190
|
+
lang : str, optional
|
|
191
|
+
Language of the pretrained model, by default "en"
|
|
192
|
+
remote_loc : str, optional
|
|
193
|
+
Optional remote address of the resource, by default None. Will use
|
|
194
|
+
Spark NLPs repositories otherwise.
|
|
195
|
+
|
|
196
|
+
Returns
|
|
197
|
+
-------
|
|
198
|
+
SnowFlakeEmbeddings
|
|
199
|
+
The restored model
|
|
200
|
+
"""
|
|
201
|
+
from sparknlp.pretrained import ResourceDownloader
|
|
202
|
+
return ResourceDownloader.downloadModel(SnowFlakeEmbeddings, name, lang, remote_loc)
|
|
@@ -72,6 +72,11 @@ class DateMatcherUtils(Params):
|
|
|
72
72
|
"Matched Strategy to searches relaxed dates",
|
|
73
73
|
typeConverter=TypeConverters.toString)
|
|
74
74
|
|
|
75
|
+
aggressiveMatching = Param(Params._dummy(),
|
|
76
|
+
"aggressiveMatching",
|
|
77
|
+
"Whether to aggressively attempt to find date matches, even in ambiguous or less common formats",
|
|
78
|
+
typeConverter=TypeConverters.toBoolean)
|
|
79
|
+
|
|
75
80
|
def setInputFormats(self, value):
|
|
76
81
|
"""Sets input formats patterns to match in the documents.
|
|
77
82
|
|
|
@@ -177,6 +182,16 @@ class DateMatcherUtils(Params):
|
|
|
177
182
|
"""
|
|
178
183
|
return self._set(relaxedFactoryStrategy=matchStrategy)
|
|
179
184
|
|
|
185
|
+
def setAggressiveMatching(self, value):
|
|
186
|
+
""" Sets whether to aggressively attempt to find date matches, even in ambiguous or less common formats
|
|
187
|
+
|
|
188
|
+
Parameters
|
|
189
|
+
----------
|
|
190
|
+
aggressiveMatching : Boolean
|
|
191
|
+
Whether to aggressively attempt to find date matches, even in ambiguous or less common formats
|
|
192
|
+
"""
|
|
193
|
+
return self._set(aggressiveMatching=value)
|
|
194
|
+
|
|
180
195
|
|
|
181
196
|
class DateMatcher(AnnotatorModel, DateMatcherUtils):
|
|
182
197
|
"""Matches standard date formats into a provided format
|
|
@@ -21,3 +21,10 @@ from sparknlp.annotator.seq2seq.llama2_transformer import *
|
|
|
21
21
|
from sparknlp.annotator.seq2seq.m2m100_transformer import *
|
|
22
22
|
from sparknlp.annotator.seq2seq.phi2_transformer import *
|
|
23
23
|
from sparknlp.annotator.seq2seq.mistral_transformer import *
|
|
24
|
+
from sparknlp.annotator.seq2seq.auto_gguf_model import *
|
|
25
|
+
from sparknlp.annotator.seq2seq.phi3_transformer import *
|
|
26
|
+
from sparknlp.annotator.seq2seq.nllb_transformer import *
|
|
27
|
+
from sparknlp.annotator.seq2seq.cpm_transformer import *
|
|
28
|
+
from sparknlp.annotator.seq2seq.qwen_transformer import *
|
|
29
|
+
from sparknlp.annotator.seq2seq.starcoder_transformer import *
|
|
30
|
+
from sparknlp.annotator.seq2seq.llama3_transformer import *
|