spark-nlp 5.4.0rc1__py2.py3-none-any.whl → 5.4.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of spark-nlp might be problematic. Click here for more details.

@@ -0,0 +1,173 @@
1
+ # Copyright 2017-2022 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for MPNetForTokenClassification."""
15
+
16
+ from sparknlp.common import *
17
+
18
+
19
+ class MPNetForTokenClassification(AnnotatorModel,
20
+ HasCaseSensitiveProperties,
21
+ HasBatchedAnnotate,
22
+ HasEngine,
23
+ HasMaxSentenceLengthLimit):
24
+ """MPNetForTokenClassification can load XLM-RoBERTa Models with a token
25
+ classification head on top (a linear layer on top of the hidden-states
26
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
27
+
28
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
29
+ object:
30
+
31
+ >>> token_classifier = MPNetForTokenClassification.pretrained() \\
32
+ ... .setInputCols(["token", "document"]) \\
33
+ ... .setOutputCol("label")
34
+ The default model is ``"mpnet_base_token_classifier"``, if no
35
+ name is provided.
36
+
37
+ For available pretrained models please see the `Models Hub
38
+ <https://sparknlp.org/models?task=Named+Entity+Recognition>`__.
39
+ To see which models are compatible and how to import them see
40
+ `Import Transformers into Spark NLP 🚀
41
+ <https://github.com/JohnSnowLabs/spark-nlp/discussions/5669>`_.
42
+
43
+ ====================== ======================
44
+ Input Annotation types Output Annotation type
45
+ ====================== ======================
46
+ ``DOCUMENT, TOKEN`` ``NAMED_ENTITY``
47
+ ====================== ======================
48
+
49
+ Parameters
50
+ ----------
51
+ batchSize
52
+ Batch size. Large values allows faster processing but requires more
53
+ memory, by default 8
54
+ caseSensitive
55
+ Whether to ignore case in tokens for embeddings matching, by default
56
+ True
57
+ configProtoBytes
58
+ ConfigProto from tensorflow, serialized into byte array.
59
+ maxSentenceLength
60
+ Max sentence length to process, by default 128
61
+
62
+ Examples
63
+ --------
64
+ >>> import sparknlp
65
+ >>> from sparknlp.base import *
66
+ >>> from sparknlp.annotator import *
67
+ >>> from pyspark.ml import Pipeline
68
+ >>> documentAssembler = DocumentAssembler() \\
69
+ ... .setInputCol("text") \\
70
+ ... .setOutputCol("document")
71
+ >>> tokenizer = Tokenizer() \\
72
+ ... .setInputCols(["document"]) \\
73
+ ... .setOutputCol("token")
74
+ >>> tokenClassifier = MPNetForTokenClassification.pretrained() \\
75
+ ... .setInputCols(["token", "document"]) \\
76
+ ... .setOutputCol("label") \\
77
+ ... .setCaseSensitive(True)
78
+ >>> pipeline = Pipeline().setStages([
79
+ ... documentAssembler,
80
+ ... tokenizer,
81
+ ... tokenClassifier
82
+ ... ])
83
+ >>> data = spark.createDataFrame([["John Lenon was born in London and lived in Paris. My name is Sarah and I live in London"]]).toDF("text")
84
+ >>> result = pipeline.fit(data).transform(data)
85
+ >>> result.select("label.result").show(truncate=False)
86
+ +------------------------------------------------------------------------------------+
87
+ |result |
88
+ +------------------------------------------------------------------------------------+
89
+ |[B-PER, I-PER, O, O, O, B-LOC, O, O, O, B-LOC, O, O, O, O, B-PER, O, O, O, O, B-LOC]|
90
+ +------------------------------------------------------------------------------------+
91
+ """
92
+ name = "MPNetForTokenClassification"
93
+
94
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT, AnnotatorType.TOKEN]
95
+
96
+ outputAnnotatorType = AnnotatorType.NAMED_ENTITY
97
+
98
+ configProtoBytes = Param(Params._dummy(),
99
+ "configProtoBytes",
100
+ "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
101
+ TypeConverters.toListInt)
102
+
103
+ def getClasses(self):
104
+ """
105
+ Returns labels used to train this model
106
+ """
107
+ return self._call_java("getClasses")
108
+
109
+ def setConfigProtoBytes(self, b):
110
+ """Sets configProto from tensorflow, serialized into byte array.
111
+
112
+ Parameters
113
+ ----------
114
+ b : List[int]
115
+ ConfigProto from tensorflow, serialized into byte array
116
+ """
117
+ return self._set(configProtoBytes=b)
118
+
119
+ @keyword_only
120
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.classifier.dl.MPNetForTokenClassification",
121
+ java_model=None):
122
+ super(MPNetForTokenClassification, self).__init__(
123
+ classname=classname,
124
+ java_model=java_model
125
+ )
126
+ self._setDefault(
127
+ batchSize=8,
128
+ maxSentenceLength=128,
129
+ caseSensitive=True
130
+ )
131
+
132
+ @staticmethod
133
+ def loadSavedModel(folder, spark_session):
134
+ """Loads a locally saved model.
135
+
136
+ Parameters
137
+ ----------
138
+ folder : str
139
+ Folder of the saved model
140
+ spark_session : pyspark.sql.SparkSession
141
+ The current SparkSession
142
+
143
+ Returns
144
+ -------
145
+ XlmRoBertaForTokenClassification
146
+ The restored model
147
+ """
148
+ from sparknlp.internal import _MPNetForTokenClassifierLoader
149
+ jModel = _MPNetForTokenClassifierLoader(folder, spark_session._jsparkSession)._java_obj
150
+ return MPNetForTokenClassification(java_model=jModel)
151
+
152
+ @staticmethod
153
+ def pretrained(name="mpnet_base_token_classifier", lang="en", remote_loc=None):
154
+ """Downloads and loads a pretrained model.
155
+
156
+ Parameters
157
+ ----------
158
+ name : str, optional
159
+ Name of the pretrained model, by default
160
+ "mpnet_base_token_classifier"
161
+ lang : str, optional
162
+ Language of the pretrained model, by default "en"
163
+ remote_loc : str, optional
164
+ Optional remote address of the resource, by default None. Will use
165
+ Spark NLPs repositories otherwise.
166
+
167
+ Returns
168
+ -------
169
+ XlmRoBertaForTokenClassification
170
+ The restored model
171
+ """
172
+ from sparknlp.pretrained import ResourceDownloader
173
+ return ResourceDownloader.downloadModel(MPNetForTokenClassification, name, lang, remote_loc)
@@ -31,7 +31,7 @@ class XlmRoBertaForTokenClassification(AnnotatorModel,
31
31
  >>> token_classifier = XlmRoBertaForTokenClassification.pretrained() \\
32
32
  ... .setInputCols(["token", "document"]) \\
33
33
  ... .setOutputCol("label")
34
- The default model is ``"xlm_roberta_base_token_classifier_conll03"``, if no
34
+ The default model is ``"mpnet_base_token_classifier"``, if no
35
35
  name is provided.
36
36
 
37
37
  For available pretrained models please see the `Models Hub
@@ -150,14 +150,14 @@ class XlmRoBertaForTokenClassification(AnnotatorModel,
150
150
  return XlmRoBertaForTokenClassification(java_model=jModel)
151
151
 
152
152
  @staticmethod
153
- def pretrained(name="xlm_roberta_base_token_classifier_conll03", lang="en", remote_loc=None):
153
+ def pretrained(name="mpnet_base_token_classifier", lang="en", remote_loc=None):
154
154
  """Downloads and loads a pretrained model.
155
155
 
156
156
  Parameters
157
157
  ----------
158
158
  name : str, optional
159
159
  Name of the pretrained model, by default
160
- "xlm_roberta_base_token_classifier_conll03"
160
+ "mpnet_base_token_classifier"
161
161
  lang : str, optional
162
162
  Language of the pretrained model, by default "en"
163
163
  remote_loc : str, optional
@@ -26,6 +26,8 @@ class BGEEmbeddings(AnnotatorModel,
26
26
 
27
27
  BGE, or BAAI General Embeddings, a model that can map any text to a low-dimensional dense
28
28
  vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
29
+
30
+ Note that this annotator is only supported for Spark Versions 3.4 and up.
29
31
 
30
32
  Pretrained models can be loaded with `pretrained` of the companion object:
31
33
 
@@ -25,6 +25,8 @@ class E5Embeddings(AnnotatorModel,
25
25
  """Sentence embeddings using E5.
26
26
 
27
27
  E5, a weakly supervised text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.)
28
+ Note that this annotator is only supported for Spark Versions 3.4 and up.
29
+
28
30
  Pretrained models can be loaded with :meth:`.pretrained` of the companion
29
31
  object:
30
32
 
@@ -28,6 +28,8 @@ class MPNetEmbeddings(AnnotatorModel,
28
28
  to inherit the advantages of masked language modeling and permuted language modeling for
29
29
  natural language understanding.
30
30
 
31
+ Note that this annotator is only supported for Spark Versions 3.4 and up.
32
+
31
33
  Pretrained models can be loaded with :meth:`.pretrained` of the companion
32
34
  object:
33
35