spark-nlp 5.2.2__py2.py3-none-any.whl → 5.3.0__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of spark-nlp might be problematic. Click here for more details.

@@ -0,0 +1,392 @@
1
+ # Copyright 2017-2024 John Snow Labs
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Contains classes for the M2M100Transformer."""
15
+
16
+ from sparknlp.common import *
17
+
18
+
19
+ class M2M100Transformer(AnnotatorModel, HasBatchedAnnotate, HasEngine):
20
+ """M2M100 : multilingual translation model
21
+
22
+ M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many
23
+ multilingual translation.
24
+
25
+ The model can directly translate between the 9,900 directions of 100 languages.
26
+
27
+ Pretrained models can be loaded with :meth:`.pretrained` of the companion
28
+ object:
29
+
30
+ >>> m2m100 = M2M100Transformer.pretrained() \\
31
+ ... .setInputCols(["document"]) \\
32
+ ... .setOutputCol("generation")
33
+
34
+
35
+ The default model is ``"m2m100_418M"``, if no name is provided. For available
36
+ pretrained models please see the `Models Hub
37
+ <https://sparknlp.org/models?q=m2m100>`__.
38
+
39
+ ====================== ======================
40
+ Input Annotation types Output Annotation type
41
+ ====================== ======================
42
+ ``DOCUMENT`` ``DOCUMENT``
43
+ ====================== ======================
44
+
45
+ Parameters
46
+ ----------
47
+ configProtoBytes
48
+ ConfigProto from tensorflow, serialized into byte array.
49
+ minOutputLength
50
+ Minimum length of the sequence to be generated, by default 0
51
+ maxOutputLength
52
+ Maximum length of output text, by default 20
53
+ doSample
54
+ Whether or not to use sampling; use greedy decoding otherwise, by default False
55
+ temperature
56
+ The value used to module the next token probabilities, by default 1.0
57
+ topK
58
+ The number of highest probability vocabulary tokens to keep for
59
+ top-k-filtering, by default 50
60
+ topP
61
+ Top cumulative probability for vocabulary tokens, by default 1.0
62
+
63
+ If set to float < 1, only the most probable tokens with probabilities
64
+ that add up to ``topP`` or higher are kept for generation.
65
+ repetitionPenalty
66
+ The parameter for repetition penalty, 1.0 means no penalty. , by default
67
+ 1.0
68
+ noRepeatNgramSize
69
+ If set to int > 0, all ngrams of that size can only occur once, by
70
+ default 0
71
+ ignoreTokenIds
72
+ A list of token ids which are ignored in the decoder's output, by
73
+ default []
74
+ srcLang
75
+ Source Language (Default: `en`)
76
+ tgtLang
77
+ Target Language (Default: `fr`)
78
+
79
+ Languages Covered
80
+ -----
81
+ Afrikaans (af), Amharic (am), Arabic (ar), Asturian (ast), Azerbaijani (az), Bashkir (ba),
82
+ Belarusian (be), Bulgarian (bg), Bengali (bn), Breton (br), Bosnian (bs), Catalan; Valencian
83
+ (ca), Cebuano (ceb), Czech (cs), Welsh (cy), Danish (da), German (de), Greeek (el), English
84
+ (en), Spanish (es), Estonian (et), Persian (fa), Fulah (ff), Finnish (fi), French (fr),
85
+ Western Frisian (fy), Irish (ga), Gaelic; Scottish Gaelic (gd), Galician (gl), Gujarati (gu),
86
+ Hausa (ha), Hebrew (he), Hindi (hi), Croatian (hr), Haitian; Haitian Creole (ht), Hungarian
87
+ (hu), Armenian (hy), Indonesian (id), Igbo (ig), Iloko (ilo), Icelandic (is), Italian (it),
88
+ Japanese (ja), Javanese (jv), Georgian (ka), Kazakh (kk), Central Khmer (km), Kannada (kn),
89
+ Korean (ko), Luxembourgish; Letzeburgesch (lb), Ganda (lg), Lingala (ln), Lao (lo), Lithuanian
90
+ (lt), Latvian (lv), Malagasy (mg), Macedonian (mk), Malayalam (ml), Mongolian (mn), Marathi
91
+ (mr), Malay (ms), Burmese (my), Nepali (ne), Dutch; Flemish (nl), Norwegian (no), Northern
92
+ Sotho (ns), Occitan (post 1500) (oc), Oriya (or), Panjabi; Punjabi (pa), Polish (pl), Pushto;
93
+ Pashto (ps), Portuguese (pt), Romanian; Moldavian; Moldovan (ro), Russian (ru), Sindhi (sd),
94
+ Sinhala; Sinhalese (si), Slovak (sk), Slovenian (sl), Somali (so), Albanian (sq), Serbian
95
+ (sr), Swati (ss), Sundanese (su), Swedish (sv), Swahili (sw), Tamil (ta), Thai (th), Tagalog
96
+ (tl), Tswana (tn), Turkish (tr), Ukrainian (uk), Urdu (ur), Uzbek (uz), Vietnamese (vi), Wolof
97
+ (wo), Xhosa (xh), Yiddish (yi), Yoruba (yo), Chinese (zh), Zulu (zu)
98
+
99
+ References
100
+ ----------
101
+ - `Beyond English-Centric Multilingual Machine Translation
102
+ <https://arxiv.org/pdf/2010.11125.pdf>`__
103
+ - https://github.com/pytorch/fairseq/tree/master/examples/m2m_100
104
+
105
+ **Paper Abstract:**
106
+
107
+ * Existing work in translation demonstrated the potential of massively multilingual machine translation by training
108
+ a single model able to translate between any pair of languages. However, much of this work is English-Centric by
109
+ training only on data which was translated from or to English. While this is supported by large sources of
110
+ training data, it does not reflect translation needs worldwide. In this work, we create a true Many-to-Many
111
+ multilingual translation model that can translate directly between any pair of 100 languages. We build and open
112
+ source a training dataset that covers thousands of language directions with supervised data, created through
113
+ large-scale mining. Then, we explore how to effectively increase model capacity through a combination of dense
114
+ scaling and language-specific sparse parameters to create high quality models. Our focus on non-English-Centric
115
+ models brings gains of more than 10 BLEU when directly translating between non-English directions while performing
116
+ competitively to the best single systems of WMT. We open-source our scripts so that others may reproduce the data,
117
+ evaluation, and final M2M-100 model.*
118
+
119
+ Examples
120
+ --------
121
+ >>> import sparknlp
122
+ >>> from sparknlp.base import *
123
+ >>> from sparknlp.annotator import *
124
+ >>> from pyspark.ml import Pipeline
125
+ >>> documentAssembler = DocumentAssembler() \\
126
+ ... .setInputCol("text") \\
127
+ ... .setOutputCol("documents")
128
+ >>> m2m100 = M2M100Transformer.pretrained("m2m100_418M") \\
129
+ ... .setInputCols(["documents"]) \\
130
+ ... .setMaxOutputLength(50) \\
131
+ ... .setOutputCol("generation") \\
132
+ ... .setSrcLang("en") \\
133
+ ... .setTgtLang("fr")
134
+ >>> pipeline = Pipeline().setStages([documentAssembler, m2m100])
135
+ >>> data = spark.createDataFrame([["生活就像一盒巧克力。"]]).toDF("text")
136
+ >>> result = pipeline.fit(data).transform(data)
137
+ >>> result.select("summaries.generation").show(truncate=False)
138
+ +-------------------------------------------------------------------------------------------+
139
+ |result |
140
+ +-------------------------------------------------------------------------------------------+
141
+ |[ Life is like a box of chocolate.] |
142
+ +-------------------------------------------------------------------------------------------+
143
+ """
144
+
145
+ name = "M2M100Transformer"
146
+
147
+ inputAnnotatorTypes = [AnnotatorType.DOCUMENT]
148
+
149
+ outputAnnotatorType = AnnotatorType.DOCUMENT
150
+
151
+ configProtoBytes = Param(Params._dummy(), "configProtoBytes",
152
+ "ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()",
153
+ TypeConverters.toListInt)
154
+
155
+ minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated",
156
+ typeConverter=TypeConverters.toInt)
157
+
158
+ maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text",
159
+ typeConverter=TypeConverters.toInt)
160
+
161
+ doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise",
162
+ typeConverter=TypeConverters.toBoolean)
163
+
164
+ temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities",
165
+ typeConverter=TypeConverters.toFloat)
166
+
167
+ topK = Param(Params._dummy(), "topK",
168
+ "The number of highest probability vocabulary tokens to keep for top-k-filtering",
169
+ typeConverter=TypeConverters.toInt)
170
+
171
+ topP = Param(Params._dummy(), "topP",
172
+ "If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation",
173
+ typeConverter=TypeConverters.toFloat)
174
+
175
+ repetitionPenalty = Param(Params._dummy(), "repetitionPenalty",
176
+ "The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details",
177
+ typeConverter=TypeConverters.toFloat)
178
+
179
+ noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize",
180
+ "If set to int > 0, all ngrams of that size can only occur once",
181
+ typeConverter=TypeConverters.toInt)
182
+
183
+ ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds",
184
+ "A list of token ids which are ignored in the decoder's output",
185
+ typeConverter=TypeConverters.toListInt)
186
+ beamSize = Param(Params._dummy(), "beamSize",
187
+ "The Number of beams for beam search.",
188
+ typeConverter=TypeConverters.toInt)
189
+ srcLang = Param(Params._dummy(), "srcLang", "Source Language (Default: `en`)",
190
+ typeConverter=TypeConverters.toString)
191
+ tgtLang = Param(Params._dummy(), "tgtLang", "Target Language (Default: `fr`)",
192
+ typeConverter=TypeConverters.toString)
193
+
194
+ def setIgnoreTokenIds(self, value):
195
+ """A list of token ids which are ignored in the decoder's output.
196
+
197
+ Parameters
198
+ ----------
199
+ value : List[int]
200
+ The words to be filtered out
201
+ """
202
+ return self._set(ignoreTokenIds=value)
203
+
204
+ def setConfigProtoBytes(self, b):
205
+ """Sets configProto from tensorflow, serialized into byte array.
206
+
207
+ Parameters
208
+ ----------
209
+ b : List[int]
210
+ ConfigProto from tensorflow, serialized into byte array
211
+ """
212
+ return self._set(configProtoBytes=b)
213
+
214
+ def setMinOutputLength(self, value):
215
+ """Sets minimum length of the sequence to be generated.
216
+
217
+ Parameters
218
+ ----------
219
+ value : int
220
+ Minimum length of the sequence to be generated
221
+ """
222
+ return self._set(minOutputLength=value)
223
+
224
+ def setMaxOutputLength(self, value):
225
+ """Sets maximum length of output text.
226
+
227
+ Parameters
228
+ ----------
229
+ value : int
230
+ Maximum length of output text
231
+ """
232
+ return self._set(maxOutputLength=value)
233
+
234
+ def setDoSample(self, value):
235
+ """Sets whether or not to use sampling, use greedy decoding otherwise.
236
+
237
+ Parameters
238
+ ----------
239
+ value : bool
240
+ Whether or not to use sampling; use greedy decoding otherwise
241
+ """
242
+ return self._set(doSample=value)
243
+
244
+ def setTemperature(self, value):
245
+ """Sets the value used to module the next token probabilities.
246
+
247
+ Parameters
248
+ ----------
249
+ value : float
250
+ The value used to module the next token probabilities
251
+ """
252
+ return self._set(temperature=value)
253
+
254
+ def setTopK(self, value):
255
+ """Sets the number of highest probability vocabulary tokens to keep for
256
+ top-k-filtering.
257
+
258
+ Parameters
259
+ ----------
260
+ value : int
261
+ Number of highest probability vocabulary tokens to keep
262
+ """
263
+ return self._set(topK=value)
264
+
265
+ def setTopP(self, value):
266
+ """Sets the top cumulative probability for vocabulary tokens.
267
+
268
+ If set to float < 1, only the most probable tokens with probabilities
269
+ that add up to ``topP`` or higher are kept for generation.
270
+
271
+ Parameters
272
+ ----------
273
+ value : float
274
+ Cumulative probability for vocabulary tokens
275
+ """
276
+ return self._set(topP=value)
277
+
278
+ def setRepetitionPenalty(self, value):
279
+ """Sets the parameter for repetition penalty. 1.0 means no penalty.
280
+
281
+ Parameters
282
+ ----------
283
+ value : float
284
+ The repetition penalty
285
+
286
+ References
287
+ ----------
288
+ See `Ctrl: A Conditional Transformer Language Model For Controllable
289
+ Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details.
290
+ """
291
+ return self._set(repetitionPenalty=value)
292
+
293
+ def setNoRepeatNgramSize(self, value):
294
+ """Sets size of n-grams that can only occur once.
295
+
296
+ If set to int > 0, all ngrams of that size can only occur once.
297
+
298
+ Parameters
299
+ ----------
300
+ value : int
301
+ N-gram size can only occur once
302
+ """
303
+ return self._set(noRepeatNgramSize=value)
304
+
305
+ def setBeamSize(self, value):
306
+ """Sets the number of beam size for beam search, by default `4`.
307
+
308
+ Parameters
309
+ ----------
310
+ value : int
311
+ Number of beam size for beam search
312
+ """
313
+ return self._set(beamSize=value)
314
+
315
+ def setSrcLang(self, value):
316
+ """Sets source language.
317
+
318
+ Parameters
319
+ ----------
320
+ value : str
321
+ Source language
322
+ """
323
+ return self._set(srcLang=value)
324
+
325
+ def setTgtLang(self, value):
326
+ """Sets target language.
327
+
328
+ Parameters
329
+ ----------
330
+ value : str
331
+ Target language
332
+ """
333
+ return self._set(tgtLang=value)
334
+
335
+ @keyword_only
336
+ def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.M2M100Transformer", java_model=None):
337
+ super(M2M100Transformer, self).__init__(classname=classname, java_model=java_model)
338
+ self._setDefault(minOutputLength=0,
339
+ maxOutputLength=200,
340
+ doSample=False,
341
+ temperature=1,
342
+ topK=50,
343
+ topP=1,
344
+ repetitionPenalty=1.0,
345
+ noRepeatNgramSize=0,
346
+ ignoreTokenIds=[],
347
+ batchSize=1,
348
+ beamSize=1,
349
+ srcLang="en",
350
+ tgtLang="fr")
351
+
352
+ @staticmethod
353
+ def loadSavedModel(folder, spark_session):
354
+ """Loads a locally saved model.
355
+
356
+ Parameters
357
+ ----------
358
+ folder : str
359
+ Folder of the saved model
360
+ spark_session : pyspark.sql.SparkSession
361
+ The current SparkSession
362
+
363
+ Returns
364
+ -------
365
+ M2M100Transformer
366
+ The restored model
367
+ """
368
+ from sparknlp.internal import _M2M100Loader
369
+ jModel = _M2M100Loader(folder, spark_session._jsparkSession)._java_obj
370
+ return M2M100Transformer(java_model=jModel)
371
+
372
+ @staticmethod
373
+ def pretrained(name="m2m100_418M", lang="xx", remote_loc=None):
374
+ """Downloads and loads a pretrained model.
375
+
376
+ Parameters
377
+ ----------
378
+ name : str, optional
379
+ Name of the pretrained model, by default "m2m100_418M"
380
+ lang : str, optional
381
+ Language of the pretrained model, by default "en"
382
+ remote_loc : str, optional
383
+ Optional remote address of the resource, by default None. Will use
384
+ Spark NLPs repositories otherwise.
385
+
386
+ Returns
387
+ -------
388
+ M2M100Transformer
389
+ The restored model
390
+ """
391
+ from sparknlp.pretrained import ResourceDownloader
392
+ return ResourceDownloader.downloadModel(M2M100Transformer, name, lang, remote_loc)
@@ -152,6 +152,12 @@ class DocumentSimilarityRankerApproach(AnnotatorApproach, HasEnableCachingProper
152
152
  "Whether to include identity in ranking result set. Useful for debug. (Default: `false`).",
153
153
  typeConverter=TypeConverters.toBoolean)
154
154
 
155
+ asRetrieverQuery = Param(Params._dummy(),
156
+ "asRetrieverQuery",
157
+ "Whether to set the model as retriever RAG with a specific query string."
158
+ "(Default: `empty`)",
159
+ typeConverter=TypeConverters.toString)
160
+
155
161
  def setSimilarityMethod(self, value):
156
162
  """Sets the similarity method used to calculate the neighbours.
157
163
  (Default: `"brp"`, Bucketed Random Projection for Euclidean Distance)
@@ -216,6 +222,17 @@ class DocumentSimilarityRankerApproach(AnnotatorApproach, HasEnableCachingProper
216
222
  """
217
223
  return self._set(identityRanking=value)
218
224
 
225
+ def asRetriever(self, value):
226
+ """Sets the query to use the document similarity ranker as a retriever in a RAG fashion.
227
+ (Default: `""`, empty if this annotator is not used as retriever)
228
+
229
+ Parameters
230
+ ----------
231
+ value : str
232
+ the query to use to select nearest neighbors in the retrieval process.
233
+ """
234
+ return self._set(asRetrieverQuery=value)
235
+
219
236
  @keyword_only
220
237
  def __init__(self):
221
238
  super(DocumentSimilarityRankerApproach, self)\
@@ -226,7 +243,8 @@ class DocumentSimilarityRankerApproach(AnnotatorApproach, HasEnableCachingProper
226
243
  bucketLength=2.0,
227
244
  numHashTables=3,
228
245
  visibleDistances=False,
229
- identityRanking=False
246
+ identityRanking=False,
247
+ asRetrieverQuery=""
230
248
  )
231
249
 
232
250
  def _create_model(self, java_model):
@@ -66,7 +66,7 @@ class TFNerDLGraphBuilder(Estimator, DefaultParamsWritable, DefaultParamsReadabl
66
66
 
67
67
  Parameters
68
68
  ----------
69
- *value : str
69
+ *value : List[str]
70
70
  Input columns for the annotator
71
71
  """
72
72
  if type(value[0]) == str or type(value[0]) == list:
sparknlp/base/finisher.py CHANGED
@@ -123,7 +123,7 @@ class Finisher(AnnotatorTransformer):
123
123
 
124
124
  Parameters
125
125
  ----------
126
- *value : str
126
+ *value : List[str]
127
127
  Input columns for the annotator
128
128
  """
129
129
  if len(value) == 1 and type(value[0]) == list:
@@ -75,7 +75,7 @@ class LightPipeline:
75
75
  input_cols = stage.getInputCols()
76
76
  if type(input_cols) == str:
77
77
  input_cols = [input_cols]
78
- input_annotator_types = stage.inputAnnotatorTypes
78
+ input_annotator_types = stage.inputAnnotatorTypes + stage.optionalInputAnnotatorTypes
79
79
  for input_col in input_cols:
80
80
  annotator_type = annotator_types.get(input_col)
81
81
  if annotator_type is None or annotator_type not in input_annotator_types:
@@ -104,7 +104,7 @@ class MultiDocumentAssembler(AnnotatorTransformer):
104
104
 
105
105
  Parameters
106
106
  ----------
107
- *value : str
107
+ *value : List[str]
108
108
  Input columns for the annotator
109
109
  """
110
110
  if len(value) == 1 and type(value[0]) == list:
@@ -147,15 +147,21 @@ class _E5Loader(ExtendedJavaWrapper):
147
147
  def __init__(self, path, jspark):
148
148
  super(_E5Loader, self).__init__("com.johnsnowlabs.nlp.embeddings.E5Embeddings.loadSavedModel", path, jspark)
149
149
 
150
+
150
151
  class _BGELoader(ExtendedJavaWrapper):
151
152
  def __init__(self, path, jspark):
152
153
  super(_BGELoader, self).__init__("com.johnsnowlabs.nlp.embeddings.BGEEmbeddings.loadSavedModel", path, jspark)
153
154
 
155
+
154
156
  class _GPT2Loader(ExtendedJavaWrapper):
155
157
  def __init__(self, path, jspark):
156
158
  super(_GPT2Loader, self).__init__(
157
159
  "com.johnsnowlabs.nlp.annotators.seq2seq.GPT2Transformer.loadSavedModel", path, jspark)
158
160
 
161
+ class _LLAMA2Loader(ExtendedJavaWrapper):
162
+ def __init__(self, path, jspark):
163
+ super(_LLAMA2Loader, self).__init__(
164
+ "com.johnsnowlabs.nlp.annotators.seq2seq.LLAMA2Transformer.loadSavedModel", path, jspark)
159
165
 
160
166
  class _LongformerLoader(ExtendedJavaWrapper):
161
167
  def __init__(self, path, jspark):
@@ -185,6 +191,12 @@ class _LongformerQuestionAnsweringLoader(ExtendedJavaWrapper):
185
191
  jspark)
186
192
 
187
193
 
194
+ class _M2M100Loader(ExtendedJavaWrapper):
195
+ def __init__(self, path, jspark):
196
+ super(_M2M100Loader, self).__init__(
197
+ "com.johnsnowlabs.nlp.annotators.seq2seq.M2M100Transformer.loadSavedModel", path, jspark)
198
+
199
+
188
200
  class _MarianLoader(ExtendedJavaWrapper):
189
201
  def __init__(self, path, jspark):
190
202
  super(_MarianLoader, self).__init__(
@@ -582,3 +594,24 @@ class _CLIPForZeroShotClassification(ExtendedJavaWrapper):
582
594
  super(_CLIPForZeroShotClassification, self).__init__(
583
595
  "com.johnsnowlabs.nlp.annotators.cv.CLIPForZeroShotClassification.loadSavedModel", path,
584
596
  jspark)
597
+
598
+
599
+ class _DeBertaForZeroShotClassification(ExtendedJavaWrapper):
600
+ def __init__(self, path, jspark):
601
+ super(_DeBertaForZeroShotClassification, self).__init__(
602
+ "com.johnsnowlabs.nlp.annotators.classifier.dl.DeBertaForZeroShotClassification.loadSavedModel", path,
603
+ jspark)
604
+
605
+
606
+ class _MPNetForSequenceClassificationLoader(ExtendedJavaWrapper):
607
+ def __init__(self, path, jspark):
608
+ super(_MPNetForSequenceClassificationLoader, self).__init__(
609
+ "com.johnsnowlabs.nlp.annotators.classifier.dl.MPNetForSequenceClassification.loadSavedModel", path,
610
+ jspark)
611
+
612
+
613
+ class _MPNetForQuestionAnsweringLoader(ExtendedJavaWrapper):
614
+ def __init__(self, path, jspark):
615
+ super(_MPNetForQuestionAnsweringLoader, self).__init__(
616
+ "com.johnsnowlabs.nlp.annotators.classifier.dl.MPNetForQuestionAnswering.loadSavedModel", path,
617
+ jspark)