spark-nlp 5.1.0__py2.py3-none-any.whl → 5.1.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of spark-nlp might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: spark-nlp
3
- Version: 5.1.0
3
+ Version: 5.1.1
4
4
  Summary: John Snow Labs Spark NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment.
5
5
  Home-page: https://github.com/JohnSnowLabs/spark-nlp
6
6
  Author: John Snow Labs
@@ -202,7 +202,7 @@ To use Spark NLP you need the following requirements:
202
202
 
203
203
  **GPU (optional):**
204
204
 
205
- Spark NLP 5.1.0 is built with ONNX 1.15.1 and TensorFlow 2.7.1 deep learning engines. The minimum following NVIDIA® software are only required for GPU support:
205
+ Spark NLP 5.1.1 is built with ONNX 1.15.1 and TensorFlow 2.7.1 deep learning engines. The minimum following NVIDIA® software are only required for GPU support:
206
206
 
207
207
  - NVIDIA® GPU drivers version 450.80.02 or higher
208
208
  - CUDA® Toolkit 11.2
@@ -218,7 +218,7 @@ $ java -version
218
218
  $ conda create -n sparknlp python=3.7 -y
219
219
  $ conda activate sparknlp
220
220
  # spark-nlp by default is based on pyspark 3.x
221
- $ pip install spark-nlp==5.1.0 pyspark==3.3.1
221
+ $ pip install spark-nlp==5.1.1 pyspark==3.3.1
222
222
  ```
223
223
 
224
224
  In Python console or Jupyter `Python3` kernel:
@@ -263,7 +263,7 @@ For more examples, you can visit our dedicated [examples](https://github.com/Joh
263
263
 
264
264
  ## Apache Spark Support
265
265
 
266
- Spark NLP *5.1.0* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x
266
+ Spark NLP *5.1.1* has been built on top of Apache Spark 3.4 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x
267
267
 
268
268
  | Spark NLP | Apache Spark 2.3.x | Apache Spark 2.4.x | Apache Spark 3.0.x | Apache Spark 3.1.x | Apache Spark 3.2.x | Apache Spark 3.3.x | Apache Spark 3.4.x |
269
269
  |-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
@@ -302,7 +302,7 @@ Find out more about `Spark NLP` versions from our [release notes](https://github
302
302
 
303
303
  ## Databricks Support
304
304
 
305
- Spark NLP 5.1.0 has been tested and is compatible with the following runtimes:
305
+ Spark NLP 5.1.1 has been tested and is compatible with the following runtimes:
306
306
 
307
307
  **CPU:**
308
308
 
@@ -363,7 +363,7 @@ Spark NLP 5.1.0 has been tested and is compatible with the following runtimes:
363
363
 
364
364
  ## EMR Support
365
365
 
366
- Spark NLP 5.1.0 has been tested and is compatible with the following EMR releases:
366
+ Spark NLP 5.1.1 has been tested and is compatible with the following EMR releases:
367
367
 
368
368
  - emr-6.2.0
369
369
  - emr-6.3.0
@@ -408,11 +408,11 @@ Spark NLP supports all major releases of Apache Spark 3.0.x, Apache Spark 3.1.x,
408
408
  ```sh
409
409
  # CPU
410
410
 
411
- spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0
411
+ spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.1
412
412
 
413
- pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0
413
+ pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.1
414
414
 
415
- spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0
415
+ spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.1
416
416
  ```
417
417
 
418
418
  The `spark-nlp` has been published to
@@ -421,11 +421,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
421
421
  ```sh
422
422
  # GPU
423
423
 
424
- spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.0
424
+ spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.1
425
425
 
426
- pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.0
426
+ pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.1
427
427
 
428
- spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.0
428
+ spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:5.1.1
429
429
 
430
430
  ```
431
431
 
@@ -435,11 +435,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
435
435
  ```sh
436
436
  # AArch64
437
437
 
438
- spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.0
438
+ spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.1
439
439
 
440
- pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.0
440
+ pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.1
441
441
 
442
- spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.0
442
+ spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:5.1.1
443
443
 
444
444
  ```
445
445
 
@@ -449,11 +449,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
449
449
  ```sh
450
450
  # M1/M2 (Apple Silicon)
451
451
 
452
- spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.0
452
+ spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.1
453
453
 
454
- pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.0
454
+ pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.1
455
455
 
456
- spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.0
456
+ spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:5.1.1
457
457
 
458
458
  ```
459
459
 
@@ -467,7 +467,7 @@ set in your SparkSession:
467
467
  spark-shell \
468
468
  --driver-memory 16g \
469
469
  --conf spark.kryoserializer.buffer.max=2000M \
470
- --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0
470
+ --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.1
471
471
  ```
472
472
 
473
473
  ## Scala
@@ -485,7 +485,7 @@ coordinates:
485
485
  <dependency>
486
486
  <groupId>com.johnsnowlabs.nlp</groupId>
487
487
  <artifactId>spark-nlp_2.12</artifactId>
488
- <version>5.1.0</version>
488
+ <version>5.1.1</version>
489
489
  </dependency>
490
490
  ```
491
491
 
@@ -496,7 +496,7 @@ coordinates:
496
496
  <dependency>
497
497
  <groupId>com.johnsnowlabs.nlp</groupId>
498
498
  <artifactId>spark-nlp-gpu_2.12</artifactId>
499
- <version>5.1.0</version>
499
+ <version>5.1.1</version>
500
500
  </dependency>
501
501
  ```
502
502
 
@@ -507,7 +507,7 @@ coordinates:
507
507
  <dependency>
508
508
  <groupId>com.johnsnowlabs.nlp</groupId>
509
509
  <artifactId>spark-nlp-aarch64_2.12</artifactId>
510
- <version>5.1.0</version>
510
+ <version>5.1.1</version>
511
511
  </dependency>
512
512
  ```
513
513
 
@@ -518,7 +518,7 @@ coordinates:
518
518
  <dependency>
519
519
  <groupId>com.johnsnowlabs.nlp</groupId>
520
520
  <artifactId>spark-nlp-silicon_2.12</artifactId>
521
- <version>5.1.0</version>
521
+ <version>5.1.1</version>
522
522
  </dependency>
523
523
  ```
524
524
 
@@ -528,28 +528,28 @@ coordinates:
528
528
 
529
529
  ```sbtshell
530
530
  // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp
531
- libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "5.1.0"
531
+ libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "5.1.1"
532
532
  ```
533
533
 
534
534
  **spark-nlp-gpu:**
535
535
 
536
536
  ```sbtshell
537
537
  // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu
538
- libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "5.1.0"
538
+ libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "5.1.1"
539
539
  ```
540
540
 
541
541
  **spark-nlp-aarch64:**
542
542
 
543
543
  ```sbtshell
544
544
  // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64
545
- libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "5.1.0"
545
+ libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "5.1.1"
546
546
  ```
547
547
 
548
548
  **spark-nlp-silicon:**
549
549
 
550
550
  ```sbtshell
551
551
  // https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon
552
- libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.1.0"
552
+ libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "5.1.1"
553
553
  ```
554
554
 
555
555
  Maven
@@ -571,7 +571,7 @@ If you installed pyspark through pip/conda, you can install `spark-nlp` through
571
571
  Pip:
572
572
 
573
573
  ```bash
574
- pip install spark-nlp==5.1.0
574
+ pip install spark-nlp==5.1.1
575
575
  ```
576
576
 
577
577
  Conda:
@@ -600,7 +600,7 @@ spark = SparkSession.builder
600
600
  .config("spark.driver.memory", "16G")
601
601
  .config("spark.driver.maxResultSize", "0")
602
602
  .config("spark.kryoserializer.buffer.max", "2000M")
603
- .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0")
603
+ .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.1")
604
604
  .getOrCreate()
605
605
  ```
606
606
 
@@ -671,7 +671,7 @@ Use either one of the following options
671
671
  - Add the following Maven Coordinates to the interpreter's library list
672
672
 
673
673
  ```bash
674
- com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0
674
+ com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.1
675
675
  ```
676
676
 
677
677
  - Add a path to pre-built jar from [here](#compiled-jars) in the interpreter's library list making sure the jar is
@@ -682,7 +682,7 @@ com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0
682
682
  Apart from the previous step, install the python module through pip
683
683
 
684
684
  ```bash
685
- pip install spark-nlp==5.1.0
685
+ pip install spark-nlp==5.1.1
686
686
  ```
687
687
 
688
688
  Or you can install `spark-nlp` from inside Zeppelin by using Conda:
@@ -710,7 +710,7 @@ launch the Jupyter from the same Python environment:
710
710
  $ conda create -n sparknlp python=3.8 -y
711
711
  $ conda activate sparknlp
712
712
  # spark-nlp by default is based on pyspark 3.x
713
- $ pip install spark-nlp==5.1.0 pyspark==3.3.1 jupyter
713
+ $ pip install spark-nlp==5.1.1 pyspark==3.3.1 jupyter
714
714
  $ jupyter notebook
715
715
  ```
716
716
 
@@ -727,7 +727,7 @@ export PYSPARK_PYTHON=python3
727
727
  export PYSPARK_DRIVER_PYTHON=jupyter
728
728
  export PYSPARK_DRIVER_PYTHON_OPTS=notebook
729
729
 
730
- pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0
730
+ pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.1
731
731
  ```
732
732
 
733
733
  Alternatively, you can mix in using `--jars` option for pyspark + `pip install spark-nlp`
@@ -754,7 +754,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi
754
754
  # -s is for spark-nlp
755
755
  # -g will enable upgrading libcudnn8 to 8.1.0 on Google Colab for GPU usage
756
756
  # by default they are set to the latest
757
- !wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.1.0
757
+ !wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.1.1
758
758
  ```
759
759
 
760
760
  [Spark NLP quick start on Google Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_google_colab.ipynb)
@@ -777,7 +777,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi
777
777
  # -s is for spark-nlp
778
778
  # -g will enable upgrading libcudnn8 to 8.1.0 on Kaggle for GPU usage
779
779
  # by default they are set to the latest
780
- !wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.1.0
780
+ !wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 5.1.1
781
781
  ```
782
782
 
783
783
  [Spark NLP quick start on Kaggle Kernel](https://www.kaggle.com/mozzie/spark-nlp-named-entity-recognition) is a live
@@ -796,9 +796,9 @@ demo on Kaggle Kernel that performs named entity recognitions by using Spark NLP
796
796
 
797
797
  3. In `Libraries` tab inside your cluster you need to follow these steps:
798
798
 
799
- 3.1. Install New -> PyPI -> `spark-nlp==5.1.0` -> Install
799
+ 3.1. Install New -> PyPI -> `spark-nlp==5.1.1` -> Install
800
800
 
801
- 3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0` -> Install
801
+ 3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.1` -> Install
802
802
 
803
803
  4. Now you can attach your notebook to the cluster and use Spark NLP!
804
804
 
@@ -849,7 +849,7 @@ A sample of your software configuration in JSON on S3 (must be public access):
849
849
  "spark.kryoserializer.buffer.max": "2000M",
850
850
  "spark.serializer": "org.apache.spark.serializer.KryoSerializer",
851
851
  "spark.driver.maxResultSize": "0",
852
- "spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0"
852
+ "spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.1"
853
853
  }
854
854
  }]
855
855
  ```
@@ -858,7 +858,7 @@ A sample of AWS CLI to launch EMR cluster:
858
858
 
859
859
  ```.sh
860
860
  aws emr create-cluster \
861
- --name "Spark NLP 5.1.0" \
861
+ --name "Spark NLP 5.1.1" \
862
862
  --release-label emr-6.2.0 \
863
863
  --applications Name=Hadoop Name=Spark Name=Hive \
864
864
  --instance-type m4.4xlarge \
@@ -922,7 +922,7 @@ gcloud dataproc clusters create ${CLUSTER_NAME} \
922
922
  --enable-component-gateway \
923
923
  --metadata 'PIP_PACKAGES=spark-nlp spark-nlp-display google-cloud-bigquery google-cloud-storage' \
924
924
  --initialization-actions gs://goog-dataproc-initialization-actions-${REGION}/python/pip-install.sh \
925
- --properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0
925
+ --properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.1
926
926
  ```
927
927
 
928
928
  2. On an existing one, you need to install spark-nlp and spark-nlp-display packages from PyPI.
@@ -961,7 +961,7 @@ spark = SparkSession.builder
961
961
  .config("spark.kryoserializer.buffer.max", "2000m")
962
962
  .config("spark.jsl.settings.pretrained.cache_folder", "sample_data/pretrained")
963
963
  .config("spark.jsl.settings.storage.cluster_tmp_dir", "sample_data/storage")
964
- .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0")
964
+ .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.1")
965
965
  .getOrCreate()
966
966
  ```
967
967
 
@@ -975,7 +975,7 @@ spark-shell \
975
975
  --conf spark.kryoserializer.buffer.max=2000M \
976
976
  --conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \
977
977
  --conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \
978
- --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0
978
+ --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.1
979
979
  ```
980
980
 
981
981
  **pyspark:**
@@ -988,7 +988,7 @@ pyspark \
988
988
  --conf spark.kryoserializer.buffer.max=2000M \
989
989
  --conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \
990
990
  --conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \
991
- --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.0
991
+ --packages com.johnsnowlabs.nlp:spark-nlp_2.12:5.1.1
992
992
  ```
993
993
 
994
994
  **Databricks:**
@@ -1260,7 +1260,7 @@ spark = SparkSession.builder
1260
1260
  .config("spark.driver.memory", "16G")
1261
1261
  .config("spark.driver.maxResultSize", "0")
1262
1262
  .config("spark.kryoserializer.buffer.max", "2000M")
1263
- .config("spark.jars", "/tmp/spark-nlp-assembly-5.1.0.jar")
1263
+ .config("spark.jars", "/tmp/spark-nlp-assembly-5.1.1.jar")
1264
1264
  .getOrCreate()
1265
1265
  ```
1266
1266
 
@@ -1269,7 +1269,7 @@ spark = SparkSession.builder
1269
1269
  version (3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x)
1270
1270
  - If you are local, you can load the Fat JAR from your local FileSystem, however, if you are in a cluster setup you need
1271
1271
  to put the Fat JAR on a distributed FileSystem such as HDFS, DBFS, S3, etc. (
1272
- i.e., `hdfs:///tmp/spark-nlp-assembly-5.1.0.jar`)
1272
+ i.e., `hdfs:///tmp/spark-nlp-assembly-5.1.1.jar`)
1273
1273
 
1274
1274
  Example of using pretrained Models and Pipelines in offline:
1275
1275
 
@@ -1,7 +1,7 @@
1
1
  com/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
2
  com/johnsnowlabs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
3
  com/johnsnowlabs/nlp/__init__.py,sha256=DPIVXtONO5xXyOk-HB0-sNiHAcco17NN13zPS_6Uw8c,294
4
- sparknlp/__init__.py,sha256=WuwfNvi1DMF0XCN-X8OsUu-F1s8xWJuuUm3CzodhcbQ,13588
4
+ sparknlp/__init__.py,sha256=H3zu8K8le2PVdxKm2tgeRCeL61_U4nfb1gGCZo6TpP0,13588
5
5
  sparknlp/annotation.py,sha256=I5zOxG5vV2RfPZfqN9enT1i4mo6oBcn3Lrzs37QiOiA,5635
6
6
  sparknlp/annotation_audio.py,sha256=iRV_InSVhgvAwSRe9NTbUH9v6OGvTM-FPCpSAKVu0mE,1917
7
7
  sparknlp/annotation_image.py,sha256=xhCe8Ko-77XqWVuuYHFrjKqF6zPd8Z-RY_rmZXNwCXU,2547
@@ -78,7 +78,7 @@ sparknlp/annotator/embeddings/camembert_embeddings.py,sha256=dBTXas-2Tas_JUR9Xt_
78
78
  sparknlp/annotator/embeddings/chunk_embeddings.py,sha256=WUmkJimSuFkdcLJnvcxOV0QlCLgGlhub29ZTrZb70WE,6052
79
79
  sparknlp/annotator/embeddings/deberta_embeddings.py,sha256=_b5nzLb7heFQNN-uT2oBNO6-YmM8bHmAdnGXg47HOWw,8649
80
80
  sparknlp/annotator/embeddings/distil_bert_embeddings.py,sha256=4pyMCsbvvXYeTGIMVUir9wCDKR_1f_HKtXZrTDO1Thc,9275
81
- sparknlp/annotator/embeddings/doc2vec.py,sha256=x4_sXC3Va3SAZ9mFzy2Q8If9UA_wMz5uAk9otCf14EQ,13019
81
+ sparknlp/annotator/embeddings/doc2vec.py,sha256=Xk3MdEkXatX9lRgbFbAdnIDrLgIxzUIGWFBZeo9BTq0,13226
82
82
  sparknlp/annotator/embeddings/e5_embeddings.py,sha256=dfPHCAYpayCUMxXtol0t68cDs8-JVu0M4EslimwNS0Q,7684
83
83
  sparknlp/annotator/embeddings/elmo_embeddings.py,sha256=KV-KPs0Pq_OpPaHsnqBz2k_S7VdzyFZ4632IeFNKqJ8,9858
84
84
  sparknlp/annotator/embeddings/instructor_embeddings.py,sha256=CTKmbuBOx_KBM4JM-Y1U5LyR-6rrnpoBGbgGE_axS1c,8670
@@ -88,7 +88,7 @@ sparknlp/annotator/embeddings/roberta_embeddings.py,sha256=V4HGDUK2YBHhAZd1ygJEG
88
88
  sparknlp/annotator/embeddings/roberta_sentence_embeddings.py,sha256=KVrD4z_tIU-sphK6dmbbnHBBt8-Y89C_BFQAkN99kZo,8181
89
89
  sparknlp/annotator/embeddings/sentence_embeddings.py,sha256=azuA1FKMtTJ9suwJqTEHeWHumT6kYdfURTe_1fsqcB8,5402
90
90
  sparknlp/annotator/embeddings/universal_sentence_encoder.py,sha256=_fTo-K78RjxiIKptpsI32mpW87RFCdXM16epHv4RVQY,8571
91
- sparknlp/annotator/embeddings/word2vec.py,sha256=65aEK3pZ3lPOFyIjrJphDlvx0M1QoHb_CAaooikmo0c,13022
91
+ sparknlp/annotator/embeddings/word2vec.py,sha256=UBhA4qUczQOx1t82Eu51lxx1-wJ_RLnCb__ncowSNhk,13229
92
92
  sparknlp/annotator/embeddings/word_embeddings.py,sha256=CQxjx2yDdmSM9s8D-bzsbUQhT8t1cqC4ynxlf9INpMU,15388
93
93
  sparknlp/annotator/embeddings/xlm_roberta_embeddings.py,sha256=t-Bg1bQcqI_fIqUWQbHt9rHK2_tyq0YXiq3uMw4xb94,9488
94
94
  sparknlp/annotator/embeddings/xlm_roberta_sentence_embeddings.py,sha256=ojxD3H2VgDEn-RzDdCz0X485pojHBAFrlzsNemI05bY,8602
@@ -214,7 +214,7 @@ sparknlp/training/_tf_graph_builders_1x/ner_dl/dataset_encoder.py,sha256=R4yHFN3
214
214
  sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model.py,sha256=EoCSdcIjqQ3wv13MAuuWrKV8wyVBP0SbOEW41omHlR0,23189
215
215
  sparknlp/training/_tf_graph_builders_1x/ner_dl/ner_model_saver.py,sha256=k5CQ7gKV6HZbZMB8cKLUJuZxoZWlP_DFWdZ--aIDwsc,2356
216
216
  sparknlp/training/_tf_graph_builders_1x/ner_dl/sentence_grouper.py,sha256=pAxjWhjazSX8Vg0MFqJiuRVw1IbnQNSs-8Xp26L4nko,870
217
- spark_nlp-5.1.0.dist-info/METADATA,sha256=1GVV-_GJY0g9ShRljd6HidnIhu-PRXy0EkvKoc3VSp0,53873
218
- spark_nlp-5.1.0.dist-info/WHEEL,sha256=bb2Ot9scclHKMOLDEHY6B2sicWOgugjFKaJsT7vwMQo,110
219
- spark_nlp-5.1.0.dist-info/top_level.txt,sha256=uuytur4pyMRw2H_txNY2ZkaucZHUs22QF8-R03ch_-E,13
220
- spark_nlp-5.1.0.dist-info/RECORD,,
217
+ spark_nlp-5.1.1.dist-info/METADATA,sha256=K7TnsSMny4JTGXK1CXDfahQVtfGqoPOIkpLBns1O_5s,53873
218
+ spark_nlp-5.1.1.dist-info/WHEEL,sha256=bb2Ot9scclHKMOLDEHY6B2sicWOgugjFKaJsT7vwMQo,110
219
+ spark_nlp-5.1.1.dist-info/top_level.txt,sha256=uuytur4pyMRw2H_txNY2ZkaucZHUs22QF8-R03ch_-E,13
220
+ spark_nlp-5.1.1.dist-info/RECORD,,
sparknlp/__init__.py CHANGED
@@ -128,7 +128,7 @@ def start(gpu=False,
128
128
  The initiated Spark session.
129
129
 
130
130
  """
131
- current_version = "5.1.0"
131
+ current_version = "5.1.1"
132
132
 
133
133
  if params is None:
134
134
  params = {}
@@ -309,4 +309,4 @@ def version():
309
309
  str
310
310
  The current Spark NLP version.
311
311
  """
312
- return '5.1.0'
312
+ return '5.1.1'
@@ -344,3 +344,9 @@ class Doc2VecModel(AnnotatorModel, HasStorageRef, HasEmbeddingsProperties):
344
344
  from sparknlp.pretrained import ResourceDownloader
345
345
  return ResourceDownloader.downloadModel(Doc2VecModel, name, lang, remote_loc)
346
346
 
347
+ def getVectors(self):
348
+ """
349
+ Returns the vector representation of the words as a dataframe
350
+ with two fields, word and vector.
351
+ """
352
+ return self._call_java("getVectors")
@@ -345,3 +345,9 @@ class Word2VecModel(AnnotatorModel, HasStorageRef, HasEmbeddingsProperties):
345
345
  from sparknlp.pretrained import ResourceDownloader
346
346
  return ResourceDownloader.downloadModel(Word2VecModel, name, lang, remote_loc)
347
347
 
348
+ def getVectors(self):
349
+ """
350
+ Returns the vector representation of the words as a dataframe
351
+ with two fields, word and vector.
352
+ """
353
+ return self._call_java("getVectors")