sparclclient 1.2.1.dev7__py2.py3-none-any.whl → 1.2.2b1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sparcl/Results.py +11 -2
- sparcl/__init__.py +3 -10
- sparcl/client.py +110 -24
- sparcl/exceptions.py +3 -1
- sparcl/notebooks/sparcl-examples.ipynb +845 -834
- sparcl/utils.py +13 -0
- {sparclclient-1.2.1.dev7.dist-info → sparclclient-1.2.2b1.dist-info}/METADATA +2 -2
- sparclclient-1.2.2b1.dist-info/RECORD +19 -0
- sparclclient-1.2.1.dev7.dist-info/RECORD +0 -19
- {sparclclient-1.2.1.dev7.dist-info → sparclclient-1.2.2b1.dist-info}/LICENSE +0 -0
- {sparclclient-1.2.1.dev7.dist-info → sparclclient-1.2.2b1.dist-info}/WHEEL +0 -0
|
@@ -18,7 +18,7 @@
|
|
|
18
18
|
"outputs": [],
|
|
19
19
|
"source": [
|
|
20
20
|
"__author__ = 'Steve Pothier <steve.pothier@noirlab.edu>'\n",
|
|
21
|
-
"__version__ = '
|
|
21
|
+
"__version__ = '20240224' # yyyymmdd; \n",
|
|
22
22
|
"__keywords__ = ['HowTo', 'astronomy', 'tutorial', 'client', 'sparcl', 'NOIRlab']"
|
|
23
23
|
]
|
|
24
24
|
},
|
|
@@ -32,7 +32,7 @@
|
|
|
32
32
|
"tags": []
|
|
33
33
|
},
|
|
34
34
|
"source": [
|
|
35
|
-
"This notebook demonstrates using the `sparclclient` package to get metadata and spectra data from the
|
|
35
|
+
"This notebook demonstrates using the `sparclclient` package to get metadata and spectra data from the *NOIRLab SPARCL Server*."
|
|
36
36
|
]
|
|
37
37
|
},
|
|
38
38
|
{
|
|
@@ -42,14 +42,12 @@
|
|
|
42
42
|
},
|
|
43
43
|
"source": [
|
|
44
44
|
"## Table of contents\n",
|
|
45
|
-
"* [Goals & Summary](#
|
|
45
|
+
"* [Goals & Summary](#goals)\n",
|
|
46
46
|
"* [Imports and setup](#imports)\n",
|
|
47
|
-
"* [
|
|
48
|
-
"* [
|
|
49
|
-
"* [Get
|
|
50
|
-
"* [
|
|
51
|
-
"* [Find all Messier objects](#messier)\n",
|
|
52
|
-
"* [Save Messier snapshots](#save_album)"
|
|
47
|
+
"* [Install `sparclclient`](#install)\n",
|
|
48
|
+
"* [Prepare to use sparcl](#prepare)\n",
|
|
49
|
+
"* [Get general info from sparcl](#info)\n",
|
|
50
|
+
"* [Get Metadata and Spectra](#get)"
|
|
53
51
|
]
|
|
54
52
|
},
|
|
55
53
|
{
|
|
@@ -60,13 +58,9 @@
|
|
|
60
58
|
"source": [
|
|
61
59
|
"<a class=\"anchor\" id=\"goals\"></a>\n",
|
|
62
60
|
"## Goals & Summary \n",
|
|
63
|
-
"Demonstrate the use of the `
|
|
61
|
+
"Demonstrate the use of the `sparclclient` package to get metadata and spectra data from the [NOIRLab SPARCL](https://astrosparcl.datalab.noirlab.edu/). Show how to get non-public data if you have authorized credentials.\n",
|
|
64
62
|
"- Discovery: Search for matching metadata and return metadata records.\n",
|
|
65
|
-
"-
|
|
66
|
-
"- Retrieve images\n",
|
|
67
|
-
" + Full FITS file\n",
|
|
68
|
-
" + Single HDU of FITS file\n",
|
|
69
|
-
" + Cutout of rectangular region of one HDU of a FITS file (as a new FITS file)\n"
|
|
63
|
+
"- Retrieve spectra"
|
|
70
64
|
]
|
|
71
65
|
},
|
|
72
66
|
{
|
|
@@ -86,17 +80,15 @@
|
|
|
86
80
|
"outputs": [],
|
|
87
81
|
"source": [
|
|
88
82
|
"from pprint import pformat as pf\n",
|
|
83
|
+
"from pprint import pp\n",
|
|
89
84
|
"import os.path\n",
|
|
90
85
|
"from importlib import reload\n",
|
|
91
86
|
"from collections import defaultdict\n",
|
|
92
87
|
"from datetime import datetime\n",
|
|
93
88
|
"import warnings\n",
|
|
89
|
+
"from getpass import getpass\n",
|
|
94
90
|
"\n",
|
|
95
91
|
"import matplotlib.pyplot as plt\n",
|
|
96
|
-
"from astropy.io import fits\n",
|
|
97
|
-
"from astropy.coordinates import SkyCoord\n",
|
|
98
|
-
"from astropy import units as u\n",
|
|
99
|
-
"from astropy.wcs import WCS\n",
|
|
100
92
|
"import numpy as np\n",
|
|
101
93
|
"import pandas as pd\n",
|
|
102
94
|
"\n",
|
|
@@ -104,11 +96,6 @@
|
|
|
104
96
|
" def _render_traceback_(self):\n",
|
|
105
97
|
" pass\n",
|
|
106
98
|
"\n",
|
|
107
|
-
"# Suppress astropy warnings such as:\n",
|
|
108
|
-
"# WARNING: The following header keyword is invalid or follows an unrecognized ...\n",
|
|
109
|
-
"from astropy.utils.exceptions import AstropyWarning\n",
|
|
110
|
-
"warnings.simplefilter('ignore', category=AstropyWarning)\n",
|
|
111
|
-
"\n",
|
|
112
99
|
"# %matplotlib inline\n",
|
|
113
100
|
"# requires installing ipympl\n",
|
|
114
101
|
"%matplotlib widget\n",
|
|
@@ -122,7 +109,7 @@
|
|
|
122
109
|
},
|
|
123
110
|
"source": [
|
|
124
111
|
"<a class=\"anchor\" id=\"install\"></a>\n",
|
|
125
|
-
"## Install
|
|
112
|
+
"## Install most recent version of the `sparclclient`\n",
|
|
126
113
|
"*NOTE: After installing the most recent version, please restart your kernel.*"
|
|
127
114
|
]
|
|
128
115
|
},
|
|
@@ -135,24 +122,31 @@
|
|
|
135
122
|
"name": "stdout",
|
|
136
123
|
"output_type": "stream",
|
|
137
124
|
"text": [
|
|
138
|
-
"
|
|
139
|
-
"
|
|
140
|
-
"
|
|
141
|
-
"
|
|
142
|
-
"
|
|
143
|
-
"
|
|
144
|
-
"
|
|
145
|
-
"
|
|
125
|
+
"Processing /home/pothiers/sandbox/sparclclient\n",
|
|
126
|
+
" Installing build dependencies ... \u001b[?25ldone\n",
|
|
127
|
+
"\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n",
|
|
128
|
+
"\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n",
|
|
129
|
+
"\u001b[?25hBuilding wheels for collected packages: sparclclient\n",
|
|
130
|
+
" Building wheel for sparclclient (pyproject.toml) ... \u001b[?25ldone\n",
|
|
131
|
+
"\u001b[?25h Created wheel for sparclclient: filename=sparclclient-1.2.1-py2.py3-none-any.whl size=2720004 sha256=3a32482228256727ce0668582370ca7e21f1a15d56966195599ef45fca8dc8b7\n",
|
|
132
|
+
" Stored in directory: /tmp/pip-ephem-wheel-cache-pjh6yrrs/wheels/9b/de/a2/3f7a82cf4ca7c9e775a1ed1daeea35010570464a1aaa8c370c\n",
|
|
133
|
+
"Successfully built sparclclient\n",
|
|
134
|
+
"Installing collected packages: sparclclient\n",
|
|
135
|
+
" Attempting uninstall: sparclclient\n",
|
|
136
|
+
" Found existing installation: sparclclient 1.2.1\n",
|
|
137
|
+
" Uninstalling sparclclient-1.2.1:\n",
|
|
138
|
+
" Successfully uninstalled sparclclient-1.2.1\n",
|
|
139
|
+
"Successfully installed sparclclient-1.2.1\n"
|
|
146
140
|
]
|
|
147
141
|
}
|
|
148
142
|
],
|
|
149
143
|
"source": [
|
|
150
|
-
"
|
|
144
|
+
"#! pip install sparclclient==1.2.1.dev2 # A specific version \n",
|
|
151
145
|
"#!pip install -upgrade sparclclient # Latest released version\n",
|
|
152
146
|
"#!pip install --pre -upgrade sparclclient # Lastest pre-released version\n",
|
|
153
147
|
"\n",
|
|
154
|
-
"# Uncomment next line to load
|
|
155
|
-
"
|
|
148
|
+
"# Uncomment next line to load SPARCLCLIENT from local current version of software.\n",
|
|
149
|
+
"!pip install --pre --upgrade ../.."
|
|
156
150
|
]
|
|
157
151
|
},
|
|
158
152
|
{
|
|
@@ -164,7 +158,7 @@
|
|
|
164
158
|
"name": "stdout",
|
|
165
159
|
"output_type": "stream",
|
|
166
160
|
"text": [
|
|
167
|
-
"Run started:
|
|
161
|
+
"Run started: 2024-02-28 06:07:40.253046\n"
|
|
168
162
|
]
|
|
169
163
|
}
|
|
170
164
|
],
|
|
@@ -184,322 +178,62 @@
|
|
|
184
178
|
},
|
|
185
179
|
"source": [
|
|
186
180
|
"<a class=\"anchor\" id=\"prepare\"></a>\n",
|
|
187
|
-
"#
|
|
181
|
+
"# Configure SPARCLCLIENT"
|
|
188
182
|
]
|
|
189
183
|
},
|
|
190
184
|
{
|
|
191
185
|
"cell_type": "code",
|
|
192
186
|
"execution_count": 5,
|
|
193
|
-
"metadata": {
|
|
187
|
+
"metadata": {
|
|
188
|
+
"scrolled": true
|
|
189
|
+
},
|
|
194
190
|
"outputs": [
|
|
195
191
|
{
|
|
196
|
-
"name": "
|
|
192
|
+
"name": "stdin",
|
|
197
193
|
"output_type": "stream",
|
|
198
194
|
"text": [
|
|
199
|
-
"
|
|
200
|
-
"\n",
|
|
201
|
-
"class SparclClient(builtins.object)\n",
|
|
202
|
-
" | SparclClient(*, email=None, password=None, url='https://astrosparcl.datalab.noirlab.edu', verbose=False, show_curl=False, connect_timeout=1.1, read_timeout=5400)\n",
|
|
203
|
-
" | \n",
|
|
204
|
-
" | Provides interface to SPARCL Server.\n",
|
|
205
|
-
" | When using this to report a bug, set verbose to True. Also print\n",
|
|
206
|
-
" | your instance of this. The results will include important info\n",
|
|
207
|
-
" | about the Client and Server that is usefule to Developers.\n",
|
|
208
|
-
" | \n",
|
|
209
|
-
" | Args:\n",
|
|
210
|
-
" | url (:obj:`str`, optional): Base URL of SPARC Server. Defaults\n",
|
|
211
|
-
" | to 'https://astrosparcl.datalab.noirlab.edu'.\n",
|
|
212
|
-
" | \n",
|
|
213
|
-
" | verbose (:obj:`bool`, optional): Default verbosity is set to\n",
|
|
214
|
-
" | False for all client methods.\n",
|
|
215
|
-
" | \n",
|
|
216
|
-
" | connect_timeout (:obj:`float`, optional): Number of seconds to\n",
|
|
217
|
-
" | wait to establish connection with server. Defaults to\n",
|
|
218
|
-
" | 1.1.\n",
|
|
219
|
-
" | \n",
|
|
220
|
-
" | read_timeout (:obj:`float`, optional): Number of seconds to\n",
|
|
221
|
-
" | wait for server to send a response. Generally time to\n",
|
|
222
|
-
" | wait for first byte. Defaults to 5400.\n",
|
|
223
|
-
" | \n",
|
|
224
|
-
" | Example:\n",
|
|
225
|
-
" | >>> client = SparclClient()\n",
|
|
226
|
-
" | \n",
|
|
227
|
-
" | Raises:\n",
|
|
228
|
-
" | Exception: Object creation compares the version from the\n",
|
|
229
|
-
" | Server against the one expected by the Client. Throws an\n",
|
|
230
|
-
" | error if the Client is a major version or more behind.\n",
|
|
231
|
-
" | \n",
|
|
232
|
-
" | Methods defined here:\n",
|
|
233
|
-
" | \n",
|
|
234
|
-
" | __init__(self, *, email=None, password=None, url='https://astrosparcl.datalab.noirlab.edu', verbose=False, show_curl=False, connect_timeout=1.1, read_timeout=5400)\n",
|
|
235
|
-
" | Create client instance.\n",
|
|
236
|
-
" | \n",
|
|
237
|
-
" | __repr__(self)\n",
|
|
238
|
-
" | Return repr(self).\n",
|
|
239
|
-
" | \n",
|
|
240
|
-
" | find(self, outfields=None, *, constraints={}, limit=500, sort=None, verbose=None)\n",
|
|
241
|
-
" | Find records in the SPARC database.\n",
|
|
242
|
-
" | \n",
|
|
243
|
-
" | Args:\n",
|
|
244
|
-
" | outfields (:obj:`list`, optional): List of fields to return.\n",
|
|
245
|
-
" | Only CORE fields may be passed to this parameter.\n",
|
|
246
|
-
" | Defaults to None, which will return only the sparcl_id\n",
|
|
247
|
-
" | and _dr fields.\n",
|
|
248
|
-
" | \n",
|
|
249
|
-
" | constraints (:obj:`dict`, optional): Key-Value pairs of\n",
|
|
250
|
-
" | constraints to place on the record selection. The Key\n",
|
|
251
|
-
" | part of the Key-Value pair is the field name and the\n",
|
|
252
|
-
" | Value part of the Key-Value pair is a list of values.\n",
|
|
253
|
-
" | Defaults to no constraints. This will return all records in the\n",
|
|
254
|
-
" | database subject to restrictions imposed by the ``limit``\n",
|
|
255
|
-
" | parameter.\n",
|
|
256
|
-
" | \n",
|
|
257
|
-
" | limit (:obj:`int`, optional): Maximum number of records to\n",
|
|
258
|
-
" | return. Defaults to 500.\n",
|
|
259
|
-
" | \n",
|
|
260
|
-
" | sort (:obj:`list`, optional): Comma separated list of fields\n",
|
|
261
|
-
" | to sort by. Defaults to None. (no sorting)\n",
|
|
262
|
-
" | \n",
|
|
263
|
-
" | verbose (:obj:`bool`, optional): Set to True for in-depth return\n",
|
|
264
|
-
" | statement. Defaults to False.\n",
|
|
265
|
-
" | \n",
|
|
266
|
-
" | Returns:\n",
|
|
267
|
-
" | :class:`~sparcl.Results.Found`: Contains header and records.\n",
|
|
268
|
-
" | \n",
|
|
269
|
-
" | Example:\n",
|
|
270
|
-
" | >>> client = SparclClient()\n",
|
|
271
|
-
" | >>> outs = ['sparcl_id', 'ra', 'dec']\n",
|
|
272
|
-
" | >>> cons = {'spectype': ['GALAXY'], 'redshift': [0.5, 0.9]}\n",
|
|
273
|
-
" | >>> found = client.find(outfields=outs, constraints=cons)\n",
|
|
274
|
-
" | >>> sorted(list(found.records[0].keys()))\n",
|
|
275
|
-
" | ['_dr', 'dec', 'ra', 'sparcl_id']\n",
|
|
276
|
-
" | \n",
|
|
277
|
-
" | get_all_fields(self, *, dataset_list=None)\n",
|
|
278
|
-
" | Get fields tagged as 'all' that are in DATASET_LIST.\n",
|
|
279
|
-
" | These are the fields used for the ALL value of the include parameter\n",
|
|
280
|
-
" | of client.retrieve().\n",
|
|
281
|
-
" | \n",
|
|
282
|
-
" | Args:\n",
|
|
283
|
-
" | dataset_list (:obj:`list`, optional): List of data sets from\n",
|
|
284
|
-
" | which to get all fields. Defaults to None, which\n",
|
|
285
|
-
" | will return the intersection of all fields in all\n",
|
|
286
|
-
" | data sets hosted on the SPARC database.\n",
|
|
287
|
-
" | \n",
|
|
288
|
-
" | Returns:\n",
|
|
289
|
-
" | List of fields tagged as 'all' from DATASET_LIST.\n",
|
|
290
|
-
" | \n",
|
|
291
|
-
" | Example:\n",
|
|
292
|
-
" | >>> client = SparclClient()\n",
|
|
293
|
-
" | >>> client.get_all_fields()\n",
|
|
294
|
-
" | ['data_release', 'datasetgroup', 'dateobs', 'dateobs_center', 'dec', 'exptime', 'flux', 'instrument', 'ivar', 'mask', 'model', 'ra', 'redshift', 'redshift_err', 'redshift_warning', 'site', 'sparcl_id', 'specid', 'specprimary', 'spectype', 'survey', 'targetid', 'telescope', 'wave_sigma', 'wavelength', 'wavemax', 'wavemin']\n",
|
|
295
|
-
" | \n",
|
|
296
|
-
" | get_available_fields(self, *, dataset_list=None)\n",
|
|
297
|
-
" | Get subset of fields that are in all (or selected) DATASET_LIST.\n",
|
|
298
|
-
" | This may be a bigger list than will be used with the ALL keyword to\n",
|
|
299
|
-
" | client.retreive().\n",
|
|
300
|
-
" | \n",
|
|
301
|
-
" | Args:\n",
|
|
302
|
-
" | dataset_list (:obj:`list`, optional): List of data sets from\n",
|
|
303
|
-
" | which to get available fields. Defaults to None, which\n",
|
|
304
|
-
" | will return the intersection of all available fields in\n",
|
|
305
|
-
" | all data sets hosted on the SPARC database.\n",
|
|
306
|
-
" | \n",
|
|
307
|
-
" | Returns:\n",
|
|
308
|
-
" | Set of fields available from data sets in DATASET_LIST.\n",
|
|
309
|
-
" | \n",
|
|
310
|
-
" | Example:\n",
|
|
311
|
-
" | >>> client = SparclClient()\n",
|
|
312
|
-
" | >>> sorted(client.get_available_fields())\n",
|
|
313
|
-
" | ['data_release', 'datasetgroup', 'dateobs', 'dateobs_center', 'dec', 'dirpath', 'exptime', 'extra_files', 'filename', 'filesize', 'flux', 'instrument', 'ivar', 'mask', 'model', 'ra', 'redshift', 'redshift_err', 'redshift_warning', 'site', 'sparcl_id', 'specid', 'specprimary', 'spectype', 'survey', 'targetid', 'telescope', 'updated', 'wave_sigma', 'wavelength', 'wavemax', 'wavemin']\n",
|
|
314
|
-
" | \n",
|
|
315
|
-
" | get_default_fields(self, *, dataset_list=None)\n",
|
|
316
|
-
" | Get fields tagged as 'default' that are in DATASET_LIST.\n",
|
|
317
|
-
" | These are the fields used for the DEFAULT value of the include\n",
|
|
318
|
-
" | parameter of client.retrieve().\n",
|
|
319
|
-
" | \n",
|
|
320
|
-
" | Args:\n",
|
|
321
|
-
" | dataset_list (:obj:`list`, optional): List of data sets from\n",
|
|
322
|
-
" | which to get the default fields. Defaults to None, which\n",
|
|
323
|
-
" | will return the intersection of default fields in all\n",
|
|
324
|
-
" | data sets hosted on the SPARC database.\n",
|
|
325
|
-
" | \n",
|
|
326
|
-
" | Returns:\n",
|
|
327
|
-
" | List of fields tagged as 'default' from DATASET_LIST.\n",
|
|
328
|
-
" | \n",
|
|
329
|
-
" | Example:\n",
|
|
330
|
-
" | >>> client = SparclClient()\n",
|
|
331
|
-
" | >>> client.get_default_fields()\n",
|
|
332
|
-
" | ['dec', 'flux', 'ra', 'sparcl_id', 'specid', 'wavelength']\n",
|
|
333
|
-
" | \n",
|
|
334
|
-
" | missing(self, uuid_list, *, dataset_list=None, countOnly=False, verbose=False)\n",
|
|
335
|
-
" | Return the subset of sparcl_ids in the given uuid_list that are\n",
|
|
336
|
-
" | NOT stored in the SPARC database.\n",
|
|
337
|
-
" | \n",
|
|
338
|
-
" | Args:\n",
|
|
339
|
-
" | uuid_list (:obj:`list`): List of sparcl_ids.\n",
|
|
340
|
-
" | \n",
|
|
341
|
-
" | dataset_list (:obj:`list`, optional): List of data sets from\n",
|
|
342
|
-
" | which to find missing sparcl_ids. Defaults to None, meaning\n",
|
|
343
|
-
" | all data sets hosted on the SPARC database.\n",
|
|
344
|
-
" | \n",
|
|
345
|
-
" | countOnly (:obj:`bool`, optional): Set to True to return only\n",
|
|
346
|
-
" | a count of the missing sparcl_ids from the uuid_list.\n",
|
|
347
|
-
" | Defaults to False.\n",
|
|
348
|
-
" | \n",
|
|
349
|
-
" | verbose (:obj:`bool`, optional): Set to True for in-depth return\n",
|
|
350
|
-
" | statement. Defaults to False.\n",
|
|
351
|
-
" | \n",
|
|
352
|
-
" | Returns:\n",
|
|
353
|
-
" | A list of the subset of sparcl_ids in the given uuid_list that\n",
|
|
354
|
-
" | are NOT stored in the SPARC database.\n",
|
|
355
|
-
" | \n",
|
|
356
|
-
" | Example:\n",
|
|
357
|
-
" | >>> client = SparclClient()\n",
|
|
358
|
-
" | >>> ids = ['ddbb57ee-8e90-4a0d-823b-0f5d97028076',]\n",
|
|
359
|
-
" | >>> client.missing(ids)\n",
|
|
360
|
-
" | ['ddbb57ee-8e90-4a0d-823b-0f5d97028076']\n",
|
|
361
|
-
" | \n",
|
|
362
|
-
" | missing_specids(self, specid_list, *, dataset_list=None, countOnly=False, verbose=False)\n",
|
|
363
|
-
" | Return the subset of specids in the given specid_list that are\n",
|
|
364
|
-
" | NOT stored in the SPARC database.\n",
|
|
365
|
-
" | \n",
|
|
366
|
-
" | Args:\n",
|
|
367
|
-
" | specid_list (:obj:`list`): List of specids.\n",
|
|
368
|
-
" | \n",
|
|
369
|
-
" | dataset_list (:obj:`list`, optional): List of data sets from\n",
|
|
370
|
-
" | which to find missing specids. Defaults to None, meaning\n",
|
|
371
|
-
" | all data sets hosted on the SPARC database.\n",
|
|
372
|
-
" | \n",
|
|
373
|
-
" | countOnly (:obj:`bool`, optional): Set to True to return only\n",
|
|
374
|
-
" | a count of the missing specids from the specid_list.\n",
|
|
375
|
-
" | Defaults to False.\n",
|
|
376
|
-
" | \n",
|
|
377
|
-
" | verbose (:obj:`bool`, optional): Set to True for in-depth return\n",
|
|
378
|
-
" | statement. Defaults to False.\n",
|
|
379
|
-
" | \n",
|
|
380
|
-
" | Returns:\n",
|
|
381
|
-
" | A list of the subset of specids in the given specid_list that\n",
|
|
382
|
-
" | are NOT stored in the SPARC database.\n",
|
|
383
|
-
" | \n",
|
|
384
|
-
" | Example:\n",
|
|
385
|
-
" | >>> client = SparclClient(url=_PAT)\n",
|
|
386
|
-
" | >>> specids = ['7972592460248666112', '3663710814482833408']\n",
|
|
387
|
-
" | >>> client.missing_specids(specids + ['bad_id'])\n",
|
|
388
|
-
" | ['bad_id']\n",
|
|
389
|
-
" | \n",
|
|
390
|
-
" | retrieve(self, uuid_list, *, include='DEFAULT', dataset_list=None, limit=500, verbose=None)\n",
|
|
391
|
-
" | Retrieve spectra records from the SPARC database by list of\n",
|
|
392
|
-
" | sparcl_ids.\n",
|
|
393
|
-
" | \n",
|
|
394
|
-
" | Args:\n",
|
|
395
|
-
" | uuid_list (:obj:`list`): List of sparcl_ids.\n",
|
|
396
|
-
" | \n",
|
|
397
|
-
" | include (:obj:`list`, optional): List of field names to include\n",
|
|
398
|
-
" | in each record. Defaults to 'DEFAULT', which will return\n",
|
|
399
|
-
" | the fields tagged as 'default'.\n",
|
|
400
|
-
" | \n",
|
|
401
|
-
" | dataset_list (:obj:`list`, optional): List of data sets from\n",
|
|
402
|
-
" | which to retrieve spectra data. Defaults to None, meaning all\n",
|
|
403
|
-
" | data sets hosted on the SPARC database.\n",
|
|
404
|
-
" | \n",
|
|
405
|
-
" | limit (:obj:`int`, optional): Maximum number of records to\n",
|
|
406
|
-
" | return. Defaults to 500. Maximum allowed is 24,000.\n",
|
|
407
|
-
" | \n",
|
|
408
|
-
" | verbose (:obj:`bool`, optional): Set to True for in-depth return\n",
|
|
409
|
-
" | statement. Defaults to False.\n",
|
|
410
|
-
" | \n",
|
|
411
|
-
" | Returns:\n",
|
|
412
|
-
" | :class:`~sparcl.Results.Retrieved`: Contains header and records.\n",
|
|
413
|
-
" | \n",
|
|
414
|
-
" | Example:\n",
|
|
415
|
-
" | >>> client = SparclClient()\n",
|
|
416
|
-
" | >>> ids = ['00000f0b-07db-4234-892a-6e347db79c89',]\n",
|
|
417
|
-
" | >>> inc = ['sparcl_id', 'flux', 'wavelength', 'model']\n",
|
|
418
|
-
" | >>> ret = client.retrieve(uuid_list=ids, include=inc)\n",
|
|
419
|
-
" | >>> type(ret.records[0].wavelength)\n",
|
|
420
|
-
" | <class 'numpy.ndarray'>\n",
|
|
421
|
-
" | \n",
|
|
422
|
-
" | retrieve_by_specid(self, specid_list, *, svc='spectras', format='pkl', include='DEFAULT', dataset_list=None, limit=500, verbose=False)\n",
|
|
423
|
-
" | Retrieve spectra records from the SPARC database by list of specids.\n",
|
|
424
|
-
" | \n",
|
|
425
|
-
" | Args:\n",
|
|
426
|
-
" | specid_list (:obj:`list`): List of specids.\n",
|
|
427
|
-
" | \n",
|
|
428
|
-
" | include (:obj:`list`, optional): List of field names to include\n",
|
|
429
|
-
" | in each record. Defaults to 'DEFAULT', which will return\n",
|
|
430
|
-
" | the fields tagged as 'default'.\n",
|
|
431
|
-
" | \n",
|
|
432
|
-
" | dataset_list (:obj:`list`, optional): List of data sets from\n",
|
|
433
|
-
" | which to retrieve spectra data. Defaults to None, meaning all\n",
|
|
434
|
-
" | data sets hosted on the SPARC database.\n",
|
|
435
|
-
" | \n",
|
|
436
|
-
" | limit (:obj:`int`, optional): Maximum number of records to\n",
|
|
437
|
-
" | return. Defaults to 500. Maximum allowed is 24,000.\n",
|
|
438
|
-
" | \n",
|
|
439
|
-
" | verbose (:obj:`bool`, optional): Set to True for in-depth return\n",
|
|
440
|
-
" | statement. Defaults to False.\n",
|
|
441
|
-
" | \n",
|
|
442
|
-
" | Returns:\n",
|
|
443
|
-
" | :class:`~sparcl.Results.Retrieved`: Contains header and records.\n",
|
|
444
|
-
" | \n",
|
|
445
|
-
" | Example:\n",
|
|
446
|
-
" | >>> client = SparclClient()\n",
|
|
447
|
-
" | >>> sids = [5840097619402313728, -8985592895187431424]\n",
|
|
448
|
-
" | >>> inc = ['specid', 'flux', 'wavelength', 'model']\n",
|
|
449
|
-
" | >>> ret = client.retrieve_by_specid(specid_list=sids, include=inc)\n",
|
|
450
|
-
" | >>> len(ret.records[0].wavelength)\n",
|
|
451
|
-
" | 4617\n",
|
|
452
|
-
" | \n",
|
|
453
|
-
" | ----------------------------------------------------------------------\n",
|
|
454
|
-
" | Readonly properties defined here:\n",
|
|
455
|
-
" | \n",
|
|
456
|
-
" | all_datasets\n",
|
|
457
|
-
" | \n",
|
|
458
|
-
" | version\n",
|
|
459
|
-
" | Return version of Server Rest API used by this client.\n",
|
|
460
|
-
" | If the Rest API changes such that the Major version increases,\n",
|
|
461
|
-
" | a new version of this module will likely need to be used.\n",
|
|
462
|
-
" | \n",
|
|
463
|
-
" | Returns:\n",
|
|
464
|
-
" | API version (:obj:`float`).\n",
|
|
465
|
-
" | \n",
|
|
466
|
-
" | Example:\n",
|
|
467
|
-
" | >>> client = SparclClient()\n",
|
|
468
|
-
" | >>> client.version\n",
|
|
469
|
-
" | 9.0\n",
|
|
470
|
-
" | \n",
|
|
471
|
-
" | ----------------------------------------------------------------------\n",
|
|
472
|
-
" | Data descriptors defined here:\n",
|
|
473
|
-
" | \n",
|
|
474
|
-
" | __dict__\n",
|
|
475
|
-
" | dictionary for instance variables (if defined)\n",
|
|
476
|
-
" | \n",
|
|
477
|
-
" | __weakref__\n",
|
|
478
|
-
" | list of weak references to the object (if defined)\n",
|
|
479
|
-
" | \n",
|
|
480
|
-
" | ----------------------------------------------------------------------\n",
|
|
481
|
-
" | Data and other attributes defined here:\n",
|
|
482
|
-
" | \n",
|
|
483
|
-
" | KNOWN_GOOD_API_VERSION = 11.0\n",
|
|
484
|
-
"\n"
|
|
195
|
+
" ········\n"
|
|
485
196
|
]
|
|
486
|
-
}
|
|
197
|
+
}
|
|
198
|
+
],
|
|
199
|
+
"source": [
|
|
200
|
+
"# How much output to we want to show?\n",
|
|
201
|
+
"show_help = False # HELP for client functions\n",
|
|
202
|
+
"show_curl = False # Show the underlying SPARCL Server API call\n",
|
|
203
|
+
"\n",
|
|
204
|
+
"server = 'http://localhost:8050' # internal DEV Server\n",
|
|
205
|
+
"#server = 'https://sparc1.datalab.noirlab.edu' # internal TEST Server\n",
|
|
206
|
+
"#server = 'https://astrosparcl.datalab.noirlab.edu' # Public Server\n",
|
|
207
|
+
"priv_dr = 'SDSS-DR17'\n",
|
|
208
|
+
"\n",
|
|
209
|
+
"# Authenticated Users that are never authorized for anything important.\n",
|
|
210
|
+
"# These are authenticated on both Public and Test SSO servers.\n",
|
|
211
|
+
"auth_user = 'test_user_1@noirlab.edu'\n",
|
|
212
|
+
"unauth_user = 'test_user_2@noirlab.edu'\n",
|
|
213
|
+
"non_user = 'test_user_3@noirlab.edu'\n",
|
|
214
|
+
"usrpw = getpass()"
|
|
215
|
+
]
|
|
216
|
+
},
|
|
217
|
+
{
|
|
218
|
+
"cell_type": "code",
|
|
219
|
+
"execution_count": 6,
|
|
220
|
+
"metadata": {
|
|
221
|
+
"scrolled": true
|
|
222
|
+
},
|
|
223
|
+
"outputs": [
|
|
487
224
|
{
|
|
488
|
-
"
|
|
489
|
-
|
|
490
|
-
|
|
491
|
-
|
|
492
|
-
|
|
493
|
-
"execution_count": 5,
|
|
494
|
-
"metadata": {},
|
|
495
|
-
"output_type": "execute_result"
|
|
225
|
+
"name": "stdout",
|
|
226
|
+
"output_type": "stream",
|
|
227
|
+
"text": [
|
|
228
|
+
"client=(sparclclient:1.2.1, api:11.0, http://localhost:8050/sparc, client_hash=4d57bf46ad2f857d62cf9c968d6611d7090e4c16, verbose=False, connect_timeout=1.1, read_timeout=5400.0)\n"
|
|
229
|
+
]
|
|
496
230
|
}
|
|
497
231
|
],
|
|
498
232
|
"source": [
|
|
499
|
-
"
|
|
500
|
-
"help(sparcl.client.SparclClient)\n",
|
|
501
|
-
"client = sparcl.client.SparclClient(url=server, show_curl=
|
|
502
|
-
"client"
|
|
233
|
+
"if show_help:\n",
|
|
234
|
+
" help(sparcl.client.SparclClient)\n",
|
|
235
|
+
"client = sparcl.client.SparclClient(url=server, show_curl=show_curl)\n",
|
|
236
|
+
"print(f'{client=}')"
|
|
503
237
|
]
|
|
504
238
|
},
|
|
505
239
|
{
|
|
@@ -521,7 +255,7 @@
|
|
|
521
255
|
},
|
|
522
256
|
{
|
|
523
257
|
"cell_type": "code",
|
|
524
|
-
"execution_count":
|
|
258
|
+
"execution_count": 7,
|
|
525
259
|
"metadata": {},
|
|
526
260
|
"outputs": [
|
|
527
261
|
{
|
|
@@ -530,7 +264,7 @@
|
|
|
530
264
|
"{'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16', 'SDSS-DR17'}"
|
|
531
265
|
]
|
|
532
266
|
},
|
|
533
|
-
"execution_count":
|
|
267
|
+
"execution_count": 7,
|
|
534
268
|
"metadata": {},
|
|
535
269
|
"output_type": "execute_result"
|
|
536
270
|
}
|
|
@@ -550,46 +284,19 @@
|
|
|
550
284
|
},
|
|
551
285
|
{
|
|
552
286
|
"cell_type": "code",
|
|
553
|
-
"execution_count":
|
|
554
|
-
"metadata": {
|
|
555
|
-
|
|
556
|
-
|
|
557
|
-
|
|
558
|
-
"text/plain": [
|
|
559
|
-
"\u001b[0;31mSignature:\u001b[0m \u001b[0mclient\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_default_fields\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdataset_list\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
|
560
|
-
"\u001b[0;31mDocstring:\u001b[0m\n",
|
|
561
|
-
"Get fields tagged as 'default' that are in DATASET_LIST.\n",
|
|
562
|
-
"These are the fields used for the DEFAULT value of the include\n",
|
|
563
|
-
"parameter of client.retrieve().\n",
|
|
564
|
-
"\n",
|
|
565
|
-
"Args:\n",
|
|
566
|
-
" dataset_list (:obj:`list`, optional): List of data sets from\n",
|
|
567
|
-
" which to get the default fields. Defaults to None, which\n",
|
|
568
|
-
" will return the intersection of default fields in all\n",
|
|
569
|
-
" data sets hosted on the SPARC database.\n",
|
|
570
|
-
"\n",
|
|
571
|
-
"Returns:\n",
|
|
572
|
-
" List of fields tagged as 'default' from DATASET_LIST.\n",
|
|
573
|
-
"\n",
|
|
574
|
-
"Example:\n",
|
|
575
|
-
" >>> client = SparclClient()\n",
|
|
576
|
-
" >>> client.get_default_fields()\n",
|
|
577
|
-
" ['dec', 'flux', 'ra', 'sparcl_id', 'specid', 'wavelength']\n",
|
|
578
|
-
"\u001b[0;31mFile:\u001b[0m ~/sandbox/sparclclient/venv/lib/python3.10/site-packages/sparcl/client.py\n",
|
|
579
|
-
"\u001b[0;31mType:\u001b[0m method"
|
|
580
|
-
]
|
|
581
|
-
},
|
|
582
|
-
"metadata": {},
|
|
583
|
-
"output_type": "display_data"
|
|
584
|
-
}
|
|
585
|
-
],
|
|
287
|
+
"execution_count": 8,
|
|
288
|
+
"metadata": {
|
|
289
|
+
"scrolled": true
|
|
290
|
+
},
|
|
291
|
+
"outputs": [],
|
|
586
292
|
"source": [
|
|
587
|
-
"
|
|
293
|
+
"if show_help:\n",
|
|
294
|
+
" client.get_default_fields?"
|
|
588
295
|
]
|
|
589
296
|
},
|
|
590
297
|
{
|
|
591
298
|
"cell_type": "code",
|
|
592
|
-
"execution_count":
|
|
299
|
+
"execution_count": 9,
|
|
593
300
|
"metadata": {},
|
|
594
301
|
"outputs": [
|
|
595
302
|
{
|
|
@@ -598,7 +305,7 @@
|
|
|
598
305
|
"['dec', 'flux', 'ra', 'sparcl_id', 'specid', 'wavelength']"
|
|
599
306
|
]
|
|
600
307
|
},
|
|
601
|
-
"execution_count":
|
|
308
|
+
"execution_count": 9,
|
|
602
309
|
"metadata": {},
|
|
603
310
|
"output_type": "execute_result"
|
|
604
311
|
}
|
|
@@ -618,7 +325,7 @@
|
|
|
618
325
|
},
|
|
619
326
|
{
|
|
620
327
|
"cell_type": "code",
|
|
621
|
-
"execution_count":
|
|
328
|
+
"execution_count": 10,
|
|
622
329
|
"metadata": {},
|
|
623
330
|
"outputs": [
|
|
624
331
|
{
|
|
@@ -634,7 +341,7 @@
|
|
|
634
341
|
" dataset_list (:obj:`list`, optional): List of data sets from\n",
|
|
635
342
|
" which to get all fields. Defaults to None, which\n",
|
|
636
343
|
" will return the intersection of all fields in all\n",
|
|
637
|
-
" data sets hosted on the
|
|
344
|
+
" data sets hosted on the SPARCL database.\n",
|
|
638
345
|
"\n",
|
|
639
346
|
"Returns:\n",
|
|
640
347
|
" List of fields tagged as 'all' from DATASET_LIST.\n",
|
|
@@ -657,7 +364,7 @@
|
|
|
657
364
|
},
|
|
658
365
|
{
|
|
659
366
|
"cell_type": "code",
|
|
660
|
-
"execution_count":
|
|
367
|
+
"execution_count": 11,
|
|
661
368
|
"metadata": {},
|
|
662
369
|
"outputs": [
|
|
663
370
|
{
|
|
@@ -681,7 +388,7 @@
|
|
|
681
388
|
},
|
|
682
389
|
{
|
|
683
390
|
"cell_type": "code",
|
|
684
|
-
"execution_count":
|
|
391
|
+
"execution_count": 12,
|
|
685
392
|
"metadata": {},
|
|
686
393
|
"outputs": [
|
|
687
394
|
{
|
|
@@ -690,7 +397,7 @@
|
|
|
690
397
|
"11.0"
|
|
691
398
|
]
|
|
692
399
|
},
|
|
693
|
-
"execution_count":
|
|
400
|
+
"execution_count": 12,
|
|
694
401
|
"metadata": {},
|
|
695
402
|
"output_type": "execute_result"
|
|
696
403
|
}
|
|
@@ -748,88 +455,32 @@
|
|
|
748
455
|
},
|
|
749
456
|
{
|
|
750
457
|
"cell_type": "code",
|
|
751
|
-
"execution_count":
|
|
458
|
+
"execution_count": 13,
|
|
752
459
|
"metadata": {
|
|
753
460
|
"editable": true,
|
|
754
|
-
"
|
|
755
|
-
"source_hidden": true
|
|
756
|
-
},
|
|
461
|
+
"scrolled": true,
|
|
757
462
|
"slideshow": {
|
|
758
463
|
"slide_type": ""
|
|
759
464
|
},
|
|
760
465
|
"tags": []
|
|
761
466
|
},
|
|
762
|
-
"outputs": [
|
|
763
|
-
{
|
|
764
|
-
"data": {
|
|
765
|
-
"text/plain": [
|
|
766
|
-
"\u001b[0;31mSignature:\u001b[0m\n",
|
|
767
|
-
"\u001b[0mclient\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfind\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n",
|
|
768
|
-
"\u001b[0;34m\u001b[0m \u001b[0moutfields\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
|
769
|
-
"\u001b[0;34m\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
|
770
|
-
"\u001b[0;34m\u001b[0m \u001b[0mconstraints\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
|
771
|
-
"\u001b[0;34m\u001b[0m \u001b[0mlimit\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m500\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
|
772
|
-
"\u001b[0;34m\u001b[0m \u001b[0msort\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
|
773
|
-
"\u001b[0;34m\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
|
774
|
-
"\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
|
775
|
-
"\u001b[0;31mDocstring:\u001b[0m\n",
|
|
776
|
-
"Find records in the SPARC database.\n",
|
|
777
|
-
"\n",
|
|
778
|
-
"Args:\n",
|
|
779
|
-
" outfields (:obj:`list`, optional): List of fields to return.\n",
|
|
780
|
-
" Only CORE fields may be passed to this parameter.\n",
|
|
781
|
-
" Defaults to None, which will return only the sparcl_id\n",
|
|
782
|
-
" and _dr fields.\n",
|
|
783
|
-
"\n",
|
|
784
|
-
" constraints (:obj:`dict`, optional): Key-Value pairs of\n",
|
|
785
|
-
" constraints to place on the record selection. The Key\n",
|
|
786
|
-
" part of the Key-Value pair is the field name and the\n",
|
|
787
|
-
" Value part of the Key-Value pair is a list of values.\n",
|
|
788
|
-
" Defaults to no constraints. This will return all records in the\n",
|
|
789
|
-
" database subject to restrictions imposed by the ``limit``\n",
|
|
790
|
-
" parameter.\n",
|
|
791
|
-
"\n",
|
|
792
|
-
" limit (:obj:`int`, optional): Maximum number of records to\n",
|
|
793
|
-
" return. Defaults to 500.\n",
|
|
794
|
-
"\n",
|
|
795
|
-
" sort (:obj:`list`, optional): Comma separated list of fields\n",
|
|
796
|
-
" to sort by. Defaults to None. (no sorting)\n",
|
|
797
|
-
"\n",
|
|
798
|
-
" verbose (:obj:`bool`, optional): Set to True for in-depth return\n",
|
|
799
|
-
" statement. Defaults to False.\n",
|
|
800
|
-
"\n",
|
|
801
|
-
"Returns:\n",
|
|
802
|
-
" :class:`~sparcl.Results.Found`: Contains header and records.\n",
|
|
803
|
-
"\n",
|
|
804
|
-
"Example:\n",
|
|
805
|
-
" >>> client = SparclClient()\n",
|
|
806
|
-
" >>> outs = ['sparcl_id', 'ra', 'dec']\n",
|
|
807
|
-
" >>> cons = {'spectype': ['GALAXY'], 'redshift': [0.5, 0.9]}\n",
|
|
808
|
-
" >>> found = client.find(outfields=outs, constraints=cons)\n",
|
|
809
|
-
" >>> sorted(list(found.records[0].keys()))\n",
|
|
810
|
-
" ['_dr', 'dec', 'ra', 'sparcl_id']\n",
|
|
811
|
-
"\u001b[0;31mFile:\u001b[0m ~/sandbox/sparclclient/venv/lib/python3.10/site-packages/sparcl/client.py\n",
|
|
812
|
-
"\u001b[0;31mType:\u001b[0m method"
|
|
813
|
-
]
|
|
814
|
-
},
|
|
815
|
-
"metadata": {},
|
|
816
|
-
"output_type": "display_data"
|
|
817
|
-
}
|
|
818
|
-
],
|
|
467
|
+
"outputs": [],
|
|
819
468
|
"source": [
|
|
820
|
-
"
|
|
469
|
+
"if show_help:\n",
|
|
470
|
+
" client.find?"
|
|
821
471
|
]
|
|
822
472
|
},
|
|
823
473
|
{
|
|
824
474
|
"cell_type": "markdown",
|
|
825
475
|
"metadata": {},
|
|
826
476
|
"source": [
|
|
827
|
-
"#### Define
|
|
477
|
+
"#### Define fields and constraints for metadata FIND\n",
|
|
478
|
+
"Define the fields we want returned (`outfields`) and the constraints (`constraints`)"
|
|
828
479
|
]
|
|
829
480
|
},
|
|
830
481
|
{
|
|
831
482
|
"cell_type": "code",
|
|
832
|
-
"execution_count":
|
|
483
|
+
"execution_count": 14,
|
|
833
484
|
"metadata": {},
|
|
834
485
|
"outputs": [],
|
|
835
486
|
"source": [
|
|
@@ -843,32 +494,34 @@
|
|
|
843
494
|
"cell_type": "markdown",
|
|
844
495
|
"metadata": {},
|
|
845
496
|
"source": [
|
|
846
|
-
"#### Execute
|
|
497
|
+
"#### Execute FIND\n",
|
|
498
|
+
"Execute the `client.find()` method with our parameters.\n",
|
|
847
499
|
"The `limit` argument here is being used for demonstration purposes only, and simply returns only the first 20 results here."
|
|
848
500
|
]
|
|
849
501
|
},
|
|
850
502
|
{
|
|
851
503
|
"cell_type": "code",
|
|
852
|
-
"execution_count":
|
|
504
|
+
"execution_count": 15,
|
|
853
505
|
"metadata": {
|
|
854
506
|
"scrolled": true
|
|
855
507
|
},
|
|
856
|
-
"outputs": [
|
|
857
|
-
{
|
|
858
|
-
"name": "stdout",
|
|
859
|
-
"output_type": "stream",
|
|
860
|
-
"text": [
|
|
861
|
-
"curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"specid\", \"ra\", \"dec\", \"redshift\", \"spectype\", \"data_release\", \"redshift_err\"], \"search\": [[\"spectype\", \"GALAXY\"], [\"redshift\", 0.5, 0.9], [\"data_release\", \"BOSS-DR16\", \"SDSS-DR16\"]]}' 'https://sparc1.datalab.noirlab.edu/sparc/find/?limit=20' | python3 -m json.tool\n"
|
|
862
|
-
]
|
|
863
|
-
}
|
|
864
|
-
],
|
|
508
|
+
"outputs": [],
|
|
865
509
|
"source": [
|
|
866
510
|
"found = client.find(outfields=out, constraints=cons, limit=20)"
|
|
867
511
|
]
|
|
868
512
|
},
|
|
869
513
|
{
|
|
870
514
|
"cell_type": "code",
|
|
871
|
-
"execution_count":
|
|
515
|
+
"execution_count": null,
|
|
516
|
+
"metadata": {
|
|
517
|
+
"scrolled": true
|
|
518
|
+
},
|
|
519
|
+
"outputs": [],
|
|
520
|
+
"source": []
|
|
521
|
+
},
|
|
522
|
+
{
|
|
523
|
+
"cell_type": "code",
|
|
524
|
+
"execution_count": 16,
|
|
872
525
|
"metadata": {},
|
|
873
526
|
"outputs": [
|
|
874
527
|
{
|
|
@@ -892,12 +545,12 @@
|
|
|
892
545
|
" <thead>\n",
|
|
893
546
|
" <tr style=\"text-align: right;\">\n",
|
|
894
547
|
" <th></th>\n",
|
|
895
|
-
" <th>
|
|
548
|
+
" <th>dec</th>\n",
|
|
896
549
|
" <th>sparcl_id</th>\n",
|
|
550
|
+
" <th>redshift_err</th>\n",
|
|
897
551
|
" <th>data_release</th>\n",
|
|
898
|
-
" <th>redshift</th>\n",
|
|
899
552
|
" <th>specid</th>\n",
|
|
900
|
-
" <th>
|
|
553
|
+
" <th>redshift</th>\n",
|
|
901
554
|
" <th>spectype</th>\n",
|
|
902
555
|
" <th>ra</th>\n",
|
|
903
556
|
" <th>_dr</th>\n",
|
|
@@ -906,242 +559,14 @@
|
|
|
906
559
|
" <tbody>\n",
|
|
907
560
|
" <tr>\n",
|
|
908
561
|
" <th>0</th>\n",
|
|
909
|
-
" <td>
|
|
910
|
-
" <td>
|
|
562
|
+
" <td>28.063643</td>\n",
|
|
563
|
+
" <td>bb3d4287-8a2f-479f-9c7f-1053051e4925</td>\n",
|
|
564
|
+
" <td>0.000332</td>\n",
|
|
911
565
|
" <td>BOSS-DR16</td>\n",
|
|
912
|
-
" <td
|
|
913
|
-
" <td
|
|
914
|
-
" <td>28.038851</td>\n",
|
|
566
|
+
" <td>-6444532452352045056</td>\n",
|
|
567
|
+
" <td>0.761637</td>\n",
|
|
915
568
|
" <td>GALAXY</td>\n",
|
|
916
|
-
" <td>
|
|
917
|
-
" <td>BOSS-DR16</td>\n",
|
|
918
|
-
" </tr>\n",
|
|
919
|
-
" <tr>\n",
|
|
920
|
-
" <th>1</th>\n",
|
|
921
|
-
" <td>0.000242</td>\n",
|
|
922
|
-
" <td>55d7d47d-75d8-11ee-ba50-525400aad0aa</td>\n",
|
|
923
|
-
" <td>BOSS-DR16</td>\n",
|
|
924
|
-
" <td>0.782685</td>\n",
|
|
925
|
-
" <td>-6444646251805519872</td>\n",
|
|
926
|
-
" <td>28.084685</td>\n",
|
|
927
|
-
" <td>GALAXY</td>\n",
|
|
928
|
-
" <td>134.23727</td>\n",
|
|
929
|
-
" <td>BOSS-DR16</td>\n",
|
|
930
|
-
" </tr>\n",
|
|
931
|
-
" <tr>\n",
|
|
932
|
-
" <th>2</th>\n",
|
|
933
|
-
" <td>0.000424</td>\n",
|
|
934
|
-
" <td>565fd69e-75d8-11ee-b584-525400aad0aa</td>\n",
|
|
935
|
-
" <td>BOSS-DR16</td>\n",
|
|
936
|
-
" <td>0.797439</td>\n",
|
|
937
|
-
" <td>-6444643503026450432</td>\n",
|
|
938
|
-
" <td>28.226386</td>\n",
|
|
939
|
-
" <td>GALAXY</td>\n",
|
|
940
|
-
" <td>133.98095</td>\n",
|
|
941
|
-
" <td>BOSS-DR16</td>\n",
|
|
942
|
-
" </tr>\n",
|
|
943
|
-
" <tr>\n",
|
|
944
|
-
" <th>3</th>\n",
|
|
945
|
-
" <td>0.000238</td>\n",
|
|
946
|
-
" <td>56cd210b-75d8-11ee-b3b9-525400aad0aa</td>\n",
|
|
947
|
-
" <td>BOSS-DR16</td>\n",
|
|
948
|
-
" <td>0.647712</td>\n",
|
|
949
|
-
" <td>-6444641304003194880</td>\n",
|
|
950
|
-
" <td>28.429551</td>\n",
|
|
951
|
-
" <td>GALAXY</td>\n",
|
|
952
|
-
" <td>134.54531</td>\n",
|
|
953
|
-
" <td>BOSS-DR16</td>\n",
|
|
954
|
-
" </tr>\n",
|
|
955
|
-
" <tr>\n",
|
|
956
|
-
" <th>4</th>\n",
|
|
957
|
-
" <td>0.000274</td>\n",
|
|
958
|
-
" <td>56e8876a-75d8-11ee-a38d-525400aad0aa</td>\n",
|
|
959
|
-
" <td>BOSS-DR16</td>\n",
|
|
960
|
-
" <td>0.886086</td>\n",
|
|
961
|
-
" <td>-6444640754247380992</td>\n",
|
|
962
|
-
" <td>28.452505</td>\n",
|
|
963
|
-
" <td>GALAXY</td>\n",
|
|
964
|
-
" <td>134.46525</td>\n",
|
|
965
|
-
" <td>BOSS-DR16</td>\n",
|
|
966
|
-
" </tr>\n",
|
|
967
|
-
" <tr>\n",
|
|
968
|
-
" <th>5</th>\n",
|
|
969
|
-
" <td>0.000311</td>\n",
|
|
970
|
-
" <td>57032782-75d8-11ee-b0e2-525400aad0aa</td>\n",
|
|
971
|
-
" <td>BOSS-DR16</td>\n",
|
|
972
|
-
" <td>0.898559</td>\n",
|
|
973
|
-
" <td>-6444640204491567104</td>\n",
|
|
974
|
-
" <td>28.450988</td>\n",
|
|
975
|
-
" <td>GALAXY</td>\n",
|
|
976
|
-
" <td>134.43695</td>\n",
|
|
977
|
-
" <td>BOSS-DR16</td>\n",
|
|
978
|
-
" </tr>\n",
|
|
979
|
-
" <tr>\n",
|
|
980
|
-
" <th>6</th>\n",
|
|
981
|
-
" <td>0.000315</td>\n",
|
|
982
|
-
" <td>571ee9b7-75d8-11ee-86ec-525400aad0aa</td>\n",
|
|
983
|
-
" <td>BOSS-DR16</td>\n",
|
|
984
|
-
" <td>0.566015</td>\n",
|
|
985
|
-
" <td>-6444639654735753216</td>\n",
|
|
986
|
-
" <td>27.305313</td>\n",
|
|
987
|
-
" <td>GALAXY</td>\n",
|
|
988
|
-
" <td>133.95386</td>\n",
|
|
989
|
-
" <td>BOSS-DR16</td>\n",
|
|
990
|
-
" </tr>\n",
|
|
991
|
-
" <tr>\n",
|
|
992
|
-
" <th>7</th>\n",
|
|
993
|
-
" <td>0.000412</td>\n",
|
|
994
|
-
" <td>573c5312-75d8-11ee-a6a5-525400aad0aa</td>\n",
|
|
995
|
-
" <td>BOSS-DR16</td>\n",
|
|
996
|
-
" <td>0.599517</td>\n",
|
|
997
|
-
" <td>-6444639104979939328</td>\n",
|
|
998
|
-
" <td>27.381025</td>\n",
|
|
999
|
-
" <td>GALAXY</td>\n",
|
|
1000
|
-
" <td>134.05133</td>\n",
|
|
1001
|
-
" <td>BOSS-DR16</td>\n",
|
|
1002
|
-
" </tr>\n",
|
|
1003
|
-
" <tr>\n",
|
|
1004
|
-
" <th>8</th>\n",
|
|
1005
|
-
" <td>0.000338</td>\n",
|
|
1006
|
-
" <td>575ba44a-75d8-11ee-8ea2-525400aad0aa</td>\n",
|
|
1007
|
-
" <td>BOSS-DR16</td>\n",
|
|
1008
|
-
" <td>0.812179</td>\n",
|
|
1009
|
-
" <td>-6444638555224125440</td>\n",
|
|
1010
|
-
" <td>27.333753</td>\n",
|
|
1011
|
-
" <td>GALAXY</td>\n",
|
|
1012
|
-
" <td>133.95189</td>\n",
|
|
1013
|
-
" <td>BOSS-DR16</td>\n",
|
|
1014
|
-
" </tr>\n",
|
|
1015
|
-
" <tr>\n",
|
|
1016
|
-
" <th>9</th>\n",
|
|
1017
|
-
" <td>0.000337</td>\n",
|
|
1018
|
-
" <td>5777698e-75d8-11ee-9cc0-525400aad0aa</td>\n",
|
|
1019
|
-
" <td>BOSS-DR16</td>\n",
|
|
1020
|
-
" <td>0.795586</td>\n",
|
|
1021
|
-
" <td>-6444638005468311552</td>\n",
|
|
1022
|
-
" <td>27.571681</td>\n",
|
|
1023
|
-
" <td>GALAXY</td>\n",
|
|
1024
|
-
" <td>134.21014</td>\n",
|
|
1025
|
-
" <td>BOSS-DR16</td>\n",
|
|
1026
|
-
" </tr>\n",
|
|
1027
|
-
" <tr>\n",
|
|
1028
|
-
" <th>10</th>\n",
|
|
1029
|
-
" <td>0.000287</td>\n",
|
|
1030
|
-
" <td>57d0abaf-75d8-11ee-9722-525400aad0aa</td>\n",
|
|
1031
|
-
" <td>BOSS-DR16</td>\n",
|
|
1032
|
-
" <td>0.554642</td>\n",
|
|
1033
|
-
" <td>-6444636356200869888</td>\n",
|
|
1034
|
-
" <td>27.491442</td>\n",
|
|
1035
|
-
" <td>GALAXY</td>\n",
|
|
1036
|
-
" <td>134.11568</td>\n",
|
|
1037
|
-
" <td>BOSS-DR16</td>\n",
|
|
1038
|
-
" </tr>\n",
|
|
1039
|
-
" <tr>\n",
|
|
1040
|
-
" <th>11</th>\n",
|
|
1041
|
-
" <td>0.000177</td>\n",
|
|
1042
|
-
" <td>580a251a-75d8-11ee-93f9-525400aad0aa</td>\n",
|
|
1043
|
-
" <td>BOSS-DR16</td>\n",
|
|
1044
|
-
" <td>0.688878</td>\n",
|
|
1045
|
-
" <td>-6444635256689242112</td>\n",
|
|
1046
|
-
" <td>27.657880</td>\n",
|
|
1047
|
-
" <td>GALAXY</td>\n",
|
|
1048
|
-
" <td>134.19652</td>\n",
|
|
1049
|
-
" <td>BOSS-DR16</td>\n",
|
|
1050
|
-
" </tr>\n",
|
|
1051
|
-
" <tr>\n",
|
|
1052
|
-
" <th>12</th>\n",
|
|
1053
|
-
" <td>0.000194</td>\n",
|
|
1054
|
-
" <td>587921ca-75d8-11ee-9ade-525400aad0aa</td>\n",
|
|
1055
|
-
" <td>BOSS-DR16</td>\n",
|
|
1056
|
-
" <td>0.638226</td>\n",
|
|
1057
|
-
" <td>-6444633057665986560</td>\n",
|
|
1058
|
-
" <td>28.080178</td>\n",
|
|
1059
|
-
" <td>GALAXY</td>\n",
|
|
1060
|
-
" <td>133.85629</td>\n",
|
|
1061
|
-
" <td>BOSS-DR16</td>\n",
|
|
1062
|
-
" </tr>\n",
|
|
1063
|
-
" <tr>\n",
|
|
1064
|
-
" <th>13</th>\n",
|
|
1065
|
-
" <td>0.000294</td>\n",
|
|
1066
|
-
" <td>58a1997f-75d8-11ee-aaf9-525400aad0aa</td>\n",
|
|
1067
|
-
" <td>BOSS-DR16</td>\n",
|
|
1068
|
-
" <td>0.614235</td>\n",
|
|
1069
|
-
" <td>-6444632233032265728</td>\n",
|
|
1070
|
-
" <td>27.907149</td>\n",
|
|
1071
|
-
" <td>GALAXY</td>\n",
|
|
1072
|
-
" <td>133.79296</td>\n",
|
|
1073
|
-
" <td>BOSS-DR16</td>\n",
|
|
1074
|
-
" </tr>\n",
|
|
1075
|
-
" <tr>\n",
|
|
1076
|
-
" <th>14</th>\n",
|
|
1077
|
-
" <td>0.000317</td>\n",
|
|
1078
|
-
" <td>58cb1ab5-75d8-11ee-be72-525400aad0aa</td>\n",
|
|
1079
|
-
" <td>BOSS-DR16</td>\n",
|
|
1080
|
-
" <td>0.804484</td>\n",
|
|
1081
|
-
" <td>-6444631408398544896</td>\n",
|
|
1082
|
-
" <td>28.192423</td>\n",
|
|
1083
|
-
" <td>GALAXY</td>\n",
|
|
1084
|
-
" <td>133.87033</td>\n",
|
|
1085
|
-
" <td>BOSS-DR16</td>\n",
|
|
1086
|
-
" </tr>\n",
|
|
1087
|
-
" <tr>\n",
|
|
1088
|
-
" <th>15</th>\n",
|
|
1089
|
-
" <td>0.000191</td>\n",
|
|
1090
|
-
" <td>593b4910-75d8-11ee-84d5-525400aad0aa</td>\n",
|
|
1091
|
-
" <td>BOSS-DR16</td>\n",
|
|
1092
|
-
" <td>0.803163</td>\n",
|
|
1093
|
-
" <td>-6444629209375289344</td>\n",
|
|
1094
|
-
" <td>28.359336</td>\n",
|
|
1095
|
-
" <td>GALAXY</td>\n",
|
|
1096
|
-
" <td>133.83085</td>\n",
|
|
1097
|
-
" <td>BOSS-DR16</td>\n",
|
|
1098
|
-
" </tr>\n",
|
|
1099
|
-
" <tr>\n",
|
|
1100
|
-
" <th>16</th>\n",
|
|
1101
|
-
" <td>0.000273</td>\n",
|
|
1102
|
-
" <td>5998174b-75d8-11ee-a4b9-525400aad0aa</td>\n",
|
|
1103
|
-
" <td>BOSS-DR16</td>\n",
|
|
1104
|
-
" <td>0.581960</td>\n",
|
|
1105
|
-
" <td>-6444627560107847680</td>\n",
|
|
1106
|
-
" <td>27.463273</td>\n",
|
|
1107
|
-
" <td>GALAXY</td>\n",
|
|
1108
|
-
" <td>133.87123</td>\n",
|
|
1109
|
-
" <td>BOSS-DR16</td>\n",
|
|
1110
|
-
" </tr>\n",
|
|
1111
|
-
" <tr>\n",
|
|
1112
|
-
" <th>17</th>\n",
|
|
1113
|
-
" <td>0.000245</td>\n",
|
|
1114
|
-
" <td>5a0d076c-75d8-11ee-a7e3-525400aad0aa</td>\n",
|
|
1115
|
-
" <td>BOSS-DR16</td>\n",
|
|
1116
|
-
" <td>0.647886</td>\n",
|
|
1117
|
-
" <td>-6444625361084592128</td>\n",
|
|
1118
|
-
" <td>27.582793</td>\n",
|
|
1119
|
-
" <td>GALAXY</td>\n",
|
|
1120
|
-
" <td>133.73666</td>\n",
|
|
1121
|
-
" <td>BOSS-DR16</td>\n",
|
|
1122
|
-
" </tr>\n",
|
|
1123
|
-
" <tr>\n",
|
|
1124
|
-
" <th>18</th>\n",
|
|
1125
|
-
" <td>0.000207</td>\n",
|
|
1126
|
-
" <td>5a4a4247-75d8-11ee-944b-525400aad0aa</td>\n",
|
|
1127
|
-
" <td>BOSS-DR16</td>\n",
|
|
1128
|
-
" <td>0.599279</td>\n",
|
|
1129
|
-
" <td>-6444624261572964352</td>\n",
|
|
1130
|
-
" <td>27.730007</td>\n",
|
|
1131
|
-
" <td>GALAXY</td>\n",
|
|
1132
|
-
" <td>133.69511</td>\n",
|
|
1133
|
-
" <td>BOSS-DR16</td>\n",
|
|
1134
|
-
" </tr>\n",
|
|
1135
|
-
" <tr>\n",
|
|
1136
|
-
" <th>19</th>\n",
|
|
1137
|
-
" <td>0.000330</td>\n",
|
|
1138
|
-
" <td>5a843b73-75d8-11ee-9d3a-525400aad0aa</td>\n",
|
|
1139
|
-
" <td>BOSS-DR16</td>\n",
|
|
1140
|
-
" <td>0.623102</td>\n",
|
|
1141
|
-
" <td>-6444623162061336576</td>\n",
|
|
1142
|
-
" <td>27.833640</td>\n",
|
|
1143
|
-
" <td>GALAXY</td>\n",
|
|
1144
|
-
" <td>133.51599</td>\n",
|
|
569
|
+
" <td>132.14379</td>\n",
|
|
1145
570
|
" <td>BOSS-DR16</td>\n",
|
|
1146
571
|
" </tr>\n",
|
|
1147
572
|
" </tbody>\n",
|
|
@@ -1149,52 +574,14 @@
|
|
|
1149
574
|
"</div>"
|
|
1150
575
|
],
|
|
1151
576
|
"text/plain": [
|
|
1152
|
-
"
|
|
1153
|
-
"0
|
|
1154
|
-
"1 0.000242 55d7d47d-75d8-11ee-ba50-525400aad0aa BOSS-DR16 0.782685 \n",
|
|
1155
|
-
"2 0.000424 565fd69e-75d8-11ee-b584-525400aad0aa BOSS-DR16 0.797439 \n",
|
|
1156
|
-
"3 0.000238 56cd210b-75d8-11ee-b3b9-525400aad0aa BOSS-DR16 0.647712 \n",
|
|
1157
|
-
"4 0.000274 56e8876a-75d8-11ee-a38d-525400aad0aa BOSS-DR16 0.886086 \n",
|
|
1158
|
-
"5 0.000311 57032782-75d8-11ee-b0e2-525400aad0aa BOSS-DR16 0.898559 \n",
|
|
1159
|
-
"6 0.000315 571ee9b7-75d8-11ee-86ec-525400aad0aa BOSS-DR16 0.566015 \n",
|
|
1160
|
-
"7 0.000412 573c5312-75d8-11ee-a6a5-525400aad0aa BOSS-DR16 0.599517 \n",
|
|
1161
|
-
"8 0.000338 575ba44a-75d8-11ee-8ea2-525400aad0aa BOSS-DR16 0.812179 \n",
|
|
1162
|
-
"9 0.000337 5777698e-75d8-11ee-9cc0-525400aad0aa BOSS-DR16 0.795586 \n",
|
|
1163
|
-
"10 0.000287 57d0abaf-75d8-11ee-9722-525400aad0aa BOSS-DR16 0.554642 \n",
|
|
1164
|
-
"11 0.000177 580a251a-75d8-11ee-93f9-525400aad0aa BOSS-DR16 0.688878 \n",
|
|
1165
|
-
"12 0.000194 587921ca-75d8-11ee-9ade-525400aad0aa BOSS-DR16 0.638226 \n",
|
|
1166
|
-
"13 0.000294 58a1997f-75d8-11ee-aaf9-525400aad0aa BOSS-DR16 0.614235 \n",
|
|
1167
|
-
"14 0.000317 58cb1ab5-75d8-11ee-be72-525400aad0aa BOSS-DR16 0.804484 \n",
|
|
1168
|
-
"15 0.000191 593b4910-75d8-11ee-84d5-525400aad0aa BOSS-DR16 0.803163 \n",
|
|
1169
|
-
"16 0.000273 5998174b-75d8-11ee-a4b9-525400aad0aa BOSS-DR16 0.581960 \n",
|
|
1170
|
-
"17 0.000245 5a0d076c-75d8-11ee-a7e3-525400aad0aa BOSS-DR16 0.647886 \n",
|
|
1171
|
-
"18 0.000207 5a4a4247-75d8-11ee-944b-525400aad0aa BOSS-DR16 0.599279 \n",
|
|
1172
|
-
"19 0.000330 5a843b73-75d8-11ee-9d3a-525400aad0aa BOSS-DR16 0.623102 \n",
|
|
577
|
+
" dec sparcl_id redshift_err data_release \\\n",
|
|
578
|
+
"0 28.063643 bb3d4287-8a2f-479f-9c7f-1053051e4925 0.000332 BOSS-DR16 \n",
|
|
1173
579
|
"\n",
|
|
1174
|
-
"
|
|
1175
|
-
"0
|
|
1176
|
-
"1 -6444646251805519872 28.084685 GALAXY 134.23727 BOSS-DR16 \n",
|
|
1177
|
-
"2 -6444643503026450432 28.226386 GALAXY 133.98095 BOSS-DR16 \n",
|
|
1178
|
-
"3 -6444641304003194880 28.429551 GALAXY 134.54531 BOSS-DR16 \n",
|
|
1179
|
-
"4 -6444640754247380992 28.452505 GALAXY 134.46525 BOSS-DR16 \n",
|
|
1180
|
-
"5 -6444640204491567104 28.450988 GALAXY 134.43695 BOSS-DR16 \n",
|
|
1181
|
-
"6 -6444639654735753216 27.305313 GALAXY 133.95386 BOSS-DR16 \n",
|
|
1182
|
-
"7 -6444639104979939328 27.381025 GALAXY 134.05133 BOSS-DR16 \n",
|
|
1183
|
-
"8 -6444638555224125440 27.333753 GALAXY 133.95189 BOSS-DR16 \n",
|
|
1184
|
-
"9 -6444638005468311552 27.571681 GALAXY 134.21014 BOSS-DR16 \n",
|
|
1185
|
-
"10 -6444636356200869888 27.491442 GALAXY 134.11568 BOSS-DR16 \n",
|
|
1186
|
-
"11 -6444635256689242112 27.657880 GALAXY 134.19652 BOSS-DR16 \n",
|
|
1187
|
-
"12 -6444633057665986560 28.080178 GALAXY 133.85629 BOSS-DR16 \n",
|
|
1188
|
-
"13 -6444632233032265728 27.907149 GALAXY 133.79296 BOSS-DR16 \n",
|
|
1189
|
-
"14 -6444631408398544896 28.192423 GALAXY 133.87033 BOSS-DR16 \n",
|
|
1190
|
-
"15 -6444629209375289344 28.359336 GALAXY 133.83085 BOSS-DR16 \n",
|
|
1191
|
-
"16 -6444627560107847680 27.463273 GALAXY 133.87123 BOSS-DR16 \n",
|
|
1192
|
-
"17 -6444625361084592128 27.582793 GALAXY 133.73666 BOSS-DR16 \n",
|
|
1193
|
-
"18 -6444624261572964352 27.730007 GALAXY 133.69511 BOSS-DR16 \n",
|
|
1194
|
-
"19 -6444623162061336576 27.833640 GALAXY 133.51599 BOSS-DR16 "
|
|
580
|
+
" specid redshift spectype ra _dr \n",
|
|
581
|
+
"0 -6444532452352045056 0.761637 GALAXY 132.14379 BOSS-DR16 "
|
|
1195
582
|
]
|
|
1196
583
|
},
|
|
1197
|
-
"execution_count":
|
|
584
|
+
"execution_count": 16,
|
|
1198
585
|
"metadata": {},
|
|
1199
586
|
"output_type": "execute_result"
|
|
1200
587
|
}
|
|
@@ -1227,77 +614,29 @@
|
|
|
1227
614
|
},
|
|
1228
615
|
{
|
|
1229
616
|
"cell_type": "code",
|
|
1230
|
-
"execution_count":
|
|
617
|
+
"execution_count": 17,
|
|
1231
618
|
"metadata": {
|
|
1232
619
|
"scrolled": true
|
|
1233
620
|
},
|
|
1234
|
-
"outputs": [
|
|
1235
|
-
{
|
|
1236
|
-
"data": {
|
|
1237
|
-
"text/plain": [
|
|
1238
|
-
"\u001b[0;31mSignature:\u001b[0m\n",
|
|
1239
|
-
"\u001b[0mclient\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n",
|
|
1240
|
-
"\u001b[0;34m\u001b[0m \u001b[0muuid_list\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
|
1241
|
-
"\u001b[0;34m\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
|
1242
|
-
"\u001b[0;34m\u001b[0m \u001b[0minclude\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'DEFAULT'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
|
1243
|
-
"\u001b[0;34m\u001b[0m \u001b[0mdataset_list\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
|
1244
|
-
"\u001b[0;34m\u001b[0m \u001b[0mlimit\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m500\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
|
1245
|
-
"\u001b[0;34m\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
|
|
1246
|
-
"\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
|
1247
|
-
"\u001b[0;31mDocstring:\u001b[0m\n",
|
|
1248
|
-
"Retrieve spectra records from the SPARC database by list of\n",
|
|
1249
|
-
"sparcl_ids.\n",
|
|
1250
|
-
"\n",
|
|
1251
|
-
"Args:\n",
|
|
1252
|
-
" uuid_list (:obj:`list`): List of sparcl_ids.\n",
|
|
1253
|
-
"\n",
|
|
1254
|
-
" include (:obj:`list`, optional): List of field names to include\n",
|
|
1255
|
-
" in each record. Defaults to 'DEFAULT', which will return\n",
|
|
1256
|
-
" the fields tagged as 'default'.\n",
|
|
1257
|
-
"\n",
|
|
1258
|
-
" dataset_list (:obj:`list`, optional): List of data sets from\n",
|
|
1259
|
-
" which to retrieve spectra data. Defaults to None, meaning all\n",
|
|
1260
|
-
" data sets hosted on the SPARC database.\n",
|
|
1261
|
-
"\n",
|
|
1262
|
-
" limit (:obj:`int`, optional): Maximum number of records to\n",
|
|
1263
|
-
" return. Defaults to 500. Maximum allowed is 24,000.\n",
|
|
1264
|
-
"\n",
|
|
1265
|
-
" verbose (:obj:`bool`, optional): Set to True for in-depth return\n",
|
|
1266
|
-
" statement. Defaults to False.\n",
|
|
1267
|
-
"\n",
|
|
1268
|
-
"Returns:\n",
|
|
1269
|
-
" :class:`~sparcl.Results.Retrieved`: Contains header and records.\n",
|
|
1270
|
-
"\n",
|
|
1271
|
-
"Example:\n",
|
|
1272
|
-
" >>> client = SparclClient()\n",
|
|
1273
|
-
" >>> ids = ['00000f0b-07db-4234-892a-6e347db79c89',]\n",
|
|
1274
|
-
" >>> inc = ['sparcl_id', 'flux', 'wavelength', 'model']\n",
|
|
1275
|
-
" >>> ret = client.retrieve(uuid_list=ids, include=inc)\n",
|
|
1276
|
-
" >>> type(ret.records[0].wavelength)\n",
|
|
1277
|
-
" <class 'numpy.ndarray'>\n",
|
|
1278
|
-
"\u001b[0;31mFile:\u001b[0m ~/sandbox/sparclclient/venv/lib/python3.10/site-packages/sparcl/client.py\n",
|
|
1279
|
-
"\u001b[0;31mType:\u001b[0m method"
|
|
1280
|
-
]
|
|
1281
|
-
},
|
|
1282
|
-
"metadata": {},
|
|
1283
|
-
"output_type": "display_data"
|
|
1284
|
-
}
|
|
1285
|
-
],
|
|
621
|
+
"outputs": [],
|
|
1286
622
|
"source": [
|
|
1287
|
-
"
|
|
623
|
+
"if show_help:\n",
|
|
624
|
+
" client.retrieve?"
|
|
1288
625
|
]
|
|
1289
626
|
},
|
|
1290
627
|
{
|
|
1291
628
|
"cell_type": "markdown",
|
|
1292
629
|
"metadata": {},
|
|
1293
630
|
"source": [
|
|
1294
|
-
"#### Use
|
|
631
|
+
"#### Use IDs from FIND to RETRIEVE records\n",
|
|
632
|
+
"Use the IDs from the output of using `client.find()` to retrieve records from SPARCL. \n",
|
|
633
|
+
"\n",
|
|
1295
634
|
"Note that `ids` in `found_I.ids` is a property name of the Found class. It is a list of records from all records, not a field name of a record."
|
|
1296
635
|
]
|
|
1297
636
|
},
|
|
1298
637
|
{
|
|
1299
638
|
"cell_type": "code",
|
|
1300
|
-
"execution_count":
|
|
639
|
+
"execution_count": 18,
|
|
1301
640
|
"metadata": {},
|
|
1302
641
|
"outputs": [],
|
|
1303
642
|
"source": [
|
|
@@ -1307,27 +646,33 @@
|
|
|
1307
646
|
},
|
|
1308
647
|
{
|
|
1309
648
|
"cell_type": "code",
|
|
1310
|
-
"execution_count":
|
|
649
|
+
"execution_count": null,
|
|
650
|
+
"metadata": {},
|
|
651
|
+
"outputs": [],
|
|
652
|
+
"source": []
|
|
653
|
+
},
|
|
654
|
+
{
|
|
655
|
+
"cell_type": "code",
|
|
656
|
+
"execution_count": 19,
|
|
1311
657
|
"metadata": {},
|
|
1312
658
|
"outputs": [
|
|
1313
659
|
{
|
|
1314
660
|
"name": "stdout",
|
|
1315
661
|
"output_type": "stream",
|
|
1316
662
|
"text": [
|
|
1317
|
-
"
|
|
1318
|
-
"
|
|
1319
|
-
"Wall time: 915 ms\n"
|
|
663
|
+
"CPU times: user 3.05 ms, sys: 0 ns, total: 3.05 ms\n",
|
|
664
|
+
"Wall time: 50 ms\n"
|
|
1320
665
|
]
|
|
1321
666
|
},
|
|
1322
667
|
{
|
|
1323
668
|
"data": {
|
|
1324
669
|
"text/plain": [
|
|
1325
670
|
"{'status': {'success': True,\n",
|
|
1326
|
-
" 'info': [\"Successfully found
|
|
671
|
+
" 'info': [\"Successfully found 1 records in dr_list=['SDSS-DR16', 'BOSS-DR16']\"],\n",
|
|
1327
672
|
" 'warnings': []}}"
|
|
1328
673
|
]
|
|
1329
674
|
},
|
|
1330
|
-
"execution_count":
|
|
675
|
+
"execution_count": 19,
|
|
1331
676
|
"metadata": {},
|
|
1332
677
|
"output_type": "execute_result"
|
|
1333
678
|
}
|
|
@@ -1342,28 +687,28 @@
|
|
|
1342
687
|
},
|
|
1343
688
|
{
|
|
1344
689
|
"cell_type": "code",
|
|
1345
|
-
"execution_count":
|
|
690
|
+
"execution_count": 20,
|
|
1346
691
|
"metadata": {},
|
|
1347
692
|
"outputs": [
|
|
1348
693
|
{
|
|
1349
694
|
"data": {
|
|
1350
695
|
"text/plain": [
|
|
1351
696
|
"{'data_release': 'BOSS-DR16',\n",
|
|
1352
|
-
" 'redshift': 0.
|
|
697
|
+
" 'redshift': 0.761636912822723,\n",
|
|
1353
698
|
" 'spectype': 'GALAXY',\n",
|
|
1354
|
-
" 'specid': -
|
|
1355
|
-
" 'ivar': array([0., 0., 0., ..., 0., 0., 0.]),\n",
|
|
699
|
+
" 'specid': -6444532452352045056,\n",
|
|
1356
700
|
" 'wavelength': array([ 3580.13991843, 3580.96437103, 3581.78901348, ...,\n",
|
|
1357
701
|
" 10368.11964061, 10370.50726326, 10372.89543574]),\n",
|
|
1358
|
-
" '
|
|
1359
|
-
" 1.97845423]),\n",
|
|
702
|
+
" 'ivar': array([0., 0., 0., ..., 0., 0., 0.]),\n",
|
|
1360
703
|
" 'mask': array([88080384, 88080384, 88080384, ..., 83886080, 83886080, 83886080]),\n",
|
|
1361
|
-
" 'model': array([0.
|
|
1362
|
-
"
|
|
704
|
+
" 'model': array([-0.01559776, -0.01588696, -0.01609746, ..., 0.94615489,\n",
|
|
705
|
+
" 0.92513317, 0.8983984 ]),\n",
|
|
706
|
+
" 'flux': array([0.19426258, 0.19424935, 0.19423614, ..., 0.27637786, 0.2763944 ,\n",
|
|
707
|
+
" 0.27641097]),\n",
|
|
1363
708
|
" '_dr': 'BOSS-DR16'}"
|
|
1364
709
|
]
|
|
1365
710
|
},
|
|
1366
|
-
"execution_count":
|
|
711
|
+
"execution_count": 20,
|
|
1367
712
|
"metadata": {},
|
|
1368
713
|
"output_type": "execute_result"
|
|
1369
714
|
}
|
|
@@ -1372,36 +717,43 @@
|
|
|
1372
717
|
"results.records[0]"
|
|
1373
718
|
]
|
|
1374
719
|
},
|
|
720
|
+
{
|
|
721
|
+
"cell_type": "markdown",
|
|
722
|
+
"metadata": {},
|
|
723
|
+
"source": [
|
|
724
|
+
"## Plot spectra"
|
|
725
|
+
]
|
|
726
|
+
},
|
|
1375
727
|
{
|
|
1376
728
|
"cell_type": "code",
|
|
1377
|
-
"execution_count":
|
|
729
|
+
"execution_count": 21,
|
|
1378
730
|
"metadata": {},
|
|
1379
731
|
"outputs": [
|
|
1380
732
|
{
|
|
1381
733
|
"data": {
|
|
1382
734
|
"text/plain": [
|
|
1383
|
-
"<matplotlib.legend.Legend at
|
|
735
|
+
"<matplotlib.legend.Legend at 0x7f194d301750>"
|
|
1384
736
|
]
|
|
1385
737
|
},
|
|
1386
|
-
"execution_count":
|
|
738
|
+
"execution_count": 21,
|
|
1387
739
|
"metadata": {},
|
|
1388
740
|
"output_type": "execute_result"
|
|
1389
741
|
},
|
|
1390
742
|
{
|
|
1391
743
|
"data": {
|
|
1392
744
|
"application/vnd.jupyter.widget-view+json": {
|
|
1393
|
-
"model_id": "
|
|
745
|
+
"model_id": "5dbbfe7d6fef4a888197446c69dc27fa",
|
|
1394
746
|
"version_major": 2,
|
|
1395
747
|
"version_minor": 0
|
|
1396
748
|
},
|
|
1397
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAGQCAYAAABWJQQ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5MUlEQVR4nO3dd3wT5R8H8M9dVveggxYolD3L3qNQkKUIDhRREVBwIIriAvQnoCJuwb0FERAVJyJ7b2TvvaFld48k9/z+SJMmTdKmbZp0fN6+eNneXS5Pc8nlvvc8z/crCSEEiIiIiIiIPED2dgOIiIiIiKjyYABCREREREQewwCEiIiIiIg8hgEIERERERF5DAMQIiIiIiLyGAYgRERERETkMQxAiIiIiIjIYxiAEBERERGRxzAAISIiIiIij2EAQkREREREHsMAhIiIiIiIPIYBCBEREREReQwDECIiIiIi8hgGIERERERE5DEMQIiIiIiIyGMYgBARERERkccwACEiIiIiIo9hAEJERERERB7DAISIiIiIiDyGAQgREREREXkMAxAiIiIiIvIYBiBEREREROQxDECIiIiIiMhjGIAQEREREZHHMAAhIiIiIiKPYQBCREREREQewwCEiIiIiIg8hgEIERERERF5DAMQIiIiIiLyGAYgRERERETkMQxAiIiIiIjIYxiAEBERERGRxzAAISIiIiIij2EAQkREREREHsMAhIiIiIiIPIYBCBEREREReQwDECIiIiIi8hgGIERERERE5DEMQIiIiIiIyGMYgBARERERkccwACEiIiIiIo9hAEJERERERB7DAISIiIiIiDyGAQgREREREXkMAxAiIiIiIvIYBiBEREREROQxam83gPIoioKLFy8iMDAQkiR5uzlERERElI8QAqmpqahWrRpkmffyi4MBSBly8eJFxMTEeLsZRERERFSIc+fOoUaNGt5uRrnEAKQMCQwMBGB6QwcFBXm5NURERESUX0pKCmJiYizXbVR0DEDKEPOwq6CgIAYgRERERGUYh8sXHweuERERERGRxzAAISIiIiIij2EAQkREREREHsMAhIiIiIiIPIYBCBEREREReQwDECIiIiIi8hgGIERERERE5DEMQIiIiIiIyGMYgBARERERkccwACEAgKIIbzeBiIiIiCoBBiCEH7ecQavXl2Pf+WRvN4WIiIiIKjgGIIRX/tiP5Ew9nv15t7ebQkRERFSgyylZyDEo3m4GlQADELKQvN0AIiIiogIcTUpF+zdX4taP1nu7KVQCDECIiIiIqFxYtPcSAOD45TQvt4RKggEIERERERF5DAMQIiIiIioXOFy8YmAAQkREREREHsMAhIiIiIiIPIYBCBERERGVCxLHYFUIDECIiIiIiMhjGIAQERERUbkgcRp6hcAAhIiIiIiIPIYBCFlwXCURERERlTYGIGRxNCkNAz/ZgLVHrwAAEpOzsP7YFQghvNwyIiIiIqooGICQjb3nkzH8u20AgI7TV2LYt9uw+shlL7eKiIiIiKM1KgoGIFSoTcevebsJRERERFRBMAAhIiIionKBHSAVAwMQKhRngBARERGRuzAAISIiIqJygXNAKgYGIERERERE5DEMQIiIiIiIyGMYgBARERERkccwACEiIiKiMoeFkCsuBiBEREREVKb8veciWr2+HJtP2NYikzgLvUJgAEKF4g0IIiIi8qSn5u/CzQw9hn+/zdtNoVLAAKSEYmNjIUmSw389evTwdvOIiIiIyi/eBK2Q1N5uQEUQHByMZ555xm55bGysx9tSGr7beAqv3t7E280gIiIiogqAAYgbhISEYMqUKd5uBhEREVHFkm/KB6eAVAwcgkVERERERB7DHhA3yM7OxqxZs3Dx4kUEBQWhXbt26NChg7ebRURERERU5jAAcYPExESMHDnSZlm7du0wf/581K1b10utIiIiIirf8o+4SkzO8ko7yL04BKuERo4ciZUrVyIpKQnp6enYtWsXhg0bhu3bt6NXr15ITU11+tjs7GykpKTY/CMiIiIix37YfMbbTSA3YABSQpMnT0bPnj0RGRkJPz8/tGzZEj/88AOGDRuGM2fO4Ouvv3b62OnTpyM4ONjyLyYmxoMtJyIiIiLyPAYgpeSxxx4DAGzcuNHpNhMnTkRycrLl37lz5zzVPCIiIqIyr6CsVwcuJnuuIeRWDEBKSXh4OAAgPT3d6TY6nQ5BQUE2/4iIiIiocLd9tMHbTaBiYgBSSrZu3Qqg4hQjJCIiIiJyBwYgJXD48GFkZGQ4XP7SSy8BAO6//35PN4uIiIioQpDs8mBRRcA0vCXw008/4YMPPkB8fDxq1aoFf39/HD16FIsXL4Zer8fEiRMRHx/v7WYSEREREZUZDEBKICEhAYcOHcKuXbuwfv16ZGRkIDw8HLfeeivGjBmDPn36eLuJbnU1LRv3fbUFg9vUwOPdWd+EiIiIiIqOAUgJdO/eHd27d/d2Mzzm09XHcfxyGt769zADECIiIip1BWXBovKLc0DIZXqj4u0mEBEREVE5xwCEXLLqcBInghEREZFH8cqjYuIQLHLJw7P+Q6OoQG83g4iIiIjKOfaAkMsOJ6Z6uwlEREREVM4xACEiIiKiMkniLPQKiQEIEREREZV5p66me7sJ5CYMQIiIiIiozHt8zg5vN4HchAEIEREREZVJ1gOwLtzM9Fo7yL0YgBARERFRmcfZIBUHAxAiIiIiKjEhROnuv1T3Tp7EAIRK7Nz1DLy+6CDO38jA6sOXcT09x9tNIqpQrqRm47ed55GlN3q7KUREDp26mo5201bim/Unvd0UKgdYiJBKbOjXW3D+Ria+3XAKABAV5IMtk3p5uVVEFcc9X2zC6WsZ2H8hBa/e3sTbzSEisvPa3wdwNS0bb/xzCKO61SnRvhjEVHzsAaESO3/DdlJYYkqWl1pCVDGdvpYBAFh6INHLLSEickwp4vioZxfsxqjZ/zkctvXGP4fc1CoqqxiAUIlk5Bicrttx5gb+98d+JGfqPdgiIiIiKguSMxx//2fpjfh91wWsOJRkdxPTjtXM87Rs59ccVL4wAKES6fDmSqfr7v58E+ZsOYO3/uWdDCJ3KO0JnkRExZW/YPlna46jxWvLMH/bWbttDVbdJSqZua0qIwYgVCKpWYXfjThxhZVLidyB4QcRlVVrjlyx+f2dJUcAABN/22e3rcGoWH5WFxKAMDypmBiAUKnjyYPIPdgBQkTl0cpDSTh3PcPyO3tAiFmwyCHruxMllb9bloiIiDwvM8eIX3ecQ8/GVVE9xNdjz/vI7P8AAK8PaopTVzPwaHzJsmRR+ccAhBwa9OlGt+1LYh8IkVsIDsIiohJ4b9kRfLvhFN5degR7p/T1+PP/788DAIAWMcEuP0aSJEz56wB2nbtZSq0ib2AAQg4duJhS4Pq/91xEm1qhHmoNEQEcgkVEJbPh2FUAQIoL8zdL0w2rgsWFndaSM/WYtel0qbaHPI8BCBXLU/N3Qat2bQqRq0Ow3lh0ENfTc/D+vS0gcdwWkR3GH0RUFEIIfLzqOHIMCsb3blBmhkRbzwHhjZXKiQEIFVuOwX3zRADgm9xK6mMS6qFeZIBb901UEfCLmoiKYtOJa/hg+VEAQNVgnzJzcy/HjfNMqXxiFiwqda6c76zrGxiLWk6VqNLgZ4OoPBNCICXLc8V5z1zLyzy1eO8luDPh1PbT1/H6ooPIyDEUuUaRwWjVA8LzWqXEHhAqE6zPXWXkBg1RmcMeEKLybfzPe/D7rgv4fUxntKrp2XmUsgzIbvyCveeLzQAAH42M53o3LNJj9dY9IAJIzdJj+r+H0T62Cnw0Kre1kcou9oBQqXMlC5ZidWXF+IPIMcYfRJ5xLS0bZ616D9zl910XAABfrD1hWZacqUePd1fjf3/sd/vzWZMlya09IGanrqbbfIe7Qm+03f6D5Ucxb+tZPLNgNx7/cYc7m0dlFAMQ8qiz1zIwavZ/+O/0dZvlvLAiIqKyos0bKxD/7mpcSc0ulf1bdwDsPX8Tp69lYM6WM6U6PCsjx1hqc0CK+h1uHYAJAKevpru1PVT2MQChUpGckXcStT7fPTV/J1YcSsLg3K5bMw7BInLs+OU0y89FHWdNREVz4WYmluy/ZPn9SGJqqTyP9Wd599mblp/1bk7uYj2/YseZG6XSAwLArgfkzDXXAwohUGYmx5PncA4IlYoPVxx1uPzcjUyHy21PXjwREZklZ+bly2eCBqLS1eWtVTa/l9YEaWPud95vO8/j/eV535el/QnPf6G/YPtZLNx5AZ/e3xoRgTqbdeYgqbDgQIJkNz8tPdtYpHZds6oLQpUDe0CoVFy3OplYn7xcCS14I4Qoj5827z5RRk7RvtSJqGRKq9NxzZErAEyT0q0VdS5FYfLvLn8PyEsL92Hbqev4dcf5fI8TGPLlFtz31RaHPa82PRwl/M4WENjDKueVDntAqFSkZzuusuosuOAkdCLHNKq8T4SBPSBEHuWuT9z209fxy3/nCn++Uv6IO+vNSM60nXuSlJKNbblzNVMyDQj209is7/7uGpvfSxI47b+QUuzHUvnFHhAqFReTsyw/uxJQ2M4BYQhCRFRWrTqchO9yC8d6isGoeLR+hpm75l3d88Vm/Pzf+UK3c3cAsv7YFZvfrXtARs3+z/LzF2tPWIoLX0/PQaY+r7d19ZHLBT6HBPt2F+VrfPQP/xW+EVU4DECoTGAPCJFjnHdOZc3Ds/7Da4sOYufZGx57zoGfbETzKctwOSWr8I3dyNOfv4OXkgsMejJzjNh68prL88GWHkiy+d26DsiKQ7brGrzyL3acuYHWry/HrTPXW5Y/s2B3gc+xaO8lu56iaf8ccql9VHkxAKFSZ3snxDa8yNIb8caig9hy0jYtLxGZcNQVlVWXbro3GDh0KQXX0hynvT14yTRMZ+Xhgu/Gu9v6Y1cLXH81LRs7ztxwW0/Jw7P+w88FDNV67McdGPLVFny57oTTbQpSWCHCuz/fBAA2PSCuyD8Ea8Pxgl83IgYglVxpFFoCXO+2/mb9SXyz4ZRNFyxHYBHlcfekVCJ3MTp5b3659gQe+m4bsg2uX8QeTUpF/5nr0eaNFQVuZzC6lqb2ws1MrDqcVOLA4LuNBQ81e3r+Ltz9+SYsO5hkt+7QpRS8/Pu+IvfavLRwn027jYrAjdzELuuOmoZUzd50ukj7NHPH96uj15SnKSoqBiCV3OHE0p/8ZX2+y3/yO3XVPgBypXI6UWXhrS/2HIOCF3/dg7/2XPROA6woisCwb7fipV/3erspZEVx0j03/d/DWHf0Cv7cZXrvLDuQiG7vrCpwyNbWU3m94E/O3Yn3lx0BYAo4sqzuxruaiKHLW6vw8Kz/sPJQXo+Js2FLv/x3Dn+78D5PzzZg3tazuJyaF1BsOnENAPDvvkt22/efuR5zt55F+zdXOt2fM3vOJ1t+vv/rLWj1+nIcS8qrSVLclNyF9ei4YrmDYIvVhKmomAWrkvPEhO+C0vA6yrHOHhCiPN7qAfl1x3n8/J/p38AW1bzSBrO9F5ItF05vD27u1bZUBOuPXUF4gA6No4NKtJ/C3pvpOaYL7Efn7AAAPDxrO3a/2sfhtiqrE/8/uRfzz/VpiH4z19tUyTYqAjkGBVq1a/dPN5+8Bp1Ghq9GhVE//IchbWMwoX8jy/fS5dQsvJAb2PZrFuVwHyO/3wZ/nRqL9pra9e0Gf6x8rofNNn/svojX7miGIB+Ngz049tma407XpWXlBSfm4Mw6Va43M+L9tN1+iBh7aqmo2ANSyZXWtf5hq+qxpgwZAn/uvoDLqfnG9/KcRVQmXU93PBbfG1wddkOObTt1Hf/lplQ9cSUNw77dhv5Wk4yLy9FdeL3Vscp/TZqZr47NlL8OoPH/luDAxWSonFyNHL+cZnOxPWPFMTR5dYnLdSM2Hr+KYd9uw+AvNuNmhh5frjuJB77ZahlGtP3UDZttHVl95Iol+ACAE1fSsff8TXy62jaAeOX3/S61ySwpxfln7NClFCiKcNrL5Gx5acvSGy3Zsqxdz2AhQSoa9oBUcp7qbfhrz0WM+2l3qe0/S2+Ej0ZVavt3Rgjh9l4kg1GB2tm3MVU63rqzyNz85Zv5Ajs9x4h7v9wMADjyRj+cuJzmtufI/97MMSjo8vYqp+utbT99HbNy5zHc9tEGvHdPC5eeMy132NJriw5i4ROdAQDX0rIR4qeFSpaQpTdi4c68ngLrm2Fmm05cw/cbT+O1RQdtlp+77vqcyIGfbLRbtmR/osuPB2BX/M/atMWHkJSSZdPTY/16evqsoDcquHQzC/Hvrna4PjXL+XAyIkcYgFCpkyRg5xnHY3+LexJVFIFDiSloFBWEQ5dSMODjDejXNArtalfBfe1i4K8r+Vv7uw2nsP30dXw0tBU0DgKCxfsu4eXf9+HT+1ujc73wEj8fYLrrdfvHGzCmR12Mjq+DPeeS0aluGFT5y9dSpeGtkQ1LDhTtYqq0fLfhFBY4GPJB9gxGBfsvpqBRVCDu+mwTqoX44LVBzSzr9UZR4qxq1r0e+Tum/t1/CVeserkLqg2xI993gqN7LnO3nnHaDvM5cf+FZAz4eAMaRQUiMSULNzNcqxWSP/gAgP/9ecClxzqTY1Qwdt5OLNp7Cb2bVC3RvgDgm3y1Vr5en/d7apYBW05eQ/UQX6w4lISMHCOeTKhX4ud0pv7L/xa4/o5P7QMyooIwAKnkCkvJ5x6Sw14CRREO75CZF+mNCjafuIa2saHw09q+Vd9eehhfrj2JYR1r4cQV0x29JQcSseRAIjYcu4LvRrSzPGd6tgFrjlxB+9pVEBGoc7nV5i+of/Zewh2tqtutHzN3JwBg2HfbcOLNW13eb0Gm/3sYBkXgo1XHseboFew9n4xJtzbCo/F13bJ/Kn8q+9jq/BeKpdHrWJ7MWHEUV9Oy8fqgZnavw0crj+GjVcfRplYoDl5KwcFLKZh8u22NpaJkhdpx5gbu/nyTzTlotVUa3I0nruL+DjUtv+fv5f5g+VH46fJ6prP0eRGLKl/bt5ywT8X+cgFDmrL1Rkz6fZ9l2JSjng5vMA/VcjhR283u+2qLze93tqqOaiG+EEJg2cEk1IsMKPa+w5CMcCkZR0TNwjf2tuw0QKUx/d8/zNutIRcxAKnsPPQ97ijQueOzjdAbnX8Zvrv0CL5adxI9GkZg1sj2Nuu+XHsSADBni/0dstVHrmDCwn2Wyarjf95tKcb0zC318cwtDYrUdvNESmfclf89/7725mZBWbjjAgOQSqxyhx/2FAGoKmn8IYTAjBXHAABHE9Mw++H28NXmXeB/tMo0J8G6d8F6WJGA89S5jphrQry5+DAeja+LTSeuYpRVyvR/9l7Cp/c7f3ym3mgXRJgnkMv5enXPXE9HUew5n2yTKaq88EcmIqWbOCWi3b7v8zcyERGow9aT1/FY7sT/gtSQLuM+1Wo0kc6gg3wI/xg74mXDIwhEBhbpXka0dB2/GbvivAjHamMr7BL1UUtKRGPpLBJFFdyi2oEFxh44J+x7e/yQhSjpOsKQgsmaH9BAOodH9c/hnIjACVENgcjEINVGbFKaIln4IxsaBCMdGdBhoGoz9FAjB2r8pzTAq+o5aCMfhQIZJ0Q13BCBqCtdwA6lAWrJScB0U8Y0VI0Dntjg7peVSgkDECp1kuS4e32vky+Pi8mZqBnmhx82nwYArDlypcjPueC/c5YAxLoS7IwVx4ocgBSmsF6ky6lZCPPXuTSMytHd7qJcMFDZJITAX3suomm14CLflXRngFsRKEJAVYZSde8+dxNbT17DqG51Sn2opHUK1W2nr+PFhXvx8dBWlmUqWbKbGH7/N1stP/+07SzecKFCtbN5aPd/vdVumRACn6w6jkAf1y4nur2zClMHNsXr+Xq2sh1MbM6vhnQZl0QYjCh8vp8KRvSTt6OpfBqJIhSrlFY4LyILfExXeR/aSEfxqzEeI9RLESql4QvDAPggB53lA9DAiNbyMdyEPwKRCSNk/GqMx26lHq4h2GZf9aTzeFU9BxnwwSeGQegl70JT+TR6yTuhkgQ2G5vgT6UztisNcUKYs8zZvn8kKOgt70A6fLBRiSv0bzbP9XGks7wfw1XLcFME4DdjN1xFEH7Svo4IKW+u173qtbhXvdbmcXepTBf0T6r+xDKlLXrLO6CW8o7VWPWfyBA6+EnZSBZ+CEQmDJChlexrwMzSvgMAyBEqXEYoakhFTwncVjpq+bmOnG+YaHrRrxXIexiAVHKe+BpffjAJj8XXcXn7+77agg+HuDYhsSwwxx9GReDizUzEVPGzrNt19gbu/GwTutYLx4+jOhS6L8XBd7CjoOTn7edQv2oAWtUMLXa7yXOWHUyyDE85/dZtRXpsZYk/dp69gflbz+Kl/o0QHuB8qGRRh6QZFYF3lh5Gm5qh6NPUcZrVkjCPfQ/21eC+9qU3XGXJ/kQ8/qPtXe2/91y0CUAKqw3hKPhQFIHHftyBWlX88MqAJth04ioenrUdrw5o6lK7ak9c7NJ2Zkkp2Xj8x512y3edvWm3rApSoIcaqfDDFPUsjFAvwxklEjMNd+E3JR5VkAIB4Evth6guXcU1EYTtSiPkQI046SS6qvLmdPxP/IiZhrvQWD6DGtJVfGS4Ez7QI1hKt9yB/1wzAxrJiGc1Cy2PG6xaV+Df01+1HXqhwlKlHabqhyEF/hilWowXND9btumn2m73uE6qg+ikygvC0oUOZ0QUXjc8iGGq5QhFGkKlVDSSTfOf5hsSECKloYZ0BYeVmuikOohDSi18YRiAiyIcmdAiUMqw9EbUlJLQUjqOAaot6CgfQpCU1xM2RL3Grj0XRRVUk/KGwaUIPyQLf8TIV5AqfBEoZaK/g78DAPwk07yf4Nzn0MI2+LgkqiDaat9ayYgacB58pApfXBYhqCldhiY3kHlbfx82Kk3RUD6HAGTCB3o8pf4dV0Qwaj75B6TAaMAnxOk+qexhAFLJeWos9cXkolWCnbHiWLm58DIXTnxq/k4s3peIj4e2wu25dRPMQ8Q2OEnvmJ+ji6uTV2yHJmw8fhUvLjTlrS/qxSyVjvXHruB/f+zHW3c3R8c6pjHI1rUKXE0Z6khxJw0LITB/2zk0qRaEljEhxX5+AHhj0UE837chPlt9HC1rhqBno4In2H66+jhWHb6MOY+0t5u/ZS3HoCDHqCBAp8Zdn5mG+2Tojfj0/tZOH1PU88KS/YmWIZul+Xk55sbsUvklZ+rtgg8zRRGQZalYaVmFENh17qZlvsLLtzXGU/N2IUuvYNLv++y2LW0xUhIGq9Zhk7EZMqHFAu3r8JVs07vWki/jA+0XuE9ZjfbyEZt11aVraC7nTdTWCxX+VjqhpnQZbeWjeF7zi2Xdt9r3C2zLdRGAUyIabeRjlmWpwhfHRXXsVupCDSMCpEw0l06irnwJA1RbUAUpyIYGCao9lsfsUOrb7GOdMQ5BUgZayidsns9fykYT6Qzma6c5bM9QdV72qTj5NACghuoqeqt2QBES9FBDDQMG5kxDCnzxt/ZlS0Bg/XporHomcoQKfXPeQShSsVPUx1vqr9FLtQvfGvrjd2NXXEUw6koXcVTUwO3yZkzQzEeW0OLBnElQSwZcFqFoLR+DL7LxsOpfnBZRmGu8Ba3lY8iBGtuVhpAAy3CzcCSjqXwaE9TzsEuphy+NtyMMKUgUVZAJLfyQjTbyMaxXmuEGguCLLDykWo5DoibWKaabknuNecOR5xhvQTa0+DY5EvFVqxR4PKnsYQBSyXlqIIMrVWatSXA+9t3VL9rvN57CyC61C93OqAhcTctG1SAfAEBKlh5JRQiYzDHc4n2m7uBPVx+3BCBFneTvyne8edJ9SVxOycKPW89iy4lr+GJYG1Tx1zrdNktvxE/bzqJno6qoGebndDuzn7efw9GkVLx8W+NKM1l42LfbAJh6706/dRte/XM/ftxyBiuf64Ha4f4l2ndhd/wzcgw4dCkVrWJCbMbVrz5y2XIR6ejCW29UMOL7bWgZE4IX+jayWXc1zbY+wTcbTmH7mRuWQKqwC/l3l5ouDOdvO4dHujr/DHZ+axWupmXj4Gt9LcvyB9z5FfU6OP/fUlxCCJy9noGaVfwcvq9Lc/RV/voZ1upMWox729bAi/0aOd3Gmcup2fhz9wXL7y/8uhfX0h3XcyhqT4e1jvJBPKb6Gz8ZE7BUMc3nU8OAKOkGnlEvRLy8FzlQIxI3oJWMGKf+3eF+vjf0RYR0EwNUW22Cj1Thi2mGB9BQOocu8n5oYcAJUQ1fGgZgm2gMQOBx1d94Vv0r9FAjQDKd36+JQBxQYtFRPgitZMQ8QwLWKi3QTd6Hzw0DcQER6CAdQk05Cb8Zuzkd+tVKOoZftFPR2apHY49SB7MMffG70hX3q1ahjXwU0/QP4DqCoIYBgchAtHQdC7Sv45SIsgmczI4oNTA85yU0l09ionoeastJ2KPUQRa0CEcyakuJkCUBWRLQwZT9637VSrSVj9gEH8nCD7ONffCN4Tb4IhubdE9BJQmsVVrilIjGKZgChAmGR4F8Ux6PihgAwN9KZ/yd3TlvRe7ncLNi6ilbpeTdNDhkrOXwdbqKYKxVWmBtTt4IhzPI65W8AeCCEmH5PRM++NJ4u8N9AUAaTN9H1528Z6lsYwBCZZajYkcAsOXUNZceP/XvgwUGIN9tOAWNSsJHq47jSmo25o7qgC71wtHt7dVIzsxL5SgVEqZJEnA4MW8c7eHEVPy45Qwe7FirSHnlAdeGl7jjOqf9mystP7+/7Aim3Wk7vnj/hWRIEtC0WjBmrjyGz9ecwJS/D2LflD4ILKTSr7l3plfjquhUt3JmJPlhs6nnK+G9NZg/umOJ9lXYW2LoV1uw53wypt8Vh6FWQ4COJRUcqK44mISNx69h4/FrdgHI87/ssdveuhdn/4VkNKtuGvN+LS0bey8ko3v9CLuJxVl604Xz4cQUXE/LsaSrnrXxFFYevmwJDo5YZTA6dCkFRkXgWnq2w/lfrg7BEkJg59kblroRADDup10Ym1APBy+lYGCLakUKkD9aeRwfrjiKp3vVx/jeDaA3Kpi++LBlvbObDbvO3sDyg0l4uld9S62ivedv4n9/7MfUQc1seqdyDAqGfr0FcdWDMWVg3hCowppprlhfVB2szgNAwXUpACACN5ECP+ihRjXpGs6LiHxbCExSz0OslIjTIgp/GrughnQZX2pnAAC6y3sxw3A3cqDGBM1PhbbvvAjHTMNd0MKAHKjxm7Eb+jaJQKPjD6OefBH/KQ3wkzEBW5VGDidC55HwhXEgZhn7IgtaNJVOo5V8HL8YuyMbWkTiBqpKN7BPmIYKm4MkANgqGmOrsXGB7dwl6mO10gq9VaZeqlE5z2GF0sayfp6xF+YZe1l+N0CNGwjCDRGEuOxvAACfa2agv2o7fjXG4xX9SOigRyr8oEBGohKGFTltEIBMpCDvhkYUrkFAQl35IvrK2zFcvRwPqPOO6QT9KFwTQVihtIbIrTudAn88r38ct6q24Q3DA4UcgfKhsmcKLK8YgFRyZfUG9elrji/cv1l/EttO2adrdCZ/rnmz6+k5duk9v91wCl3qhdsEHwAgIHApORNpWQbUrxpot68svYKx83bZLHvlj/1IaBSJrVZtPXc9w2Z+iCPOTqQXbmZCLUv47/QNnLrqPKh5fdFBXE7Nxkf3tXR6cZV/KEVKvgJSGTkGDPjYNPHwyBv9sPlEXsDXb8Z6bJzQs8C/IW+/jvPxp2UbcOpKOppVD6oUPSRDv96CJxNcy2L22t8HsebIZfz1VFcE5NayKWzoizkT0AfLj9oEIIW9tBlWd9XPXEtHrTB/y/MVlvjh0R/+w6aJpguqfjPX40pqtl0ABJh6K7P0RvSbYaq6vfaFHogK9sGUv20/e/mLiNadtBi1wvxwxsF5QBECW05ew6XkTNzZqobTNq45cgUjZ9mOWf9z90X8udvUG6uWZdzW3DYT0bnrGUjO1KNJdJBdMPXhCtPk149WHsPCHeehNyq4bFXzIv+dgeOX06CWJdyZO7RMo5LxbG9TAgxzEbs7Pt2IWSPbITbMH28uPoSm1YKx48wN7DhzwyYAGW2VeQowXXjeotqJZOGPTUpTtJKPY4vSGEbIyIRP7lYCA+Qt0EKP35Ru9g20ISzrJSgQkFBPuoBx6t8QilQsUdqjtpSIEaolUEkCV0UQwqUU7FLq4ZASg6+MA3BaRKOtdASPqv+x7NX6ZwCQJYHxml9tll0UVfC8/nGEIQUZ0CFJhGKedhqSRQAe1E/EGWE7b0cPDe7JeRVt5GPYoDRDFlxPrW7e9oCojQPGvJtTlxGKy6Jk8+n+NnayBCArFOdDCO2ZXveX9I+ix6h38Pznl2zaaqZAtgk+ACARphs8SUoV7FdqY7h6uWXdAkMP/GR0fK7+XemG35VuRWhj2ealovBUQgxAKjnP1AEpufM3MiBJkksZXKyZ00jmZ74za81QwFms03RTdd9tk3ohMsjHbv1xB+O/8wc/3d5ZbZMGWAiBbaeuo3G1IATl9io4a0KXt1Y5XJ6WbbC5UP02t3DVUz3roYGDYAmwn4+SP+ixrmiblaPYDC25cDMTeqPisDAjYJvy01xzIH+QceenG3Hschq+eLA1+jVzfypKVx1LSkWNUD+bNKaOZBuM0KlVbqtQfz09x2bI23+nr2PwF5uhUUmWtNS/7TyPhzrFAnA9C5q5AFxatgETFu7FhZuZBW5vPWG5+7trcPqt2zBn82mbYmfO3MzUW94H5uddfjDJLgBZdjAJ7y/Py1pz+lqG5f1qTae2f10dBR+AaRKzuf5B4+ggNIoKwvbT17H+6BU81au+5b258nDBdRhWHkpCbLgfqof4IsRPi2yDEd3eyRtnf2r6rcgxKth26joup9gO43L02lqfS9OzDbjlA9tsQkeTTL08Hyyznbcw4vu8IGmZVe2I8zcyUCPUdMNi7/lkSFDQUT6Eh1VLkCDvsslEZGYUEn4w9kGolIoe8h6ESKbhbDq96WbAY6pFAAB/KRO+yMGvxnhoYcDdqnXYqjTGflEbQ1SrESbZ1tSwnswNAOG5mZNaycfRSj6Owap1eEL/DOIcDCMCgBsiALfnTMP9qpUYo/7L9Hoo1bFVaYzZxj44LmwDyTbZX8IIGQrs3xem+SpBNj0MC5/o7PRcDwB1I/xxopChfQUJ0KnxfJ8GdoGztb+UTvDTZ2GfUhuAhL/HdkXVYB3aT1vp9DHWusXVg2+t1gD+KXRbR1Lgj18M8bhbtR7P6x/Db0p8sfZTHjFTYPnEAKSSKx/hBzDtn0MYd0t9t+zrw+VHsdRBlWejoiApxX7uh/UQrCNJqQ4DEFdZpwH+dcd5vPDrXoQHaPHfK72hNyrYXcTJyoM+2YCvHmqLWRtPo4tVNfb8QUVyhh56RUF4gA6fr7Gd/Jj/5G0dLwgIuyD1jUUHMXVQM3yz/iQWbD+HeaM7Wgo89p2RlzHm6Z92QW8UmDeqAzrUyRuKZZ6s+9vOCw4DkCy9ESeupKFJdOn1kKw5chkjvt+OhlUDsfRZ51/UP28/hxcX7sXYhHr4fuMpPNGjLsb2LPr70Po91Pr15ZgxpKWluOXgL0ypM61r4hhyf842GO3eq//7Yz96NorE6iOXMbxzrMM2m4uhOZJjUPDU/J026akB0914V99/GTlG1H/5X+yd0seybNXhy+j45ko837ehZdm+C7aptp0dzaKkr/1+Y95F7sWbmWgUFYR7cl/DED8tHs6dc6KWCw4Wf9t1Ab/tMs1/mDeqAx741jbF7JwtZ7DzzA38sdu1+WsqSUKOQcHriw6iToT9vB/zx8xcq6MwXd9ejb1T+kCWJPghC59qZtpMbj6tVEWglGETLKgkgZHqpXb7mq751uFzjFAvs/wcr9qHeOxzuJ1lP/qhiJBu4qyIxBj1X4iSTDdZtJIRX2k+QGrumPybwh++yIFOMgU+8dkzkAo/vGMYAj3U0MCADw2DoXdyCeJsuTNtaoUizF/rdP7KR0NbQS3LNucnV7WMCcFPj3aERiVjwX/ncfpqOupE+KN1zdB8dagkmx6HuBrB9jsrwAtWn5uieP2OZnjn38NIzTbgJcOjeNcwBJfh3uyIz/dpgPeWHS18Qy9h+FE+MQChcuHf/YkIC3A+UbooZq485nD5xuPX8L8/7CvvWmeDKSzNpbWC7sooisALv5rmSlxNy8Fna47DWEBRRmdOXElHvxnroDcKmy9D6yrDQgi0eM10odG7SVVsOmE7h2bxvkQkZ+oR7KvBj1vO4ONVea+PIuyH8szefAZ9m0VZeqNmrDhqmUNiPazHXPX4kdn/Yf/Uvshv2cEkXEnNtqtOP/y7bdh66jo+uLcF7mpte2dUCIFfdpxHXPVgNI4OslvnasDy207TheeR3LvSRkU4vAg2z2f5ZLXpovG9ZUcxrFMsVhxMQp+mVR3Oh3nxV/v5E+a732bPLNiNO1pVd/oe2XHmBsICtNh97iZ+3HLWZt2cLWcsx/ovB8kd0rPtC2cev5yKsfN2YWzPeriZobcLPgAUOfgFgOZTltn8npiS5XD+iJkkOb5Y6P7uGpefc+7WvNfjaFKazTDH1xYdxMNdayNLb8SsTadd3qd1rQyzV/884GBL52ZvPg1FCIfFUQFgyYFEPOjgeWpLl3BRhCEbeec3NQxQw4jmU5bhy/ubY5b2bbSXjyBbaLBRaYpVSissMCYgEjfwkuYnpAkfGKBGuJSMdvIRREjJuCn8Mc3wACaq56GKZAr6Fxq7YqmxHbrLexEh3UQO1Kgq3cAepS46yQcRLKXjI8Od0MKAmtJlfGy4E+3kw3hH8xU+N9yOb415yQfWKC3RXd6D5cY2+F77LhrLZxECUy/DoJzXoYEBn2tm4gdjb0tgAkj40DC4SK+rtad61sPCHecdZlX8bUxnzNt21pLxzGzHK7cgrIC0ztbubFUdv++6YLNMq5ItQwT/eaorAECWJQgh0LNxJBpFBeLstQwMyVeVvKhcDcLH9aqPS8mZljk/wzrWwoUbmfhi7QkokIsUfEQE6tCvaZTT96xZkG/B8/68jT0g5RMDkMquvHSBAPilGJMsi8p6CIQjRTnPmS9y80tKybLL2vHOkiMOt3WFo2ry1uPXrdcvd/L3PfrDf3j/3hZ4JV8AdttH6xHiZx/4WRckm7v1LGqE+uGJHo7nOaRlGyCEQI5RsWtru2kr8Fh8HUy8NW+Sp/mCct7Ws3YByFPzd1nu7ltnYso2GDHw441oVj0YTybUxWuLDuLJhHpoWyu00KAkKSULfWesw52tqsNPq8LhS6lIzTagQ23HaR1v+2g9zt/IRL+DUfhiWBu74XyOJgM7el+98sc+p0PZ/tl3Cf/sc96LYXYzw36ejaNhYmPn7cLhRFMQMq6Xe3oSi2PryeuIKkEPYn5v/XvYblmW3ojJRQweikoFI7rJe7FXqYvrMAXCqVkGfJavdzE/6+GPgcjABPV8PKBeiSQRgrtzpuC8iEQ1XMXPutdQBakYpX8Oy/7aj/flI0gTPngwZxJ2i3qWfVxABJ7WP1Xgc0bipqUmxRT9CKTCD8uUdi7/rauU1mib/TmsvywaVg3EkSRgjtHUA/ak/mks074ItaRgt1LXMm+jd867Lj+Pmb9WhXQHWb8m9G+Ex7vXhY9GZcmyZq1WmD8m9m9sF4C4OmzyuxFtUT8y0C4Aedgqi5v1eVWSJCQ0NBU2jA72dek5ikKrkpFjNN3EeX1QU0QG+eD8jUw80KEmNCoZTasFo33uOeqZW+qjapAOVfy1aFMrFF3fXl3Qri0W5c41KywAKetz9TgHpHxiAFLJFZbhqSxxpVJuadMbFQghsNBJcGFt7VHHE3k7vLkSf43t4u6m2bDuAXElQ8jWU9cdfmldSs7CJRdSEr+95DCGdXKcehEoOIXnl+tOYuKtjbFk/yWbAnT/nbmBpJQsTFi4F/3jonFv2xi7oUVCCCjCVBvlSFIqjiSlYuFOUwCw5sgVBPmo8UK/RhjW0XnbzJmAvt942ma5s2QH52+Yxv8vOZCIb9afLPK8JLP8PRvuMtvBnf/DVlmmnPUAesInq49bepNKS6P/LSlkC1PKUuseBwCojivIhA7p8EGMdBkCElKFn90dZRkKZmg+xe2qLTgvwjEw+w00l0+ivXwYfxo744hwVIxQoCpuIAmmC8Yu8j58r3nHUi26qnQTn2lm4u6cqXhF86OlQvRL6p/wX1ZDQA38ZexsE3w4k9AwAqutkgh8Y7wVOikHm5RmVj0RRWX7PbH02XjETsibq3BSVMMT+mfQVj6CLw3O06a64odHOljmc9SJ8LekZR6RO9zwsfg6EEK4PCTI2bVzo6hAm89F29gqNr2Hv4/pjPAAXaGJQ9wlf9ID63bf36GWXQ+J9fBLH43KJuPjuhcScOpaOppWC0LbN1Y4fU61LLk0D1SWgKXPxGP6v4cKTVDhDewAKZ8YgBAVwaNzHBcDKypnKYbd5ZsNJzGxf2P469QeS1F4sZBJzwXZfOKaw+rIM1cew+ojV7D6yBUs2H7OZp2iCNSZVHBtgpQsA/73x34M61gLBqOCUT/8h2y9Ap2m5JPJAceVpb0t0cE8pspDoApSLb0SOuQgTjqJgyIWDaTzSIcPPtPMRH35Ai6KKjitRGGl0hq9VTvQUXZ8LN/QP4DFxg4Yo/4T0dJ1hEqpaC2bgqga0lVs0j0Fn9y5Dg+pluG+nFewX9SBD7LxonoBgqV0NJNOoaF8HvuUWGxRmuA+1WpL8DHb0BsDVZvRXD6FR1WLcKtqm+W5W8gnUVsyBd2blLysWI/F10G2QbEbZhZTxRffj2xvExxkQ4sPDPcW+so90rW2JYmFmbPeCEeWK22xXGnrcF29yAAMalENX68/aZd1z9pfY7ugfmRe8ozxvRtYMgyar5PVKhlje9Z3GoDMGtkOM1Ycw+5zN1ErzA8BBRTCtBbko7EJQNSy7LHgw/R8zgOQot4mrBnm51LNJlmSXMqEKUFCw6hAzBrZHs8u2G3XS+RtgrNAyiUGIG6wfft2TJ48GZs2bYJer0dcXBzGjx+Pe+8t/KTvbWW8Z7XC+l8pDxH5cctZZOsVvHtPiwKze7lTSQqxDf3a8fjptVZ32/JnFRv2nf14eme+XncSQb7qMnn3zrvsewNUMKK7vAfJwh+7RH2HmYgKU0e6iLbyESwxtkMKAhCFa6glXcZ1BOKYqAEVjKglJeGsiERN6TJShD+uIxAByEQGdHhe/TN00GOT0hQCEjYqTXG/aiUGqLYiU2hxQlTDXlEH641xllSkfsjC55oZ6K7ai18M8fhd6YrX1d+jrux4KFs16Tqqqa7bFI9z5BXNXLyimWu3/FPDQIxS/WsJPgAgQMrCHO1beDBnEh5QrcD9atvsdXHyaUsV65NKFAbkvIkM+CAZ/nha/YdlqNR6YzOooKCz6iCCJFNgv0VpAsB26GFSShb+3Z+XpGDRU8VLrVo9xBcv39oYA5pHW9IGA8CILrFQyzJmrjyGV25rjIEtqkGnKThrnCNqWcJTvepjbM96BfaGSpDyXXjn/eJqxsYeDSPRo2EkDLnDl/L3LFj2bbW/Q6/1s3s+T3835u/hsP57S6stklT0TJhl8ZKBQ7DKJwYgJbR69Wr07dsXPj4+uO+++xAYGIiFCxdiyJAhOHfuHJ577jlvN7FAZfFkUhkcupRS+EYl9MuO83hncHNkuXgHs6RKI9ApKJXsxuOuFaQEgGmLy15PhfsI1JCu4qoIsqlhU1e6gBThhytOJqU2lM7iG837iJGv4JASg2VKO9wU/rhXtRaNZdPwsNNKVZwSUfCVcpAqfJECP1wVwWgqnYaPpEeq8MU8Yy8kiiq4TbUF1aRrCEEaOsiHoZP0eFG9AJdEFctFNwAcUGohTEqxZFAqyEjYZ3QCgM4wBQ16tQp7RF2cEZEIQBa6q0xJA+5Rr8M9cJzx6JRSFc/pn0CkdBPt5CNoLx9CDjT4yjAAz6p/RbR0DRdFGPRQ21WnPqLUwJ/GLtiiNMZO0QAnlGp4R/MVriMId+VMwSeaj9FSPoF/dJMsj9mqNMJ5EY6VxtYIk1Jwm2orfJCNV/QPIyO3ZscqY2s8rf7D8pi/lM4IQZolODqqVMdVBGPlc91t2vPmnXGoHe6PLvXCER3sg+AiTBa2Tvu88rnukGUJrWravleeuaUB1LKEe9vFoFqwj8tzAZY9G48xc3fapScv7PH572SXpBfA0dyPdwY3x4u/7sWIzrE2yQvMqbjddaG/vIDMes7k7wGxDUBK55vaV6tyrQfEapv+cdGW7HFlBSehl08MQErAYDBg9OjRkGUZ69atQ8uWLQEAr776Ktq3b49JkyZh8ODBqFXL+fhzbyvrk8uoZHp9sNYyhrq0mYvNlVc65CAHakvFYOfMX3ZSvp8dC0UK4uRTuC4CkSSqoLl8AnqosUGJQwAy0UI+AT9kI0hKxzGlBnaLemgoncVT6t8RJd3AWmNz7BN1EIYU9FLtRDY0yBRaaGDEQiUeo1X/oJdqF66KIMyf9humqrPQWD6L9vIR6IUKa5QWqCUl4T+lAXYoDXGraitqS5dQR867c95YPofGct4Qt0yhhQIJsXISYlFwYgbr1LD5hUsplpoR10QgQpGGpnLBE17Nzotw+CHLksHpmgjEl4YBuCqC0Vw+ia7yftSTL6KtdBRtkTcc53tDX/SUd0EtGXFORGKRsSNipMtYpzRHLekylhjbmYZoCWCJVcVrAFia0xaSKfk0AGCIajW6yXsRjHScE5F41TACBquvzd+UeGzObopU+CINfhiWMxGztG+jjWyaZ/OPsT2e1D9j8xzmidsAMKRtDDYcv4q9N+vYtsPYFpHSTbyMeQCAjUozvDO4OepGBNhsF+qvxYv9bKvYA6a0wvd/sxW3NY9GjRBffLnOdmL2wdf6QhFAz/fWIL5BhE0hyHG96uPjVcfw55NdLUkSqofYT7KuFuxjk42qQdUAHE1Ky/05ECvGd7cZCuYKIWwvvK2vyd1Rs+retjHo0TACEQE63PrRhgK3LerTHZ/WH7vO3UTzGsHQqR33EtWPDLCkIc8vfw+IJ76ZdWqVS5kdrdtyS+PIUmtP1SAdkvLV3HEF44/yiQFICaxatQonTpzAyJEjLcEHAAQHB2PSpEkYMWIEZs+ejVdffdV7jSwE44+KrbSDj1pSItrJRxCGFDSRz0AFIzYrTbFOiUMVpCJauo5AKQOJogoOKzEIkjJQVbqBDOGDo6KG5Q6wO5kqOTsPIsJgqk2RAw26yXsRIqVjgLwZnVUHkSlMQ5GMkHFcVIeSOygjWfhDDxWqSKloJJ2FASpsVRqjq7wf1xGI8yICTaTTOCOq4j+lIapLVxEp3cAFEY5b5J3QSc7Hvee3W6mDhtJ5+EqmTGltZeeTba3v8odLKXhc/bfNeo1kRG+VaW5NA/kC7odtooF1xjjsFnVxUwSigXQOQVIGjotqWGBIgB5qDFBtQTp8oIEBNaQr0MCICOkmjivVoZNyMES1xhJgpAkfrFZa4pBSE8kIwB/GLugm70MVKRUrjK1xGaHoIB3Cp9qZSBO+mGAYjTrSJaw0tkJT+TR00GOXUg/N5NM4ImrgnKgKwDQ5vI18FGuUFkiB6QL8NyUeKhgxWLUOEbiJQapNqC9fwCeGQXjPMARTMdzh67Wx0FdfgrC63FpgTMACY0KBj7iEvBo3qfDDQzkT8JlmJmKlREzRO26H2Vt3xyFTb0STV5fiR0MvPKheiV8M8UhBAFJEABYYeqCLaj9+MPbBqjbOq77n17leOHa/2hvBvhpk6o02AUh4gA5+ufMitk7qZXcT6tneDfBkQj1oHRSHtPbXU10tE5wf7lIb1UN98fqi/BXuZWTpFXSqm/caffZAa3y25jj2X7DvBQ70yX9J4nwYknnOSv9mUSiKyECffHt29GxFT9CiVsloF+s4c57Z9yPb2ST7+G1MZ9yVO+Qtf92a0v5uDvEz9Za5MnTWpifKxYbVrOKHs9cdFxN15rcxXVA9xLfIgaun5jmSezEAKYE1a9YAAPr06WO3rm9fU92DtWvX2q0rSyp+/GEa466Hulhj2c37MKk4r5YPslFfugA/ZCMVvrhF3olq0lXsE3VwVQThlIiGBgYcF9VhhAwtDMiBGmoYEYo0GKBCD9VuvKn+FhrJdojXAJVrczNyhArblUY4ImIQI11BkJSOTcam2Jg72TZMSkFN6TJqSpcRKqVBBz0OiFrYoTTAASXWMtE4ABnop9qOzvIBNJNOoa50EZnQ4aoIxjFRHf8a2yMLWjyl/gN1pEuW4miOmC/6AaClVHBK1T4qU0ICP2RbshbFSadthhu1hOnC77RSFVHSdWhhQBJCEYkbUEmm99V5EY4kEYosoUVH+SBayqbHHFOq42djdwxSbYIKCq6JQFwSYYiVE+GHbAQgE7Xkyzig1ML/9CPxsPpfxEpJuCaCcFZE4ltjf3SV96ONfBTHlepIUO2GD3KwUWmKtUoLXBYhOC6qo6D39XfG/gW+Bh8Z7oIPcuCDHNxEgF1mqfw9DFtFY7TL/gwAICBjC0zzGpKUvAu3RCXM5jEXEIELSoTdcxuhsgQHXxhvRwSSbYIBZ16/o5nDej/ukg5fDNdPsPyuU8tOM/hJkgQ/rRrzR3fEsK8NWGiMxx6Rl876JcOjgAHo0TCiyL3V5vTZflo11r+YgE9WHUeOUcF797SweX5HCgs+ANhkrPPTqvBQp1rI0hvRrX5eQdRlz3THsoOJuL9DXmawW+OicWtcNFq+tsySRvqNO5rBYFRQJyIAitUdeXMq7EAftV1bJ/RvhF6NItG6lhuL7tlcaLtvt2bmyvZmgbq8S7D8dTNLe3SC+ZrdlefJH4y5kpzgx0c6IP5d19IBm6mK+Tcz/iifGICUwLFjpm72+vXt8+pHRUUhICDAso0j2dnZyM7O625MSSn9eQE21r6DmKRLmKhOggIZMhSocv/JNv8XUEkKhAAUyDBCyl0jQws9fKQc6KC3nKLMj1PDCBWMUEEgDT6QIRAgZcIHOUgW/siGBgaoEIQMREnXoZP0MAoZBqhghAwjVDBY/q+CGgaEIRWypECCQACyoIIRGdAhU+iQAR9kQgcd9AhEBgKlDAQgE2rJ9OWfLnRIgy/ShC8yoYMxNyAJRAZUUGCACqFSKuTcgCMTOuQIU6EuPdRIEqHQQg9fKQc3RAAuiTAYoIIEgUxoEYhMVJVuIBV+uCn8ISBBhkA2NLgigpEDDYKQAT8pCznQ5A71kFAFpgvtGtIVGHL/VvNxMEKGgAQ9VDBAjRyooQjT62+ACnqooc99xQORgTApBRIEUuGHdOGDVPjhhggAIMEfmfCVchAp3UB1yfH8ifuwxub3HKGCgFTgHfx9SixOiygcUmpBBSP6q7ajvnQeqfDFSVENWUKD2nIiqkvXkC3UOC8iECBloqp0E11UB9AFeRPyO8iH8SwWOn2u3jBd9BuFhN2iHkKQhlpSkuUYmwUgCwFSFmKRZOkBsKYICbIkcElUwVGlBvaKOvjF2D33XS0gQ0G8vA8Z0CFN+MJXyoYPcpAmfHFAxKKTfBAt5BNYaWyNJvJpNJHOYJ6xF6Kla2ghn8BhpSYkCNSRLmGJ0g5rlJbQwXSxlQ0tQpGC6tJVXBDhuIFAmK986koX0Fw6iZsIwAYlDnqo8bVxgJNXQyAY6UiGPwAJO/UN7LY4bYzGj8beAIBPjXc4fV2LKxtaZEOL5MI3tSh8iFvRGaB2KfgATIXbwv21iA33h1ER2H3uJvZfSMZPVlnWwgO0mNi/MbRqGU/NN2Vhqh7ia5mTlD+oeHVAE7y26KBdClzAlLrb7MV+DS01f94d3NyyvFPdMAhZg11K3nfJ/ql98fuuC2gQGWA3N6OoYqr44W2r53O3ZtWDoFHJeDLBNk1wzTA/jOpWx+FjrC8aH7RKky3LErZO6gWDIhDqr8Wh1/rZXZwDgEYlo3O9cPsVbuKJ0QHWo5/y94CUtiLNm8j3WvzxZBf0/rDgqvI1w/zwcJfa+G7jqQK3s1bcl+C1RQex48wNhAdoMXVQs+LthDyOAUgJJCebvnaDg4Mdrg8KCrJs48j06dMxderUUmmbS3bPRdUbp/FYWXoXFOOk749slx7nL2XDH9moKt10ab8hSLfs1wd6BEp5E6IjpGQ0gPsn4ungwlAdF/7WYGQUut11EYAbIhA1pKs4JGKwR6mLOtIlhEvJqC0lIhsaBEv2Xeg5whQgCUj42HAnZhrvsmnUx8a7HAyDErkBlcrye20pET3k3aghXcVZEQkDVOgu70Ez+RSyhBbJCMBZEYmzIhLXhKm3o5V8HHHSSdSRE9FGygvujyvV8I/SEbuVujiixEAn6RGBm+isOoB7VGtRBamYbeyD+caeuCqC4YMc1JEuYZ+ojSw4rpJ83Oh8yMtRYwyQewPwH6Wj7UonNwatewduIAg3RJDdNidEdZwQ1Z0+ry0JyQgofLNK5L52MTaBxMz7WuLklXS72if946ItPzerbjp/rzlyBYkpWfjfgCZ4xKr4XN+mUTh3IwP/7L2ED5abhsMdeaM/Vh1Owpi5O/H23c0xqGV13NY8GuEBOtS1Sg39ZEJd7D2fjPXHrqJ2uD8CffImid/TNsamTTq1jIzcu8o1q/ghQKcusH5NWfDbmM7YfyEZfZsWbRgUUPAFcFWrYpXmCeLu5ijAsMmC5YEe7+iQvL8z/1Co0g6AShB/oH7VQIfbFcVtcdF2xVaL2wMCmIq31nIh9TCVHWXp0rPSmThxIsaPH2/5PSUlBTExMQU8ws3ajcKlSxfw166zUEGx9GqYeh1kKCL3/7m/S7l3hlXmu8SSghyhQRY0yIYWSu42xtztDcLU/6FAQqCUAQNUSBc+pgtbpEMjGaGBAWnCF4mognThY+k1UUuK6f8w/V8DI4yQcV0EQp/7tk2HDwxQwQ/Z8EMWfKVs+OZOJE4VfkiBH9KELzLgAzUMCJAyEYhMBOT2BMgw3ZnMED7QQwWtZMA1EWT5W31huuudhFBoYUCElIxsoUEWtAiXklFVugE590LcF9nIhA6Jogr8kYUQKQ0CEhRI8EEOqknXIEEgRfgjE1poYYACyTS0BkG4JMJwWkRBggINjDDkvm6y1WuuhSG3z8jUA6SBERrJtEwNI1KEP64hEApkBCAT/lIWgpGOUCkVEpDb86PFdRGIkyIaN2B/AWxLoKZ0GRoYcFGE5bZZRip8oc19TmdzOOzvcktWwYfp91MiGqeM0TZbzTXeUmCLZuVe3NeRLqK1fAwXRRhOKtFIRBXYfE0K4BSisc3QGDMMd9tMLAZMw2SuCcc3Dqw917sB3l/uWsEzTzOPr3fVrXFRWLwvsfANy6iX+jXC20vsK59bG9uzHh7pWhtzt57FmIS6lvH+4QFa/O/PA3g03vHdeAD4+6mu2HHmht0kW61aRt2IAIzqVhtHElPRL3fOQc9GVbF/Sl9LtiXzRXNsmB9OXzMF7r2bRGFkl9qYu+Us7mlbAysOOZ/Qb51FbuETnQv8O8uK1jVD0bqEvTNlVWkFAObJ+jq1jCAfDVY+1x06tWw3FModk+4LUpRRS46GaX05rA0eK0FdrJn3tbQLQEryN782qKmDOURUlvFolYC558NZL0dKSgpCQ52fnHU6HXQ6x3dfPaLzU7h09gamb99U+LaeVpwxnYU8xuaOs6NtC3m8zZ3psjLmtKB2lLiNEs7mTgQGAOuEuDnQIAeup/x0F/MQl5OiGk4aq7n4KNuJxc5MurUR3lxse4E7pH0MDiem2n1ReloVfy2up+fYLNOqCg5ARnSOtRSqiw72QY8GkWUmAFnzfA98tOoYftvpWi/iv+O6oXF0EDL1RnxUQCV3jUpGjap+mDKwqc3yYZ1ikdAo0mE2J7OIQJ0luHDET6vGpw+0tlnmKNWrr1Xhu0ZRgfDRqDDuFtPQqqbVnAf91tmIIgK9+L1QiZUk7a+rvnmoHWasOIpHu5uC4fyZzcxaxoRg1eHLCA/QOlxfUo56oCICdbiS6loWquL0ellz9NlxVrOlMBqVhIc6xZaoPeR5nh10WMGY5344mueRmJiItLQ0h/NDiCqDRlGB+PqhtniiR12n29SJ8Hd5f13qheH7ke0L37CYHo2vi1dua2z5feZ9LREZ6INpd9qOKb6rlatDpNznzXxt6NEwAgNaFByAWV+Ej+5WBz0a2U/kdsacIcedhneqhRf6NsS80R0QG+6PD+5tabP+iR51sXFCT9QJN70nXrmtMTrUroLX72iGxtGmC/dnb3F+Pm0ZE4KIAOcX7jVC/TySdtzcfgA26W0BoE2tKvj6obZYMd6+ToQr6VArEm//tY6HYBW83h1qhvnhgyEt0Siq4B7oIB819k7pg40TepZKOxy93SY4SOkMeC79SnGL2XpiuBy5HwOQEuje3VQUatmyZXbrli5darMNUWUTVz0YvZtUtWSyyW9E51i8kW/C4PBOjse8P9e7AT4c0hIAipx20xXje5smcI/qVgebJvTEqem3YlBLU6AR4qfF6bduw8+PdcLobrXx5l1xeHVAkyLtv1GU62Om+zm4s2g9NOG+djGYNbI9XujTEC/0bVjgvkZ3q406Ef64t10MIgN9sGdyH3ye7y7+t8Pbol2sbU+tX74L59sLCXZcMWVgUzyZUA+d6zqeOHxrs2hUD/HFqud74Pi0/hjVrQ4WPNbJZh6EdQDR0GocevUQX/w+pnOx76C609RBTXFPmxpOh1H1blIV9SLt3w+zRraDj0bGh0NaOHhUBeTtCKQcCPLROK0pUlL5iz4CgE7j+JLQU+n6i3uDgOUEyicGICXQq1cv1KlTB/PmzcPu3bsty5OTk/Hmm29Cq9XioYce8l4DXcDPbdmkddA9XZZ0b1D43XTrCbfWfni4PY6+0R9TBjZFxzq2mYtyjPZfii1jQvBUr/qW8fyTbm1ss75THdeyHxXk6V55d9arhfg6/CJsX7sKXr6tCXw0KozoHIune9XH9yPa4Z+nuwIAmtcIRo1Q0xCfWxpH2vQi/PN0N9SLdG3C+Ot32GdxaRkTYvl58u2mno1Qf61d1iGzr4a1AQC8fFsTrHquBwJy030G+2rQPy4au/7X27Jt8xohWPBoJ+yf2hdtclOaDm2flzb16Z71MCM3+LP2dK/6+G2M63MVCru4sF7taHiG2fN9TMGi9evUMCqwzBRVDQ/Q4d17WlheS1f1aBiJ/VP64s5Wrtf7KM+8HX84umteVt5DgOfS8LrCYwFIMR9X2vNlqHRwDkgJqNVqfPPNN+jbty/i4+Nx3333ITAwEAsXLsSZM2fw3nvvITY21tvNpHIox+j65OKiuqt1dfRrGoVHcycQ9m1aFXe1rlGkCYXP92mI45fT0LRaEJYdNE2sbRwdhCr+Gpy8kg4/rQpje5oujrvmS5UZbxW8yLKE+AYRWHfUlLq0eY1gzN9m315r+e/SzX64PQ5eSsEdn9qWmWtVMwS7zt60pExtEROC5IwcywRhsybRhU3GtyfLkqXXBAB2vHIL/LRqSBJwIyMH0cG+GPfTLvy5+yIAU5VjtdXd+Z8e7Yj7vtoCwBRcnLqajuRMU5re/OP/t0zshcggHyx+uhuAgrMChQfo8GRCXfQpZHx2qL8Wj8bXQY5BsTxfgE6N70a0w84zN9Ctfrhl8n1UsK9NleZFT3VF4+ggy7K5ozog1E+LWz9aX+BzFsbVi4ixPetjVLc68NGo0LBqII4kpeKeIhTpK8sKCryo9Hm+Frn3OJwG6SQo8dQQJ50L9WccYfxRPjEAKaGEhARs2LABkydPxoIFC6DX6xEXF4e3334bQ4YM8XbzyI261Q/H+mNXS7SPtS/0QK0w/0IrvcqS4zG67vBcn4Y2k3ETGkYioWGk0+3fvDMOk37fZ7OsZhU/bHgpAZIkWf6WQJ0ac0d1tHu8WiXj0/tbY/zPu/Hx0FZ262cOaYlbPliLPk2r4t62MTAoAsG+GjydW3/hznxzLqxTNf73yi3QqmW0jAnB6bduw+rDl/HKH/vx/r0tLL0reqOC9ceuoG1sFRiNAmuOXsazC/YAMB3Tzx9sU+Dr5Yowq7kH0cGm17agC2rrIVkT+jfCrzvO49cd5y3HpUaoL87fME37jwo29fw0KWACs9n2l+0rWzuTvycJMPWQJDSyfS+Yqwx/PLQVLt7MtKStNetSLxwZOc7TR7eLDcVAF4ZwFWWYmnluxW9jOuPklXQ0q170IJK8q0h1KLygol/UOnr9FSEgSfaBiCdei/UvJjAAr2R4tN2gffv2+Pfff5GcnIyMjAxs3bqVwUc5lT8FpzXrsehv3x1XYEYbZ2qFmSaozryvJWKqOM/IM/vh0ptsnX+YfESgzq7ysVYlI9RPgy0Te9lUMTbz06ksF7oT+jdCgE5tl3nI2m3No3Fgal+Hd+ZD/bXY9vItmH5Xc6hkCcM61kLtMOcTeYN9NQ5/BoCERpHYOKGnzdAujUpGz0ZVEeSjQai/1mbdJ0NbW4YnuVuv3PeSef/P5vaY3NOmhk2QIME0P2Ly7U3w6xOdABRtSIG5JyIqyKdUhm2Yr0Vub1ENj3V3nlDArE+TvMxpOrWMXx7vjGGFZKh5rneDYs3f8NepEVcjuEwNnSHXeDv8cDgJvRSyYM0f3RE1q/hhziOld04vDue9Hd4RU6X4NTz46S+fGIBUcvzittWnSZTN5FZnFAGbSsjOTOyfl1XEOmAZ1LK6XRYga93qR2DF+O5FGh60Ynw8bo1zPPTm2VvyhguZL26/eLANnkyoi565d7yfTDBdXN7eohqOTuuPXa/2sdx9tzbnkfbQWN2perx7XeyZ3KfQO/QF3d1S5bv4tH5bavI9Tq2SsX9qX+yb0sdunSusKw6rVKX3/r8tLhpzHmmP1c/3AGBKW7nt5V54Z3BzmyBQliUE6NQY2aW2pfckyNf1oOjPJ7vglsaRpXaB48qdaus5SzPua4n2uYkHBrs4NCrUv3RSjRI546lvvk51w7DuxQR0q+96Fjqg9Nvn7FNdHq8JOAekfOIQLCIrIvc/R6yH2ShCIMdJABJXPRjnbmTggQ418Vj3upj+r6m2RGEZi/KrFxmAxeO6FTpcCwAe614H9SID8dkDbfD3not4av4u+GtVSM+trNyzUST+3nsRBqOC8Ny/o1+zKJu6B8/e0gA9G0XaDbGxFlPF1+EXaf4AoqSaRAehd5OqTus2lKTXIiJQh9HdakOjkkut9wMwfZHnf63ME+nz94Dk9+G9LfHkvJ0Y16uBg7W2mlUPxjfD25WorQVxZaSMWiVj44SeMBoF/LRqfDO8LTYcu2oJbp15754WWH/sCu5t68ECrEROVMR0rmMT6uGT1cftlju6sSCE4/ORK0HJ3FEd8MA3W4vTRKqkGIBQuTb9rjgMaB6NuCn2qZALsndKHzR38BghHM+9eKFvQ7SpFYoQPw1uZujRtV6404Jo80Z3cJgBKv9FeosaIZafb2sejX/2ulbszroo3fJn46GSJdS2qj1we4tqlqxJ3d5ZDcA0cXvpM/EO22GmVsloU8txylwzT91pkmUJXz/UttT2//JtRUuj627Wh8DRS1q/aiCWPVs2Uni7OlbfOlgM8tHg1rjoArY2Gdymhsu9JFSxtKgRgs0nr8G/gKQKpaqQQiDlsSfAkef6NHAYgDj6njPPAcnPlVeiSz3H6bU94Q4v1GaikuMQLCoT8hery1/8zZn2tasg0EeDHg2dd29HBdkPIwry0ThcXrOKn2XSrVl0sI8l3emmCT2xcUJP1ArzRwMnQ7WcpZ+tkm+Yic28CwEsfKITgn01eO+egusADG1vulvcvnYV1K8aiDoRAXZfljFV/Gz2r1HJUMlSiXsqfEopJ31lYx3IlfULnUpWH488ZOZ9LTGySyz+HNvVK8//QG6q6faxBd908RZ31bQpyvmlWfVgfHK/qU7Qa4Py5vSV9imqqCmr83s0vo6bWkKexB6QSq6sXPq81K8RPl9zwvJ71UD74MARc/u/GtYWf+25iOd/2WO3TfMawUg8mGW33PpifMGjHXE0KRWd6obZDY61jkf8tGr4aU0fm3cHt8DMlUcxf9u5Atv46f2tceFmBppWcz60KTrYB21qVcHuV3sX+oXxzC0N0Da2CtoWctK2Hpdf0ruMHw5pgfeXHcWM+1qWaD9kr6x8Bp3JH5ATuUNkkI+lpo033NO2BppUC7Kpz1OW7gWoPNiYdS8kICk1Cw2qBqJB1UAceaMfdGoVXv3zAIDSH5oW4uv4pp2r1KU4l49KD3tAqEzq1TgS43s3wPcjCx7bbr5Y16plp0M58t9d+Xa4aWjPJ/e3QhV/Ld4d3Bwd6oRhWKdYSJLkcg2OqGAfTL+ruc2yt++Os9vutubReDTecfagWSPb4a7W1THulvo2f09BNCoZCQ0jnfa0mIX6a/HsLQ3wUr9GiHTQ21MUd7aqgQ0v9UTjYtTMIHvlqQeEqCKSJAnNqgfbZNmz/iR6+1Mpe/DqrGaYH9pZ9QTlr77ujlPUOKtiryWhVZfu3D3yHB5FKpMkSbKpTl0cK5/rjk3Hr2JIu5o4kpSK33ZewFfD2qBXY1Oa0FY1Q7HjlVvsLgDzZ7dy9eT7Ur9GGNLOPmVtQXo0jESPAmpw5Pfnk12KtH9zYENli/V7ys3z992OPSBEnleWMjsVtyXWf8KzvRtAJUv4ILfAaXHtm9IH3d9Zg7Rs57WHqHxgDwh5nbkeRt0If4frJ93ayOFyoOATY92IAAzrFAutWsZ7g1tg66RednUoHN19tq4TAdingXWmtIqhNahqGiLwwb0t0CJ3cjmVbzY9IF6/11qwqiXsPSMqL8pSb6S7MwuWBU5rjxThT9WpVWVqqBwVH3tAyGu2v3wL5m49gwdzC/zd1ryaw8xSvZtE4c3Fhx3uI3+ROmdkWXL5QuqNQc3QKCoQkgTM2XwGn+ZOynPmtzGdcTwprch53l3125guOJqUilYMPiqMwrJglQXfDm+L/87cwO3NC69iTlTRePtzWaZ6QJw0JTxAh6tp2S5v77b22P1edl4rch0DEHKLzx9ojSfm7izSYyICdXjGqkDeI11qY+n+RAxobpu+09FkvAn9GyEjx+iwUF5JBftpLFmvxvSoV+j2rWuGonXNkmXxKEiATl2q+yfPs6kDUka/O3s1rmoZrkhUGZSlj2JZCEDqRQbg+OU0dKrjOMXuDw+3x5S/D+BFF2tcOauxVVT5e6rctV/yLAYglZw7znFVg3RuCQSC/TRY+my83XJHbXy8u+NJ3UTlRY1QX1xPz7HJwkNE3lMGrvktXBz5W6qWjOuGbIMCfyeTvptUC8LPj3Vy+/NGBfkgMcU+cyVVLAxAyC2KOna2fW3Xc69XxLGwRGue7wGjEHYZZ4jI+7w9rCcq2LfwjYpIkpzPw3BErZKhdmMk5OpzLx8fjxHfb8eOMzdc2t7bx4qKpwzE2ORN7khwc3vzakX6+EsS8NPoji5vX5QAxJwmtnkN5zU3iMoCtUpm8EFURnmrN+SrYW1wf4eaGJY7N9Id4huY5icObV+0LI3FVdKXLtBHg0ZRjgv9UsXBHhAqkc8eaI1ejSNx+FKqzfIBzaOxaO8lh4/x06iKVOU1/xfBiM6xTrf9fkQ7/LT9LO730ImWiIgqhrKQcbpP0yi7bI0l9dkDrbHp+FXEN4jAvK1n3brvoiitl5dzQMonBiBUIrfGRTtc3r9ZXgBy+q3bkJSShQ5vrizWc1hPQl/7Qg/UCnOcrhcwFQe0nthORERUmQXo1G4PaopDUZwFCvY3JK23DPJRIyUrr+5HWZqrQ8XHIVhUbIue6mr5Of8JIX/xMusUuEW9V2E9BKssZAYhIqKKh/fRS1eOUSl8o1zWlxDWVdod4RyQ8okBSCVXkhNus+rO51kUVD05I8dYpOexPrmoVTzREBFR6eK9LvfLMRQlAHF+DZH/2Mi8ki2XeNjILaLyFflzFICYJ5V1qRdmt64gRqt9OaoJQkREVFJqq952XxeL3JI9Z1kxs4sQgFjLfzVhfVOyeogvIgPdXw+MSh/ngJBbRAb5oFejSKw8fBkAoDg4z8x+uD1++e8chrQr2gTxIJ+8t2mov7ZE7SQiInLER6PCe/e0QI5BQViAztvNqXDubl0d87edRbPqQYVua30PM39viHV8887g5u5qHnkYA5BKrqBuzqLqUi/cEoA42mvVIB+M7Vm/yPtVq2Tsm9IHAKApC9WZiIioQhrcpoa3m1BhtY2tgvUvJiAyqPDgjpmtKj4GIFQqnGe7KJ5AH41b90dERETuV9BA6ZgqfvbbO3hAQfdGORC7YuDtZHIb6/NFm9hQr7WDiIiI7JnnYjasWrYL/QknP+fHYKT8Yg8IlYq6EQFY9mw8wjhng4iIqEz4fmQ7/LjlDB50Y6X10lBgD4hVl4mqCEWNqWxhAFLJleYoywZl/A4LERFRZRId7IsX+jbydjMKZT0HpKBghAFI+cUhWOQ27pzQTkRERJWUcPgjANthVzIDkHKLAQgRERERuYV5hJTRxWQ0jkKIAh9p9QDWBiu/GIBUcuy0ICIiInfL0huL/VjrERUFja6QGYCUWwxAiIiIiMitMksSgBSwzjrk4ByQ8osBCBERERG51f3tawIAOtUJK/JjmQWr4mMWLHIbDuciIiIiAOhQJwybJ/ZEREDhlc/z89G4dn+c8Uf5xR6QSo9RAxEREbmHZDVIKjrYF2pV0S81n+/TEI2iAvH6oKZ2NzetY46qwT7FbCV5G3tAiIiIiMgrHM0jjwzywZJn4gEASw8kOd0+yEdTmk2jUsQeEHIbwd4UIiIiciNeW1RMDECoWHo1irRbxjkgRERElVwpz8uQSvsJyCM4BKuSK2rQ0LNRJB7uUhvtaoeWToOIiIiIcvHmZsXEAISK5M5W1dG1fri3m0FERESVAAOQiolDsMhld7Wujlvjop2u5zmCiIiIiArDHpBKztWgoUu9MHxwb8vSbAoRERFRgRxlzaLyhz0g5BJ2gRIREVFhihofFDapPH8WLF6PVAwMQMhteFIgIiIiosIwACEiIiKiMok3NysmBiCVHD/YRERE5C7unqOR/zKFc0AqBgYg5BJXAhVWKyUiIqKiYEBROTEAISIiIqKyifc2KyQGIJWccHEMliu9GxzORUREVLkVltWqqDi6omJiAEJEREREJXJHy2oAgCd61PVyS6g8YCFCIiIiIiqRd+9pgVHd6qBJdJC3m0LlAAMQIiIiIioRjUpGs+rBbt8vh3dXTByCVcm5+rkO0BUeq7o6n4SIiIiIKi8GIOSSqYOaebsJREREVMEUloaXtzYrJgYgVKjZD7dH9RBfbzeDiIiIKhmOrqiYGIBQoVxO1ctzBBEREREVggFIMU2ZMgWSJDn9d/r0aW830SUMGoiIiKisyn+ZIrF0eoXALFglNHz4cMTGxtotDwkJ8XhbSgs/7ERERFQa3F24kMoHBiAlNGLECPTo0cPbzShVrldLJyIiIiIqGIdgVXKCYQMRERGVURwqXjGxB6SE1q1bh61bt0KWZdSvXx+33HILAgICvN0st3L1s9+1fjg+WH600JR6RERERFR5MQApocmTJ9v8HhISgpkzZ+Khhx4q9LHZ2dnIzs62/J6SkuL29hXVh0Na4NkFe4r12NY1Q/HX2C5M2UtERESuYR2QSolDsIqpRYsW+O6773Dy5ElkZmbi1KlT+PjjjyFJEkaMGIG//vqr0H1Mnz4dwcHBln8xMTEeaHnB7mxVw25ZUTo0mtcIQViAzn0NIiIiooqrsAiDY7AqpErdA/Lcc8/Z9EAUZty4cahfvz4A4M4777RZFxsbi7Fjx6Jx48bo3bs3XnnlFQwcOLDA/U2cOBHjx4+3/J6SkuL5IMSFzzU/+kRERETkLpU6APnyyy+Rnp7u8vaDBw+2BCDO9OrVC3Xr1sW+ffuQkpKCoKAgp9vqdDrodOwtICIiokqqiEOwOM20YqjUAUhaWlqp7Dc8PBzHjx9HRkZGgQFIucEuECIiIvICjsCqmDgHxM3S09Nx4MAB+Pv7Izw83NvNKRQ/10RERETkSQxAiiE1NRVHjx61W56ZmYnRo0cjNTUV9957L9TqCtLBxP5OIiIiInKTCnKF7FnXrl1Do0aN0K5dOzRu3BhRUVFISkrCihUrcP78ecTFxeHdd9/1djPdh90kREREVAoKu8eZv2Aya41VDOwBKYYqVapgzJgxEEJg8eLFeP/997Fw4UJUq1YN77zzDrZu3YqwsDBvN7PY5o7q4O0mEBEREeG2uGoAgFphfgA4J6SiYA9IMQQFBeGTTz7xdjPcwtEHuUs927kr+e8+EBEREXnC6G61UT8yAG1qhXq7KeRGDECIiIiIqExSq2Tc0qSqt5tBbsYhWERERETkFVIRJ3VwDkjFwACEiIiIiLxCcFJHpcQApJLj/A4iIiIi8iQGIFQo3pwgIiKi0lDUIVhUMTAAISIiIqJygfFKxcAApJJj7wYREREReRIDECIiIiIqF3jjtGJgAEJEREREXsERVZUTAxAqFO82EBERUVnAOSAVAyuhV1JGReDbDSex8tBlbzeFiIiIiCoRBiCVlEqWMHvTGVy4mentphARERFRJcIApBIb2SUWRkXg9LUMzN921ul2HeuGebBVRERERFSRcQ5IJTaqWx081r0u2tQKdbrNrXFRCNAxTiUiIiLvkzhtvUJgAEIFfpS1Kr5FiIiIqHRwUnnlxKtLIiIiIiLyGAYgRERERETkMQxAqEAS+0aJiIiIyI0YgBDHXxIRERGRxzAAISIiIiKv4D3QyokBCBEREREReQwDECoQ70wQERFRWcFh4xUDAxDih5mIiIiIPIYBCBEREREReQwDEILEgVZERERUDvCKpWJQe7sB5H0JDSMhSUCbmqH2K/lJJyIiolJS1HpjopTaQZ7FAIQQ7KfBodf6QatihxgRERERlS4GIAQA8NGovN0EIiIiIqoEeMubiIiIiMoFjgyvGBiAEBERERGRxzAAoQIxQxYRERERuRMDECIiIiIi8hgGIERERETkFUUeZ1HEtL1UNjEAoQLxc05ERERE7sQAhIiIiIjKB8FShBUBAxAiIiIiIvIYBiBERERE5B1FHerNseEVAgMQIiIiIvIKmQFFpcQAhArE0wIRERG52wt9GyI62AfjezfwdlPIC9TebgARERERVS5PJtTDmB51IbEHpFJiDwgREREReVxxgg+GKxUDAxAiIiIiIvIYBiBEREREROQxDECoQByaSURERETuxACEiIiIiIg8hgEIERERERF5DNPwUoEk5psgchu9Xg+j0ejtZpCHqFQqaDQabzeDiKjMYQBCRFTKUlJScPXqVWRnZ3u7KeRhOp0O4eHhCAoK8nZTiIjKDAYgRESlKCUlBRcuXEBAQADCw8Oh0WhYeKsSEEJAr9cjOTkZFy5cAAAGIURuwNNnxcAAhIioFF29ehUBAQGoUaMGA49KxtfXF4GBgTh//jyuXr3KAISIKBcnoRMRlRK9Xo/s7GwEBwcz+KikJElCcHAwsrOzodfrvd0cIqIygQEIFYjXTETFZ55wzonIlZv5+DMBARGRCQOQXLt378akSZPQt29fREREQJIk9OjRo9DHzZ07F+3bt4e/vz9CQ0MxYMAA7Ny5s/QbTETlBns/KjcefyIiWwxAcv3xxx+YPn061qxZg6ioKJceM23aNDz44IO4fPkyHn/8cdxzzz1Yt24dOnfujI0bN5Zyi4mIiIiIyh9OQs91zz33YODAgYiLi8O1a9cQHR1d4PbHjh3DlClT0KBBA2zbtg3BwcEAgDFjxqBjx44YPXo09u/fD1lmjEdEREREZMar41xNmzZF69atXR6r/f3338NgMODll1+2BB8A0LJlSwwdOhSHDh3Chg0bSqu5RETlgl6vx5QpU1C/fn3odDpIkoQZM2ZAkiSMGDHC280jIiIvYABSTGvWrAEA9OnTx25d3759AQBr1671ZJNKBYcuE1FJvP/++5g6dSqqVauG559/HpMnT0a/fv283SwiKqd4WVIxcAhWMR07dgwBAQEO54vUr1/fsk1BsrOzbSojp6SkuLeRRERetmjRIgQEBGD58uXQarUAgNOnT3u3UURE5FXsASmm5ORkm6FX1szFppKTkwvcx/Tp0xEcHGz5FxMT4/Z2EhF508WLFxEWFmYJPoiIiCpUD8hzzz1n06NQmHHjxll6K7xh4sSJGD9+vOX3lJQUBiFEVCFMmTIFU6dOtfxuTkVbq1YtyxDW/GJjYwE47iHp0aMH1q5dCyEEAODatWto0aIFkpOTsWvXLtSrV8+ybUHriIjI+ypUAPLll18iPT3d5e0HDx5c7AAkODjYaQ+HeSiVsx4SM51OB51OV6znL21P9ayH+dvO4ule3gvQiKj8MtdRmjFjBgDgmWeeAQCEhIS4Zf9hYWH44Ycf0Lt3b9x///3YuHGjJYnII488ggsXLmDWrFkMPogqGNbVqRgqVACSlpbmseeqX78+Nm/ejMTERLt5IOa5H97sXSmp5/o0xPjeDfhBJyoFQghk6st+VWxfjarY54AePXqgR48emDVrFgBTj4iZu+aA9OzZEy+++CLeeustvPLKK3j77bfx2Wef4c8//8TQoUMxfPhwtzwPEZUd5l5QKt8qVADiSd27d8fmzZuxbNkyPPTQQzbrli5datmmPGPwQVQ6MvVGNHl1qbebUaiDr/WFn7Zsf0289tprWLlyJd577z3UqFEDL730EmJjY/HFF194u2lEROQEJ6EX08iRI6FWqzFt2jSboVi7d+/G/Pnz0bhxY3Tt2tWLLSQiqvg0Gg3mz58PPz8/PP3008jJycHcuXMtyUCIiKjsKdu3tjzo8OHDeOuttwAAmZmZlmXWhbLMQwkAoEGDBpgyZQpeeeUVtGjRAnfffTdSU1Px008/AQC+/vprVkEnIod8NSocfK2vt5tRKF+NyttNcEmdOnXQokULbNy4EW3atEHnzp293SQiKiUcnVExMADJlZiYiNmzZ9ssS0pKsllmHYAAwMsvv4zY2FjMmDEDn3/+ObRaLbp164bXX38drVu39kSziagckiSpzA9t8gZZlpGTk+NwXUFpzT/44ANs3LgRYWFh2LZtGz777DOMGTOmtJpJREQlxFv0uXr06AEhRIH/HHnggQewfft2ZGRk4ObNm/jnn38YfBARFUNoaCguX74Mg8Fgszw9Pd1pYdddu3Zh0qRJaNiwIfbt24fatWvj+eefx4EDBzzRZCIiKgYGIEREVCa0a9cOer0ec+fOtSwTQmDixIkOU6ynp6dj6NChAID58+cjOjoa8+bNg16vx9ChQ5GVleWxthORZ3AAVsXAAISIiMqEsWPHQqvVYtSoUXjwwQfx7LPPol27dli8eDFatGhht/24ceNw5MgRvPnmm2jVqhUAoGPHjpg8eTL27duHF154wdN/AhERuYABCBERlQnNmjXDkiVL0KZNG/z666+YM2cOmjRpgk2bNtkVMFy4cCG+/fZb9O7dG+PHj7dZN2nSJMTHx+OTTz7BokWLPPgXEBGRKzgLkoiISo2jooOxsbFO59UlJCRgy5YtdsvXrFlj8/vdd9/tdB+yLGPt2rVFbisREXkGe0CIiIiIiMhjGIAQEREREZHHMAAhIiIiIiKPYQBCREREREQewwCEiIiIiMoFiYVAKgQGIERERERE5DEMQIiIiIiIyGMYgBARERERkccwACEiIiIiIo9hAEJERERERB7DAISIiIiIiDyGAQgREREREXkMAxAiIqpU1qxZA0mSMGXKlBLtJzY2FrGxsW5pExG5RgILgVQEDECIiIiIiMhjGIAQEREREZHHMAAhIiIiIiKPYQBCRESlxnq+xaZNm5CQkIDAwEBERERgzJgxyMzMBAD8888/6NSpE/z9/VG1alW8+OKLMBgMNvsyGAz44IMP0KJFC/j6+iI4OBgJCQn4+++/HT53ZmYmJkyYgJiYGPj4+KBZs2b4+uuvC2zvqVOnMGrUKNSsWRM6nQ7R0dEYMWIEzpw5454XhIhKhlNAKgQGIEREVOq2bt2KXr16ITg4GI899hhq1qyJzz//HKNHj8aCBQswePBg1KpVC4899hhCQkLw7rvv4s0337Q8XgiBwYMH47nnnkNWVhaefPJJ3H///dizZw8GDhyIDz/80Ob5FEXBwIED8fbbbyM0NBTjxo1Dx44d8eyzz+L999932sZWrVph9uzZaNOmDcaNG4du3bph7ty5aN++PU6ePFmqrxERuUB4uwHkDmpvN4CIiCq+JUuW4I8//sCgQYMAAHq9Hm3btsW8efOwdOlSrFu3Du3atQMATJ06FfXq1cPMmTMxceJEaDQazJkzB3/++Se6d++OZcuWQavVAgAmTpyINm3a4MUXX8SgQYNQp04dAMAPP/yAFStWoF+/fli0aBFUKhUAYNy4cWjbtq1d+/R6Pe677z4oioJt27ahVatWlnUbNmxAjx49MG7cOKe9LURE5Dr2gBAReZoQQE562f8n3HerMSEhwRJ8AIBGo8HgwYMhhMDtt99uCT4AIDAwEAMGDMD169dx/vx5AMDs2bMBAO+8844l+ACAmjVr4tlnn4XBYMDcuXMty3/44QcAwLRp0yzBBwDExcVh2LBhdu1btGgRTp8+jRdeeMEm+ACArl27YtCgQVi8eDFSUlJK8jIQERHYA0JE5Hn6DODNat5uReEmXQS0/m7ZVcuWLe2WRUdHF7ru4sWLqF27Nnbt2gU/Pz+0b9/ebtuEhAQAwO7duy3L9uzZA39/f7Ru3dpu+27duuHbb7+1WbZlyxYAwJEjRxzWB0lMTISiKDh69KjDHhQi8hDOAakQGIAQEVGpCwoKslumVqsLXafX6wEAKSkpiImJcbhvc7Bi3TuRnJzsdPuqVavaLbt+/ToA2PSiOJKenl7geiIiKhwDECIiT9P4mXoXyjqNn7dbYBEUFITLly87XJeYmGjZxiw4OBhXrlxxuH1SUpLD/QPA33//jQEDBpS0uUREVADOASEi8jRJMg1tKuv/pLIz1qFVq1bIyMjAtm3b7NatWbMGgO1QrhYtWiA9PR07d+602379+vV2yzp06AAA2Lx5s3saTERETjEAISKiMm/48OEATFmvzMOyAODcuXP44IMPoFar8cADD1iWmyeav/zyyzAajZbl+/btw5w5c+z2P2jQINSsWRMffPAB1q1bZ7der9djw4YNbvt7iKh4ys5tESoJDsEiIqIyb9iwYfjtt9/w559/onnz5hgwYADS09OxYMECXL9+He+//74lBS9gCljmzZuHJUuWoFWrVujfvz+uX7+O+fPno0+fPli0aJHN/nU6HX799Vf0798f3bt3R8+ePREXFwdJknDmzBmsX78eYWFhOHz4sKf/dCKiCocBCBERlXmSJOHXX3/FzJkzMXv2bHz88cfQarVo3bo1xo8fj4EDB9psL8sy/vzzT0ydOhVz587FzJkzUbduXXz44YeoX7++XQACAO3atcOePXvw7rvvYvHixdi4cSN0Oh2qV6+OO+64A0OHDvXUn0tETrAOYcUgCeHGRO9UIikpKQgODkZycrLDrDBEVL5kZWXh1KlTqF27Nnx8fLzdHPISvg+I3OfeLzdj2ylT1rrTb93mlTbweq3kOAeEiIiIiMoFzgGpGBiAEBERERGRxzAAISIiIiIij2EAQkREREREHsMAhIiIiIjKhTJUH5VKgAEIERERERF5DAMQIiIiIiLyGAYgRESljOWWKjcefyL3eX1QM4T4afDyrY293RQqAVZCJyIqJSqVCgCg1+vh6+vr5daQt+j1egB57wciKr76VQOx85XekGVOBinP2ANCRFRKNBoNdDodkpOTeRe8khJCIDk5GTqdDhqNxtvNIaoQGHyUf+wBISIqReHh4bhw4QLOnz+P4OBgaDQaSEzjUuEJIaDX65GcnIy0tDRUr17d200iIiozGIAQEZWioKAgAMDVq1dx4cIFL7eGPE2n06F69eqW9wERETEAISIqdUFBQQgKCoJer4fRaPR2c8hDVCoVh10RETnAAISIyEM0Gg0vSImIqNLjJHQiIiIiIvIYBiBEREREROQxDECIiIiIiMhjGIAQEREREZHHMAAhIiIiIiKPYQBCREREREQewzS8ZYgQAgCQkpLi5ZYQERERkSPm6zTzdRsVHQOQMiQ1NRUAEBMT4+WWEBEREVFBUlNTERwc7O1mlEuSYPhWZiiKgosXLyIwMBCSJJX686WkpCAmJgbnzp1DUFBQqT8feQePc+XA41w58DhXDjzOZZsQAqmpqahWrRpkmbMZioM9IGWILMuoUaOGx583KCiIJ7hKgMe5cuBxrhx4nCsHHueyiz0fJcOwjYiIiIiIPIYBCBEREREReQwDkEpMp9Nh8uTJ0Ol03m4KlSIe58qBx7ly4HGuHHicqaLjJHQiIiIiIvIY9oAQEREREZHHMAAhIiIiIiKPYQBCREREREQewwCEiIiIiIg8hgFIJbR9+3bceuutCAkJgb+/Pzp27Iiff/7Z280iAD/++CMee+wxtG3bFjqdDpIkYdasWU63T0lJwfjx41GrVi3odDrExsbihRdeQFpamsPtFUXBxx9/jLi4OPj6+iIiIgJDhw7FyZMnnT7H0qVL0b17dwQGBiIoKAgJCQlYuXJlSf/USuvChQuYMWMG+vTpg5o1a0Kr1SIqKgp33303tm7d6vAxPM7lT1ZWFsaPH4/4+HhUq1YNPj4+iIqKQpcuXfD9999Dr9fbPYbHueJ4++23IUkSJEnCli1b7NbzWFOlJ6hSWbVqldBoNCIwMFCMHj1ajB8/XtSqVUsAEO+99563m1fpmY9FeHi45efvv//e4bZpaWmiZcuWAoDo06ePeOmll0SfPn0EANGuXTuRmZlp95hRo0YJAKJp06bixRdfFA8++KDQarWiSpUq4ujRo3bbz5kzRwAQERERYuzYsWLs2LEiIiJCSJIkfvnlF3f/+ZXCSy+9JACIunXrikceeURMmDBB3H333UKlUglZlsVPP/1ksz2Pc/l05coV4ePjI+Lj48WoUaPExIkTxeOPP275XPfp00cYjUbL9jzOFce+ffuETqcT/v7+AoDYvHmzzXoeayIhGIBUInq9XtStW1fodDqxa9cuy/KbN2+KBg0aCK1WK06fPu29BpJYvny55RhMnz69wADk1VdfFQDESy+9ZLPcfIH75ptv2ixftWqVACDi4+NFdna2ZfnixYstX4TWrl+/LkJCQkR4eLg4d+6cZfm5c+dEeHi4CA8PFykpKSX5cyulhQsXijVr1tgtX7dundBoNCI0NFRkZWVZlvM4l09Go9Hm9TfT6/WiR48eAoBYtGiRZTmPc8WQk5MjWrduLTp06CAefPBBhwEIjzURA5BKZenSpQKAGDlypN26WbNmCQBi6tSpXmgZOVJQAKIoiqhWrZoICAgQaWlpNuvS0tJEQECAqFOnjs3yoUOHCgBi7dq1dvszXxCdOXPGsuzLL790+p6YMmWKACBmz55dzL+OHDHfBd2+fbsQgse5opo5c6YAIGbMmCGE4HGuSCZPnix0Op04cOCAGD58uF0AwmNNZMI5IJXImjVrAAB9+vSxW9e3b18AwNq1az3ZJCqmY8eO4eLFi+jSpQv8/f1t1vn7+6NLly44efIkzp07Z1m+Zs0ay7r8HB1/vl88T6PRAADUajUAHueKSFEULFmyBADQrFkzADzOFcXOnTsxbdo0TJ48GU2aNHG4DY81kQkDkErk2LFjAID69evbrYuKikJAQIBlGyrbCjqW1svN26Wnp+PSpUuoXbs2VCpVodsX9hyOtqeSOXv2LFasWIHo6GjExcUB4HGuCHJycjBlyhRMnjwZY8eORdOmTfHvv/9i5MiR6NWrFwAe54ogOzsbDz30EFq2bIkXX3zR6XY81kQmam83gDwnOTkZABAcHOxwfVBQkGUbKttcOZbW2xV1+8Ie42h7Kj69Xo9hw4YhOzsbb7/9tuVCg8e5/MvJycHUqVMtv0uShOeffx7Tp0+3LONxLv9effVVHDt2DDt27HAYKJjxWBOZsAeEiMiLFEXBiBEjsG7dOowePRrDhg3zdpPIjQICAiCEgNFoxLlz5/Dpp5/im2++QY8ePZCSkuLt5pEbbN68Ge+99x5eeeUVy7A6IioYA5BKxHw3xNmdj5SUFKd3WahsceVYWm9X1O0Le4yj7anoFEXBww8/jHnz5uHBBx/EF198YbOex7nikGUZNWrUwBNPPIGvvvoKGzduxLRp0wDwOJdnBoMBw4cPR/PmzTFhwoRCt+exJjJhAFKJFDT2MzExEWlpaU7HpVLZUtg43vxjgP39/REdHY1Tp07BaDQWun1hz1HYOGYqnKIoGDlyJGbPno2hQ4di1qxZkGXbUzKPc8VknhxsnizM41x+paWl4dixY9i9eze0Wq2l+KAkSZg9ezYAoFOnTpAkCX/88QePNVEuBiCVSPfu3QEAy5Yts1u3dOlSm22obKtfvz6qVauGjRs3Ij093WZdeno6Nm7ciNq1ayMmJsayvHv37pZ1+ZmPf3x8vM32AN8vpcEcfPzwww8YMmQI5syZ43SCKY9zxXPx4kUAeVnPeJzLL51Oh0ceecThP/NF/sCBA/HII48gNjaWx5rIzNt5gMlz9Hq9qFOnToGFCE+dOuW19pGtslCIMDg4mMWs3MxoNFrqA9xzzz1Cr9cXuD2Pc/l04MABkZ6ebrc8PT1d9OvXTwAQ06ZNsyznca54HNUBEYLHmkgIFiKsdFatWiU0Go0IDAwUo0ePFuPHjxe1atUSAMR7773n7eZVel9//bUYPny4GD58uGjdurUAILp06WJZ9vXXX1u2TUtLEy1atLB8AU2YMMFSyK5du3YiIyPDbv+jRo0SAETTpk3Fiy++KIYNGya0Wq2oUqWKOHLkiN32c+bMEQBERESEGDt2rBg7dqyIiIgQkiSJn3/+uVRfi4pq8uTJAoAICAgQL7/8spg8ebLdP+sbBDzO5dPkyZNFYGCg6N+/v3jiiSfESy+9JB588EERFhYmAIhu3brZHDse54rHWQDCY03EAKRS2rp1q+jXr58ICgoSvr6+on379uKnn37ydrNI5H1hOfs3fPhwm+1v3rwpnnnmGRETEyM0Go2oWbOmeO6555ze3TIajWLmzJmiadOmQqfTibCwMDFkyBBx/Phxp236999/Rbdu3YS/v78ICAgQ3bt3F8uXL3fnn12pFHaMHfV68TiXP9u3bxejR48WTZs2FSEhIUKtVouwsDCRkJAgvvzyS4c9XzzOFYuzAEQIHmsiSQgh3Daei4iIiIiIqACchE5ERERERB7DAISIiIiIiDyGAQgREREREXkMAxAiIiIiIvIYBiBEREREROQxDECIiIiIiMhjGIAQEREREZHHMAAhIiIiIiKPYQBCREREREQewwCEiIiIiIg8hgEIERERERF5DAMQIiIiIiLyGAYgRERERETkMQxAiIiIiIjIYxiAEBERERGRxzAAISIiIiIij2EAQkREREREHsMAhIiIiIiIPOb/f2L+vAN957EAAAAASUVORK5CYII=",
|
|
749
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAGQCAYAAABWJQQ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAByPUlEQVR4nO3dd3hTZcMG8PtkNN0ttIW20MEou5S9N8hQX1HBgYKAijh4RUEFXICIiOuT162oIAIuFBQRkC1lyt6UXVoKLaVNdzOe7480adKMrjTpuH/XhbYnJzlPetLT5z7PkoQQAkRERERERC4gc3cBiIiIiIio7mAAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil2EAISIiIiIil1G4uwBUTK/XIzk5GX5+fpAkyd3FISIiIqIShBDIyspCeHg4ZDLey68IBpBqJDk5GREREe4uBhERERGVIjExEY0bN3Z3MWokBpBqxM/PD4DhA+3v7+/m0hARERFRSWq1GhEREaZ6G5UfA0g1Yux25e/vzwBCREREVI2xu3zFseMaERERERG5DAMIERERERG5DAMIERERERG5DAMIERERERG5DAMIERERERG5DAMIERERERG5DKfhrQU0Gg10Op27i0EupFQqIZfL3V0MIiIionJjAKnB1Go10tLSUFBQ4O6ikItJkoSAgACEhoZyHnIiIiKqURhAaii1Wo2kpCT4+voiODgYSqWSFdE6QgiBnJwcpKamwsvLC4GBge4uEhEREVGZMYDUUGlpafD19UXjxo0ZPOogLy8vFBQU4MaNGwgICOBngIiI6gy9XkAm49+9moyD0GsgjUaDgoICVjzrOH9/f+h0Oo7/ISKiOiP+XBri3tiI348ku7soVAkMIDWQscKpVCrdXBJyJ4XC0ICp1WrdXBIiIiLXGPf1XmTla/HsykPuLgpVAgNIDcbWj7qN55+IiIhqIgYQIiIiIiJyGQYQqpE0Gg3mzJmDmJgYqFQqSJKEDz/8EJIkYcKECe4uHhERERHZwVmwqEZ6//33MXfuXPTr1w/3338/lEolhg8fjueff97dRSMiIqIqIkkSIIS7i0GVxABCNdLatWvh6+uLv//+Gx4eHgCAS5cuubdQRERERFQqdsGiGik5ORlBQUGm8EFERERENQMDCNUoc+bMgSRJuHjxIi5fvgxJkiBJEqKjo+0+Jzo62u7jAwYMsJhN6ubNm2jcuDH8/Pxw7tw5i30dPUZEREREZcMuWFSjDBgwAADw4YcfAgCee+45AEBgYKBTXj8oKAjfffcdbrvtNjz00EOIj483rbfy2GOPISkpCUuWLEHz5s2dcjwiIiKiuoYBhGqUAQMGYMCAAViyZAkAQ4uIkbPGgAwaNAgvvfQS3n77bbz66qtYuHAhPv30U6xZswZjxozB+PHjnXIcIiIiorqIAaSWEUIgT6NzdzEc8lLKq/0iem+88QY2b96M9957D40bN8aMGTMQHR2Nzz//3N1FIyIiqrOqd+2ByooBpJbJ0+jQ5vUN7i6GQyffGAZvj+r90VMqlVi5ciU6dOiAZ599FnK5HMuXL4e/v7+7i0ZERERUo3EQOpEdTZs2RVxcHACgc+fO6NWrl5tLRERERFTzVe/b0FRuXko5Tr4xzN3FcMhLKXfp8WQyGQoLC20+lpmZafd5H3zwAeLj4xEUFIR9+/bh008/xdNPP11VxSQiIqJSVPMe3FRGDCC1jCRJ1b57k6vVq1cPx44dg1arhUJR/LPJyclBQkKCzeccOnQIL7/8Mlq2bImtW7eid+/eeOGFF9C/f3+0bdvWVUUnIiIiqnXYBYtqva5du0Kj0WD58uWmbUIIzJo1Czk5OVb75+TkYMyYMQCAlStXIiwsDCtWrIBGo8GYMWOQn5/vsrITERER1TYMIFTrTZkyBR4eHnj88ccxduxYPP/88+jatSvWrVtnGuNhburUqThz5gzeeustdOzYEQDQo0cPzJ49G8eOHcOLL77o6rdAREREVGswgFCt165dO6xfvx6dO3fGL7/8gmXLlqFNmzbYtWuX1QKGq1atwtdff43bbrsN06ZNs3js5ZdfRr9+/fDxxx9j7dq1LnwHRERERLUHBwtQjWRr0cHo6GgIIWzuP3DgQOzZs8dq+7Zt2yy+HzVqlN3XkMlk2L59e7nLSkRERETF2AJCRERERDWCxKUIawUGECIiIiKqcfZdTHd3EaiCGECIiIiIqMa5/4vd7i4CVRADCBERERERuQwDCBERERERuQwDCBERERERuQwDCBERERHVDJwEq1ZgACEiIiIiIpdhACEiIiIiIpdhACEiIiKiGoE9sGoHBhAiIiIiInIZBhAiIiIiInIZBhAiIiIiInIZBhAiJ9m2bRskScKcOXMq9TrR0dGIjo52SpmIiIiIqhsGkBK+//57TJ48GV26dIFKpYIkSViyZInd/dVqNaZNm4aoqCioVCpER0fjxRdfRHZ2tusKTURERERUQyjcXYDq5tVXX8Xly5cRHByMsLAwXL582e6+OTk56N+/Pw4fPoyhQ4dizJgxOHToEN577z1s374dO3bsgKenpwtLT0RERFR7SZwGq1ZgC0gJixcvxqVLl5Camoonn3zS4b7vvPMODh8+jBkzZmDDhg14++23sWHDBsyYMQP79+/H//3f/7mo1ERERERENQMDSAlDhgxBVFRUqfsJIbB48WL4+vritddes3jstddeg6+vLxYvXlxVxazzzMdb7Nq1CwMHDoSfnx9CQkLw9NNPIy8vDwDw559/omfPnvDx8UHDhg3x0ksvQavVWryWVqvFBx98gLi4OHh5eSEgIAADBw7EH3/8YfPYeXl5mDlzJiIiIuDp6Yl27drhq6++cljeixcv4vHHH0dkZCRUKhXCwsIwYcIEhy1sRERERLURA0gFJSQkIDk5Gb1794aPj4/FYz4+PujduzcuXLiAxMREN5Wwbti7dy8GDx6MgIAATJ48GZGRkfjss88wadIk/Pjjjxg9ejSioqIwefJkBAYG4t1338Vbb71ler4QAqNHj8b06dORn5+PZ555Bg899BCOHDmCu+66y6oVS6/X46677sLChQtRr149TJ06FT169MDzzz+P999/324ZO3bsiKVLl6Jz586YOnUq+vbti+XLl6Nbt264cOFClf6MiIiIaguJSxHWChwDUkEJCQkAgJiYGJuPx8TEYMOGDUhISEBERITrCiYEoMl13fEqQunttE6c69evx+rVqzFy5EgAgEajQZcuXbBixQps2LABO3bsQNeuXQEAc+fORfPmzbFo0SLMmjULSqUSy5Ytw5o1a9C/f39s3LgRHh4eAIBZs2ahc+fOeOmllzBy5Eg0bdoUAPDdd99h06ZNGD58ONauXQu5XA4AmDp1Krp06WJVPo1GgwcffBB6vR779u1Dx44dTY/t3LkTAwYMwNSpU+22thARERHVNgwgFZSZmQkACAgIsPm4v7+/xX62FBQUoKCgwPS9Wq2ufME0ucBb4ZV/nar0cjLg4VP6fmUwcOBAU/gAAKVSidGjR+Po0aP4z3/+YwofAODn54c777wT33zzDa5evYomTZpg6dKlAAzjeYzhAwAiIyPx/PPP45VXXsHy5ctN3ey+++47AMD8+fNN4QMAYmNjMW7cOHz99dcW5Vu7di0uXbqEN954wyJ8AECfPn0wcuRIrF69Gmq12vSZISIiIqrNGEDcaMGCBZg7d667i1GjdejQwWpbWFhYqY8lJyejSZMmOHToELy9vdGtWzerfQcOHAgAOHz4sGnbkSNH4OPjg06dOlnt37dvX6sAsmfPHgDAmTNnbK4PkpKSAr1ej7Nnz9psQSEiIiKqbRhAKsjY8mGvhcPYmmGvhQQwdPOZNm2axXMq3V1L6W1oYajOlN5OeylbrQYKhaLUxzQaDQDHP3NjWDFvmcrMzLS7f8OGDa22paenAwCWL19u9z0AhimdiYiIiOoCBpAKMo79MI4FKam0MSIAoFKpoFKpnFswSXJa96a6wN/fHzdu3LD5WEpKimkfo4CAAKSmptrc//r16zZfHwD++OMP3HnnnZUtLhEREVGNx1mwKigmJgbh4eGIj4+3unudk5OD+Ph4NGnSxLUD0KncOnbsiNzcXOzbt8/qsW3btgGw7MoVFxeHnJwcHDx40Gr/f/75x2pb9+7dAQC7d+92ToGJiIjqMC5EWDswgFSQJEl4/PHHkZ2djXnz5lk8Nm/ePGRnZ2PSpEluKh2V1fjx4wEYusMZu2UBQGJiIj744AMoFAo8/PDDpu3jxo0DALzyyivQ6XSm7ceOHcOyZcusXn/kyJGIjIzEBx98gB07dlg9rtFosHPnTqe9HyIiIqLqjl2wSli8eLGpQnjs2DHTNuPd8D59+uDxxx8HALz00ktYs2YNFi5ciEOHDqFTp044ePAgNm7ciK5du+K5555zx1ugchg3bhx+/fVXrFmzBu3bt8edd96JnJwc/Pjjj0hPT8f7779vmoIXMASWFStWYP369ejYsSNGjBiB9PR0rFy5EkOHDsXatWstXl+lUuGXX37BiBEj0L9/fwwaNAixsbGQJAmXL1/GP//8g6CgIJw+fdrVb52IiIjILRhASti5c6dpalaj+Ph4xMfHm743BhAfHx9s374dc+bMwapVq7B161aEhYVh+vTpmD17Nry8vFxadio/SZLwyy+/YNGiRVi6dCk++ugjeHh4oFOnTpg2bRruuusui/1lMhnWrFmDuXPnYvny5Vi0aBGaNWuG//u//0NMTIxVAAGArl274siRI3j33Xexbt06xMfHQ6VSoVGjRrj77rsxZswYV71dIiIiIreThBDC3YUgA7VajYCAAGRmZjpcEyI/Px8XL15EkyZN4Onp6cISUnXCzwEREdU1bV5fj9zC4i7Ql96+w+VlKGt9jezjGBAiIiIiInIZBhAiIiIiqhE4CVbtwABCREREREQuwwBCREREREQuwwBCRERERDWCxJUIawUGECIiIiIichkGECIiIiIichkGkBqMS7jUbTz/REREVBMxgNRAcrkcAKDRaNxcEnInrVYLAFAoFG4uCREREVHZMYDUQEqlEiqVCpmZmbwLXoep1WrI5XJTIKXa6+udFzH4/W24oc53d1GIiIgqjbdOa6jg4GAkJSXh6tWrCAgIgFKp5MwQdYQQAjk5OVCr1QgLC+N5rwPmrT0JAPjg77N4e1R7N5eGiMh9+BevdmAAqaH8/f0BAGlpaUhKSnJzacjVJElCYGAgAgIC3F0UcqFCrd7dRSAiIqo0BpAazN/fH/7+/tBoNNDpdO4uDrmQUqlk1ysiIiKqkRhAagGlUgmlUunuYhARERFVLfbBqhU4CJ2IiIiIiFyGAYSIiIiIiFyGAYSIiIiIiFyGAYRsOpGciWNXM91dDCIiIiKqZTgInawUavW44387AQAn5g6Dj4ofEyIiIiJyDraAkJV8bfGUvln5Wnzw91ks3XXJfQUiIiKiWmXX+TRM/HYfEtNz3V0UcgMGEHLofGo2/rc5AbN/P+HuohAREVEt8dBXe7H1TCqm/XTY3UUhN2AAISvmU2xn5WvdVg4iIiKq3ZIz8su1P5cBqR0YQIiIiIiIyGUYQKgUwt0FIKIi/G0kIqLagAGEiIiIiIhchgGEiIiIiGoESeIokNqAAYSs8JebiIiIiKoKAwg5JNjpnIiIiKqIYEWjTmIAIeQV6nAjq3zT4BERERERVQQDCKH7W5vQbf5mpGQyhBAREZHrsP2jbmIAIaiLFhvce/EmAMtFfnhhICIiouqCw1RrBwYQIiIiIiJyGQYQIiIiInILjkGvmxhAyCFeGIiIiIjImRTuLgBVL38cSca2M6mm7wVHgRARERGREzGAkIX/rjxk8b0EjvYiqi44Xz4R1Ta80Vk3sQsWEREREdUIvC1aOzCAkImtm6u8M0FEREREzsQAQkRERERuwZ6ldRMDCJkkZeS5uwhEREREdklcibBWYAAhk3c3nLHaxjsTRERE5CofbU5A33e24EZWvruLQlWIAaSSoqOjIUmSzX8DBgxwd/GIiIiIqq2S9znf//ssEtPz8OnW824pD7kGp+F1goCAADz33HNW26Ojo11eFmdjAwgRERG5mlavd3cRqAoxgDhBYGAg5syZ4+5iVMixq5ll3lcIwb6XRERE5DTs6l03sQtWHbfmcJK7i0BERERkU75Gh6k/HMIfR5LdXRRyIraAOEFBQQGWLFmC5ORk+Pv7o2vXrujevbu7i0VEtQxvFBJRXWFsGfkm/iLWHE7GmsPJ+E9cOBcirCUYQJwgJSUFEydOtNjWtWtXrFy5Es2aNXNTqZxDsG2UiIiIqozjekZaVqGLykGuxC5YlTRx4kRs3rwZ169fR05ODg4dOoRx48Zh//79GDx4MLKysuw+t6CgAGq12uKfq3FIBxEREbkL73PWTQwglTR79mwMGjQIDRo0gLe3Nzp06IDvvvsO48aNw+XLl/HVV1/Zfe6CBQsQEBBg+hcREeHCkpcfLxJERETkSrxRWjsxgFSRyZMnAwDi4+Pt7jNr1ixkZmaa/iUmJrqqeERERETVXsmbnwwktQPHgFSR4OBgAEBOTo7dfVQqFVQqlauKRERERFQjsNNF7cYWkCqyd+9eANV/McLS1vVgtysiIiJyNdY/ajcGkEo4ffo0cnNzbW6fMWMGAOChhx5ydbGIiIiIagTmjLqJXbAq4YcffsAHH3yAfv36ISoqCj4+Pjh79izWrVsHjUaDWbNmoV+/fu4upkPl6UopABRq9fBQMLcSERGRY8eTMtHQ3xMhfuxuTpYYQCph4MCBOHXqFA4dOoR//vkHubm5CA4Oxu23346nn34aQ4cOdXcRS1WeOw+zfj2Kn/69iq0vDECTYJ8qKxMRERHVbCeT1bjzo50AgEtv3wEAUOdrsHLvFdzRPsy0X/nXG+Mo9NqAAaQS+vfvj/79+7u7GFVKmEWUn/69CgD4cscFLLg31l1FIiIiompu38WbVtteX30cqw8n46t/LpThFQz1D856VTuxL00dx99rIiIicoWd59IAAGnZXN28rmMAISKqITgrDBHVbNa3PSt7WbuVwzBTEzGAULmxOZSIiIiqg4+3nnN3EagCGEDIId5xJSIiqrm+2H4ey/Zcdvlxba0zVp4bmLbqH3q9QFp2gcW23EJdeYtG1QAHodd1pVwMGECIiIhqppTMfCz46zQA4KFukZDL3NuFwdbR7dUzbG1ffyLFxn6sqNREbAEhh2zdrRACSMrIc31hiIiIqMxyCrWmr6trRb085UpMt178WV9N3xc5xgBSx0kVmAdr5b4r6P32Fiwu0zR6RERE5G61tZrO/FEzMYCQQ45+sd9ad8p1BSEiIqIKq+qKelp2AVbuu4LsAq3dfSoyiY35U2w9X88AUiNxDAg5pHPwm83feSIicgaNTo/vdl9G35hgtGjo5+7i1EpV3VXpka/34eQ1NfZdTMf/PdDB5j7l6XWRkVeIp5cfwOlrWQ73E6yN1EhsASGH3DFzBhER1S1L4i9h3tqTGPp/O1xyPJ1e4JOt5/DvpXSXHM9dXNk96eQ1NQBg3bFr5XqevSJuOHEd646l4EJajmmbzQDD/FEjMYDUcaU1hx5LyrT7mL0L2/rjKbjjf//gfGp2JUpGRER1xeGrGS493i8HEvHuhjMY/flulx7XncrbAvLvpXSsOZxU7uMYD2OrflEV64hxEHrNxC5Y5HRPfn8AAPD8j4fx+5Q+bi4NERGRpQupOaXvVMuUt55uDGfNG/iibXhA2Y/j4iYJjgGpmdgCQlUmO9/+QDQiIiIjV69OYWuRvNquovX0xPTyTbvvKOjY/KmXo2C2B6EzgdREDCBUdere9Z2oSvHPLJFz1MH8gT+PJrvkOI4CQV0MfmQbAwgRERG5lasrpm5eENwtZqw65pLjVGWXqPIOcKfqiwGkjquD12AiIqrjKrIIb0VtPnUdm09dd9nxyuPDTWdx/xe7ka/R2d2nqrOhMa9k5mqQmlXgcN+DVzKstrFVpWbiIHSqlOvqfDTwU/ECQERV6ovt5xHkq8Lozo3dXRSqAq4fA+Ka4+QWavHY0n8BACfmDoOPqnpVuz7clAAAWHM4CQ90jTRtv5GVb/q6oj8q8+d9sf088uyEHFHUZavjvI0cUF6HVK/fBKpxur+1Gc8OjsG021pYPcZIQkTOcO5GFhb8dRoAGECoUs7dyEawr4fLbprlFRZXuvM1OpcHkHM3HC/iZ2ReTgAY9dkup5bD+PurlFv/3PO1esxbe5Lho45hFyyqtP9tTnB3EYioFrtRSrcMqvlKywM6vYCukjXU86nZGPLBdnR442+33CBzR/16yopDZdqv5I+2vDNflZVGZ/1T0OkFvt55scKvyZudNRMDSB1XlTeBLt3MrboXJ6I6o0Crd3cRqAThwqlPhRAY9dkuDHp/GzS6in8W9l0sXvVc5qIWkLK0tGQXaHHFxt/LlfuuYOvpG5U6vraMoa2iU9mmZObjnfWnkZxRNYGFai8GEKoytu5Wrdh7BasOXHVDaYiopipkAKlWXvj5CIZ9uAMFWvsDl8vLUTVdqxc4nJiByzdzkXA92ynHcMewRXt1/N5vb0G/d7fi3I3i93YmJQuzfj2GiUv2O7UMm07aHgxf0Tz5xLJ/8em283jkm32VKBXVRQwg5DLpOYV4+bdjmP7zEaf+4SqP86nZ1XY2EiKyzbxy5Mo772TbLweu4uz1bGw9nepwP51eYNf5NGQXFC9KeyktB6/8dszmHX97zE+5Ol9T7vLa4qppeMtymMw8w3vacTYVy3ZfwsOL9+B8asWDliPf7rqIHWdTrWa9WrnvCsZ9vdfiXBk5asU5ejUTACzCE4BKtVRR3cAAQlXKvLJgfkHK17jn4jT4/e14bOm/2HvhpluOT1RTaHR6h1NzupJ5/YcDVasTxydjxb4reOirvZj4bfHd8YcX78XyvVcw4duy3zE37x7krPzpqkHowuLr0gv/2poTiD93E1/suFAl5Yk/dxOPfLMPs361XBPkQloO/klIw5dOOu7Z62Ub/E51FwNIHVfVc6FP//kI1h9PwcL1pyE3u+XkrhYQo2NJmW49PlF1N/qzXejy5ibk2Lgj6mrm/fUr2lednK+0U/HbQUN32/2Xbpm2JRWNFbiQlmOxr6NAYH7OK5MbSnvuW+tOIXrmn/hi+3lodXqk5xRW/GBFLFrsSvl5mZcvrYonXvjtUJLN7eo86xampFu5+N/mBNwqx8+Dv6ZUGk7DS1Xq14NJ+PWg4UIXUc/btL3ATS0gRrw4Ejl2pKhrxd6LNzGoVUO3lsW83sjf3bLR6wXScgrQwM/TbWXwUFje47x8M8fOno5VRauXrUHoxrv/C/46bZo2dtO0fmjewK/Cx9GXPX9YfM7trZlR1WxN+DDnj5MAgKNXM7B4fFdodXr8e/kW4hoH2n0dIeCegTZUYzCAkFPka3Q4n5qNNmH+dve5ri5e2MjdLSBENZE7xj/kFbq/L7dlFywmkLJ4YtkBbDp1HSsmdUevZsFVcgx7Z+KXA1ehztNYtLCvP56CJ78/YPe1HFVVzSc0cVaVtqx1418OJGHmiFYVPo55tyu9EMgu0OLTredwe2wYUjLzobCxLgYAt3V/XLnvCvw9bVcNd55LAwB8vPUcPtyUgEGtGth9nR0JqfD3UlZJGUviFaFmYgAhpxj9+S4cT1Ljyf7NyrS/rTEgu86nITrIB+GBXs4unpWy9MUlourBvLLI/FE2m4om2/hm56UqCyD2vPDzEQBAVFBxq/c38dbrPFxIzUZ0kA9kdkaECyHw35WW61hUZuyGeSAq6yD0igSBm9kF8PVUQKWQW3xe9QJ4b8MZLNl1CZ9uO29dPrP3Vtk1T8rC3iKF9saf6Iv+bC/ZdQkAsMXBFMHvbjiDeXe3q1T5qHZjACGnOJ6kBgB8vt36ompkfjkteVE/cPkWHvpqLwDg0tt3AAB2JqQhor4XooJ8nFtYsBJD5IhwUp97ZzGvOLIFxLWMnwVbFX9bp8L8s2M+nkBu4/mD3t+OMd0iseDeWKumjVUHrmL72VSsPXrNYruzPo9lHf9Y3tb6lMx89FiwGY0CvRA/c5BlANELnEi2P/7Q/L25IoAM+WBHufYvLJpIRs+ZIMgJOAi9jnNX5aLkvP6HEzMsvj905RbGfr0X/d/d5rpCERGA6jfTFLtgVVxlrvFCCDy8eC8e+WZfmbv/lbzjbyS30+Swct8Vm9un/3wEvx9Jdvj6lVHWn4vWxsrdjuxIMExNbBxsbz7746qDjtfAMi+Svc/5PwmpmPXrMeQWGiaH+P1IMr7bfalcZayMMylZ1e76QDUTW0DIdcynUizxkLeH3OL7A5dvwZmW7bkMpasmficAwOkUNRr4eaK+j4e7i0LlVN0q+eZ336tXyWoGIQT0wn4IsCc1qwC7zhumLFfnaRHgbdmn31ZXVvPPjvnX9rpZGZW1RaIyn8031p4sPp75Z0oI/G1ngb6yVLb3XLiJjFwNhrcLtdier9Gh7ztbTd9/uCkBXaPrlamsFoPXhTCVd9zXhumLQ3w9MG1oSzxb1EWtf4sQU2+Bn/5NxO7zN/HO6PZlOlZ57LlwE1q9+8eFUc3HAFLHuatKXvKPiFJe3Bh39yfxFl20rmXmIf7cTdzZPgyeSjmuq/MR6K2ESmEZWuy5lVOI11Yft9hWEyoxF9Ny8MLPR/DMwGZun4WoPE4kZ+LJ7w8gMT0PkgRcXHCHu4tE5VTtAojZ18Ks7iOKBvX6ebpmsGtNNXnZAZy8psbfz/eHl0fZrptAicq3BKw7dg2rDhTfxbf1MbF4jnkLiJP+2JgfMzNXA50QZbrJkZpVYLHInnkeemLZAbsBxBiytDo9pv98BB0jAjGhdxPT4xm5hXjwyz0AgIe6R6JDRKDpsYPlvJG20U4Z0rILEeKnstiWlJFv0RUqPafQFEBe+uUoAKBH0/rlOn5ZXLqZU+Z1vK5n5pe+E9VZ7IJFLvP59uKBbcY/IrvOpWHw+9tw4HK66bHDiRk4nVI8OK7ngi144ecjeGf9GRxPykT3tzaj+1uby9xH1tZ0hqVVsNKyC0xN6O4y6bt/ceDyLTy65F+nvJ55F4qq7MM76rNdSEzPKzpmlR2GqpDlyuPuK4eRvS5YM1YdReycjTh0xbktpjWd+arUJ5IysfHkdVy9lYd/EhyvXF6SeQuHJAFPLz+IzWYDj9ccTsaba09arBVjfn7Mp3Tdeqbsx15iY8C6qUxFr//O+tOIe2MjOs37G3mFOuj1AudTsy2uc/kaHa5lGq5F932+y+J1jIP0AdgNH0DxtXLL6RtYczjZNCWt0dPLD5q+XrH3isV7nllisb/S/JOQZnP7umPXrLbJJECjt1zcNzPXcg2Pm05Yx6Skb+MvlXnfj7eec/rxbXHH7IBUeQwg5DKFZn1hjX+kHlq8F+dTc7ByX2Kpz/8m/iLu/GgnACAjV4OHvtoDvV7g7PUshxcgW319F/9j/w8cAHR5cxN6v73F6oLubInpuUjLtr3g1JWbuU47zidbz6H321uQnJGHOb+fQPcFm52yyJYt7lrlnsrns23nbVZsgOoROszZW4jwp38Nd+M/2Wp/8ovqSAhhNQ7O3D8JqRjywfYydUXNLtBi44kUi8HSQz7Ybvo62ewutLaMNx70eoEPN53FTrMKsbBR3E2nrmPxzov435YEm69jfs0vj5KVfHMChp+f+SxS038+jKYvr8Pg97fjvY1noNHpcfZ6Fv7z0U70XLAFu8/fxKUS19P4czfLVJbVhw3jUGytj/Hj/iumLmpG5q3tV9Ktr+HmizKW1eHEDLy6+hg2nEgxbZNJksX4lDFf7UHcGxtxI6v4fLMFgqozdsEit1h37Bo8lWXvCmDL3ovpaPryOgDA1MExeP62FgCAeWtPIv5cGlY91Qs+Ktsf8fScQvx98jrkMlh1bzKvlH20JQHP3dYCvnZepzJu5RSa+gcbZ/4yJ5MBsDMBy/GkTHgqZWVeIOvdDWcAAO9tPGNaGHLZ7suYOiSm/AUvp6H/tx2v3dkGfWNCKvU61zLzkFOgrdSiYDXd2qPX8L8HRan96UtzJDEDC9cbFlqz9dmrbl2wzO+6nrymxvYzqfjvoOLPrq6G9Ul/9ofD2Hb6Bra9OABBvsVda7Q6PR7/7l9sK2otGLt4L47PHQa5TEKhVo9jSRmIaxwIhVmX1ddWH8dvh5LwUPdIvHVPLBJtVHpNr18UQAq0OuQV6hDobei6dCYlCzvPpeGRnlFQymX4/UgyPtxkGSrOpdqeshUAzl03tDx8ueMCIut7293PntSsgjKHlbl/nMDZ69kW29YdK66Yf7L1PC6k5uCv48Xbxny1p9xlMjftp8MWs3ip8zU4mpiJGavK18JRUcZVy7/fUzxg/8d/E222cGw+VdxCtXT35aovHFEFMYDUdW6aBuunf6+a7l46w6LNCXj+tha4kZWPr3caWjem/3QEn4/rbHdw46TvDF2bTs8bbgpD/15Kt2hSX7zzIs6nZuPbid3KXSa93nFF8UKa41WBba3UCxj6HBtbgi4uuL1c8+Jn5dvuA11RQgg8+8Nh+KrkWHCv7QGPZ69nY9zX+2xWdMuj54ItAID9rwyx6g9dVgcup+PrnRfxyh1t0KjEejOJ6bmQJKBxPesK1D8JqfBRKdApsmwDSKvSr4eSMLpz40q9xs2c4la39JxCqz705gGktI/Xj/uvwN9TiQ6RgTh2NRO3tWlYqbUaSkrOyLPoLmMchHvJbFXtst7Zd7UDl2/hjyPJeGFYS4ubGH8Uze7026EkPN63qWn77gs3TeEDMHQfjZu7Ec8MbI6kjFx8v+cKnhrQDDOGGxbGu5SWY6qcrth7BV2i6mHaT0fslkdbVMm/4387ce6GYeHYzlH1sGyPoaIqhMDjfZvioo1r06jPdtt9XZlMwuRlB+yOYShN1/mbyrxvyfBhi3n4cAbjTRuj9nM2OvX1K8r898JolsNuX8bfk+LfzxDcQha8kY+KXVPNyaCHvhIda4KQCQ9ooYECN+EHGQSU0CIfKngjH82kZARJavgiD1nwxll9Y1xDUKXLTe7BAEK1Sr7Zqs3rT6SUqW9ooU4PT6Uc6TmFmLHqqNXjxr7LH/x9FltOX8ePT/S027KyJP4iLqfn4ukBzTFi0T8Y2SEcr93Zxua+5jPS6PTCaoYa8wCSmlUAbw85fFQKpJitKK8X9gd35mt02H8pHd2aFA9ENO/r7CgcZeVrkFOgQ2iAp919AEMXA2NlasbwVjh0JcPh/hqdHjJJsnqvyRl5+GL7eYzvFY2mIb4OX+NiWk65AkhuoRbXMvMR4qcyVaJuZhfix8k9TfuYz1aTMH+ExaQIN9T5xZXeohC16sBVNAnxqdJAos7X4FpGPlqGWrb47Lt4s9IBxPyzNfj9bTj0+lAAhs/h4cRbFkHVkau3ck13gRv4qXAjqwDv3xeHUXbKt+tcGvy9lGjXKMDh+hLm3ilqqSlpk9md3pItNuuOXcPqQ0l49744BNhZjfnPo9dwK7cQY3tEOTx+ZYz6zDDuoECrw6S+TTH95yOYMrC56fFbuZZ3sG3dLMku0JpaqwBD17kDl29hxePdMeC9bRb7frzFcZ97Y1AzjhE5eU2Nk9fUpsePXDWsUVHePvWOxlC4igJaaCFHWaZWCUQWNFAgB15ohFRkwgfZ8IYEPeTQwxsFCJduIlnUR5CUhSzhjTQE2Hwtr6KKcZIIxi34I0pKgQI63CffATl02KtvjVP6SCQhGCoYuvTqIIO2RPXLF7nIhWelKvAA4IM8dJIl4F99C+RBBX/k4gXFTxgh34sgZCEPHvhJNwBH9M0wWr4dPWUnoYUCJ0QUNFBgi64jdujb4yH5ZnhJhVBAi3DpJnbo2kMPGZJEEOpJ2VBABy3kiJGSoIUM0dJ19JCdxHnRCEf1TXAT/jiqb4qh8gOIka7iuD4aAjJI0ENABk+pAB2k88iEDxTQ4aIIw+2yvVBKhmZ/jZBDDj1kksAFfShCpEz4SZbjMjVCjuOiCSIu5gC/9AZGfgwoq34hY3IOBhCqNfZeuGnqUmDUZNY6DGjpuOvP74eT8XD3SDz5/QGcT7XfKvG/zYYuCT/sT8RjfZrY3MfYd/n0tSykZRfg650X7QaQt/48Zfpao9NDLivukqbV6S1mbDHeIfx9Sm+LyrGt4AIY7mp3mvc3AODh7pE2j2+shF7LzMNP+6/ioe6Rpop9xzf+hlYvsO/lwWjgbz+EmPeLnrhkv8MAUqjVo8/CLQjyVeGvqX0tHnvy+wM4ejUTS3dfRt+YYHzycCf425nZqCw315Mz8vDMioOY0Csa76w/YzWhQMk7vJlmC6YdTsxAqL8nIoq6ktzIKm4teOr7A6jn44EVew1dIYyBJCkjD9vO3MCoTo1tdi08cDkduYW6cnVDG/juNtzMKcSqp3pZbP/p36s4lqTGT5N74PU1J7DtzA2sm9oXYQFl+8Or0ektKuy3cjX4cf8VhPipyj3hQYbZGCnjz2nNkWR0ja4PD4XMIsAmZ+ThocWGxUbPv3U7Wr++HoVaPba9MADRwfYXGzX2wXckt1CH11Yfx5A2DdG/RYipFTNycwJeNfv9M67JcCu3EM+sMOzTu3kwmtg4vhAC38ZfQstQP/RuXrmVxFfuSzSNc3tsafHP+JOthtDdwM/wcyrrDFX7LqajR1GLYHm89MtR/Ljf/ni7m9kFiJ75Z7lftzLk0KGb7DRSRH1IEHhK/jvayS7ilIjCd9qhOC0i0FxKgp+Uh4flm+CHPKTBH/v1rSCHHt1lp3Cb7AC8pEKkiHrYoWuP4yIa3WSnoRbeOC6aIlS6CTn0uCaCoEIhpil+gQJ6XBeBiJSlIl8ocUQ0Q2vpCjyggRJayCXLEHZDBOKEPgrr9N3xs64/QpCJu+TxeEzxF8KldOiFBA3kUEmW4X0S1tl833/quiEPngjFTSgkPbpKp3FJhGK/viUipFTkwQPZ8EJL6SpOiigc0jfHJRGKcCkNl/Sh2CdawxMFeES+Ee1klxCCTDSU0hEu3YSnZPi9vCbqQwcZGkvFY3l8UICJig0lzoEGnSRDeO0uO41ZWGlV3m6yM2U6n22ky2gjs+761V7meNxlexQ/rheSKYgAQFOZoUUrVfgjTQRCBj0U0KGZ7Bo6SucADYDjvwD1ooDBr5epnOR+DCBUazzw5R60a+RvtX1bKbOvvLr6OK6k52LfxXSH+xnZGzxqXsm1NfOW+VzuF9NysO9S8fGMrTAAsPnUdZsLcAHAvZ/usuhuYquv/g11Prq9tdn0/fK9thf6Wr73Mno1C8KLvxzB2evZiD+fhp+KWgWMx9hw8jpCfD1wW5tQ/PxvIk6nZOHpgc1MFSbzQZCltX4cvZqBG1kFuJFVgLTsAgT7qrDxRApeXX3copL/T0Ia2s/ZiHdHt8d9XSIM79NBF5sTyZlYuusSnr+thakS/uafJ3HoSgYOXTls8znmL7fp5HWLxcLu+9zQSmKry5i9rh23L/oHmXkavPLbcayY1B29mhVXWIUQppaXf18dgmDf0ltvNDq9qX/3rzYWLzt1TY1Ys24gPRdsKVMXtwKtDi1fXW+13VFfdr0QyNfoyjxmKy2rAP3eNbQmnX/rdlNANh+QO/j9babfowHvbbMoe75GhwupOTielIlUOxM0lGQ41xlYtueyxWst3nkRW87cQIfGgXj+thZ44IvdFoOyAUNryTNmrRKAYYzMPZ/Gmz4nc+9qi+NJmVhwb6xp/EV2gdZqbNiP+6/g9yPJEAKG1b3LoNv8zXisTxO8ekdr7L9UtmsQAJuTV5TWrRNwvMZSyQHV5SNwh2wvYmRX8Z12KNLhDzl08EMugqVMdJWdQUPpFuTQo710AT1lJ/Cbri+aypLRVXbW6tVaIxH3ynfaPdooG4+FSrdwv2I77sd2s61brfYzipQMfxs8JQ26S7Zb2vKEB1TQoIGUgQbyDAyUH8G7yi+hFTIopOLrhkwSUKE4fKSIelBCiyDJ9tiZO+T7rLY1k66hmcx6YojWuIJR8n9M3xcIJRZqH8TrymV23xsAhEmGz1OW8MIV0QCH9c1xWkTgFcVyyKHHEdEMq3W9ESVdR5CkRrIIwqPy9fCWCnBW3whb9B2hggb1pSwEIhtayBEnO49roj7OiUaIkq4jTQQgXfghDyr8q2+JICkTTaQUtJNdRHvpAg6L5kgR9ZEjVJAAZMMLwVIm5NBjt74NZBBoIN1Cf9lRrNH1whLdMMihRzAy4SkVwgf5uFe+E//o22G7Pg7CrIWoi3QaTWQpGNwwF8PTvwf2fQX0eR5Q1d1xgjUJAwjVKseT1KXvZMOXOy6UvlMR49SUt3IKUa+o73x2gRa93y6+I2m+svvBK7fw3a5L2Hz6BvrGBOOD+ztYrHMCAOnZhaY7/uZ3SEsq2dfd6nudHhO+3V+m93H1Vh5GfhJv+n7fxXRodHrc/0VxX2/jjC6P9m6Cb4qmxlyy6xKGtW2IDSeuI9C77OsvmN8t7/LmJuycMRBPLDtgd/8XfzmKzlH1EB3kY7OPv2EwapZpNpvLN3Px4+SeKNTqS+1CVKDVYdzXexEe4IUf/7V9R/iDjWfQo1mQ3S48gKH16MsdFyxaUB76ai8uvX0H9l64ia93XsSxpEzTY7dyCk0BJC27AIVaPcIDvSwq+LmFWrR5vfgOpb0AWVJKZj6SMnLho1Jg+IeGysqEXtFIycxHswY+eHFYK1MrXnlMWXEIcpmEA68OgYdCZirbykk9kJVvPUvchbTiPvr93tmKbyd2RVa+xiK4l5yRSKPTY9GmBBy8cquSlWBrF1JzcCE1B3su3LQKH4BhggbzAPLn0Wum1hGj2b+fAACcvZ6FNVP64K9j1/BUUSvLqqd6QacXaBbiYxHk+r+7rcxl/HrnRZy9nmU1DWsD3EJzWRKuihCkiQCESTdxQYRBQEJxVyOB5lISEkUDFMCyBViCHh7QogAekEMHOfQohOHz7IM8FECJcOkm+sqOQUDCTn07dJedQh/ZcZzXh6OelAUZ9Nii74RCKLBH3xoCMnSUEvA/5ccIldLxu74X/tD1xGPydegrN1wvxss34oQ+ClHSDUTI7N8AekBh/TO6KoLxi64fOkjnMUBuOZ5lhy4WG/Vd0Ea6jLayS8gUPkgWQfhBNwiXRQO0lV3GUNm/6CI7i0LI0UF2AdnCExv1XZArVOgtO458eOA3XR/4SnnwQiG+0P4HDaV09JCdQobwxXERjQDk4F/REt7IRw48EYhstJIlYoDsMCYrDC1ECkmPdOGLg/oYLNKOQj488KTiD6QLP3ynuw3JIhgSBLSQo7fsOJ6Rr8HPuv6Yq1wKfykXp/QRuCHqIUq6jvX6bvhb1wmxsovoLTsOHeS4LBogEDm4BT8Mk+2DFgpIEGguS4ZK0liEj8KirkhH9M1wRkRgna4bBskOY6HySwDAJM107NEXtwSu1fWADjKoYd3d9T3t/YiQbiBJhFSyO5iABGERGBz5P9xn+loLGVIQZBqyckJru8fBv6IV/tW1Qn5QQwyPlgFt7wU8HHfhpepDEpxAudpQq9UICAhAZmYm/P2t7+RXhf/7+ywWVaBSUtdcevsOU9eEF4e1hIdchvnrTmHe3e3wcLdI02xcZTWiXajV3fQVk7oDMFRgy+rI7KHw91TgtTXHcSYlC9kFOpy6VrEQBgDfTuiKiUvKFmDKa2LvaIvZjOaNbIvX1pwo03NPvjHMVPH9+cmeuHwzFy/8bFk58fdUYMdLA9Fn4VaL7muV9dfUvhix6J/SdzRj/nkxN3NEKzzZvxkAmB5/ol9TfLnjAn54ogfe+OOkRZ98Z9r6wgAMLDFmoDzevy8Op1PU+KqUKaxlku3Vo1s09LU7gPjl21vhrXW270CXl72fvSOrnuqFqCBvHL2aUWo3tB+f6IEHvqzcrEr2yKDHMNl+dJadRW/ZcbSW2Q7Ht4QvPKDBeRGOMOkmQiQ1zuvD8IRmGp6U/4FY2UXcEn6IkN1ACDJwUkQjWkpBPSkbO3Sx8JQK0UU6CwFYdTVyJFUEYKbmcfxX8Rs6yMp+0wYATusjcEDfAp5SAS7rQ9FISsNIeTyOiGZ4UTMZKaI+PKBBHlTQQQ4JejwjX4MAKQefaEeiAErkwfGYtJL8kQMdZMiB88YF3CXbhccU6/CV9g6s03cvdyU9BBlQQFfhwdM9ZCfxg8ebpu8nFU7DJn0nmxX9MBjCvCsGar84rKVptkVXu7N9GD5+qJNLj+mO+lptwxYQojIwb7E4kZxpmvbxtdXH0SWq/AORbXXlKU/wMPrf5gT8cSTZogtTZVR03v6yKLmAVXlmSjKf2eXUNTVetxFc1PlaPPTVXqeGDwDYc8F5d+Tf/us0nuzfzKJLmbH17cEqqtQaVSZ8AIZxE2Xppmivt5yj2Yt+duKMeH0Wln1shBw6DJftx5TPbpa5klaR8NFMSkIH6Tzi9W0Nd3ZhaJ3oIzuOGyIQZ0Qk/JGDT5SLTK0IRkkiCA1xy6K7Tz3J8LNsLxWHwWaya9isetHm8TtKxYPT+8kdTx2bJIKQLbzgjQJkwwutZcUtcCFSJr72eN/m8zKFN6ZqnsE/+vYYKYvHTOUPOKRvji+0dwIADooYlBwgPkP7hMX3xtYZABCQ4WPdPQ7LWho17I8tqqjf9b3we2Gv0ne0IxWBdh9b9GAHTP3hsMPn79G3wfTCJ+EpFWKFbpDdFoYdLw7EJ1vP2W3hdYZgX5WpK+AjPaPcFkB4F71mYgBxgv3792P27NnYtWsXNBoNYmNjMW3aNNx///3uLho5yXSzu+3mc84DKPfdcWcyTjnsLM5c/LA0r64+XvpORdaYDUS+esv+CvVV0Xow18GiaPaU7GJXUnWdNtaRN/88hbjGtmcCqqyEG6VPrVpWjj4flgSeVfyGqYpfcVwfjTsL58OygiwwVf4rhsn/xTLdEKzUDUJf2TE0lG7hb11nZJp1X/FHDsKlmxgt347mUjI+1/0He/Rt0Ed2DJPlf5hChVp443nNU9ipj8UKj/noLEuATkh4TPMiBsoOoa/8OAqEEr/reiIVgfhT1x0nRBM0l65iuGw/TohoNJZS0Ui6iebSVZwTjSCHHnv0rU3B4Jqoj3c0D0BAgo+Uj2zhCRkEBCRcEQ3QR3Ycanhjk74TmktJSBMBOC6aop10AffKd+Ij7d24heI7umG4ifqSGqkiEP+n/BS95Ybw/6N2AGZoJ6Gn7CRGyPbhM+1dphD3q74ffi3oV+FzuP65vqZuhI7c26kRfj2YhJkjWuHUNTV2JqThga4RFosUOsNPk3uia3Q9NJll2dIdFeSNyw6umbe1aVjmGcKmDo7ByA6NSg0gALBKb/jZ9m8Rgu1nDV3cvD3kyC0svu5EBnlj4ej2TgkgHSMDcTEtB02DfRAXEYhv4y9hycSuOHj5Fv5XNPOarclQiBxhAKmkrVu3YtiwYfD09MSDDz4IPz8/rFq1Cg888AASExMxffp0dxeRnODPo7ZXjK5t5q87VfpOblae8TrucsHBbGqzfj2KkR0aubA0zmNrNeiqIIcOOtgf9O6PHHgj39SaEIabaC5LQoqoj3rIgoCEBxVb4IVCpIj6SBMBSBQh6Cw7i56yk8iBJ0KldIQXDdJtJ7uEnzzewHZdHO6U70Fr2RWc14eZBgQvkH2NlxUriqcBVQLfaW/DbO14vK5YZjWr0AD5EaQKf4RIloHYX8rF58oPsVffCp1lhq6vckngQ+Un8IFhfMpkzfPYpu9g8bxzojE+1jmeenmm5nGMlO3Cm9qHcULY7jMPAAd1LUxfXxUNTF8fF01xXNvUav9rCMI1Yfg5P6KZiTH6LfBCAb7XDQEgYbe+LXbr2zosW3n5eCjQNMTH4e8RALw7Og7PDoqxmkUtLNDLNH5t/j3tEOTjgSe/P2jrJezq1yIEO86mYu5dbU1TmUcHeVuMX3pxWEtMWXHI5vOHtG6IqYNjLALIumf74vb/2Q5WxoV0zX36cCe0aOiLfRdv4eXfrFuulj7aDYcTMxAe6AkPuQwd3vi7XO+xrCLre+OXJ3uZ1o56bnALBHgrLSZNsLduFZE9DCCVoNVqMWnSJMhkMuzYsQMdOnQAALz++uvo1q0bXn75ZYwePRpRUVU3zzwRVT/mA/lLMp+StfwESnZj8UMusuBltd0oBLcwXfEzZBBYpeuHa6gPJbToJEtAD9kppAs/HNTHwBOF0ENCPlRQwxsy6Ivm+JfjvAjHRX0oMlNuYrjsPPylHMgg0Et2Al4oQLy+HaKlFDSVriEfHkgXfjggWqCllAgJQB48EAQ1rqMeFNDBF3kQkNBJloACKJEpfA2DYoU3eshOIlKWinThi+uiPvLhgf36ltBAjiQRggjpBh6V/wWVpMVhvaHC3Ea6DA/JcatTabrJzlhMNWoMHxf0oWgqSzGFj1yhgrdUgEcUf+MRhWWF74YIxCXREHHSeVP42KDrgp91/fGPPhZfK99FH/kJ9ClqRZhc+BzeVH5j2veYPhrb9HEVKv8PukH4QTeo3M9rG+6PE8llaznUQY7vdbc53OfO9mFYW8kbNhH1vfHN+K5W65yUJJdJNqdwHtcjCkqZhHM3svFQt0hIkoRLb9+BMylZGPbhDjzcPRKrDyUhp9D+Z2bhqFgE+ajgoSju4rTsse5Yuc8wZfWV9Fzc3i4MgHUAsTUjXfvGAWgTXvpYgWNzhiIjV4PG9bxM3VSbN/CzGUAAoENEYKmvac/798VZtO7bI5dZrt0UUDT5iHlDrjtbQP4+cR1PfX8AIX4qvDGyndvKQeXDAFIJW7Zswfnz5zFx4kRT+ACAgIAAvPzyy5gwYQKWLl2K11+vnvNS/3flIdMickRlpYAWcuitZtypzmTQQ4VCREo30ExKLnoHhgrvNdSHHHr4Ig8yCBRCCW/kw0/KQ65QIQO+aCSl4qYIQD480ES6hjQRgFx4IkK6gQLDqgFoiFtQSYY1BHy0+WiouIUM4YsbCIQnChEg5UABHQQkXBYNkSl8ECu7gK7SWcgkPQ7pYyCHDg2lW2ggZSBbeEJT9NO+KkIwSHYIkdINHNI3xw0Eoj6y0FhKRVNZCpJEEFJEffghFwf1MVBKWjSTktFAykAobkFWNND4fsX2Un5SFXOb3Pru8oPYVqnXrC9lo37RWIeOMtsL7DkaCP2rrg9O6SNRT8pGYykV0VIKEkUIboh66F009iIVgUgSwXhCvtYUYG4JX2zRd0CiaIDNuk44Jppgonw9nlGswXLdYPxPey9eVPyIJxVrLY41XfOkaXaqYGTifvk2qCQNPtGONI1tWKy7wxQ+/tJ1xQZ9N9TXZmGB8msAwFfaO1EySE4Z2Bwfby1+/yqFzGktUd892g19Y4LR6rX1Nl9z0YMd0DcmBAvWncLPB0ofp/PRmI7IyNNYBZC4iEAcMZsZ8LU722DeWttdG40V/nretq8vYQGeuGZjNrOSHuxmvf5Ry1A/nJ43HJ5KuUW3zv8Oao6PtpxDtyb1TeOcJEgW4QMwBKOXilahNyqtG5ZRySnTh7cNxfoT1mMB/TyV8LOzBpI5WxX+s2+OwML1p3FPR9strAqZZNH909/BDH8Wx7LTuvFIzyh8s/Mi7mwfbncfVyjU6fHX8RREBXm7rQxUfgwglbBt2zYAwNChQ60eGzZsGABg+/aq+YPvDEevZri7CHWIgAe08EJB0bSYyqLKSvEAOsOkhdbbzP8PO9sFDKvrCkhQFS2kpYAOgVI2WkpXoYAOcujgL+VChUJkwxt5wgO34AcNFCgUCvhKecgXHiiEEkFSJhTQIxcqREnXMVT2L1rJEuEBDQIlQ7eI6yIQ10QQPFEIXykPHtAiU/ggC17wRR68pQJkCS8ki2BcFg3hhQLIIKCUtDivD0caApAvlGggZSBEykQgsuEhaSCHHomiAdJEAFJEPVwQhulA20sXTJXqQCkLnkUz5uQIFXLhiRx4Qg8JcdIFQwiQ8pEPD3hAiwZSRpWdWWfpLivbLFC95NYVt0bSTTSSDIPlW8iS7D73or4hwqR0aKDAJdEQ2/VxCJPSESNdRYbwRaCUDQ9o4QENPCQtTumjoEIheshOmirouUJVVJEPhBreSBQN0VRKxi3hh/2iJZTQor10AaPlO3BINMcZfQRCpExcF4GIlq7jmqgPPWRQSRqc0kciVQQgSMpCuJQGH+Rjg74rTuijECypES6loaGUgd6yYwiW1PBDHoKkTHysvRvb9XGIk84jFyrcFAG4IhqggZSBS0WfNfNxDKX5VjscOfBEtHQdl0RD5MNyrZZvdSPwrW6E6fu3tQ9hla4f/la9hBsiENM0T8E8OKQhAJ/qRlodZ4e+PVbreiFcuokF2ocAAD/pBqCDdB75UGKtvofF/l+M64xhbUPx3JAYPPn9AXSMrIfJ/Zoip1CHjNxCfPXPBXy/xzBI/KXhLfHOevuDgJVyCRqdZSU4pqEvJEnCn8/2xS8HrkKr02Ox2biy6CAf1PfxwLv3xZUaQObd3Q7/iQvHLzb2M590IcRPhcf6NLEbQIwTcwZ4KxFR3wuJ6YaWp34tQvDckBg8Xc6uVCUZp7s2ry9PH9oS04e2RGpWgWnR17LWp1c/3RtHrmagcT0vvL/xrNWaMkb6onxn7Nr1SM8odIoKLPPsb5um9cPJa1mIaeCLt9adwgtDW1rt46GQ2V34FgAm92+KT7YWj48pa2Sw17oRFuCFo3OGwkNuPRB+cKsG2Hz6RhmPUDlPDWiG8EAv+KlYpa1JeLYqISHB0Ic3JibG6rHQ0FD4+vqa9rGloKAABQXFsxep1VUz/aY9n8Weg/pWGjYeT4IMesiL/smghwwCMsnsawizr4v3VUALBfRQSDpIENAIw1zlnlJh0V1yJfKFByQIeEsF8EUePKApuk9oqD7LimZ3kYqOI0GYyiEvUa4CeKAASkhFFXoPaOABDeSSYWVUPWQoEEoIwDQ9orGS7ikZFnZTFC2OpYMMGiiQKzzhJRUgADnIhQoF8IAHNFBABzW8oRGGu9DZ8IIEAX/kwlfKgx4yaItKLCuKDGrhDQ9o4C0VQAMFFNDBG/nwRoHFLDa1QUMpAw1LVOytKvqSYUExK2Vb087p1MILCaIx5NADEAgoGjxcACWy4QUByTAVqFAhG94IkW5BCR1uiEDTasLnRDjqIRu+Uh6uiAbwRgHqSVk4pY9EftEnJw8eSCuqWNeHGrlQ4ZbwgxZyeECLdrKLUEKHm8IPW/UdUQAl4qTzuAVf3BD1kA8PREg3kC28ECGlop6UhR369jilj0Q/+VEUCkOAPS/CcUjfHP3kR6ETMmTDC11lZ5AhfHBehEMNH1wX9XBBhKHs1Q1rPkVdpnyQj1QElPpaKzEYs7UTLGY1Kq9UUQ+nhKH76grdYJv7XBENLb5PF4bQUTJAlOYmDIPrTwvru+b2JIjGiM5fYbHNeCfdHj1keE4zxWKbDnKr2aCeGtAMngo5hrUNBQAo5DIsHt/V9HiAlwwBXkq8ekcbtG8ciIEtGyDET2U3gAT7qjC2RyQ+3GT598hYcWzewBczR7RCvkYHhVyGv0+mIDzQC7GNyjHpQFFwuCsuHPHn0tCnebCpe4/OLICUNvG/ebeetf/taxozZfxZhPipkKIuvQWkNLY+weaho6y/LfV8PDCgpWEszWdjO9vdz9gC8s34LriRVYDwQC9cvFn6wpFGzRv4oXkDwwJ7yx7rXubnmZNKvKuyhixH3atUCtsXc5WyMmuIlM+4HlEID3TeVMvkGgwglZCZaVhgLCDA9kXa39/ftI8tCxYswNy5c6ukbGXR5vRHQMZl9Kh4HaF6Kmc9y3yl2gDkAihuTvdFfrlez7jybHVRKOQ4LSKRC09ohQy58EQuVPBFHnylfPgjFwpooSpqTVBCC5WkQbowtIx4owBZ8MJWXUfs1rdBNjxxU/hDQEKkdAOhUjpy4Ikc4QUN5AiS1FBBg2x4IU+o4C/lIFK6gWgpBVnCG5qixbSayq4hANnwQQFuINC0mm5h0eNhUjqCpUw0k64hQrqBHHjilD4Sh/QxuIb6uCX8kAsVvFEAb+TDR8qHD/KhggZnRATShR9y4Qlf5EIOgbOiEQrggVyoUNGKuAx6CKDMC2uV13IMKdN+B7TWdz5/0fU3ff23vovTymRkXEchtxzrMFQmfFTGwlGx2HYm1e6q9eUR4KW0WGSyfeMAJN3KM61SX1KnqHo4PW84Xl193GZLAAD0ahZkWmzx/x6Iw/M/FvfBbxbig0UPdkS7Mlb8PZVy3N8lotT9ZJJlRfGpAc0Q4KVEkK9lUPNUyjFzRCvMHNGq5EvYXUemc1Q9HLh8C0OLAoKHQob/e6ADAGDO7yeQVaBFn5hgpKjzkZ5TiB5N6zssq3lXpQAvJT592LJS/78xHTHr16OYMtD6xl95yGxUql0xkFohl5kqy/d0bISluy6hb0xIlR3P2OICWAcOR2/XvKtfdZ/hiuPfayYGEDeaNWsWpk2bZvperVYjIqL0PyZOEzMU+ZnXseFUGnRF7Rs6ISv6Wipqc7D/fy3k0Aq54f+QQwBQwtBNIx8e0EEGTxRCBQ0EJORBhWx4olAooS9q/xCQLL42/DN0JzL8kxv+Lwyvr5I08EQhBCQUQoFCKFEoFCgs6mRk6OuvMb2SzKzzUh48IIOABnJkwRsSBFTQwBd5yIUnMoUPvKV8UxcpHWQIgKHfvhI6eEuGu25q4Y2cotYQeVHHJx1kkCAQIOWgUCiRA08oimbyyYUKuUKFPKiQCxW0kEMJXdE7hen/RsU/heKqsvm+JbcZO2wZf/aFUKIQCmigqORKto5lCD8cFc0sN5a8u2nvbmflxgu7RVX+LG0Z0y2iEoPVa75nB8eUeeX2pY92w8XUbIzuEgFflQJ3d2yEwN9PYuW+sq0ib8++Vwaj5avrARhmAvp9Sh+cuqbG59vPW4whMJJJEjyVcrwzqr1FAPl2Ylc0CvRCi4aGO9iX0nLg7SG3Wvl88/QBlSqvUbCvYfxEWrYhKA1u3RAPdY/Est2XMKh1A8wYbh0wShMWUBw+mzfwxbmiqZN/mtwTeRodfG10f/nrub7YeiYV93VujHE9ovD7kWSM7W5o1fr04U54evlBvDisJYa0bohhH+4AUHoLSZNgH/zwRM9yl78kW2HDvJ7t7ImyS44BAQBvDwU2Pt/fxt7O892j3UwLc/ZsFuSwhc6c+Y/HvwxjUkoq7Tw2DfbBhbSytwA54q1kVbYm4lmrBGPLh71WDrVajXr17C9Sp1KpoFKVr6uAU93xHtRZ+Zh6dLP7ylBeVb18gqPXL8uxy1g+DX/16oyvHumCSd85Xl27pKmDY/D8bS3qZACp563EtxO7oW24P2Ia+GLuHydMFWl72oX7o3+L4rvIKoUcC+6NxZX0HMSfu4n/xIWXacIN89YJ4+t8/1h3vP/3GSy4NxYA0DrMH4se7IiWoX54Z/0Z/DGlD8Z/uw/pOYXo0DgQgOHuuvmUq74qhSl8ADDN3BTTsHgtkT2zbHczq4hgXxU+G9sZ0346jJgGvnj1jtbwUSkQP3NQuRYANWdeYTfv8y+XSTbDBwA0rueNcT0MgSOivrfF+IjbY8NszhblKja7YFWim2Jp3Ln0z55Zg3ExLQc9mxUvtjmyQ3ip73f+Pe3wx5FkTO5vPT1zaWaOaOWwFXLe3e3w8OLyL75ri3FWLqpZXHtLr5Yxjv2wNc4jJSUF2dnZNseHEFHVuq9zY2yaVvpCaJWZwrKsVAoZPM36Q9uq/30zoQuamE0nauzvXtVdCzpH1cP/xnR06muWNm6g5MxCxm31fTzg76nA/leGoENEIJRyGf4TF263VWDF48X94BUy23/KPn24Mz64P84UHowm9W2C+fdYT9e5YlIPfF7Uj/+O2DAAQJ+YYPz2dG+0CrUc1P70gOa49PYdiG0cgF0zB+Hw67dZVITMp1y1dxrbNw7E52M7Ye1/+yA0oOzd20ojhKGl4Lene+Od0XHwKQoIFQ0fgGXrQG3o8tInJhgAMLRNQ5uPl3YHv7yEs1+wHEIDPC3CB1B6tyoJEh7uHoUfnuhZplm5zM35TxtEBTlehd7WdYDqFn4CKqF/f0PT6caNG60e27Bhg8U+RK7w8UPOrUwChrvx5eVZwQGIm6aV/vvy5t2lz/Puo1KgeQM/3FaicuGnUuCzhzuZvg908p2zpiHWf3R1eoHxvaJN3z9kY3rQyPo+2PBccWBq4G9oGTUvqyN+KgVmjWiFjc9bh65mNspkNLxtKO6KC0d9n7JPqVxaxeGP//bB/lfsj2fZ97L1nf6Fo2Kxa+Yg7H91CBQlZtQJsDNVqPl+crntylSAlxL3dmoMX5UCTYsC3pfjOuOVO9pgVKfGuLtDuNVzhrcLRfzMQeUKZp5KOQLtTBsLGAZO2zO8XViZx3yUpmHR52ZAK+ePKTBvAekUab9lv6aYd3c7vDC0BV4abjamyqILlnMDgxsbQGwSJZYUuq9zY7wzur1Ljt0k2MdiYgJzHSMDLVozqfZiAKmEwYMHo2nTplixYgUOHz5s2p6ZmYm33noLHh4eeOSRR9xXQKpznHXhDvUvvhs7uHUDfPKQoSIcZ6fFIH6m5QJoH4/p5PDxsT0i8UQ/62b95g188Z8460ohAOyeNQibp/fH2B5RNgPOC0OLVxKeUFTh/+qRLjg2ZygWP9IFkfW9seTRbritTUMMbdMQLw5r6dRuET8+0QPrp/bD/leG4Mjs4qm5tXqB54cUl23GiFbw8bCcOUYmGSr2v0/pjZWTeiC4aHDw8HZhVu/1xWEtsWRiV4tt214cgMn9m6FFQz90i7Yc5Dvv7nZ43WxqzlahxV2BwgIN53nJxK5oadZFyJyixJ3Ss2+OwKIHO+Cte2Lx30HNLQYVG+uojirctgLM3R0awVMptzujTqfIQNPX/VuE4OybIyzuwpcsoy2rp/TG6md6m0Kpp1KODx/siL5Fd8J7md0hbhTo5ZSBt99O7Ir374sr9W6ws/w+pQ/eGdXe4vPmLOY/76cGNMObd7fD3zYCb0UZf2en21gRvCr4eyoxZVCMaWYpwPI9Or8FxLmvV1klW2Re+08biwkNKtPK5eitPtw9EksndrOYmvmflwaavm4T5o+lj3ar+MGpxmBH9EpQKBRYvHgxhg0bhn79+uHBBx+En58fVq1ahcuXL+O9995DdHS0u4vpUFX2ea3rNk/vj5mrjmL/pVtlfs4dsWH481jFVxF21FS+cFQsZqyyXE3304c7YXDrBqaBtkaP9omGv6cSyRl5aN84EO0bB6JT1CA09PPEtrM3sPCvM3h6YDNM/eEwbo8NRaMSUyD6ehZfWt67Lw6NAr2w9+XBOJ+ajV7Ngk2PdW9SH48tNYyPmP0fQyU51N+68rrx+X4ICyg+xq9P9cYHf5/BplPF88xPGRSDZwY2R55GB2+P4uP7eSoxpE1DDDFrDfnyEcNMUXsuFPdBHtsjEt/vuYJvJnTBo0ssx2yoFIaZa+7t2Ajv/33Wqnyh/p7o3tRQgS1Z+W4a4gNPpRz/vjoEer2Av6cSk/o1tZgS1VjZbV80hsCch1yGfE3xFM7GfvSNAr2QlGFYI8E8SD3aJxr7LhXPxtajSRCahfjijaJ1F35+sic2nbqOw1cyilZyNhx3w/P9TINVzRnufFtWKUZ2sFzo7ExKFuavO4VpZag8eshlVj/j0roGmT8e7GtYndr8GWUJC/6eSptd7j4a0xF/HL2G/7QPK/U1ymtg0fSsrtLQ3xP3d62aiUwkScI3E7ogu0CH8EAvjC0a2+Esr9/ZBuN6RplaqtyhKv8a2hqE7k4lb744873burET4KXEXXHhmFfUgu2tKr7ZEFHfGz880QOrDyVZLfRItRcDSCUNHDgQO3fuxOzZs/Hjjz9Co9EgNjYWCxcuxAMPPODu4pWqNvTlLck4LaQrvDisJRb/cwG3cjVWjzUL8UXzBn6lBhDzlX1vr0QAWfaY/btGd7QPs6jAG0XU87Z51/nxPk2tpqk0Pn9Qq4YY1MpQmR/SuiG8Payfb94VaUhrQyWsob8nGvpb9nMf3Lo4FPRpbggm/x0cgwOXb+HglQwAwIh2oRYDeAFD//rF47sibu5Gi2lSJUmyCB/lMW9kOzw/pIXV1KQA8O59cbgrLhwnk9UWAaRvTDD+SUjD2B7W3ao2TeuHG+oCNAsxDDQONnvd8BLnwtYxTeW6ux2m/nDYavs3E7qaZg4yP1UDSlR6ZTIJDf09MapTY3goJPh5KnFPx8a4p2Njq9e8p2Mj/HbIciFD82tEu0a2F/drGeqH70rctVz3bF+cT81GvxYh2H42Fc+uPATA0HVqUKuGeP3ONqZQVBrzT+JzQ2KsylWZVZgDvT1MA6XJMePvfVWQySTT70p14Ky40K6RP44nqXF3B9urk7tLiR5YppD/UPdIrNh7BdNtLHRY5te2EbYOvnabxY2CYF8V/nlpoGl8Uo+mQejRNMjqeVR7MYA4Qbdu3fDXX3+5uxg1Quswf5y65pwFFxfcG4vVh5Kw96Ll2hu9mwdj7l1tse7YNXy67bydZ1fc/Hva4ZXfjgMAnurfDFn5Wny+/Tz6twjB9KEtcNfH8WZ72/8z9mDXCAxs1QCdIuuZVt9taHb3v3E9L4T4qdAkyAe/HrK/uvXpecOhUsgc3kWe1Lcp4hoHYHL/pmgd6o/nfzpsGKhaYnxAo0AvfD2hi8058m3xsTH7zZhuEWjg54mfn+yJrHyNw77xgGEthNSsAsQUhQx/TyV+fbq36W68oxuHlb2raP50SZJMQcBYOb49NhQDWjYw3R1vE+6PN+9uh1dXH8crt7fG2B5ROHo1A11KdHsCLBcOK+neTo3wTfxFnE7JwppnetudRQiA3UpZy1A/PNanCXR6YRFgPJVy7H9lCCZ99y8eNLsb/v79cfZ/EEU+uD8O8+9ph9dWn8Cqg4ZpZC0q+nYGe9vSJtzfNBD7rrhwhAV4ws+sZeyRnlFQKWXlrnRE1PcuKldxwcr6eSVyxLhKOmCYjc0Zlj/eA/svpqN/y+o1rqHktdP4G/TmyHaY1LcpooO8K/zati7Ltlopjb/LlXFvp+oV7KjsGEDIpZw5E0jTYB/8OLmnzW4j7RoFoF2jAMQ2CsBTyw867ZgALFZclckkPDckBnGNA9C3RQh8VQqseqonGgUaLqzmbzcuIhBHEjNM33soZKbZjr4c1xkX0nIsKrKxjQJMK+uGBXoiPafQ5rSs5n80zZkvQKXTC0iShFkjWgMAbmvTEIVavaniu3vWIGTna00hoDJahxkqnV1tVMptsXUn3lyrMPtlquzHyV6AebRPE9zRPgwN/FRWwW5sjyiL7ifdK3DXTiGXYf1zZes/7+jm/mtmYzvMhfipsPqZ3uUul7EFqbXZz1yChDdGtsWHmxKw4J5YB892rOTnQSGX4eHuZWt5sPUzCPZx4xTmVCsp5TJsfWEAdHp9hVtSSwrwUlp0/6xOzK9txi9lMsliRr6KMA7gnzWiFRb8dRpv31vx60ZpnuzfrPSdqFriIPQ6zpX3DVc/09tmhc/e4NcmwT54s2imElvzxZecLcfIfBDuiNgwvH9f6Xd+f326V6n7AMCiBzugb/NgDGndwNTf3VMpx4jYMFNlvnNUfdOUmuZvd02JCqF55Wto21DThfS5ITHw91RY9IV9cVgrLLi3Pbo1Kb1SP65HFJqF+OCLscUrCJf8ufuoFKhnNvNRWICXU8IHAKvuUhX1+5TeeHZwjMM/MMa7+q/e0bpCx7DVcmHU0N+zUtOWOosrVmcuyfxupUwCHukZjQOvDrGYWtaVbI1Viwzyxruj22PxI85f+Z3qribBPnZbLmuTkt0WnTke1DgGZHL/ZjgyeygetDHzHxFbQMhlOkQE2rxj3TrMD2euZ1ltlwCHAx2VJabenDeyLdqE+6NzlGWl8p6OjTD95yOm7/s0D8bOc5YrELcJ88drd7bBvFL6pA9vFwqFXIbF47s63M/I0VSOLUNt/5F7bkgL/HdQjM0m6+8e7YZT19TIytfi8aX/4o2Rba32mWdjmlovO60kzrT2v31wPjXbaf14jYPfHRnWNhSn5w232wpUmqcHNEOAlxIDq1n3CHPuCCD3d4nA3D8MvwvGMSXVIYyVdF+XqhlwTVTbyaSSY0Cc99rmN7zsTaNdHiF+KqRmFVT6dah6YQCp41xdqbDVAmI+w4+50opWr2hswYbn+uHUNbVhZVcbT5LJJIuVkJc91g0nr6mxct8VfL/nimEfScJ/2ofZDCCbp/fH4Pe3A6jcYNfysDerj6dSjo5Fc/CffGOY3VYgo7l3tUVSRh7auuDOtbHbm6tVNHwYn/tYnyZOLI3zuWN4g49Kgd2zBuGPI8l4oGs1uHtZ/bIPUY1WFTc26vt4ID2n0Omzv/3z0kC0em196TtSjcIAQi5hvNbZagHJ0+hsPsfeBfK/g5ojxE9lGsDWMtTPbmuC0eBWDfDHkWT4eyogSRLahgdgQq8mZgHE/toFQWZdlcp70S75fr+d2BXTfjyMd0eX3i2sNKWFDwAWC+BRzWT+kSvLNLfOEhbghSf6VY/+1cwfRM5VcuIGZ+SRf14aiNSsAkQ7YSplpVyCRmf4A1ryJlNDfxWuq9kiUtMxgJBLGLsAmbeABPt6IC27EANaGqbpBIC7O4Rj9WFDS0XJyv4vT/bEjawC3B5b/vn6R3YIRz0fD7QJK24J8Pcq/vjLJAmSJGFMt0j8duiqRatMoLcHfniiBzwUsnLPtlMybw1s2QAHX7utWnZnoerJ/LNyfx3tcsRfFyLnKvmnzBljQHxUCpszI1ZEgJcH0rJth4yVk3pgUFGvBKq5GEDqOFf/XTefWWTj8/2RcD3LouVh/j2xpgBSskXC0YDh0kiSZLVKeAM/Tyx6sAO8lHJTsFhwbyzeGNkWrV9bD63ZakoVHddgq8WH4YPKwx1jQIiodvMvsWhtdbvM2CtPoLcSQWYz4FWzYlM5cBasOs7VF51Is3m/6/t4oHvTIItWEblMwrcTuqJ38yC8Parqpu4zGtmhEYYWTYVrpJTLTGMmXDF4m8gR8zuV1a2S4CrOnKGHqC57+95YdIuuj/8OirG4ntSU3zDJ9B+q6dgCQi7h6Hph1tAAhUzCwFYNMLCVcwexlddnYzvj463nMLGSYyg6RASYFnQjqgi2gNTd4EXkbA92i7Q5LW5NapmvQUUlBxhAqFJ8POTIKbQ9iLysdHrLFpDqIDzQC29VYtE1ozFFF3pnTU1LdU9NvEtJRNWfectidbu2vDi0JV5adRRjulmOe6tJQYkcYwCp47w8KtfFaNGDHfH4d/+Wup+jBaubhfgiyMcDgd7KWndxUchlGNcz2t3FoBqMLSC840lU1arb79j9XSPQOyYY4UWL+hpJqH5hiSqGAaSOUykqF0D8PCv/EfJQyLB71uBq0/pBVJ3I2ATCMSBEVcDi0lLdEgiARoFeNrdXx7JS+TGAUKU460LgoeB8CES28G8tfwZEZFDyWsBrQ83FWh+5BK8RRBVj2QDC3yQico6aejUxL7etqe6pZmAAoUop7e7DgJaGtTfG9ohyQWmIah+OAWGXCyIyktjqUUuwCxZVSmnXgU8f7oQDl29xFiiiCmIAISKyjZfHmosBhKqUt4cCfWOKVyCPCvJ2sDcRlWQ+N4Ooo/0NWMcgqgI18BdLktgVtbZgAKFKKe/dh/8OjkF2gRZ3tA+rmgIR1TLm3Y/qZvzgXU4iKsbrQe3AAEKVVL4rga9KgflOWOCPqK4w/2Orr6MtIETkfDWxJaHmlZjs4SB0IqJqjDO+APd0bAQAaNHQ180lISIiZ2ALCFWKo6bQH57o4bqCENVS7IIF3BUXjuggHzRvwABC5Cwhfip3F6FC2AWrdmAAoUpxdB3gzFdElcdB6IYQFhcR6O5iENUqzRv44u17YxHsWzODiAHTSE3FAEJONbBlCLaeSUVsowB3F4WoVjDvp11H8wcRVZEHu0W6uwjlwlmwag8GEKoUuczyQvDhAx3x26GruDMu3E0lIqpdJIsWEPeVg4ioOmAXrNqBAYQqrFezILQLt2zpCPBWYkLvJm4qEVHt4yEvniskyNfDjSUhInIvtn7UHgwgVC4dIwNx6EoGAGDFJA4yJ6pqMpmEnTMGQqsT8FHxkk1EdRsjSO3Av2ZULnp2ASFyucb1vN1dBCIit5Mky5kBqebiOiBULrZm4fl8bCf4qhT4ZkIXN5SIiIiI6iJmkZqLLSBULrZWYh7eLgxD24RCJuOVgIiIiKoGaxm1BwMIlYu9WXgYPoiIiKiqyWUShrZpiMw8DZoE+bi7OFRBDCBULjoOAiEiIiI3MI7/+PIRdvmu6TgGhMqF6xAQERERUWUwgFC52BoDQkRERERUVgwgVC6MH0RERERUGQwgVC5sASEiIiKiymAAIfzwRNlXNGf+ICIiIqLKYAAh9GgaVOZ92QJCRERE7sCFB2sPBhAqF+YPIiIiIqoMBhAqF64DQkRERO7AFpDagwGEykWwCYSIiIiIKoEBhMrlkV7RAIC+McHuLQgRERHVKRLYBFJbMIBU0Jw5cyBJkt1/ly5dcncRq8QTfZti1VM98dUjXdxdFCIiIiKqgRTuLkBNN378eERHR1ttDwwMdHlZXEEmk9A5qr67i0FERER1DMeA1B4MIJU0YcIEDBgwwN3FICIiIiKqEdgFi4iIiIiqPTaA1B5sAamkHTt2YO/evZDJZIiJicGQIUPg6+vr7mIREREREVVLDCCVNHv2bIvvAwMDsWjRIjzyyCOlPregoAAFBQWm79VqtdPLR0RERFQbSBwEUmuwC1YFxcXF4ZtvvsGFCxeQl5eHixcv4qOPPoIkSZgwYQJ+//33Ul9jwYIFCAgIMP2LiIhwQcmJiIiIiNxHEnV4Zbnp06dbtECUZurUqYiJiXG4z+bNm3HbbbehXbt2OHr0qMN9bbWAREREIDMzE/7+/mUulzNEz/yzTPtdevuOKi4JERERUTFjHaVJsA+2vjDAvYWBob4WEBDglvpabVGnu2B98cUXyMnJKfP+o0ePLjWADB48GM2aNcOxY8egVqsdfjBVKhVUKlWZj09EREREVNPV6QCSnZ1dJa8bHByMc+fOITc3l8mYiIiIyAk4AqT24BgQJ8vJycGJEyfg4+OD4OBgdxeHiIiIiKhaYQCpgKysLJw9e9Zqe15eHiZNmoSsrCzcf//9UCjqdAMTERERkfOwCaTWYA25Am7evIlWrVqha9euaN26NUJDQ3H9+nVs2rQJV69eRWxsLN599113F5OIiIiIqNphAKmA+vXr4+mnn8a+ffuwbt063Lp1C15eXmjdujWeffZZTJkyBV5eXu4uJhEREVGtwQaQ2oMBpAL8/f3x8ccfu7sYREREREQ1DseAEBEREVG1x5XQaw8GECIiIiIichkGECIiIiKq9sIDOb62tmAAISIiIqJqa8Wk7hjapiEWjop1d1HISTgInYiIiIiqrV7NgtGrGRd3rk0YQKhM7u3YCC/f0drdxSAiIiKiGo4BhBx6/744bDubigWjYqFSyN1dHCIiIiKq4RhAyKFRnRtjVOfG7i4GEREREdUSHIROREREREQuwwBCREREREQuwwBCREREREQuwwBCREREREQuwwBCREREREQuwwBCREREREQuwwBCREREREQuwwBCREREREQuwwBCREREREQuwwBCREREREQuwwBCVgK8lO4uAhERERHVUgwgZGXFpO7o3qQ+Vj3Vy91FISIiIqJaRuHuAlD10zY8AD9O7unuYhARERFRLcQWECIiIiIichkGECIiIiIichkGECIiIiIichkGECIiIiIichkGECIiIiIichkGECIiIiIichkGECIiIiIichkGECIiIiIichkGECIiIiIichkGECIiIiIichkGECIiIiIichkGECIiIiIichkGECIiIiIichkGECIiIiIichkGECIiIiIichkGECIiIiIichkGECIiIiIichkGECIiIiIichkGECIiIiIichkGkCKHDx/Gyy+/jGHDhiEkJASSJGHAgAGlPm/58uXo1q0bfHx8UK9ePdx55504ePBg1ReYiIiIiKgGYgApsnr1aixYsADbtm1DaGhomZ4zf/58jB07Fjdu3MCTTz6J++67Dzt27ECvXr0QHx9fxSUmIiIiIqp5FO4uQHVx33334a677kJsbCxu3ryJsLAwh/snJCRgzpw5aNGiBfbt24eAgAAAwNNPP40ePXpg0qRJOH78OGQyZjwiIiIiIiPWjou0bdsWnTp1glKpLNP+3377LbRaLV555RVT+ACADh06YMyYMTh16hR27txZVcUlIiIiIqqRGEAqaNu2bQCAoUOHWj02bNgwAMD27dtdWSQiIiIiomqPAaSCEhIS4Ovra3O8SExMjGkfIiIiIiIqxjEgFZSZmYkGDRrYfMzf39+0jyMFBQUoKCgwfa9Wq51XQCIiIiKiaqhWBZDp06dbVOhLM3XqVFNrhTssWLAAc+fOddvxiYiIiIhcrVYFkC+++AI5OTll3n/06NEVDiABAQF2WziMLRnmg9NtmTVrFqZNm2bxvIiIiAqVh4iIiIioJqhVASQ7O9tlx4qJicHu3buRkpJiNQ7EOPajtHCjUqmgUqmqrIxERERERNUNB6FXUP/+/QEAGzdutHpsw4YNFvsQEREREZEBA0gFTZw4EQqFAvPnz7foinX48GGsXLkSrVu3Rp8+fdxYQiIiIiKi6qdWdcGqjNOnT+Ptt98GAOTl5Zm2TZgwwbTPkiVLTF+3aNECc+bMwauvvoq4uDiMGjUKWVlZ+OGHHwAAX331FVdBJyIiIiIqQRJCCHcXojrYtm0bBg4c6HAfWz+q5cuX48MPP8SJEyfg4eGB3r17Y968eejUqVO5y6BWq02D241T+bpK9Mw/TV9fevsOlx6biIiIqKZwZ32ttmALSJEBAwbYDBilefjhh/Hwww9XQYmIiIiIiGof9hEiIiIiIiKXYQAhIiIiIiKXYQAhIiIiIiKXYQAhIiIiIiKXYQAhIiIiIiKXYQAhIiIiIiKXYQAhIiIiIiKXYQAhIiIiIiKXYQAhIiIiIiKXYQAhAMDnYzvBz1OBpY92c3dRiIiIiKgWU7i7AFQ9DG8XhqFtQiGTSe4uChERERHVYmwBIROGDyIiIiKqagwgRERERETkMgwgRERERETkMgwgRERERETkMgwgRERERETkMgwgRERERETkMgwgRERERETkMgwgRERERETkMgwgRERERETkMgwgRERERETkMgwgRERERETkMgp3F4CKCSEAAGq12s0lISIiIiJbjPU0Y72Nyo8BpBrJysoCAERERLi5JERERETkSFZWFgICAtxdjBpJEoxv1YZer0dycjL8/PwgSVKVH0+tViMiIgKJiYnw9/ev8uORe/A81w08z3UDz3PdwPNcvQkhkJWVhfDwcMhkHM1QEWwBqUZkMhkaN27s8uP6+/vzAlcH8DzXDTzPdQPPc93A81x9seWjchjbiIiIiIjIZRhAiIiIiIjIZRhA6jCVSoXZs2dDpVK5uyhUhXie6wae57qB57lu4Hmm2o6D0ImIiIiIyGXYAkJERERERC7DAEJERERERC7DAEJERERERC7DAEJERERERC7DAFIH7d+/H7fffjsCAwPh4+ODHj164KeffnJ3sQjA999/j8mTJ6NLly5QqVSQJAlLliyxu79arca0adMQFRUFlUqF6OhovPjii8jOzra5v16vx0cffYTY2Fh4eXkhJCQEY8aMwYULF+weY8OGDejfvz/8/Pzg7++PgQMHYvPmzZV9q3VWUlISPvzwQwwdOhSRkZHw8PBAaGgoRo0ahb1799p8Ds9zzZOfn49p06ahX79+CA8Ph6enJ0JDQ9G7d298++230Gg0Vs/hea49Fi5cCEmSIEkS9uzZY/U4zzXVeYLqlC1btgilUin8/PzEpEmTxLRp00RUVJQAIN577z13F6/OM56L4OBg09fffvutzX2zs7NFhw4dBAAxdOhQMWPGDDF06FABQHTt2lXk5eVZPefxxx8XAETbtm3FSy+9JMaOHSs8PDxE/fr1xdmzZ632X7ZsmQAgQkJCxJQpU8SUKVNESEiIkCRJ/Pzzz85++3XCjBkzBADRrFkz8dhjj4mZM2eKUaNGCblcLmQymfjhhx8s9ud5rplSU1OFp6en6Nevn3j88cfFrFmzxJNPPmn6vR46dKjQ6XSm/Xmea49jx44JlUolfHx8BACxe/dui8d5romEYACpQzQajWjWrJlQqVTi0KFDpu0ZGRmiRYsWwsPDQ1y6dMl9BSTx999/m87BggULHAaQ119/XQAQM2bMsNhurOC+9dZbFtu3bNkiAIh+/fqJgoIC0/Z169aZ/hCaS09PF4GBgSI4OFgkJiaaticmJorg4GARHBws1Gp1Zd5unbRq1Sqxbds2q+07duwQSqVS1KtXT+Tn55u28zzXTDqdzuLnb6TRaMSAAQMEALF27VrTdp7n2qGwsFB06tRJdO/eXYwdO9ZmAOG5JmIAqVM2bNggAIiJEydaPbZkyRIBQMydO9cNJSNbHAUQvV4vwsPDha+vr8jOzrZ4LDs7W/j6+oqmTZtabB8zZowAILZv3271esYK0eXLl03bvvjiC7ufiTlz5ggAYunSpRV8d2SL8S7o/v37hRA8z7XVokWLBADx4YcfCiF4nmuT2bNnC5VKJU6cOCHGjx9vFUB4rokMOAakDtm2bRsAYOjQoVaPDRs2DACwfft2VxaJKighIQHJycno3bs3fHx8LB7z8fFB7969ceHCBSQmJpq2b9u2zfRYSbbOPz8vrqdUKgEACoUCAM9zbaTX67F+/XoAQLt27QDwPNcWBw8exPz58zF79my0adPG5j4810QGDCB1SEJCAgAgJibG6rHQ0FD4+vqa9qHqzdG5NN9u3C8nJwfXrl1DkyZNIJfLS92/tGPY2p8q58qVK9i0aRPCwsIQGxsLgOe5NigsLMScOXMwe/ZsTJkyBW3btsVff/2FiRMnYvDgwQB4nmuDgoICPPLII+jQoQNeeuklu/vxXBMZKNxdAHKdzMxMAEBAQIDNx/39/U37UPVWlnNpvl959y/tObb2p4rTaDQYN24cCgoKsHDhQlNFg+e55issLMTcuXNN30uShBdeeAELFiwwbeN5rvlef/11JCQk4MCBAzaDghHPNZEBW0CIiNxIr9djwoQJ2LFjByZNmoRx48a5u0jkRL6+vhBCQKfTITExEZ988gkWL16MAQMGQK1Wu7t45AS7d+/Ge++9h1dffdXUrY6IHGMAqUOMd0Ps3flQq9V277JQ9VKWc2m+X3n3L+05tvan8tPr9Xj00UexYsUKjB07Fp9//rnF4zzPtYdMJkPjxo3x1FNP4csvv0R8fDzmz58PgOe5JtNqtRg/fjzat2+PmTNnlro/zzWRAQNIHeKo72dKSgqys7Pt9kul6qW0frwl+wD7+PggLCwMFy9ehE6nK3X/0o5RWj9mKp1er8fEiROxdOlSjBkzBkuWLIFMZnlJ5nmunYyDg42DhXmea67s7GwkJCTg8OHD8PDwMC0+KEkSli5dCgDo2bMnJEnC6tWrea6JijCA1CH9+/cHAGzcuNHqsQ0bNljsQ9VbTEwMwsPDER8fj5ycHIvHcnJyEB8fjyZNmiAiIsK0vX///qbHSjKe/379+lnsD/DzUhWM4eO7777DAw88gGXLltkdYMrzXPskJycDKJ71jOe55lKpVHjsscds/jNW8u+66y489thjiI6O5rkmMnL3PMDkOhqNRjRt2tThQoQXL150W/nIUnVYiDAgIICLWTmZTqczrQ9w3333CY1G43B/nuea6cSJEyInJ8dqe05Ojhg+fLgAIObPn2/azvNc+9haB0QInmsiIbgQYZ2zZcsWoVQqhZ+fn5g0aZKYNm2aiIqKEgDEe++95+7i1XlfffWVGD9+vBg/frzo1KmTACB69+5t2vbVV1+Z9s3OzhZxcXGmP0AzZ840LWTXtWtXkZuba/X6jz/+uAAg2rZtK1566SUxbtw44eHhIerXry/OnDljtf+yZcsEABESEiKmTJkipkyZIkJCQoQkSeKnn36q0p9FbTV79mwBQPj6+opXXnlFzJ492+qf+Q0Cnueaafbs2cLPz0+MGDFCPPXUU2LGjBli7NixIigoSAAQffv2tTh3PM+1j70AwnNNxABSJ+3du1cMHz5c+Pv7Cy8vL9GtWzfxww8/uLtYJIr/YNn7N378eIv9MzIyxHPPPSciIiKEUqkUkZGRYvr06Xbvbul0OrFo0SLRtm1boVKpRFBQkHjggQfEuXPn7Jbpr7/+En379hU+Pj7C19dX9O/fX/z999/OfNt1Smnn2FarF89zzbN//34xadIk0bZtWxEYGCgUCoUICgoSAwcOFF988YXNli+e59rFXgARgueaSBJCCKf15yIiIiIiInKAg9CJiIiIiMhlGECIiIiIiMhlGECIiIiIiMhlGECIiIiIiMhlGECIiIiIiMhlGECIiIiIiMhlGECIiIiIiMhlGECIiIiIiMhlGECIiIiIiMhlGECIiIiIiMhlGECIiIiIiMhlGECIiIiIiMhlGECIiIiIiMhlGECIiIiIiMhlGECIiIiIiMhlGECIiIiIiMhlGECIiIiIiMhlGECIiIiIiMhl/h/zpM9rjEkCbwAAAABJRU5ErkJggg==",
|
|
1398
750
|
"text/html": [
|
|
1399
751
|
"\n",
|
|
1400
752
|
" <div style=\"display: inline-block;\">\n",
|
|
1401
753
|
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
|
|
1402
754
|
" Figure\n",
|
|
1403
755
|
" </div>\n",
|
|
1404
|
-
" <img src='' width=800.0/>\n",
|
|
756
|
+
" <img src='' width=800.0/>\n",
|
|
1405
757
|
" </div>\n",
|
|
1406
758
|
" "
|
|
1407
759
|
],
|
|
@@ -1415,35 +767,36 @@
|
|
|
1415
767
|
],
|
|
1416
768
|
"source": [
|
|
1417
769
|
"recs = results.records\n",
|
|
770
|
+
"idx = 0\n",
|
|
1418
771
|
"fig=plt.figure(1, figsize=(8,4), dpi= 100, facecolor='w', edgecolor='k')\n",
|
|
1419
|
-
"fline, = plt.plot(recs[
|
|
1420
|
-
"mline, = plt.plot(recs[
|
|
772
|
+
"fline, = plt.plot(recs[idx].flux, label=f'flux')\n",
|
|
773
|
+
"mline, = plt.plot(recs[idx].model, label=f'model')\n",
|
|
1421
774
|
"plt.legend(handles=[fline,mline])"
|
|
1422
775
|
]
|
|
1423
776
|
},
|
|
1424
|
-
{
|
|
1425
|
-
"cell_type": "code",
|
|
1426
|
-
"execution_count": 21,
|
|
1427
|
-
"metadata": {},
|
|
1428
|
-
"outputs": [],
|
|
1429
|
-
"source": [
|
|
1430
|
-
"import sparcl.gather_2d\n",
|
|
1431
|
-
"ar_dict, grid = sparcl.gather_2d.align_records(results.records)"
|
|
1432
|
-
]
|
|
1433
|
-
},
|
|
1434
777
|
{
|
|
1435
778
|
"cell_type": "markdown",
|
|
1436
779
|
"metadata": {
|
|
1437
780
|
"toc-hr-collapsed": true
|
|
1438
781
|
},
|
|
1439
782
|
"source": [
|
|
1440
|
-
"## Plot
|
|
783
|
+
"## Plot FLUX for all records"
|
|
1441
784
|
]
|
|
1442
785
|
},
|
|
1443
786
|
{
|
|
1444
787
|
"cell_type": "code",
|
|
1445
788
|
"execution_count": 22,
|
|
1446
789
|
"metadata": {},
|
|
790
|
+
"outputs": [],
|
|
791
|
+
"source": [
|
|
792
|
+
"import sparcl.gather_2d\n",
|
|
793
|
+
"ar_dict, grid = sparcl.gather_2d.align_records(results.records)"
|
|
794
|
+
]
|
|
795
|
+
},
|
|
796
|
+
{
|
|
797
|
+
"cell_type": "code",
|
|
798
|
+
"execution_count": 23,
|
|
799
|
+
"metadata": {},
|
|
1447
800
|
"outputs": [
|
|
1448
801
|
{
|
|
1449
802
|
"data": {
|
|
@@ -1451,25 +804,25 @@
|
|
|
1451
804
|
"<Axes: xlabel='Wavelength', ylabel='Flux'>"
|
|
1452
805
|
]
|
|
1453
806
|
},
|
|
1454
|
-
"execution_count":
|
|
807
|
+
"execution_count": 23,
|
|
1455
808
|
"metadata": {},
|
|
1456
809
|
"output_type": "execute_result"
|
|
1457
810
|
},
|
|
1458
811
|
{
|
|
1459
812
|
"data": {
|
|
1460
813
|
"application/vnd.jupyter.widget-view+json": {
|
|
1461
|
-
"model_id": "
|
|
814
|
+
"model_id": "f1a22870f6db48cb8553883f946f6008",
|
|
1462
815
|
"version_major": 2,
|
|
1463
816
|
"version_minor": 0
|
|
1464
817
|
},
|
|
1465
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACgQ0lEQVR4nOzddXzTd+LH8dc3qbsBBVpa3H3IcDYGE+bKzV1uN73Zzd3ld9vdbnIbc7ebMgHGcBjuDoVS2lLqlibf3x+BJqGp0jYteT8fjz3WfPXT0CTvfNQwTdNERERERPyGxdcFEBEREZHmpQAoIiIi4mcUAEVERET8jAKgiIiIiJ9RABQRERHxMwqAIiIiIn5GAVBERETEzygAioiIiPgZBUARERERP6MAKCIiIuJnFABFRERE/IwCoIiIiIifUQAUERER8TMKgCIiIiJ+RgFQRERExM8oAIqIiIj4GQVAERERET+jACgiIiLiZxQARURERPyMAqCIiIiIn1EAFBEREfEzCoAiIiIifkYBUERERMTPKACKiIiI+BkFQBERERE/owAoIiIi4mcUAEVERET8jAKgiIiIiJ9RABQRERHxMwqAIiIiIn5GAVBERETEzygAioiIiPgZBUARERERP6MAKCIiIuJnFABFRERE/IwCoIiIiIifUQAUERER8TMKgCIiIiJ+RgFQRERExM8oAIqIiIj4GQVAERERET+jACgiIiLiZxQARURERPyMAqCIiIiIn1EAFBEREfEzCoAiIiIifkYBUERERMTPKACKiIiI+BkFQBERERE/owAoIiIi4mcUAEVERET8jAKgiIiIiJ9RABQRERHxMwqAIiIiIn5GAVBERETEzygAioiIiPiZAF8XoDVzOBykp6cTGRmJYRi+Lo6IiIjUgWmaFBQU0KFDBywW/6wLUwA8Aunp6SQnJ/u6GCIiItIAaWlpJCUl+boYPqEAeAQiIyMB5x9QVFSUj0sjIiIidZGfn09ycnLl57g/UgA8AoeafaOiohQARUREWhl/7r7lnw3fIiIiIn5MAVBERETEzygAioiIiPgZBUARERERP6MAKCIiIuJnFABFRERE/IwCoIiIiIifUQAUERER8TMKgCIiIiJ+RgFQRERExM8oAIqIiIj4GQVAERERET+jACgiIiI+lf/TT+S8846vi+FXAnxdABEREfFve265FYDwUaMI7t7dx6XxD6oBFBERkRbBnpvr6yL4DQVAERERaRksiiXNRc+0iIiItAyG4esS+A0FQBEREWkhFACbiwKgiIiItAzKf81GAVBERERaBENNwM1GAVBERER8xjRN1wMNAmk2eqZFRETEdxwO18+qAWw2CoAiIiLiO+41gIZiSXPRMy0iIiK+41ED6Lti+BsFQBEREfEZ9z6AGgTSfBQARURExHc0CMQn9EyLiIiI72gQiE8oAIqIiIjvuNcAqhNgs1EAFBEREZ/x6ANoUQBsLgqAIiIi4jtqAvYJBUARERHxHY95ABUAm4sCoIiIiPiMqRpAn1AAFBERkRZCAbC5KACKiIiI72glEJ9QABQRERHfcQ+A0mwUAEVERMRn3KeBwaz+OGlcCoAiIiLiO6ZSny8oAIqIiIjvKAD6hAKgiIiI+I76APqEAqCIiIi0EKoNbC4KgCIiIiJ+RgFQRERExM8oAIqIiEjLoAEhzUYBUERERHxHoc8nFABFRERE/IwCoIiIiLQMqg1sNgqAIiIiIn5GAVBERETEzygAioiIiM94tPqqCbjZKACKiIiI+BkFQBERERE/owAoIiIiLYKpJuBmowAoIiIi4mcUAEVERET8jAKgiIiI+JCafX1BAVBERERaBmXBZtOqA+CePXt46aWXmDx5Mp06dSIoKIjExETOPvtsFi1a5PWc/Px8brvtNlJSUggODiY1NZU77riDwsLCZi69iIiIiG+06gD48ssvc+utt7Jt2zYmT57M7bffzpgxY/jmm28YNWoUn3zyicfxRUVFjB8/nhdffJFevXpx66230rNnT5577jmOO+44SktLffSbiIiIiDSfAF8X4EgMHz6c2bNnM378eI/tf/zxB8cffzzXX389Z5xxBsHBwQA888wzrFixgrvuuounnnqq8vi7776bp59+mhdffJF77rmnWX8HEREROURtwM3FMI/SSXemTJnCzz//zJIlSzjmmGMwTZOkpCTy8/PJyMggPDy88tiioiISExNp27YtW7durfM98vPziY6OJi8vj6ioqKb4NURERI5q5WlpbD1hMgCdv/makJ49m/ye+vxu5U3ANQkMDAQgIMBZybl582bS09MZPXq0R/gDCA8PZ/To0Wzbto20tLRmL6uIiIhIczoqA+CuXbv49ddfad++Pf379wecARCge/fuXs85tP3QcSIiItLMjs5GyRapVfcB9MZms3HxxRdTVlbG008/jdVqBSAvLw+A6Ohor+cdqgI+dJw3ZWVllJWVVT7Oz89vrGKLiIiINJujqgbQ4XBw2WWXMWfOHK6++mouvvjiRr3+k08+SXR0dOV/ycnJjXp9ERERkeZw1ARAh8PBFVdcwYcffshFF13Ef/7zH4/9h2r+qqvhO1SbV10NIcA999xDXl5e5X/qLygiInKE3Jt91QTcbI6KJmCHw8Hll1/Ou+++y7Rp05g+fToWi2e2ra2PX219BAGCg4Mrp5QRERERaa1afQ2ge/g7//zzee+99yr7/bnr3r07HTp0YN68eRQVFXnsKyoqYt68eXTu3FnNuiIiInLUa9UB8FCz77vvvsu5557L+++/7zX8ARiGwVVXXUVhYSGPPvqox75HH32UwsJCrr766uYotoiIiHijJuBm06qbgB955BHeeecdIiIi6NGjB4899liVY8444wwGDRoEwJ133sk333zD008/zfLlyxkyZAjLli3j559/ZtiwYdxyyy3N+wuIiIiI+ECrDoA7duwAoLCwkMcff9zrMampqZUBMDw8nN9//52HHnqIL774glmzZtG+fXtuv/12HnzwQUJDQ5up5CIiIiK+c9QuBdcctJSMiIjIkSnfuZOtU04EoPOXXxDSp0+T31Of3628D6CIiIgcPVQn1XwUAEVERET8jAJgC1bhMNlaXOrrYoiIiMhRRgGwBbt09XZGL9rA5xk5vi6KiIhI01MLcLNRAGzBfstxLk/3xu4sH5dERESkiajfn08oAIqIiIj4GQVAERERaRlUG9hsFABFRERE/IwCoIiIiIifUQAUERERn/Gc/FlNwM1FAVBERETEzygAioiIiPgZBUARERFpGTQKuNkoAIqIiIj4GQVAERER8R1V+vmEAqCIiIiIn1EAbAUMDF8XQUREpOmpD2CzUQAUERER8TMKgCIiIiJ+RgGwFTDVQ1ZERPyBmoCbjQKgiIiI+JBCny8oAIqIiIj4GQVAERERaRFsezJ8XQS/oQAoIiIiLUPuDl+XwG8oAIqIiIjPmHa3PoAWxZLmomdaREREfMa02yt/NrTuQbNRABQRERHfsbv9rADYbBQARURExGdMu8P1wKIE2FwUAFsBrQUsIiJHLfc+gJoIutkoAIqIiIgPKfT5ggKgiIiI+IyWO/UNBUARERHxHY/8py5PzUUBUERERFqEMnu5r4vgNxQARUREpEXYXpbp6yL4DQXAVkD9I0RE5KiljzifUABsoXbuL8KaVgQOvTJERMRP6DOv2QT4ugDi3fhnZxMIYHPAwDBfF0dERKRpuGc+jQFpNqoBbOEsB8p8XQQRERE5yigAioiIiE9VLganFuBmoyZgERER8Zmigjx+7deZ9rkFpCoBNhvVALYCWgtYRESOVmuWz6fCaiEtPhojfyekLfF1kfyCAqCIiIj4TEBAYOXPlh2/wn8ngb3ChyXyDwqAIiIi4jPuAbCSaW/+gvgZBUARERHxmYAA13AEVw9AdX1qagqAIiIi4jOGxep6oDEgzUYBsJXILChl/pZsTFOvDhEROYroc80nFABbAXtFASOe+I2/vLmImRu0ULaIiBxFFAB9QgGwBQsDYh1QVLyt8vXxx+Zsn5ZJRESkqZhefpKmoQDYgv1MFD/kBBNuU2dYERERaTwKgK1ApwIvQ+RFRESawdwDBVy6ehvppeXNd1M1Czc5LQUnIiIi1TpnxVYAyh1pfDSwaxPcQWHPF1QDKCIiIrVKL7M10ZUVAH1BAbCFsscF80C/EPIDQC8OERFpidYVlrCzpOzILuL1I06fe01NTcAtlG1YAj8AYXa9CERExPcO75aXWWbjuCUbAciYOKj5CyRHRDWALdzeUP0TiYhIy7OtgTV/24rLWF1QXPnYY4EDs3LjEZRM6kI1gK2AoTURRUTEx8zDmmUb+sk0atF6AFaP7kubIM1y4Sutvnrp/fff59prr+WYY44hODgYwzCYPn16tcfn5+dz2223kZKSQnBwMKmpqdxxxx0UFhY2X6FFRET83K6SQ9PKOAAoDQrRRNDNqNUHwPvuu4/XX3+dnTt30r59+xqPLSoqYvz48bz44ov06tWLW2+9lZ49e/Lcc89x3HHHUVpa2kylrjvTYmPE4hXct2g6FtPh6+KIiIifOjySNVrblAl723bk5Svu48nh9zbWVaUWrT4Avvnmm+zYsYOsrCyuu+66Go995plnWLFiBXfddRczZszgqaeeYsaMGdx1110sWbKEF198sZlKXXfl4XsZP28Zo/euYVjGel8XR0REpFHY9u4FnE3LSwaMAWBBx9HOneoD2ORafQCcNGkSKSkptR5nmiZvvvkmERER3H///R777r//fiIiInjzzTebqpgNZhoVlT8H25tqDiYREZGaNXYmcxS5ul4ZavJtdq0+ANbV5s2bSU9PZ/To0YSHh3vsCw8PZ/To0Wzbto20tDQfldA7UwNARESkBTKMI/x8Mg/7v9ed0lT8KgACdO/e3ev+Q9sPHSciIiIujR3JTDXz+pTfTAOTl5cHQHR0tNf9UVFRHsd5U1ZWRlmZa96j/Pz8RixhDVQJKCIiLcyRfjQdyn8lhfkQE+l9pzQZv6kBbAxPPvkk0dHRlf8lJyc3w131IhAREd87fB5Aj31HENh2r1vd4HOl4fwmAB6q+auuhu9QbV51NYQA99xzD3l5eZX/NVt/QWVAERFpYdxrAI/kY8pht3sZBKIPvqbmN03AtfXxq62PIEBwcDDBwcGNX7gaqPVXRERaAtMEW3o6Ae3bYxjGEQfAmmoUpen5TQ1g9+7d6dChA/PmzaOoqMhjX1FREfPmzaNz587N1KzbMKbSoIiI+Ig9P48txx1P9r//3eBr1LmpWH0Am5zfBEDDMLjqqqsoLCzk0Ucf9dj36KOPUlhYyNVXX+2j0lXP/SVg6PUgIiI+Ys9zdpXKfvkV5wa3Sok657pGLpM0XKtvAn7zzTeZO3cuAKtXr67cNnv2bADGjBnDVVddBcCdd97JN998w9NPP83y5csZMmQIy5Yt4+eff2bYsGHccsstvvgVREREWryaWqEOBbsSu4OZOfmMi40kMsBa8/XMmiYCVFRsaq0+AM6dO5d33nnHY9u8efOYN29e5eNDATA8PJzff/+dhx56iC+++IJZs2bRvn17br/9dh588EFCQ0Obtex1YqCOgCIi0qI5+/MZ3L1pN59k5DAxLpKPBnatcpzDvaqw8md9yPlCqw+A06dPZ/r06XU+Pjo6mhdffLFFrvsrIiLSUtW0MtWhKPdJRg4As3IKvB+nPoAtht/0AWztvpwwhWUnHINd1eIiItICuI8DPrK8ZrK++8AjLo/UT6uvAfQLhpWXz78MgI2lDt+WRURE/JJ52Nq/DZkGxnSoEqOlUA1gKxA2+tbKn8t9WA4RERFv6hwATVVitBQKgC2cPbDQ10UQERGpoqjMVvlzQyZ1PtQf0NAYEJ9QABQREZF627w2y/WgzmM7NAikpVAAFBER8WOZmTNIS3un1uMO7wNozyyp9708AqAynk8pAIqIiLQgFRUV7NmzB4ejefrLvb/mde7bvJuc/A31Om9fcXblz3XvA+j+c01nKR02NQXAVkbrAYuIHN0++eQT3njjDRYuXNgs93vGuJ8Zxim8l5Ff43GHzwNYUFbgtq9uvB+nsOcLCoCtTGm53ddFEBGRJrR582YAFi1aBIDdXsKmzY9xIHdJk953b3nNkeDwCgiPeQBrufaqnDz+On8le0vd57Ko4Sz1AWxyCoCtzNq9NX9DExGRo8uOnf8hLe1tli27oEnvU+tI3hqG6zpqmd/vzKUb+aLM5LKFq93u5/l/aV4KgC2cXhgCsD+9kNWzd+Owaw4tEX9TXLzN10WohusTylFLjV1RYBAAW0LCq+yzeX1f06dfU9NKICKtwMePLAacX8D7jU/ycWlE5GhkqWGtX6jaB7Cw3NUH0FuEe3dPNm/szuKDAV28Xs/hsB+6sPiAagBbgWKr62czxFr9gXLU27fT+wLrInL0KAoKYUGXvhwICmnye+VnZTb43CKba6GCyhpAt5U+7ty0m83FZTywZY/X8zOKMg6dXHWn+gA2OdUAtgIVgUVAJADhVi0GJyJyNPu5zzD2RcezpbwTjzTxvQoP5NT52MMHgbhHtJq6AJZp/d8WSTWArUBOyo+VPw+I2kXeAQ0EERE5Wu2LjgegKCjYxyWpmeEWAe0NqLE7NOjE8HqqQmNTUwBs4QxgQ8o612PDwca1W31XIPEtNYuISBMpLSurcf/hfQDrqrq3LYejwrlf89v6hAJgK3Cf8azH4wMHDvioJOJrtsyG99cREanKrRavoqLh5zagmTc9/VMAAi1e+jrqy26TUwBshTZu+JqiItUC+iPb7t2+LoKI+FCR3c7KguJallFroNpC3GHzAFpspZU/11Sc6naZB2sAwwKi61I6aWQKgC3c4S8cEzi5eCw7/vuJL4ojIiI+dNqfG5mydBNfZ+Y2yvXcg1tBfv36l0fu21H5s71y9G/VuFdW4X0FK/NgoLQfNonMquAgr9eRxqUA2MpYDQgpSSQ6fWzTfAMUEZEWa22RcyaID3enNfq1Kxw1NwEf3lfPYncd74pwVT+XtmYVeb2e9WAFYvlhs5td3L5djeWQxqEA2AJV1LGPX16JrYlLIiIiLZHNltso1zEd7rVvNVcqHD4IxDBdEcJRwyJF1fUP7PSzBUdZGXbD82SHYagPYDNQAGyB8r//odp97i9A0wTT1NJg/sTUcDkRaVSml5/qxuFxbgOmgTEM9qVnYx7WBGzofa5ZKAC2QBX7syt/XmUMqfa4Azm/8PucwWRnz2yOYomPFJS6anobMtJORFq3kpLSKtsa653AsxLBddUDpWW8tWkH+TZXM6952CAQ063mzt7AAtmKiqoEvpE7T0d9AJtenQPgZ599Vusxdrudu+6664gKJND25pvrdNz2zTdhtxeyctXVTVwi8SW9DYo0rQOffEre99/7uhjVys7OqrKtsd4XKmzeuxKd/dtC/rEnl0sWrancVhYUxLwBQykNDKpyvKPyy2nVklVXO2iYJsVPPIppeEaRgXsn1rH0ciTqHADPP/98rrrqKoqLi73u37JlC8ceeyzPPfdcoxVOqtoW1MHXRZBmpq4wIk3HtncvGQ8+SPrtf/d1UarXhO8BdrtrhK77bdaFOadmWeiWD8uCgrnv+r/z7MXXHNxieD33cNVOA2MYmMuWUhpUNVBK06tzAJwyZQpvvfUWQ4cOZcWKFR77pk+fzpAhQ1i2bBn/+Mc/GruM4mZ3YDu2h6vl3q+4vXuW29XnU6Qx2fMLKn9uTTMrNHRVjsPZHa4AWNcrzhw2mpVZKz22OWp47hy1tA87LF4+01rRv0VrVeck8eOPP/L888+zfft2Ro4cyfPPP09ubi7Tpk3jyiuvJDY2llmzZvHoo482ZXkFWBmlEOCvMgtqXqpJROrJPfW00NBRYa86PUtjldTuce26X/XrLV97PK6pe7KtvJZ5AL0FQGly9XrWb731VhYuXEiXLl2488476dixI59++ilnnXUWK1euZOzYsU1VTr/iXiXvTYX3lbPFD1g16luk6RwWAL/77js+/vjjZqkZNMvLq71PeXl5k923osKtjdeoX61iXJBrvj5HDQkwyFF1EAu44mZReFgNe6Wp1Dt2Dxw4kKlTp2KaJiUlJcTHx/Pwww8TExPTBMXzT+vXr6/lCL0w/FWYUeLrIogcVQz30HPYZHZLly5lw4YNZGRkNGkZ9mz5gPmv9mPXrddXc0TVYOYoa5zWAEcDu5VEpufTL3JY5eOXVz1b7bFtinK87zj43MfkFnhstlkhc8e2BpVL6q5eATAtLY1x48bx/PPPM2jQIO655x5yc3MZNmwY//nPf5qqjH5ny5YtNe5X/PMvJiamacd0FOAwVAMo0qjcA2A1NXCOmmY5bgQbdj1AaX87u0P+qPM5FXl5jXJvh8O9xcn1XFjMmluiBr37p8fxi/fNc/7g5TncktrZ6zX+fvO9bEpOrbL9x4kl5Gdn1nh/OXL1mgZm4MCBzJ8/n5tvvpmFCxfy+OOP88cff5CYmMhf//pXzjzzTHJyqkn6Umennnqqr4sgLUxp6ZcUml9Qil5fIo3KMNiYGMfyTm2bPOjVZnu/ZApK6tjca0JGYRmLDzhrz4psRazNXlvv5uoKtwBocatesFJzAKTQ5lkxeTBIG/Wsorjzb/dUqeBcGd+xkYa4SE3qNQ1MUFAQP/zwAy+88AJBB4dtjxgxgpUrV/KXv/yFb775hoEDBzZZYf2Fde+KGvfP6BjKH208F0/cdc01LXoeKzkyloEGiaNzKY6o2zKBIlJ3W9vFsjc2kvRNGyq3uQepZhsdbJi88fvWqttN2Et7CohwbTIMhixax2krtrIwt5DzvzufC76/gFlps+p1S9Otz7ln/K3ld3aAe3ILKXV+Jlkd9YtueZFREOAteKutq6nVOQCedNJJrFq1iilTplTZFxERwXvvvce7775LQUGBl7OlXjb9WOPuFXFB3DrEs9Ns0Zw/SL/975gOE3tB03UYluZnmjBw0AySO60lvm/jLwDfHJbP+I4P7/87pYWFvi6KiCe3JmC722ALX0wJYwAHCqv27dtnRvJ34xWuM96p3GbHisPiLPvcA4XszN8JwE/bf6rXPd2ngSlzG8hRW4yzhNo9jhq7KsH5Qz2fNsPhwAjwVtuoOsCmVucA+P3339O2bdsaj7nooouqzBEoDZA8osGnZr+5mr2PL6JsV34jFkh8yf39NCSidQaomW+9SuaOtSz6+lNfF0WkWmUV1UxX0ow1gN4S1PaAqn3oDFytQCGWhoclRzWzTtTWlGs/27MPYkRJ4MHz6se0WDCsVbcb9RyRLPXX6JPvpKamNvYl/U/3Exp0miUmhbJteWy1ZDD3h9mUbcvFnq/awNauNU1OW53kCXvpe/Fmyh0a2SctjSto/Lp2b+XPvnrdGV7ua+ClidQtIIVYXR/lxeVV5wx09+v+fEYuXMfiXOeXSc9px8xqfvYioQLvca8hz1vV62yvZ1Oy1F9AXQ+cM2dOnS86bty4BhVGnKr7FlqdN7iehCvbcvd+57fEWUFrIQPavhFIrBlB0lOan7E1M4GVDGIL3RnDYl8Xp0HiezprC4rCFvq4JCLVK6luwuJmCoMGpveRyF62uUfCILcwuG5vza0/F61yfgk7b+VWdowf6DkKuLzug2BeCL2DK6weo0DqfG5dpCsANrk6B8AJEybUuUq2tomMpWYfLdpV52OzSWC2MQmOgRN+W8vQik6V+8rwvsi3tC6mCc8Y9wMQEVbOXxrpuk/+sJ7lu3J5/6oRBAU0z0z8R0NtprR+OR9+iD03lzY33IDpVmNluE207pO/VeNQGby0iR7GffUMW1a250XqoPRgfz9bhavG0FGPPoB/Bg4nuUNR5WPTgLT8hvVRDo5sX7V8G60UhO4GICgliuCUqAZdW6pX5wD4wAMPeA2AeXl5LFu2jDlz5nDKKadwzDHHNGoB/dGO/cUQWftx73EZk3ENGFkauNUjAKoT7dHB/QNqX2C7Go6sn9fmOGsCfl2/j5P7V30Dbgp2H0+zIQ2XWWYjOtBK8FGwbNe+R5xLlkZPnYqj1G2VCtPENE22r8wmtkNo5Wabzc7/tv6PXnG96BHbo8nK1a7dNjZlemkC9hJG7W7bKgqKK3+ub3DdsDcP4g5e5+CqIPkVdkqN0BrOciry+OJocNan50Kn/6vX/QGCgqOrbNueXkFe+nYAoiZ1UgBsAnUOgA899FCN+z///HMuu+wyHn744SMtk9+72bKD/9Cx1uN+Mk5lsukKgIde9sc6BrHAWNE0hZPm5/Z+XmHU+SVbZ7YGrgTQEBWqAWyVdpaUMWLhepJCAll6bF9fF6fROIqK2PLlz64NpsmWPzP5+c21mNgh0bl57qqZPJf/EgCrL13dqGWoEtgcFUBQ5cPF23M4fIIW8PxiuDUr3W17/eQVufqJx0TtodzhoMcfdfsdTbc6hgVDJ3D2qqn8K7l+929TaqfcS2tVOSZhg50DTwMTw+t3UamTRvsqd8455zBx4kTuueeexrqk37Jt3Njgcz9MCeTSians6Nh8b9IOh5qam5L7G7rF23C5VqS+k8RKy/DLfme/st2lrf+17jG/n8PBtux0TMBusWKxO9i1eIf70VgsFewu3Nlk5dl94PDlHT1fI1dMX1JrW05+uWv6tfp+xwo0XfcPCirhgK3uXbjcy7W++0Aiy2Prd3Ng3L4ydgZkV9luBEDc+T2JO78nof0S6n1dqV2j1uX37t2bBQsWNOYl/VL06ac16DwDeKFXCAA/de/eiCWqXmbmDGbN7kX63s+b5X7+yHOR9dbf/CZyuMLCrZQU726em7l3QzCdzas/TTiL/7viPsIKHZRv2eTcZ0CfvrMZPeYjgixNtwZ30WFz59rshYc9dnj94uQevmwV7n0Xq7/Xuv3rqmxrW+w5Mr8+M8qYXqJpQ77k6WuhbzTqp8ny5cuxHAX9Q3wtuFu3Bp13+IsosBmWDVu95gYA1q+/q8bjPPrZSL2Y7h3TW32/Tr3VtwSOoqLaD2om5eU5fPjQlbx1+2VV5qSzldsxHY38N+NwuP4KTRNMWNNrCPaAQOa1d9Y02Yp/o6JsNfHxzlAaHbDB4xJl5dker8sjUVbgHCG/gd58yjTmFz3rsd8wvIcq9y2OOpTFVlrK+d+dX2W71eH5nFvrMf+eeVi5drYJoDwopM7nA1QEVve3qPeKplbntLZr1y6v/23bto0//viDK6+8kpkzZ3L88cc3ZXnlMDUFAjPyTzaNuY1dv38GQNrjd7LjmssxD+uIX7ZtG6at6Zp2ct7/gI2DBpP/Y80rnIh37h+Arf4tsbXn1xbGnpdH7hdfYq/HCkzZr7/BxqHHkD/j59oPPqgp/9mKS7ZTkBZBaU4I+7ZvqdxedKCE12/6na+ebtypgzIzM/nf6acx79jzWfNnPu7966ymSYktE3vZSipKZrOB3rzBdRQ5AiuP2Z8zl7lzR7Bm7S2NU6AM59yDjxqP8Y1xDrkxYzx2t7MZXp9/h+H6+HYPYt762aatW80/Lz2HKNu0KvsqLJ7dSurThGwL86xkePe4+g/UKI3dStduS6pst5uaTaSp1blHeWpqao3TwJimSdeuXXnxxRcbpWBSN7cb/3I9OOyfJ98+l1XFHagI+QdxRYMofO9bAIoXLyZ85EgA8r79lvQ77iR8zBg6vflGk5Rx32OPAbDn9r8TddJJTXKPo5lHJ/FWPzt+q4+wPuMos1O6fj8hveKwhDjfuvfceitF8xdQ8OuvJL/67zpdJ+uFFwDYe999RE2Z7PUY0zQ93u+b8q/uwPqN9I8dR6m9COc0eCbp6ens/HAxEM3enY3b/Prdjz9SGhrK7hQoW1hKR1e2w+JwYDddX4YfNZzvXblhEVC+GYAdO5zPc2bm98A/j7g8ebt3gdvkDeWBbTz2n5cbxF5vNXxuwc1ilHFyWjiB2yP5ZZgDu70UwwjAYnH+ncx+900AtnY92eMSezaux+E25YyNIBz1eI2WBBz5ykQzQkcyIaTqCkH1KYc0TJ0D4CWXXOI1AFosFmJjYxk2bBinn346ISH1q/6VxnN4bWDk5yHMHTKBPWPa07/vKtdxNte8TznvvAtA0dy5AJSsWsXum2+h3V13EXVi1XWfj6yAekE3hHuNbWM2AR9jbCDUKAcGNdo1a9Pa4+uR+OnfL5G5YyvTHnuKzVseJj5+HO3aTa3z+Qe+2ETJqmxCesaScHk/AIrmO/tcF86aVf8CVdNdJ+f9D8h+5RU6vTOdkJ49nfcuy63/9WuRUWbDxCR/2T76xBwLOJsy1/3+Fcx+gs35F1AcNJQQmwmfXAS9pmIOOJ+vMnMZFBlGl7DgBt3X4Tbq3QqYZa4lzSxuwdfiVvN+ICiBO0PimV9oxeGoeaWN+srdt5twtwDovb7Py3un24Cwdh2WMalDFozKYtvCaH6fM4iQkA6MOnam82zDwlenVJ1B9OMH7iCip2vY7k/GVJ6uR5N7iaVxnotvOKvKtnC7upM1tToHwOnTpzdhMaQp7E08lkcX/JfpvceQlT2TAMyDby6uF7jDYiE7OpaEvAM4iotJu/4G7Pv3s+eWW4jasN53hZdKps1tgfpGu6jJ58GP4Kgw+PPFreRfcHaDa2dte/dSviuN8BHD63DfBt3iqLD2918BWLP0eXJKv2Bvxhf1CoAlq5wjJUs3HqjzOenpn5O9/zd6xNxB9gsvE3/55ZX7jGoC4KEa+4wHHiT1k48BmJv2BzCkzvetjc1hMmj+WgC+tVsoTFhBZs+PSSy+jbaz72N9/kmUhtp5flIsPXcVkvrLZmwz/glPTOaG9c6J8jMmDmrQvc0KVw3f+MgANh5wbwI2MLCyctINbIhw/bEGBdvp0CaNc9rAgYwgrGGu620qKsVqQNewhlV+GHaTLFy1ftlxo7wc5G0lEO9fp0ak7sY0beSU7KPE7iDUaiEjKo4tyX28Hm83PP8Ols/cArVPAejUSK9nb7/JeGIa5+JSLUXso0hutOerdmuXU7AFhDL5mJlkZf1EeXeT0gAru66+hozHHmPLL/dz/6RTOPepf7Og32A2DhmKff/+yvMdDgeOw/oLmuXl7LntNnK/+KL+BWziGkB7QQGZzz1H6YYNtR98JPcpLKJ8Z9NNC3E4w+4eABupDu1gLUbOxnAiFs1jz623NfhSWyYex65LL6X4zz+97nfvw2jVIDEqHI03OOv7URM498l/sbVjJ6/712+4i6ysn9nwzhUU/PgTO85zGwRgsZBVnMW+zz5lztSTKFrnHCGaHxnJut69KXKb5G1flmuk6IEF8ynZ65p3riHSZ8+u/LnAsPDKkDTuDf8bWw88xfIDp7NsfzTfxzv7k23sFMGmgjZsL4rj9/R9R3RfALO0jLyQcD455jje6RWM6TYIIsheToZtCD9368CuRNdcrHa3upLyEtfrschuZ9ziDYxetAFbAwerxJTE8wJ3V7vfEVRAbGzVaVJ2Bce5PXL9W5kOk3KCuMr4gP7z1jg3VvOyi0op4PA6vOWz6v7eFhpW976nNfG21vHPXe28uTuLN9KyWJbXcgYtHU30bnwU2drVc66kpV2DmD/ossrHue0Cmdk3laWdEznw/gfY/vY5M7sPAOCjKa6pZ2wBzkk333n3Yz695jqWLFpTORXJvg8/omDWQvbeex+/vf2lx/0qGnlCYVtGBoV//FHnme0zn3mG/W/+l+1nnNmo5Tjc1smT2TrlREqPYL7Gw1UcOEDe//7ndbT04YN2GoXdxj6rlfX2xuuyUbxsmdftDrd/v8rmLYcDcrZ5Pf5oZ8vOarRrPXfxtWTHxPH0JdfXeFx5UdUAUVBRyHGfHcdHn77JknArsx78BwA/T5nM6oEDmB8Xh82Wz4KFF9DOcPXDe+ulJ3jtb1c1uMz5pTbu/tC1pnVecT6fG39hs9GLz82pvDZ0MhnJDuyBVT+eKirq1uRYVFbBz2szKPUyp529xM5HI07gQHgU07sEU2Jz9WP7tHcXjo2vGjbsbh+VpuF6PW7Lcz0v5Q4HlBeDvX7NohUVFewyUqvd33bi814DUvUM9uFcMajQ7qC4tAKbdY3XI3NPTMR2WNcuS2DdX5dLjJH1KFf15hvjqmx7v1tH7tu8h/u37OGrPU0/o4U/qrYJuEuXLg26oGEYbN26tcEFkiNwWOXQnjZFlFW4+gbti46kKK4X5fn7GbY9w+PYtHbOpcAy2g5jXZ/LSNn5E5Fff0LfDZvIXbyMN+5/m3NKrWyet4POU57GtnMeHZ6+l/SD/c6Nchh9xye89NfJHNs1vtoiLt6ew2/rM7i6ZAPhPXsS0rdPtYOLtkyYCEDHF54Hi4XwkSOxREdXe3zJ2rU1Pj0AWS+/gqOwgHZHMGG5Pcf5ZlQ4a3ZlHynTbse2N4OgpNpXcPFm1xVXUrZ+PTHLl9P+wQc99plNUgNoY1Knjly+wc5JjdWOU81lPKfxOPjzt3+D5e/D1JfgmMu9nXZUsNkd/LB6LyO7uF4TebvSCernOubQgIu8778n89nnSPrn//FBXgTto0M5ZUDdluiriKn5784ss5ET24eo/O0E2MsAKHGUAQEYYRbiUnLZsTaCJRv2YITYaRu/k/zyeFYvf5ri4iX0jIvj0Ayv+eHRBNnK6v4kmCbYSiDI2W76yDvL6RXWhUPvTDOikioP/d44HZJhedsT6Zbpmhdw0LXrydkcxaLcfAisYVWI4hyY93/cvHUMv+4oZ9rwTtx3Sm/Cgw9+1DnsOA4rumn17Ev4l+OrXn+n0aXyT3d/QDBvcSvj+Y0XXp4L45zLhVSUFcI/+0NcKlw7B9N0sHXbC8REDyUhYSKmaXLasi0syS9iwYjedD7Yh3GPbX+V+7l7P3oa/VlZ4zEA8xjDB1zG+XxMHK7uO+8/8ytGvPcX5/PGPbTvn+mxzUrLGH0baSujKNtZlix7EHhvwZYjUG0NoMPhwDy4LmJ9/ju8yVDqb8+GqpN11kWpxbM2pyKwhDNTb6l8XBwbhyMsgrLElCrn5kZGUxoYxKYe5wGwM+VEuuTtB8NCTHkRH/25m5K1+0mMdPYDCkwZDUD4r84/obb3BTL9h0d45M3faqyxO++1Bfz52Q9k3Xsv2849j08eX8z/Xlxc4zl7brudPbfcyqaRx5J29TWV2+25ueT/8otrCptqmmAO1aCZpkn2v/5Fzjvvsv+/b9VpbsK8b7+jaPFir/uyXnqJrFeco7DT77qbrZMmkfn8C2w79TRsGRlez6lO2XrnG3bBjz9V2Wdf5/73UI85ukwT00uNSfGyZaxes5pBm6Ix7Z5h3VFWRvHSpdgLj3x0n23PHtLvvsd7Teny9wGwz3rqiO/Tkv33t7X8+OVHXPaCq7a81C2B/JlXRL95a/l4117Sb/87FRkZ7Pjr33js+/X89UPvNaoA9sIysqe7/i4rwg7w+Z+e06XYbHkcIIZFHMv+2B6sGPg31vR11dyZBpyUM5pep++l04S9RA3MY+Gd19Ou/yq+6zmW4n4l7Njo7Lfo/lf32sV38PIV94HdDraDryHTrL6Lx2eX4ni2G468dHDYabtoJTnWOZW7v+45sMopxcGhREa5ai1NIKx7OQv2ucLJlKd/4cO7vyZj6Qrnc2B38I//fMO/P99J9roNhNhL+HTTLga8v4B+f6zml+w8zO//XuV7yo5unmv75hpxeFOMM8A+H3UrC4wxPGU8SGC062rzl57DlvY22LsSHA7Wpv2PO3aG8MEq50jhYoeDJfnO2sVjF63n1fnb2JJZiM1R82t6iXEsbxnX1XhMLjH827iVPCOWb9udzp2Ga3Ty7IR8Mnp77yIAsDeurcfjfW0DqzmyeV25czXHby/n+G3lHOsIqv0EqbdqawB37NjRjMUQdztXr4CE+n/d2RDSy+OxJbaYpRFbCceKFTsl0TFQw5fNgvAI7JYKTMNOjMVK2xFPUpG9mZK5zxKVs52fN81kUr9p7stUEv1lAEWTyrEWOt/EemXNZMp7L/P8R8G0mzyVtrfe4nGP6TMeo11JLuWBgSw4djz52WmE7olj+803k/LEE1gjIgBwlJfjTdHcuex78ina3XM3Oy++mLLNW0j461+J/cs0yrz0/ct88SX2v/Yaya/9h/Axrvm1Mp99lrKtW+nwxOOV2xzFxdgLCwls63xDLN20ifQ77gCg66+/eq3dy37lFdrc+Ffyv/sOgP1vOKfS2TJhIp3efouQ3r2xxsRUOc9RWkr+9z8QMW4sAW1cHcDtublVji2740549SPneXWcBsaWkVFZgxrcoweJDz5A2NChFC9dys6LLsYKDBrYFYDioFzCyisoWbmSHedfUHmN3ocNArLt2UP5zp2EjxqFaZoUzppNcI+qK86UbduOLW0XWf/6N6WrVpH33XeVs2UcKn5GSQSz93VhcPv99KzldylevpzihQuJv/pqjIDGWwt5ZVouczZmckWbUgp/+J6EG2/EGhlZ5/OLFi6ifMcOYi+oOrkuQEm5nc3LZzIgcSVJOa4XXqlRwWzOpCfreXP1Nvbb7NyydR/fj7RT1tsk6ltX+F6yfT8hgQH0T4rGBBYkWOlW4MB49nvSLG0hxflitFvL2LzjFnKSPiOunXNUpy1zFX/jDUzDQuqQDMaXmOSH9mXQwQkBIpJ7cUlAEvtiCtlPPHeOfRXGQhdzM9uM7ixrP5wXtl9HNLCEqgN8HP8ZQ1lGGPaxz1L0zjWEJEcT/eSvlf/I9gobaZvW0GntN1gM+O7dpxm972cCy07k6xOrjkg9XESEq9nvTa5jtnECCdHFHIqFGw+UszggD8eSfzHUOIvpGzczs0MKaYNvAWDC/B+YPcI57UlRhZ2LV28ntvRsDhwX4XGfl0efUWtZAIoIJ4xisox2rm0DXTW0efYCdnYKI6O4A2tem8FnqXbWhoxhAWO4bME2NrTxnCPv4bJ8nvnXOm4IPvJuGF8Z51X+vDegg8e+mb17AD2oq/cGHnvE5WkMAaaVkWnOL++9B7XuJTBbqhrfTfPz8wkJCSEoSOm7ObVN7QJHXgHDupA+WEc9zV95kyTSONfimvh1bZ8r6LbFc/m21244h6Xx8YzdtJq/pDkDaECC8wP+6TkvOw8a4L3SeH7/Ibx96rn0W/cqZ/1vPwHbTfa/9hptEv7wOK5dSS4Aa/r3Y3dSG6aPSiW2ECbd/Qubfv6lTr9Xzjvv0Oa2WynbloYlJoX8H34g/yfPmrPdv82kbNmflP/3LQDSrr2O/JPOxP0tOO/LLz0C4OZx43EUFtJt9iwCExPJ/s9rlfu2TppE7w3rqfAyYXbpxk1ey7nr8isoj0vgty7Hcqo1m3bTziPqxBMByHz+BQ689x7B3bvR5dtvPc4rmDmTvG+/JfHee7Ht2VOn5wSckwKXp+0mKDWlMvwBlG3axM4LL6L3hvXkH6xhNIEhJwRhDbZh22DwxGU3EPflV1xbOVIc8n/5Bex2IidPJvu1d8n6v6fYldiRDY89zYVFOWTffDMOw6hsRthV9hFbF/+PiKs2Yyl3C6oVFaxiECWE0hdnB/NfMk5iYNxkFu75tTIA2vZlsuemm4i54AKiTjoRy8EppXZOc4YFS1QUcRdeWOX3dpTbse0uJCg1CqMe61jd9/B7PJmzlz0Zq7DnbMVRVkbZ5e2xWILolOxslnY4TCzVXHPXZZcBENijM+VJBUTHDMMa5PoLO/mff3BJh5/o1HET+XltCE07HYCFCTl8Yhz8Pdz6qOVe4vy5orAMa0UFdjOAc15fSMXgaC7tUUqPjg7u7teWQIfJRevDebuvK8iYWOhlLeCc93/l9d77+GmznYi8VZhjnV0ddoQlsuME57HG2KH8UTKVq9o/TRSrWEs/njAerrzWNsMV6ncF9gYsrDEGVfn9d2TFsCPkPiI3zqS8SwBxn6VT0ekkwgafi7H4Q/67Px8zJYFPh77C3Vum0734Z742phI9YjVlQbUPM3Vf/WK24Sx8dqRr+G3HUQZDI/5Le/Ywf3sk77S/xOP82aM857wDOJAQUWVbXd1i/KfW/Y+ad3J/72eIsheTb3WFw8ElewneuRMsnmvllkxI4nmSDr+U4FyiLyHZ+e8VFqUM0hQMs4a2N6vVykMPPcT9999fuW3RokUsWrSIm266qVkK2JLl5+cTHR1NXl4eUVH1nwG9JomzVjTq9Q65YPGvRJUUcZHtOFZmHeBv07w3DRy7p5yX1zibqgq+vgbTEgimg6jTXz0467xJ4dfOZon0f5dzoeEcFZySvpvpj96BI8TEUmpg7TMVa7mN8i0znGHh4J/bvNGjWNJ3IN8Mdnb+nXXDRVDNzO+mxcQMAkup5wdx2MQHsUZ3pGTJ61TsWVqv58EESgMDGLJ6NeAMT5tGODs0x11xBdFnnM720073OCfy0kuZN/MHBqQ1vBN/j8WL2P/WW+x3C5cRxx9P4W+/1XjexIM1gGMKF/Pp5EspMi1kbNpO1PdfEHPuuaT/415KV62q8RrhE06jeP4szPICzKh27HpqLw4slH57Gjec5lwh4NnMmxnyxD4sZa7n2hIdzYbTDdb278Y/I24H4IrFcxj0+2/cc+NdXP/F+5wybxbp/3bW2kZ/YiX8d89v7IfK/1TOfZyX8hBpvy4js897tFl3Eb3uvhaA9b16Ow82LBAQTMbrb9G/9ABZ1zuXG4w8/3zeO/EixjsCGdreTsYjjxEy7EKWmem0y4ii83G9cdhWUvLTfNo/+ih7HnuC0KSOtLnxrx5lWbsriydW/855Py5haIRzGpbyHX9QYV3OV1da6cROenb5gsunrySALKLCk3noxN6M6NWGt17+jIXlYZzUK4Re2z8iZE4JtmsDyQqaT9jeJHp0OY31eV9TvCSVwh8yCX48jWDKMADbktfZMexZHjK8N3sPMxcSTClzjQmMLJ/L8S8t5PmzLqe0m7OZvoe5nk1G7xr/jd0FOsqxWWr+4LzUfJN3jIYP6AAIMG28wwV8tfZaVka1Z9CapWw8ZgBlbULZaHi2ZNxtPswCxvC7UfuKUSeZ/+NHo/Z10a81X+Y1428NLr+0TLdtXsqd1xzZ32ZNmvLzu7WoMQBaLBYeeughHnjggcptDz/8MI888gh2e8voKOpLrTEAuvti/QzO7l39ZM9LZxRgYlL0+1OEjbsbi2GQZsmmbMir2OO2Yt8UQvgPUSwf047Hhj0EQERJMW/OvQP7pAyiPwomMf41KrAzPWQ2AFN+/ImYvDx+O24qq7t34ptBYwGY+fKrFHSeSdhiKwFZzvBhAukdO2C9eheOtg7a3RlY2dQMEHnG6wDYMlZRuvCVev3u6zrEs6NNDIPPvZSfdzs4/f3nia2wYo3tTMXeFbiPaDCCIrBEdcSeXfOo342durCma3dOnTuL0rBw1vTpRZ9164jJc000G3XGGeR//XWVc63xPQjqeTKlKz/ELMqsst89AD5y5wvcfur93DzrDVIK6jYthiWqI+HHPUihFSq+vJaMf5Vx0cHQ/tiaHdzXLxWAVHMrj3Mn4OzXGZBjeNz/kKHrV7OzfUeyY5z9pU6d8yvnj30VA4j4MoDCdR1J3JuBxXR+XTju4PlPmLcx8q/ppP/LWZNqAL0XvUfceb3Zfopz/rOA025kfWIK1wxOYlBhNo/kv03ADxs54+J/Ux7sDDS/PfokwYGR5I+4hK1BuTzb/lGu7pBEenAMQ18uIbbcRuzWdTx92V/pNPV4Hvr1PGxdb6a03zmcvmYeGyOczfmfzS2iXamDUEcFn4z/gOeCbwTgL3NX07vLAjq3n0HEyhNZuT+Jn7uFcP73M3GU5vLLrZOIJJ/RzGElg5nPWHqygeCyMiYG/0IEhVR8nMKl05yrblxkvsX7xhV1+rdqjcLMQoqNhteueZNqbmOH0bDBiNL63bB9No5euQBMSJ7AhOQJjXp9BcB6TAQtzWf58uU0x5oJNYU/gILgYjKH309Iz4Fs3bKTTo42zAxfyMg45yhva49SSrqXUvqzW02ZxcQ+KQMTyJtWRuTSdWzNc42qWzZ0CMMWbaYwMsVj/cpLrj2LpwN/Jf8EeDrtUeLz8pj2+28sG9qH3m1/pi37KOljIWdvKls6/5V+RhkYJXwftIyUtm3pHhRNcHkeZUFRhCQOIDi+K7a0Bdiznc2z63r3JqN9IuN+n0OA3c6ONjEAfLRsGd+ecD4f9X6FebPKMDFJ3/QxIZvnEnSwuXf5BU9QFB5B6vx3CduxnNi8PGwWg91xUWzp1o99sW248Mevue4eZ3NybI8zKM6ZR0BcGn+kHMupH/9U+bsW/PArwYMuwrZjLo7cHc5+XaOOpd0xYaQ4Mlja9jTSg9M49YsZBFYzm0TWXRXcGv4EQStiKOnqIGSNQUFQBNs7JPPhiacTUWJyz3Rnp7uchAF0bNsZa1AEGSEGU8dH0Kf7s9zNLZXXOxT+AIpx/VvlXlZB5CsJ7O44tmohErpRGuQa8PXtuEkMMWfSg42s69eHPYm9MAwH5+3oRsFCV4f0eYxnwPAPeJyHySOGp7mVe4bNYdhv+xl42n2U9PsWI+kl3uA2IIkVEQlsD9/Cz1eeSrnhqs06/v57uGzBbKYfGwVEcc3yAdzfxVkLZL3Rzm1vPc2Cx25mbvxIyCpjrdmfB3Zv483wJ9gY4ep/du4Y5+97dvZWvjgY/gA+HNMf6M/VZgUTBv7EXPMa5lkmMu+GiSSbO0kznAOpPubiynPW0R9C4GMu4gLzPT6e5tp3NIc/oNHDH6Dw5+dslgq+3uz8ktourF2jB0BRAGyRDhw4ANWMRGtOz41fyF/YT2HKTGZk9SIhbiWju3wFQCERmBgcMGLJiHadUxgcziJzJP80nIMn2h2zlxMX/Ulomcna9p1J6zuc0WFW2gdtZnewa76t3UHtwIRdQSms6eYczBLXIYvfYiaQb5zBX80XGTFtBdt3xlKwYxspgV35Ov4LCnMTWRu2C9uAq+i48yMOTD6VNn1+pP2akwhLGU1ZRRFbHdtZHeWsKfvfuVMZucjZVGoC357g7MBfFhTE3IQKEvIzmTugLQw4i/M//YKSfuXceqxzkMa0ks6sOvUEBmzJ4KtjhzKidD6/Rzn72gW4jbbdGhNKz7A1dOu+GLvdyr6Z7bBfnktwYDhJ8/6GI7oDFb0HsnfJp8T3P591cSt5t1cqE/iN2alT2Bh+PJsGdeDOB9+i7OzuhKxyBZ+08ARs4SZ/MJo37rmBJHMnD+x5iPtiXiEzwtWZ/JStT9I3PJQIoDx5IQGlcfxfJ+e0E+tSOvK66dksesihaWZM4EC3UDY92o93A6rO0fVnm6p9uGZyAr8zkc49tvN2z/OJNfdztrGXEourGed743ROOmUz6w3nPCj/MJ8jzZrCjO5wQ8U75CR14GPDc1Lcm43X8Gb6sRMqf359sKsJ0G6x8uxV//A4dv6gOznR61Wcvkjo6nX7G8YNrDH7s8DiCsGHwl9NPjYurvUYEamBaXDj4BsxDIMhbRtvFRpx8csm4CVLlvDggw8yf/58bDYb/fv357bbbuO8886r/WQ3TVWFnJ2dTb/Vu2s/sIn1N1dwN49SgZVLDedi3SnmNuecWG4iyoooDK5hbq7DjMqysSk2j3HWX/nScI06/cA8m+105j7juSrndDJ38CTO/md/zLkYy7H7SQuM5VvjLNoVZRFcZiemNJ9z27/JF5xPLrEEFyfQL+wHem7eS0VRGFFRWXTustzZ/++r81geHcC/jj/b4z7xhXkcv34JccWFnGhLIf/4J7jE+KzOvxvA+KLFXBP2NA4MLJgsmH8ux476jM10p4gI4tPKuLvTowBcnj2XtxPGeL3Od2kvkZW0iOe5mzVG1akyDulrrmKtMcBjW/f8feyISKBLYSEXRz5GDAe40XizTuW/2HyL9xqxxurx5R9z7+ALaj9Q5Ch1p/kozxj3V9keYpZQThAOQ6NcD3f19lk8esWtTXZ9NQH7YQ3grFmzmDJlCiEhIVxwwQVERkbyxRdfcP7555OWlsbtt9/u6yKSkJAA+D4ArjYG8bj5EKfydeW2w8MfUK/wBzC/TSCQwJd4hoLvOdVjySV3u4xUvjHPopAIfhjvOThjX3gbCIddJLKKZ1w7wmEjF0APeM68kSza8QtT+JS/MOnk+aSVVp1kd39ENJ8Om8Rd5iPcUDKB9HqGP4Dfw4fT05zI+1zONN5l8ZC+bCCGX42DdVBu426qC38ALyX1Io3JVTrSH+7w8AewOco5VcXGqGju49l6lb8xwx+g8OdHLKbdJ2EmxCxhIr/yo3Gq1/09yjeyKai2CYca7hLzTX7PmUpsUT47EtuRG+RsFrlvwwu0S9xCeEg+d218laSO64mIz+RJHqQnG+izKoNf4iewLKnug3sa6hzzQz43ap5+Z6Q5l2jymGGc0uTlqU25Py8c3kxqrQHs1q0b3bp1q9y2ZcsWtm7dypQp3vuPGYbB999/3/glbQQVFRX06tWL3bt3s3DhQgYNGgRAXl4ew4cPZ8eOHWzatImUlNqbeKD1DwIRkZbvRfN6bjVerdOxHc009hjJlY//YT7oMcVLfQ0xl7DMGOZ13/PmX3mZ2z366t3651usDe3Nz32OJcZxgIeMeyqnTxlevJiokBzOMD5jNpP43HCOPI8y88g3or3ew91FK7+luCKSosggsqOi+DPR2Y3gevP/GMMcVq+axBt9zmN/YNWViK77/Wv2RcYS4LDz2THH1ft5cPfI9sfokrqcHOKZzXFMYgbkhbBqpfMz0QTKAwLAhOBqloVr124L4RE5bNs6jF1t2/BDb9cXwRvMl/i3cUuDy3f9gVdJ292P7/qPpXf6DvqxkhPaf0E4RSxnCM8Z9wJwlvkJXxqec1j+27ycXzmxynZfuGT7TJ65ouFrlNdGNYB1qAHcsmULW7ZsqbL9p5+qrlgAVLtMV0swc+ZMtm7dyuWXX14Z/gCio6P5xz/+wWWXXcY777zj0eTtC/nZJbUfJCKt2s3ms0STy0/2U7HvD+fPdv0BOMH8kb/wLktzx7Bt9xAS+mTzvOVGPuZCdjtSOHvzDIoKYnl72BlVrnnV1vf5vcswZlsmAdCHNdxiPs3K8mOYFeyaeuUB8x88YjxR5fyh5mL+NJyTPg/ZuZHTbb9yW9eneC3vNg4UtWdzuw60te5javZPJCZk8Dh38EXuhfwcOoWTVy1gcPYwokKy6Zj7PwIq7AyIPotrOs1mSU4cg3enY5h2IkYVc2bg53yOMwBO3LmY3BRLjVPDnL1sJhEFdiLIhULovDeTYzZuwWKpICkpjzW7LyfXUUFkQSn7q+k+fc53q9jToT2fHeO5PdReTInVNb/gQ1kP81zCrRQarlAQV5JLTmgMyXl7MewWDCCe/ST9WEROeCIZAYOIsEVzpn0gafkrCZ0/naWjRpPV1nOVjUP27esGBwfwn7A+nB/cKgDb7CoGtzqIZHMnPVnHr8ZJ1T4/Htfe252knP1cPvc7guwVGJiEt3f2tx6Ma3WZMIp4fNuj/FJ+CrN7OfvYGUCsmdMcYxBrZdhN9m5xzrwQERdPZFxCLWdIfdUYALdv395c5WgWs2fPBmDy5MlV9h2q0fz999+bs0hebViYAfVrVRWRZnTxls85UJRI+7wcDkSG07PDYt5ocwWZlna0Kcph9KY1bGyXzPoOnYkqKeS09Blsap/M4jDXihrd2UAsuWTOc9aw9diRQV5bC4O2LGVXyiDIbEOKfR8Oh5VEy15u4Tn+mHsxFcQSDEzIXMjstiM9yrVvT2/67rDTIzSdhJJC1sWcjq00hDN6fMdVbZwLd/+59FR6HlN1SqP25h5u42keLnya3YEdGbxrE3sdvdmflcLVRbHMD1zF6C2rMACTdnBwbNDUJb8zbst28qNiMdZ8QnFKO9oFhTE56SqiSkKZ9vsP9C9dSve0dQQ4yph9YAq9z3BNfh5gT8BBbuXjqLIC8oNdK7KcZ35AXEEYYNDF3pYio4xQM4iItTNZM6A/oT8HM2rFB5hAcWAwwV0q6JO+HWtFBfO7D+TSH77g2BV/EllYSGKGBTjH4/f+W9rrPOO2ZGZMcRb/4XIu4ovKbaM3raMgOITO2Xsh0TX6vduyleyNb0fHwFSGrHyDct6lXUUZhy+Mfc6nn2G3WikPDsJhWAgrLubXSZNom5VJ181fEnXmy5W1oIZpcqw5lwWGs1bwKW7DgUGJGcY8Y3yVf7fDBRY4m+BdtY/Vp7msrFRwq3w1MBmYt5a+MVX7FR/uPPN9vuZcyo3gGo9rqEA7fHivs0vWsef8hVHn1r56jNRPjQGwrk2hrcXmzZsB6N696vJViYmJREREVB7jS6ERgYe/f4iIF5ebr7M+bzALY6o2U4aYxZQaYVxh/gdzXjK/9jmGtDhn38gOZhrDWEQUeQxliccqD9cW/Zu5YWO4vug/xITvq5wvESA+N4vz5uRgNYoJP7hWbUJ+AQU7EjnH/jn5HbsQUV5GyO4tJObnMGbLKqymCVjpvWIpi892BsAeGbspKEtiR/axHGPrSkdHHMsL1pO/JRCL9QZSFn+Fo/NwbIFB7JobS8rwt9i95FjCdqzDcNhxtJvMqN+TKTxnEUuNEQCctnsGALH7h9Bn/fus730pMftH0s1SQHbKysrfIWzLRDZsj4bDxrz13buenKJkjtu7Coe5FgsmF5SO5kD+PtJyl9PRnsf+4DJMwyCk2E75toGQmkHKV/uwmM65K00gpMJOVEkZlnWPUdq2L+ycSz+Hqyl07G+/kH2G674ddy1nTJclrDP7MWbjJv7oNNSjXEPSNrAD57YBFakkmM5wuOnA55z7yaeVk8sbwIB1awizldFr/Xr6r1rNdYaB1W19eovpuVb9WebHdMhL53bzCV7jb4xdswYigqpEppCKCjrm7gIgOGsPHBw03n9PFv32ZGGwhsP12LSJrLZtSdy7F6vDgdXhqJxaCuDEGc5/r6LIAC7jDf7J3wGwmnb6sooFOAPgru396NR5De1Jrzy3jbmvckm6q81/84Zxg+t3tJVy4g8/smrgAILLyui1fgO2TaGUXeXZsrRr5wBO/Po11k1zfR7m5rYjwizk7zzJ5XjO/Xm4nml7MJKb7oPKBMIM5zpD5tatTXYff+ZXg0DyDk7IGx3tvb9JVFRU5THelJWVUVbmWsg9Pz+/cQt4UP8JSTAru/YDRY5yp5hfcwHv81vFifQJWMUr3MYuI5Wu6Vu5N20OJbG7KNgSDCc7A+DQNYsoiojghKAZpKRtIj8tHFtJECVGIeevXUT/Niewo5ODrkP/6fEhf595P0+aDzJ68a9ErtzDqcEfsrM0jp3EcWbKe3x1knNal0emL6Zt9gqWDDmHfNYTWBJCREE/LPZgynP/j9ADWRjhfRixYhM7Mg+wdYgrmLbNSue6954mLuRqrI4wirmZUKAkwCCweDvd277HvoQxJM75nficdcTnrGN751PovOgHwj8tY9O4k7GWvg5GOFO/e4mZE/7FZbzBJrMnI5lPj33p2IsGceyiRwkrycLqsLGm71XkOhIo3DiawKBSCjb1IeHALvbHu2qSeu3dSdes3aTsTKPDHxbWnmLBgkmbfaXMqcimuHgx9optAASWQpv8IvrsyaZwqoV2n5bjXsNkAAmFzqBhFmVh2z4bgPn9OzBqtTPABNk9Q1jnjG30fTyHd5P+SuDSUP548t8e+zNXnwkRzvAVULnwIKzr04f2ezM8jh28bDmdt20nJjfXGQyr7+IOwNl8RqatB0P4k/9wGZnpt2JvX3UQS4Q9kMCcfVhs5dDRMx5WV7+WtHsPJ3//PeGFRdUccZDDpALXPa0WO6OZwzxzHG33FbBre386dV6De63AMSziR5yrpEzgN97AFQAjCwqJzs9n7B9zK7eVr7Sw6IeR9Jy4Fg62dldUBNExtxCrWz9FwzRpuyWHkmG1z/LRftvp0IQB0GGBCSucFTIJSWG1HC0N4X1hV/HqySefJDo6uvK/5OTk2k8SOYrFm/VfFq+XubbKtvvM+0kyd1Y+7r4vjfiKbM7kM5YtOZWQ+QnsXTKUScuXMWbxr5w042M2r8gnY/ltdLC51ny95JsPeOD1/3LqK0vZtzyBkuxQrNZrGbNyM93aBxK0cjHj/vsfSj/vy9rfXHP79WYdt3/8FWO2JBAUdir20iAsQX0Ijr6Gbjs3cvJvn3HRl6/SbevHnPvYvbw3vgtxmcOJzhtGgCMMi2HFGjyEAGs3TljwEwmFBRyzaRuj3T6EASKLCpg086+MmXcXYcXO8BK25Xus859lpy2BzRaIz1kHQGhwAP3XvklEUToGBoYlguDoawmOdo7SDinJIpYDvMqVXMp/KSx0Dn4IK3H+m7TNWl5535iMvmT+cRu29DMJqPAMJGEFuXTKSmfEkqXEFewlLiuO8JJ2mOYJWGwlGEGuORIDQscybHsG4eUV/GGZyt7ExCr/lsF9qo5oveTjqn3GHzDv5RrzFfqkbSZwj4WwRVYC7eUEVJRWHnP2vALCClMIKo0nsCyGkM3zK/dd99yzGC88S+S5riZdi2kSd+BAZa3gIRETJlS5P0DO/o5EFDkDqQH0nvEO+zc61+a903y08rhupbGE7EsjKGcf+9fHUJwVQsbS2vukRRYUepSlzT/+UeUYEyjDNa9mgMNOEDbu40GG7NqEeTBh1tQt75IZrtkKUnbsqLI/yO5g1G9rWbrkjMpth65nuD1VlgobcZ+ZBK+vvRNgqFm1prQxBRoBtJnQizYTehHaq+aZEKRh/CoAHqr5q66W79CooOrcc8895OXlVf6XlpbWJOUUaU5Rpuv1MLpsLhFm7TXbJ5vf8Kh5J89xE1ea/+EYc1Gd7tXZ3ML9PECMmeOxPeunW7jkO9fjCRuXcc68P5j7ywCKcpxrDJeURBNUYOGvX33HiM07mLxiIQW8xOnLbuetuc/x6carGWnbzYCkjWzoF0dWQgIRjmTGLHqS0F4HiDx1BWEjFgLQdeZm3u3s6hCfuepMtiePwhrYBWtQD5IqxjJy4xoMSwRBEecxaNNapq5YQubfnJ+We+MDsRe8Qqb9k8prBHQ8njPK0wiqKIEn/sLGDrEUnet6bnvs3c/gHRkYwIcnRjFy8aOMnXsHXXY4Z004/qLHaD9wMjPHv8zDl45jSxfPWpjumz/FsIRxbEQwD/wlkHa7XnI9f5kpgIG1whkk2k3/L2veuIku2/5HRMEuUnf+TIDduS817RtiD2yoPDfhgJXQ/DzCA53vfZH58YTl9cTA4LjbjqHfhq9dv2PIMPY9Wk7GU+UM6tmLBaOOrfJvnPree1W2BVoDaf/Uk8Re7KxJjft3AD3ZwHhmwWGVTXaL62Opz24bBgbRuX2JOTAAi+HaZw0JpdfJU4k744wq93MX0K4dWL1PTbNly3Aq4l3zMoWUFBJQ7ow1PXA9R+2LTBIKiknen0dwkZ1NX3Ym4882BL/2L/ZfdNg0R1Yrnb/+ip5/eq5PnnDDDSRccjHdfp9Nm1tuqdwebLOTgqu/vdV0sHPBOaxZfRwlJdEeAe2QU/gfEWY+J5rOvpRJWXsr9wWV26qeAMSUlHHuJ59W2Z6Q7f4lzsRaaBD/78DKLR2KMqqcA1BYvJem7KsUZA2mNOY2SmNuY2fUObWfIPXmVwHwUN8/b/38MjIyKCws9No/8JDg4GCioqI8/pOWp4NZ/2B+lvmJ1+0DzWWcZH7rdZ+3mqxJ5k98YJ7N6MJ5HtsN04HVbfL098xzeca8qfLxiD0rOX7LQoLs5Vyz9Qf+aV5Ngll1TWCAQLPM670BTto70+v2Q4Zmr6yybSyzK3++7M94xpV4DoSKMPN5yLyH0HJXzcw5fEwXthJEOcfxC7fyDFeb/6rx3gBdzC1s/OJfXP7m/9F3p7OGqm/FShJtOViLI7nmpzyu/TEPq2liYLAi+QDf9lpAVLrrQ+pfx0wk6UAhALc9+wGRz99Ad9tGNq8eStQTj8F5F2P9+y20vWIA42+dSunQeDJPiCEh+gIiz72XBy62cO2NVsoCXR9e/Sd3Yl7vWD4dHcGbJ0Txz0s6Exy1j86JS4jrtZneV6/H8nAMx1+9gnfjYFrJbNKiyojOT6d952207xbNX246htQPPqDH0iX0Put+Tv35dzr0GcWAgT8x9JivibeZtM9z1r499rSzRiyworiyDG1SenLZ+afz19cm8dptz3D8zZ6jdLvFBnNqdCDtAq1sSDG557JCkmbfTHTaBLquu5qwglSiDwSx5sQexI0cxbljryd11wyG//k0SXvmEBeRRt/IUiItDgavfLnyuiE2B2ZIXyoinZON9974PgG2InpteJ+U1FQ6HMigy/5AgiKdo3bt8eCIglMvvpjbH3iA5DdeJ3ycszY1+bX/YAn3HMFmhDmb72LOOIPEe/+BY+hQgja76o4sJZ71SCHl1YeKiixXKDs040TY0KG0f+pJUj/52OPYr28cSNjIkST930sYFtc97v/fV0SWFHHKqvlERBwgJ+QiygvakrPxBAAiSp0ByoKrqTo7LpOk23bSrU0mx2zfS5v8IkZt2k2X8ccx5r4HK4/r+MLz9Fq9ipBevbCEh5Py3rtuT4SzDIHt2hF7oWtAQ4DDpCtbuMd8mBfNG8jelER+bjAHDjjXqz5Ug2jF1VR7qOb3YqY79zlc7y12a/Uf6x41owd/bJfhWk/cOLjRcDsurizX67U2Z/xWeXxTKDdtLKOCZVSwqdR7qJUj41d9AMePH8+TTz7Jzz//zAUXeH5rm3GwQ+748bWPspKqBpjLWWUM9nUxeMW8iq85m3SczfPe5rpyd/z2BbTNzWPqoE/pbm7iR05hleGcEmGsOYvreIUCIllr9mOX0bnyvLP/nEX/iKW82LkzeUFhtMvfz9WRL9GdTXybHkaXTIN5B5+Ov7/+MPawMH4Ycw4bUw9eY+XlRA10fRtP2ltCm6IMuu35gbLU2WxZOJErQr8iYuu5LOi9jh/7ODuEDzUXczmvEUkBb5rXE5XmoKwsnF+7O0eDHr8+jB8Pzm/d3p5Oz/KNzNs+EFsf59wYY+Jm8Ceeq4oYhQkEh5mUWQ0ebPscd34aS8ilRZWrtBimwZBZu3g04hX+PsLZUb33nNvZnPo6eWGBfFZ6Htsju3NJ1oecVTST9PgUFiZ7X1otJycJ0x5EkLUHJ//4BeMTg0ge/CV50cmMnbUSq6Oce+67ncFlO0jLtLMnbA+J4Yn87dWXOLD/AIGBgTiKbWT+6vywDwwPp9Ow62DYdbi+uv0Fj/VdRnlOart5wwvYD37AZfyZQGRyIb3HX8WV1lweTc+kg7mbR7iLttMfYUjSheTnr2JXWiHdut6BxRLA5IGDGNOnB9917cC4DmNJjPScUNwa4VwX1xoQyOBjH6bgD+cABoe1M+CsEQy0BJKb2I6YjH1URMbR5eUXCIhzzV8SHRwNw0eQ+uMPWNq0IdBiIX/2Pgrn7MYSHsC/jv8Xr618DePteSSW30jB9rkEdOvCp4Nf49VL/sPhLGYFYwOc8/UVHVy28PgVxaxPDmLS0k1ktT+OtI4xdOtUBL/8wth5dzpH+x780tJz9wZCjUVEFqZR6jZ4JCQkBMaOJWLsWMyKCowA50dK/DXXUPDzz8RffRXhYzwnO3dMGE/An38SusgCFuj0xBOkX+2cm27OiEiPWomwogw6pf3Khl4XYbGXY89YSfH8/8ORvweeWlB5XIyXWsD0Pm1IufFg0HWrOZzYdh/Fc76kJDSU7iPns2fXDWz78fGDe3/Hcdwp2GxLMdy+IFiC9oIFDlxZQYcbLQzb7lkr1vl/31CyciWRJ56I4VaDGTbM1Qc0sL2rudwaGUnkSSdS8KOrabwfziUq9+X1ozS0EHBWMDiCA9m0aSShPVxfwMAzoLoHNrvFVds5a0xnJs6teTYP91BomFXDo/WwgTOV2x3WJm0CzrVlsmiEs5n9uF7ep9ORI+NXAfD444+nS5cufPjhh9x0000eE0E/8cQTBAUFcckll/i2kK3UuXxED3N9rTPNAww2l7LccE7GdY/5MAYOignnJePOymMM04FpeL4ZxdiLSN6XzeoOKYw2f+c6XiGD9txh/BOAy/e+T6kjgT45GeR3W8SkkB/otCOAr1McOCwWnjNvJHbFaWwLHMzgokJ2FmbxSadQVnbuTs/V2xjQ/zdS2M4NvAXA1tJuFARHsMeezJ6AJCxmBam5GSTlVbAtMoPOG07m8g1lbO63ncsKXueWfndwTeGPTGz3E9sSPmFgiZWdOcv4eAJEG8cxstMvbDUv5xj7An4IWUS3tPaVq4KEFzlruAygU0kylLehbO9ITou6k8Ssrvx4cETgmXxK7MEpMy63vc7i7eezK87Vf2iCrS8jVi1k0YAR3BTRnsjNWVyWZuHNhJ0MiP6FyFWDYBgEVZRRHuCcvqF9yRounNmFu+KuZkxKLF1W7yYqv5gvo50B0LSFsyVgKBa3GojvSn+iZMcErEZH5oxzfmlKjl5NYto+cjf0dQZA0wTDYIi5mGUH55YzHRastuWUXJzB/MwrmBjzJeP7vEjgcQHkzr+G3PIgXjn5VLpGnMenGz+FrfDK8a8QaA2k7aE51WIh5K3/YoSEenzY1pXVCMRuOpuV56T0pEeHvlitYVzXI5Qe8eF0t1gwCu6iQwfnF4eoqAH06/uixzXCAsM4r2ftS0cGBsbQtes9lJSUsaBrAgOKXyX51usBSBxyJ/n7ltB2yAmEjxzh9fzQzq4vHdEndCIgPoSQnnF0iAlmXNI4Nj9/PAXf3QQVpUx7/GuuT/2W0ICq6zS7Mw+Oih21sZRRG0sJO9RkaA0g6eV/sr5X78oPduvB2jwDSEn7BYDOo+ZitVadp+pQ+ANoe9uttL3N+zJewZ07Ywdi33EeHzWtY+X41vG9xvC227Ejlzj74SV1G4uRn07oxEkUzvq12t8t6dV/s/rvN/DKqRYSLa5mzMjJkyn4+WcC2rTBNvYcin6dS/v2G2i35XT2BnvGmF6DR/Lzt2dhBFVA5T/LwW4RFpgx5izGbdrK5m5nc6i3Y0iPHoT06FFtmYoXLiL6sJDa8YUXKD7/fDIevhPYU7ndOKz/4tgx45gzBzLLEsBtZpbdm7qR1GMLdrtnEHNvQr/0iTfJfeZF8r9z619xUOyBqq+dQ83Nhkco9F7L1zk3giZtAg6pYHL8pQCkhF0LXNtk9/JXfhUAAwICePPNN5kyZQrjxo3zWApu586dPPfcc6Smpvq6mC1agplJtuH5bayfuYJUtrGdqsvEAYzeu5TIxAwu4m1WrzwBy8AMluMMgIe+9QJcZf6bN40bCDWLuJ5/8gL3ABBSns+g/SH8ZYODBdGzOTN+H52DlmHBQVtc38SL0xKJPDCJ9oFbmZB9gJMCLqSb42rGpi/h4th/8vneWwmuCOepqIUE5k/A2mkTf+v2JnsrOlDePwiAaFx9ttJDkxnV40dWbxzLXTyGff4F5FU4509LHdiX46ZM5d6Zm/g1pQ/fW/6P237JoPzcXthsHRhQ+BYDsr8hLPJW3jMOcO6QfTj2zmAyMzh+0hZy+40lsm1/xu/6iC3bn+P7oPMIK7eDYSdzXxdiYrZQFJCDrW0abUpDKstkYmH4sG/Zt+9bQo04csreYmF+ITG5BdyycyR0CeaLSy7FHhRMsMUCIwdTtDOH/ivTCew+noUvP8snX93KtxclM7T3FnbRiWQ2sWNYNovjwrh+1bkYjo/Y/tMjcLDiNAjIcwxmX2kexy1bQOruNE564CkCcq0ktkmkZO9+fl37PmuLY/jHJT9jGAaD84pYUVBM6KazaEMGl+DspN7GjKT7hc41UUd0mE9FRQRdujj/bpJ+dPaFMw721zqv53nVhqzwUaO8bq+LXvG9WJW1Cqth5bXzXE10VsPghIRoYADE1TwHWn2kplxFSUE5M0Pnsmj4A/Q53Rnmwzq1IzDoOCKG1226LSPQSsSIw5cvNMFt0MTh4S908GBKli8nYuIULOGBRE/tQuH3zlq9pN2zyWh3DEl7ZrMzZQre5vA3goLoNud3yjZsIO2aawnq1pWQkKpLKNZHt+OOw30WQsPti15EUDgBXsrR9pQxOMrslC6teT3ryIkTufZvVjAMkiyuj7eoU04mICGe4J492bw3G5jL3vRehAS3x9o50OMagUGBOByBOEqDXOUqaE/IgW5EZg0hI74jC/pUP2m1tzJFTpxYZbthGISPHElAm464B0AwMUxXk+6ECRN4Z8sOUtN3MWL3KkZ0dLZW7dueSlZhD0pLI4h3O9/u1t8xJDicDk8+4TUAhhZb6f7WfSzY5+qGYLE6v+S5hz73mkZ33dKWN2kTsDXQRkWF8/14+7a1pB5ds9K1CH4VAAEmTpzI3LlzefDBB/nkk0+w2Wz079+fp59+mvPP9/3yNy1BiFlCqeG9FuGZ9T8xv3chbx6cd+oD09XY5t5p+trfP+G18c7nc3DWWo5N/B8AFfZABrGGseYsEisyPP4CxzOTpN0DSOj4NrHkcl/hS3wfPI61CzpwQkYFWUBFQiInLhpDXsc2rA9bQ0FhAgkdDlBqDSaqtIgVWLnC5lxRwSg3MEIgviKPu09rx8e/LWBg9PeU9RmFaayiePfrWIAJ3T/gl7e/ggkvAXBxyV18VTaZEwMO0LbjY7AR+rKGEX87ka++gtzCHC469S8EBATw4AX92ffVao5dWczwQZ2ZMNi53q+j9C6MQCuG1eBYwG4vZU9EBAnxE8EwiGnvbB/u1/lips15hrPKynH2erMybNgwlixZwoABA9gU8ymFOa4PSBOIjOxDZKRzVFyP/d9yZUgW3+ROZ8g5E+jYcTiGYXi8sMNT4ghPcTYvnvLBHThKSpizcjnx9ltoa93HyqwURvRxDoi44ryb2PXTn/Tc9AljVp/J3P4duKdrB87scQnZlgLidu0iYMJwwmK7Qazz+vd1T+K+7ncDd1fe85jocI6JDqck/gOysn6Dg9N4RZghuAsNdf2dGdV01G9sz49/nn+t+BcX9b6oWe4HnrORHApaba4dSHlaAcHdYhp8XcPq9i/t5bM46d//onDWbKKmTMYIC8MwDIJSUynbvJkeWz6j+5bP2dDzQufBkd6b2QLbtiWwbVu6fPctAQlHvhqD5fBa23hXd4Hg0HY80zaMSwsKufT7zyu3x57pbODfvcD70moeDj7BwxOHu21yhi0AS3aOx7GWjmF03/wZkQXOqWYO1Sobbk2fEaERpCy5D4DBw0rI/hVCo1wB8YgEeU5xEmKroDzU9XtaLBYKo6Iw0mHE7tWM6OgcyGQaRuXIb3cbB8Uw4eD4JiMgACMwkO4L5rN5/AQoL688LtAoJ2DUpQTO+bRyIE5JZiTgOQVZdTWAFhxN2gQc1d7VN9E0a5+WRurP7wIgwPDhw/nxxx99XYwW6w0u4WrzXa8hcEDamWT3vrfy8fYfHiGmtD0fJb/BsDALf+n4Nn8GjmFQmw2cvaucbEs+YXbX3ImhIflYMLmOV1i+c0DlhKqd5z6FaakgKXwv6R1zARhT9hu9w+bwxIgHmLmxPbFbCrn1L9cT/O/FWDKPZchZl/LnkhVcu3wJWfYSVlcksoZyzuy1m3aFg4g6MZmstTcTNXAq45KHM+6yY6mouBqrNYK8vD/Zvtt5706dkyjN7EtpbhIhMbvZWZBGaOl0Jh77EADjx63CNG0EBsZw8WXTME2zsgN6t7AQPj+xH9sTs+k92lUzYgnxfGlZrSF0Sr7c6/P97knv8v5/XyWyrANd2MmUKffRu3dvkpOTmfPHHVgCXB2gzcPHbRkQF2ByeUI5w5O8NyN6lCMmBmtMDCfnwLefXUBAQDn7IzdW9goM6RxD5w9eJey5F3hnQhL5PXvRPtj5QRdBPNSzhjw0tBNJSRfD1jUHi2sQHT2EvDznJ5Qvlo5MDE/k0dGP1n5gIwoIdBu9evBnS2gAIT1ij+i6HV94no3TprGhfRwnhFadKy0gNpaYs8702Jb0ystkvvAi8ddcTVByMrPudI5WDY+LrHK+u2C3NeGPVLt77mbfk08Re9FFEObq+2hYAhk1fiQrVqygtPB7Mg/7iKrLl4Tvz/ye5ZnLObXrqV73d+qUTLg9gChHKI7wcrAYJO+ZXbnfeugebn+bAaGuLy7nnnUCO7plk9il9vWL68IZTF33D4kLIf+wSrfKvx7TVabgCjuVUzu7vYzCOOB6cLBZPiA2lnaffcrus86q3JUc7RwsZ7FaKwPg/o1JhFw9lvMjPqg8rrpavuqCYWNxTuPoLH8I7Zr0Xv7KLwOgvzvF/JrvjTM8tj1j3sSdxj/pbG5h4bxzsY8MrPavo11JMbeFPsmmwgJSwxOYE9yFUV2L+TLqQoYFLOJ6nmdvwlSuLlpOek66W70gxGWMJjf7GOKnBjP2lIH0jgwn858rCCp2dpAuD3NNZ7A/LohvcgPZV/A8+2INrjrjc/omRGHedzwdD47q63VwDUubzcafafnkl9gY0NfV2Tq02yMeZQ8IcH7IRUcPJSXlOsLDnM2P4//Sk8Xf3s8J18Tz/LAEVmSu4OTOJx8857BRjYeFlqj4UAYe3/A5IQe3HUyvsq9ZTzd6s4WAgIDKZtFxY/8kOzMdNjm/uR/+ltu715MsX3EpXTrfUq97hpoW/kxYTnR5NDvbJDLVrSk+sEMHkl54DmicFQkNw+1Du9TGMUM/47eZ3geJHK2CQgOYeHEvDAOCQhrvbTe0f38sLz1LSl4u8Ul1+xsMSkkh6f9eqnw89caBLP9lF8dd3KvRylWbuEsvJe7SS6vuOFj7Fj5oELaQqgEj7rJLyf/hB8LHjq2y75BOUZ3oFNWp2v3BgYGc/PlHGBhw5bXYHPC3Cbdw4o5FtLv0RAYFBHBa2TE4MHnt4DkBVleoslgMugxqU7dftA7iL70M/niq8nFSXCmZ2REex4RRAIDpFgBDbfbKBfSM9qG8+tS9pCe0xdHdrT+hW2C2xETzWx9XO+qx+YfemV3HVJgWQq+7nJLPP3Rdo5qgZ5gmxmHNw/22bGBNN+ffkcW04zAaXqu/Z+0gNq5zfmkeNrVzLUdLQygAHuVuMZ/xGFwBcAHv8z1nVD5+zzwXCw7+Y15GGEUsNM+rcdbR77KiyAlbxVLLcXw34WpGmPO4iTVc0iaRVVlfA9CjKJ1BV9zHQNPky09fZCDOfivJKckMP2EUwamub8/5Ba431+KKNgSXJVMWtBsMk6v7X0nUvjwu6nMRveKcnazdp3Q4JDAwkJFdqjaHVMcwDLp1vaPycb9xHek7tkNluEuObN5JvkMpZwhVp3YJDIwhKjII2ARUrQGMjOzL2DFL6l+TZrGwI3IHAJ3jziY0NIWQkA4NKXqt3Mvm2L0RcC1qb7SEVeebSZ/RTfP8Dph0Uu0H1SClXzwp/VyvnQoLBDigOKx5muTdeby2veSO0AED6DZrJgHxdX+tH85iMSqXhAsLtlLhcLAlJolXBiXxRKTz9dXWdL4/he8uoiTYSn/jd4yAbQRb1gHzq7t0gxiBnn0Q4wLKAM8A2CFoPtARjzdmA0J3bsQeHkVkfDG9dm6j185t/NLfbTDKYTWmDouFz++6nqzYOHqe4uyHjVtfSQOTYKvn2r7V1wBW/Zh4+fmHmfiqcwm5dmVZ7A2pOlF4XTkMgzNuc3aViYwLqeVoaQi/mgfQHw3DNUFvb3MNN5vPYsHkXPNDOphpvGVOIzuzE8XFkURSgBUHpmn1+pIPLi9g0/HXMDlpJwND7by0dxLvZP4fN/EC3breSZv+4yqPDenpbNYxDIP5bVwd6kdfOcUj/B0uf+AzjD5xFgGBzjfA1MRTeGzMY/SKa/raCV80R1a64ido1x8ur9o1wWr17AN4uIaU2xHt6r8UFxLEsSN/YfCgqhP4Nra2Wc7xnoGBzr+P2NiqEwmLb91/sZUVnQ0++1v/Zrtn5AmTwGIh6rTTXBuraWEMbN8eI6hx+t+FhwRS4XDdKDIiAgJcrzdjbS5By/Zjj2hPVMBnBFu8z7/ZmAIDOlX51QMtB1sA3GoATcMgoLiA4Kw9nh/kwa56e2/vDZFF+fTauY3wM650HuMWAAMqTGJDYvnb4L9VbuuUv9trOWsbAFLd/kDT1SXIqGaKGYBiI5wvZ7zPlzPeZ/3WVdUeJw2nGkA/8IF5Nln7k2gT73oh37AikTMG3QLAxg3O5pQ2sXuJsWeyuyLGY32ghIJcsiNjuML2OmZYOWHA0HA7486fQt7MXgT1uJvIjp5TIMR0ds01l2Mk8Lj5EDcE/a9qB3Ag5oxuZGz4gb2x7+AILMYwDEaP+oOyskzCw/2kqbDTSLh+rtdd7gHQYQ/0ekx9uX8uDIgM82ymbQJPv/wUC/oP5qzffwKeYdgxX7Jv3/ckJV3YpPeV+rt+2vO83f9tnh3/TLPds+M//4lZXo4l2FX7ZDZxHzNwBiT3UcjlFSaG1WAS+RhQOfFRxsj7iQsLgCFNO02Y3W4lOHAApmWhx/YAwMFhAdC9ttTtfTW7U819E2f1TuGaF14lqJOzmdx9KqVDcwJeM+Aannzge9qFl5BjrWZdetOkIdPAuEfStvkH2BftvTbXNCzsz94PQMmGX2FE7X2cpX4UAP3A+nXjsGT1oc141wSxoUEfVDmu44A7eGn+T4zrvogLLft4h2lc0j6W8+PWsiXvPRLCPJs+AtuGkXCB57qfw475igO5i2jf3tXZ+BXzSgqJpGtEqtfyRYxsT2K/Mexc7Fr5ICAgsrK/nr+zBLjCmdlITaYJEa4P2uZoBhi+biXD163EtDrLHxqaTGrqdc1wZ6mvKalTmJI6pVnvaRgGRrBn0yPNEQCDQ7hgeDJP/eTsD2d3BFBud1B62HHJyZ2ge81T0DSG4PejMEZUfUVaLI4qk7HYQt3eF6wRvDzVgmlAaHwoXX/5GUuY56CgQ1/67FYLge5rOEd3gkLnb+z+7mKWQ0Z5KCltq2kCruV3qbbvoFtoPGH9Ula1jSezcwcyDM8uEsfmLWEqzi/F0e0uruVu0hAKgEehwydRzs5O4cqyEWy2v4VpdTYlbO11ALuZQHmpc1qHLp1SOX1CV7r1uJjEsHFEhadwgz2ETiFBGMaFBK1eQGaW19t5iIoaQFSU5xxqseQenLw4tdrzIiJ6MnDAmwQf4RxjRyOLWw1gxf7GmRG/XZSP+tT4spldWpfACKBplgBrc+utFM6ZQ8w5Z2MJDeIYrKTj4MTUnqy1uaLWygcnU17hIDKkcWreaxNVUACGUSX75lniCcezBrAoIZKgg6uaxrcZwB/JcwCYjEFQctU+zOExrtHWVrdJuw1rMByKvN5CWzU5PKSGZVOh9oAIEFFWwpSfv2bOVaeTEeAZAAMpJ+WWgyulBGvZ1aagAHgUiiebbFxBwcCkIDKd/WunEjfgSwCWLZ/K1Vc/RGRkNBPGlxBxcPmqfh0PToQLuM+76d5PJCpqMF273t7o5U5IqDpZqnj24wleEA0X1HBwA/RL6Ne4F6yB0YgjYOUod8zlMOf1Jrl0wrXXkHDtNZWPXyQMOxCeGMnwiEBO6NOOvh2iiA5tnuDnLiIupOpMA6Hx2LFjui3VVmHEcagnZI/hQzk0kL+6PsEBQUFc/8YHWCxWLG7Lxbm/t3urtXOY3ruHdP3ma4xZs6v/RaqtwPXcMW7DLuaaVcucHxDOXfuc2yfFG5xQ8wI30gB6Nz4K3cHjfGBexll8AsDosR+w1zDZMO8CRuH8kldUFEdISBhWq7Uy/NWkW9c7yctbQXLSxXTqdGUT/wZSLVsjTT4LfHP6N6zLWcfxneq+qkFD5VxjI+qLAALvqn76DhF31k69az+okbS/eziOEjvWg5M7v3HJMc1278OFRYcSXJxPSYSrxu7Sfpfy1h9vYZpWtmwZhtVSQZk9kpte/i/ZaTtJHeQWAGuoewuLqto/0OIWAMPKXBNFtwnNIKskkV5xm/nD28W8BM3Ajh0rf66o5r3q8LMiyrzX8qYFt+eTdGcfwDZBgQdX6ZHGpADYyrmvs3rI0HXHk5LyX+zhzjn1jIMDOuz2QBbMPw+Hw8Kll17qXMi9jkJCOjB61OwGlTEiog+Fheton3hm7QdLjeyOstoPqqMuMV3oEuN9+b7GFjS2P5mDVjHsmGtqP1gEiDzhBGKmXUDY4MFNfq+AmBCIafLb1M4ADIOo7DRKTCvWQudSaLFhrgnD96YfnGcvNoDotu2Ibus5SXLf+L71u6XbIJChK12jbbv3+BeXBrQl39xe5ZxJa5bDxEFVwlzkJPcvk669p66cy7cDxxx85KoBDC9IdW7xttKHtZy/pzr7Kh4b0xgzksrhFABbuXHMZhnOANi2vIRx+yBm90QCihLZM+zpKsdXVDg7Wnd2W2S+qR0z9BOKirYQGdl800ocrbIiWufMTUOHforNlkNwsGb0l7oxrFbaP/igr4vR/CwGYBKU41oKLSIiguSD/fp+zSinp20fqT2Hepz25WlfsiB9AdN6T6vf/dz6i4cNcdU6ri63keFIo6A4AA6b97rA8N4nL3TgQLdHrqDXc8fvbgHQJazo4Ehku2ct4KWZ0zkhbwGTOj9S5RxpPAqArdwQljDMXEA3NnPlxgRi0p1NbBbTMyiEhHT0dnqzsFrDqgwMkfrpkrWHnLAodvduvBUImpPFEqjwJ1Ibw1kjZ+sA7HXbbBhcccUVADx6z/f8SQcejfecZLl7bHe6x9Y8MMPrLQ3vPwNkVVgIrnGqF899kSedBLNXOq/ltivUVuS6h5frud/2n+bVtM89QElhOO/dfTOGYTBg0okMOP7E2n4VqScFwFbOioNbcC7bZXAl8YEPUVBxNtv6vVt5TLt2p9Gl8020SbDxxRdfcMYZZ/iotNJQk9ctwQS29mz4Cggi0vIFtEskdkwe9lkWEvrlVG53De4wKCeg8WbJcUt9ppcGBtOAZ//vCXIjInn8SucE0W1z8qq5lPf+h8HlXpp43c9zC4Xx5AAG2B1k7twKQGFOTjVnypFQADyK2POi2Bu3hdKYJ7GFuTrg9uv7IgA9esBdd93ldTJmafkMwAzQS1bkaBUz7QJC+/XFustBz7Or9r1z11j5z+PzoJrxI8dsWA1A751b2dWuA21HHFf7hd1W+XCvDfR6Cy9p1pIQyVnTHsI0TWISm2YZRX+nT5MW6L+r/wsMrfU4d7E7ppC5cSZZV3j+k8bEeM6ervDXOm1u05H4onwKo8NqP1hEWqWI8c7lNB11mEWvsWoAw9zmGTW6VJ0Rwv02HbP20TFrH4kXnO08voYYai0rcV030X2qqToU3ABCA+k82Hejsf2BAmALZDbgu13bTdMwg+8m123biOE/EBaW2ljFEh/6rc8wME2GO1b7uigi0kQiI5xT35je2mIP05DPCW/C3Vca6h9T9QBvWdTLGr73pcZ6PG7bIYndBw8zAt2mhDEtVa7pLUgWlOXz/NLnMTAY2WEkozqMqu5XkAZSAGyBTu1yKvdl7639wMPYurn6WQwZ8jERET0bs1jia1pFQ+SoNGbMIipseYSEOJs667LkY2PVAHYKcQtnlqoX9Xobe9UAeE1SnMfjwKBgKK04eFnX72O3B1RZf9Lbb1tYUcT0tdMBCA0IVQBsAgqALVC78HZ4DAGro7L+zpdqTMxwYmOGNXKpRESkKQQHJRAclFD52PSyMsbhGqsPYKfQYG4xnyaMYsDVBNwpshO7CnaREpUKbPW8t+NQZYOrnIbhuWKIx4CQen53tRRCu7B2XNb3DEzTZGCbgbWfJPWmANgCVTga+NJWBdFRr415wNdFEJEmVpc+gI03DBiGsdh5SVx9xl874TXeW/ceF3W/gML7T/Y84WANoMMRAAdzn8XwrNYLs7h+B/e+5177DbptKtzdlnafHCD62g5MPqbxlxwVF40IaIH+sXl3g84zGu/9QFqY+8z7OcX8mnH2Zb4uiog0sbr1AWyC+7p9iCRFJnHPiHtIikyqeuDBGkCP0b2H1QD2DAkkKX0HHTJ2EuKoeRoYd5m/XY81T7UZzUE1gC3QoKgwFuyZx2ajVz3P1IvmaNWbdfRmHRlUnU1fRI4ujjo0AafGN/7yaIEOL9f00vfYrOwDaLod5hlaLcC0/72JCXQ87Ry3k73cwm2jxQgFoE3bKXUttjSQagBboLPbxda43/C2bqL4BVMvWZGjXk2DQL64fhRPnNmfsd0Tqj2mvmJfDyB0gYXklIur7vQ2+Mxrjd7h700G49fvot/uLIZOPqXG+7sHwEO/e1hY8y1X6q9UA9gCBdcyV9/YrSuZ020IF+yfB3E1HipHHQVAkaNdTYNAhqbEMjSl5kqC+upz/ZPYM/cQ0m981Z1eAmBAYnsvh3keZxoQXm4jfL8Na60T2LsCoNVeXmWbNA0FwFaoz55d3L67C7HtfiJNAdCvlDmifV0EEWlijjr0AWxMIePPqtNxCTfeCA47USefBNQ8EXR1vK4F7Lap37r/On9wVJ1qRhqXAmAr1bbMxGHJ8HUxpJm8tupSRrRfyoHAc31dFBHxJ241e+GjRxE2eHCdTmto/V1EUbrz/EYc5SzeqT2plbIE/JflDs8+EoGBzurAhIQ6rNMorcrijKG8vPxa7DR+x28RaVnqNA1MMzm8abc2E2IjAZgWV/f3KsPbFBYKgE1ONYCtRJhZSLHhmqSzpOJKBpd9xA63YwYMeJMi6yoSEiY1e/mkeeg9UeToV5dpYFoCi5c6pA8HdqHI7iA0L5fNhza6vXEF2Cu8XKnmuQGlaSgAtkDFtmKPx8PN+axhgMe2QCA6qxNx26YSmtcVgJDwBMKjTmyuYoqISBOoyzQwLUGotWqEsBgGkQFWKtxrDt0CYLCjgoKDPw9KTKv+4vq22+Rax9cMP/PSspc8Hp/AT1WOsWBgdD+RNlvOISLL2SfDGhVU5TgREWldggNbR91MTa3DlpAQ13HBIW57XCd1v/nsas83bbYjKZrUQev4K/MzPWJ78GORq5rcStU5lwyAoHCgBIDA9uobJiJyNOjZLpqiQl+X4shYwsLo+NJLYDqwRrg+n9wnjD7Uv9BbjnQUF3vZKo1JAbAFOqv7Wby0+7PKx93Z5P1At1dN2xvrNjJLRERatkCrtfaDWgKTGhegijrR22oerhNcAbBqc+/+118n73//wzAMos86i5izzjzCwsrhFABbIPdFtW81n8JC7fMhGdbW0WdERERqYbSO3lkN+9RxWz6uhkUPbHv2YNuzB4CwY0c26E5SMwVAERGRFuTwdXVbrgYM1PDSBOztOkmvvIzpcIDDJLhb1waWT2qiACjSimhgnMjRz2ih4zODkpI8HjekBjCxuJisUGefQIvFoPsfczCXvF3luMhJms6sqSkAtlIJV/anbEmmr4shIiKNrYXVAHb54QccRUUEtGlzxNc6Y+cWuq1axsg1y2HEu85rqgeTTygAtlLBqVEKgCIiR6G2bU4kJ+cPgoPb+7ooAAR36ex1e0NyW6DDzk2fTj94fvVNwNL0FABboP3pVcf/j2QeM5lCfGGeD0okIiLNpUOH8wgJ6UhUVD9fF6XRJRcWuB6o5s+nFABboA3z90Kc57aLmE4vcz3FK7v7plDSIpj6pixy1DMMC/HxY31djEb1+/BeZJXbiP7BVcFxaAyIt2lgpOm1rI4GAkCHgm+rbAumnNH8QUiFZkcXERHfq09w6xkewpjYSI/lQw795NA0Zj6hANgC2YI1A7qIiBx9zPCIyp8PTQNjGq1k4uujjAJgC5RtdMRU5wjxoldilK+LICICNKwLX8V5F7GsTXdeGnSu23XUBOwL6gPYAnUZNhp2rQD0whCn7/42hrlbsrn42BRfF0VEpOHCw7l39LUAvODjovg71QC2QIndevi6CNLC9OsYzXXjuxJo1UtWRFqGfzr+JNhRxmNb/lnnc9wnszfU0OVTqgFspSw1rKEoIiLS1I7hANv+OBErDuCtep9/aB5AtXT5hlJEK1JREUBIUTE33XQTVqs6zYqIiA+Z5sHwV6+TKn/SNDC+pQDYiixfdgo9Agzi4uJqP1hERKQVsuozrlmoCbgVKS2NYuBfTvR1MURERI5YdTWA3X79xQel8T+qAWxlPDrNqgetiIj4TCM13bp9lJmGgSUsrHGuKzVSAGxlQmLiXQ9M9ZsQEZHWw2MU8MHkZ2pQo0/oWW9lYuOTfF0EERGRBnGvtjjUiJVr0eeaLygAtkAF8/ZUfjOqkZqARUTEV46wFerQJ5jdCD7yski9KQC2RHYTw+79BaH5/0REpLXynAj60DyAqszwBaWJFih8ZHtMhx2outaioVo/ERFpCY7w8+jQ2b1ierk2qpKj2eiZboEsQVY4GACr7HN7cURPScUSHkjUCVofVkREmtmxf4OojjDmtiO6TFKI26jfcI0Abi6aB7CVcQ+AAXEhtL9vhGoFRUSk+UW0gVvXNrgm8NBpF7WJYvlX3zFq1Z+gVa6ajQJgK3N42FP4ExERn6nnZ5Bpui8F5zw32Grh3un/cu6PjWm0oknN1ATcyijwiYjI0cR9EIhmt20+rTYArlixgn/84x9MmTKFNm3aYBgGEyZMqPW8Dz74gOHDhxMeHk5sbCxTp05l2bJlTV9gERERP+c94LkCoOo4mk+rDYBff/01Tz75JLNnzyYxMbFO5zz++ONcdNFFZGZmct1113HuuecyZ84cRo0axbx585q4xEemoiLQ10UQERFpfAp9PtFqA+C5557Ln3/+SWFhIb/8UvvC0Zs3b+ahhx6iR48erFy5kueff57XX3+dOXPmAHD11VfjcDiautj1lr6nB7t29SPklVhO+/obXxdHRESkcXkucu+zYvibVhsA+/bty5AhQwgMrFvN2Ntvv01FRQX33nsv0dHRldsHDRrEtGnTWL9+PXPnzm2q4jZYhT2InTsG03ZTLqGlpb4ujoiISCNzhT5HuzY+LId/abUBsL5mz54NwOTJk6vsmzJlCgC///57cxapWlnlNraEdPN1MURERBqVt9XjDANSJ2UR1akY29UXN3+h/JTfTAOzefNmIiIivPYX7N69e+UxLcEjW9Mrfw6xl+FH/0wiInIUM70NAzEMQhNsdEzIJSs2uup+aRJ+kyzy8vJo27at131RUVGVx9SkrKyMsrKyysf5+fmNV0A30xLjWbFjMccH/0hcMeTQqUnuIyIi4mtaC9g3fBoAb7/9do9AVZubb765srbOF5588kkefvjhJr/PqNgIntj7IOWpZaxjPAD5kZF0OvnkJr+3iIhIk9FEfy2GTwPga6+9RlFRUZ2PP+eccxocAKOjo6ut4TtUk+c+OMSbe+65h9tuc615mJ+fT3JycoPKU1/fnXIyjz70ULPcS0REpLkYFr8ZjtCi+DQAFhYWNtu9unfvzoIFC8jIyKjSD/BQ37/awmVwcDDBwcFNVsYaaXZMERE5yumTrvn4TeweP97ZlPrzzz9X2TdjxgyPY0RERKR5qA+gb/hNALz88ssJCAjg8ccf92gKXrFiBR999BG9e/dmzJgxPixhzS65WEPjRUSkdfPaBVAtXD7RakcBb9iwgaeeegqAkpKSym2XXXZZ5THTp0+v/LlHjx489NBD3HfffQwcOJCzzz6bgoICPv74YwDeeOMNLC24H0JqamdfF0FEROSIxIRVXbzBI/95myhQmkSrDYAZGRm88847Htv27dvnsc09AALce++9pKam8tJLL/Hqq68SFBTE2LFjefTRRxkyZEhzFFtERMRv9e0QzR1TetIhJsRtq2oAfaHVBsAJEyZgNuCbwoUXXsiFF17YBCVqWnp5iIjI0eCvE7XSVUvQcts8RURE5KhnGO5RRE3AzUUBUERERMTPKAC2VIe1+WqQlIiIHI30+eYbCoAiIiLSMmgUcLNRABQRERHxMwqArYRqyEVE5Gin5uDmowDYSlj0qhARkaOQPt58QwGwBSopt+NQnZ+IiIg0EQXAFuj2z1aQHh7v62KIiIg0K0PzADYbBcAW6JZJPbAHWn1dDBERkSZnqMXLJxQAW6Ae7SLpGJbj62KIiIjIUUoBUERERHxGg0B8QwFQREREWgZNBN1sFABFRETEZ1QB6BsKgCIiItIiKAw2HwVAERER8RnDoxOgmoCbiwKgiIiItAimoSnQmkuArwsgIiIi/ssAPqg4nlQjAyNhsK+L4zcUAFs4Uz0iRETkKHdvxZUAfGhRDWBzUROwiIiIiJ9RABQRERGf0UTQvqEAKCIiIuJnFABFRETEZwxVAfqEAqCIiIiIn1EAFBEREfEzCoAiIiLSMqg1uNkoAIqIiIj4GQVAERERET+jACgiIiLiZxQARURERPyMAqCIiIiIn1EAbLHMyp86d+7sw3KIiIjI0SbA1wWQqopXZFbmv+4ViYw762zfFkhERESOKqoBbIFs+4orf051tCUsNMyHpREREZGjjQJgCxQwFkxrOQCGZsUUERE/oc+85qMA2AJt3fqsr4sgIiIiRzEFwBaoT++nCAiM9nUxRERE5CilANgCBQREEhLcwdfFEBERkaOUAqCIiIiIn1EAFBEREfEzCoAiIiIifkYBsKXSSHgRERFpIgqAIiIiIn5GAVBERERaBEOtX81GAbClMqr5WUREROQIKQC2UIbV+U8TMa5j5c8iIiJHs5BAq6+L4DcCfF0AqVlwqlYEERGRo9vfJ/dgV04xA5P0mddcFABFRETEp248rruvi+B31LYoIiIi4mcUAFss09cFEBERkaOUAmBLpzHxIiIi0sgUAEVERET8jAKgiIiIiJ9RABQRERHxMwqAIiIiIn5GAVBERETEz7TKAGiz2fjiiy+49NJL6d27NxEREURGRjJixAheffVV7HZ7ted+8MEHDB8+nPDwcGJjY5k6dSrLli1rxtKLiIiI+FarDIBbt27lnHPO4csvv6Rnz5789a9/5cILL2T37t3ccMMNnHHGGZhm1Xn0Hn/8cS666CIyMzO57rrrOPfcc5kzZw6jRo1i3rx5PvhNRERERJqfYXpLSi3cnj17+Oabb7j00ksJDw+v3F5UVMSECRNYunQpn376Keeee27lvs2bN9OnTx+6dOnC4sWLiY52rje4YsUKRo4cSZcuXVizZg0WS90zcX5+PtHR0eTl5REVFdV4vyCwZOlZ5OevZMCA12mTcHyjXltERMSfNeXnd2vRKmsAO3bsyA033OAR/gDCw8O57bbbAPj999899r399ttUVFRw7733VoY/gEGDBjFt2jTWr1/P3Llzm77wIiIiIj7WKgNgTQIDAwEICAjw2D579mwAJk+eXOWcKVOmAFVDo4iIiMjR6KgLgG+99RZQNeht3ryZiIgIEhMTq5zTvXv3ymNEREREjnYBtR/Serz++uv8+OOPHHfccZx88ske+/Ly8mjbtq3X8w61/+fl5dV4/bKyMsrKyiof5+fnH2GJRURERJqfTwPg7bff7hGoanPzzTdX1tYd7rvvvuPGG28kJSWF999/v7GK6OHJJ5/k4YcfbpJrV9H6xuaIiIhIK+HTAPjaa69RVFRU5+PPOeccrwHwhx9+4JxzzqFdu3bMnDmT9u3bVznm0Ggfbw7V5LkPDvHmnnvuqRxkcui85OTkOpe/roqLt5NfsBoAw7A2+vVFRETEv/k0ABYWFh7xNb7//nvOPvtsEhISmDVrFl26dPF6XPfu3VmwYAEZGRlV+gEe6vtXXe3iIcHBwQQHBx9xmWuzddsLgElYWGdiY0Y0+f1ERETEv7TqQSCHwl9cXByzZs2iW7du1R47fvx4AH7++ecq+2bMmOFxjK/17vUE7RPPZuiQj7FaQ31dHBERETnKtMqJoAF+/PFHzjzzTGJjY5k9ezY9e/as8fhNmzbRt2/fVjMRtIiIiDQNfX630lHAGzZs4Mwzz6SsrIwJEybw0UcfVTkmNTWVyy67rPJxjx49eOihh7jvvvsYOHAgZ599NgUFBXz88ccAvPHGG/UKfyIiIiKtVausAZw9ezYTJ06s8Zjx48dXTv7s7oMPPuCll15i7dq1BAUFMXr0aB599FGGDBlS73LoG4SIiEjro8/vVhoAWwr9AYmIiLQ++vxu5YNARERERKT+FABFRERE/IwCoIiIiIifUQAUERER8TMKgCIiIiJ+RgFQRERExM8oAIqIiIj4GQVAERERET+jACgiIiLiZxQARURERPxMgK8L0JodWkUvPz/fxyURERGRujr0ue3Pq+EqAB6BgoICAJKTk31cEhEREamvgoICoqOjfV0MnzBMf46/R8jhcJCenk5kZCSGYfi6OA2Wn59PcnIyaWlpfrso9iF6Lpz0PLjouXDS8+Ck58GlNT8XpmlSUFBAhw4dsFj8szecagCPgMViISkpydfFaDRRUVGt7kXcVPRcOOl5cNFz4aTnwUnPg0trfS78tebvEP+MvSIiIiJ+TAFQRERExM8oAArBwcE8+OCDBAcH+7ooPqfnwknPg4ueCyc9D056Hlz0XLRuGgQiIiIi4mdUAygiIiLiZxQARURERPyMAqCIiIiIn1EAFBEREfEzCoBHgaeffhrDMDAMg4ULF1bZn5+fz2233UZKSgrBwcGkpqZyxx13UFhY6PV6DoeDl19+mf79+xMaGkqbNm2YNm0a27Ztq7YMM2bMYPz48URGRhIVFcXEiRP57bffGu139CY1NbXy9z78vwkTJlQ5vqysjEceeYTu3bsTEhJChw4duOaaa8jMzKz2Hh988AHDhw8nPDyc2NhYpk6dyrJly6o9fsmSJZx88snExMQQHh7OyJEj+fTTTxvj163VV199xQknnEB8fDwhISF07tz5/9u786iozvMP4N87LAPMABGR4EImYFyBYHEBRVYXiMa61iqF4kY0FD2uoC0K2qiYI9RUGzX2BBKxGjUeNXFfQBEQ04hWrUGxLjQVRBB1UFCY5/eHv7nhMsMmKjA8n3PmMOd9n3vv+z7nMvPMnXvvYPLkycjPz5fEGer+kJycXOv+oH0MGTJEsoyh5oKIsGfPHvj7+6Njx46wsLBAjx49MHPmTL1jNdQ8aDQabNiwAe7u7rCwsICVlRV8fHywf/9+vfGtPQ8pKSmYOXMm+vXrB7lcDkEQkJycXGt8S5zvtWvXMHHiRNja2sLc3Bxubm7YuHFjm/7N3teGWKt26dIlksvlpFAoCABlZWVJ+tVqNfXp04cA0PDhwyk6OpqGDx9OAKh///709OlTnXXOmDGDAJCzszNFRUVRSEgImZqako2NDV27dk0nfuvWrQSAOnToQJGRkRQZGUkdOnQgQRBo165dr23uKpWKrK2tKTY2VueRlJQkia2qqqLAwEACQJ6enhQdHU3jxo0jQRDIycmJ7t27p7P+Tz75hACQSqWi+fPnU3h4OFlaWpJcLqczZ87oxJ88eZJMTEzI0tKSwsPDaf78+aRSqQgArV279nWlgTQaDX300UcEgLp27UoREREUHR1NoaGh9M4771B6eroYa8j7Q05Ojt59ITY2lpydnQkArVmzpk3kYv78+QSAOnbsSLNmzaKoqCgKDAwkQRDI0tKSLl26ZPB50Gg0NH78ePH/IjIyksLDw8nOzo4A0Pr16yXxhpAH7euNra2t+Lzma2FLnu+VK1fI2tqaTE1NKSQkhKKiosT/3cjIyCbnh0lxAdiKPXv2jNzd3cnDw4NCQkL0FoDLli0jABQdHS1pj46OJgC0atUqSfvJkycJAPn4+FBFRYXYfvDgQfGForqSkhJ66623yNbWlvLz88X2/Px8srW1JVtbW3r06NGrmrKESqUilUrVoNgvv/ySANDkyZNJo9GI7Rs3biQA9NFHH0nir127RsbGxtS9e3cqLS0V23Nyckgul1OvXr2oqqpKbH/+/Dl17dqV5HI55eTkiO2lpaXUvXt3MjU1pVu3br3cROuxbt06AkARERFUWVmp0//8+XPxuSHvD7WpqKig9u3bk7GxMRUUFIjthpqLu3fvkkwmI5VKJdl3iYgSExMJAE2dOlVsM9Q87Nq1iwCQl5cXPXnyRGwvKioilUpFcrmcbt68KbYbQh6OHTsmvs6sXr26zgKwJc7Xx8eHANDBgwfFtoqKCvL29iYAlJmZ2fBksHpxAdiKxcbGklwupytXrlBYWJhOAajRaKhTp06kVCpJrVZLllWr1aRUKsnJyUnSPnnyZAJAp06d0tmen58fAaDbt2+LbZs3byYAtHz5cp34uLg4AkBfffVVU6eqV2MKwIEDBxIAnSJMo9GQk5MTKRQKyZvEkiVLah37lClTdHJ05MgRnTdWreTk5Fpz1FRPnjyhdu3akZOTk6TQ08fQ94fafPPNNwSAxowZI7YZci6ysrIIAAUHB+v0Xbt2jQDQhx9+SESGnQfth+IDBw7o9Gk/NC1btoyIDDMPdRWALXG+ubm5BID8/f114tPS0mp9fWUvj88BbKXOnz+PlStXIjY2Fr1799Ybc/36dfzvf/+Dl5cXFAqFpE+hUMDLywv/+c9/JOeIpaWliX01BQYGAgBOnToliQeA4cOHNyj+VauoqEBycjJWrVqFDRs2IDs7WyemvLwc2dnZ6NGjB1QqlaRPEAQMGzYMZWVl+Oc//ym2N3ZezZWHo0eP4sGDBxgzZgyqqqqwZ88exMfHY9OmTcjLy5PEtoX9QZ+///3vAIAZM2aIbYaci27dusHU1BQZGRl49OiRpO/7778HAPFcSEPOQ0FBAQDA0dFRp0/bdvLkSQCGnQd9WuJ864ofPHgwFArFG3/tMHRcALZCFRUV+P3vf48+ffogKiqq1rjr168DePGGoI+2XRtXVlaGu3fvwtHREUZGRvXG17cNffGvWkFBAaZOnYo//elPmD17Njw9PTFgwADcuHFDjLlx4wY0Gk2D86B9rlQqYW9v3+D46n3V2dvbQ6lUvpY8/PjjjwAAIyMjvP/++xg/fjyWLFmCjz/+GD169MDChQsbNMbq7a15f6jp9u3bOHHiBLp06YKgoCCx3ZBz0b59e8THx+POnTvo2bMnPv74Y0RHRyMoKAjR0dGIiIhAZGRkvWPUN87WlAdbW1sAwM2bN3X6tG3Xrl2rd4z6xtma8qBPS5xvXfFGRkZwdHTErVu3UFlZWc/sWENxAdgKLVu2DNevX0dSUpLef0athw8fAgCsra319ltZWUniGhtf3zL64l+lqVOn4sSJEygsLERZWRlycnIQGhqKH374AUOGDMHjx4/rHWNt43z48OEry4N2mdeRB+0VzImJibC2tsa5c+fw+PFjnD59Gt27d0dCQgI2btzY4DFWj2tt+4M+SUlJ0Gg0mDJliuR/xdBzMW/ePOzYsQNqtRqbNm3Cp59+iiNHjsDDwwPBwcEwNjaud4z6xtma8vDBBx8AAOLj41FeXi62FxcXY926dQCA0tLSeseob5ytKQ/6tMT5NmQbGo1GfF1nTccFYCuTlZWFtWvXIiYmBi4uLs09nGYVGxuLgIAA2NnZwcLCAn369MHXX3+N0NBQ3L59G1u2bGnuIb52Go0GAGBqaoq9e/eif//+UCqV8Pb2xq5duyCTyZCQkNDMo2weGo0GSUlJEAQB06ZNa+7hvFErVqxASEgI/vjHPyI/Px+PHz9Geno6ysvL4efnV+ttUAxJcHAw/P39kZ6eDldXV8yePRuzZs2Cs7OzWIDIZPwWyNou3vtbkcrKSoSFheH999/H4sWL643XfpKq7VOl9vwgbVxj4+tbRl/8mzBz5kwAQEZGhmT7jZ3Xq8qDdpnXkQftOvv164dOnTpJ+lxcXODk5IQbN26gtLS0ze0Px48fx507dxAQEKBzHpgh5+L48eOIjY1FZGQkFi9ejC5dukCpVGLw4MH47rvvYGJiggULFtQ7Rn3jbE15MDY2xqFDhxAXFweZTIYvvvgCe/bswejRo7F7924AgJ2dXb1j1DfO1pQHfVrifBuyDUEQYGlpqbefNR4XgK2IWq3G9evXceHCBZiamkpucPvVV18BAAYOHAhBELB37956zyupec6FQqFAx44dcfPmTVRVVdUbX/25vm3Ud57J66I996esrAwA4OTkBJlM1uA8aJ+r1WrxRPKGxFfvq66goABqtfq15KFHjx4AgLfeektvv7b96dOnbW5/0Hfxh5Yh5+LQoUMAAH9/f50+e3t79OzZE3l5eZJ90hDzAAByuRyxsbHIzc1FRUUF7t27h82bN+Pnn38G8OKDU31j1DfO1paHmlrifOuKr6qqws2bN+Ho6CievsCajgvAVkQul2P69Ol6H9p/nl//+teYPn063n33XXTr1g2dOnVCRkaGWAxplZWVISMjA46OjnBwcBDbfX19xb6ajhw5AgDw8fGRxAMvrkatLV4b86ZorwR+9913AQDm5uYYMGAAcnNzcfv2bUksEeHYsWNQKBTimwHQ+Hk1Vx60b/JXr17V6Xv+/Dny8vKgUCjQoUOHNrU/FBcXY9++fbCxscHYsWN1+g05F8+ePQMAFBUV6e0vKiqCTCaDiYmJQeehLtu2bQMATJo0CYBh7w/6tMT51hV/5swZlJWVvfH9xOA1931o2Kuh7z6ARG/mZp/W1tZv/CavV69epbKyMr3t9vb2OverauyNoHNzcxt9I2gnJ6c6bwRd/aazr5L27v1btmyRtK9YsYIAUEhIiNhmqPtDTX/5y18IAM2ZM6fWGEPNxfbt2wn//2sNNW8Erd3fvby8xDZDzQMR0cOHD3Xadu3aRTKZjPr37y+5cbqh5aEl3Ai6sfOt70bQGRkZjcoBqxsXgAaitgJQrVaTm5ub+A+6ePFiyc/9VL/5sVbNn/sJDQ0Vf+4nNzdXJ76un/vZuXPna5lvbGwsWVpa0siRIykiIoIWLVpEo0ePJhMTEwJAS5YskcTr+ym48ePHkyAI5Ojo2Kp/Ci4vL0/8eauRI0fSggULKCAgQBz73bt3xVhD3R9qcnFxIQD0r3/9q9YYQ81FZWWl+EZqZ2dHM2bMoIULF4r7hLm5OWVnZxt8HoiIevbsScOGDaM5c+ZQVFSUeMNiJycnnZvCG0IetmzZQmFhYRQWFkbu7u5isa9tq/4hsSXO9/Lly+JPwYWGhvJPwb1mXAAaiNoKQKIXR6Hmzp1LDg4OZGJiQu+88w4tWLCg1k+bVVVV9Nlnn5GzszPJ5XJq3749/fa3v6W8vLxat3/o0CHy9vYmhUJBSqWSfH196dixY69sfjWlpaXRxIkTqVu3bmRlZUXGxsZkb29Po0ePpiNHjuhdpry8nOLi4qhr165kampK9vb2NGPGDMnPg9WUkpJC/fr1I3Nzc7K2tqYRI0bQjz/+WGt8dnY2BQUFkZWVFZmbm9OAAQNox44dTZ5vfe7cuUNTpkwhe3t7MjExIQcHB/rDH/5AhYWFOrGGuD9Ul52dTQBowIAB9cYaai7Ky8tp9erV9Ktf/YosLCzI2NiYOnfuTCEhIfTvf/9bJ95Q8xAbG0uurq5kaWlJZmZm1KtXL4qJidF7ZJCo9edB+z5Q2yMsLKzFz/enn36iCRMmkI2NDcnlcnJ1daW//e1vkm9u2KshEBE19mtjxhhjjDHWevFFIIwxxhhjbQwXgIwxxhhjbQwXgIwxxhhjbQwXgIwxxhhjbQwXgIwxxhhjbQwXgIwxxhhjbQwXgIwxxhhjbQwXgIwxxhhjbQwXgIwxVo2fnx8EQWjuYTTJrVu3IAgCpkyZ0txDYYy1UFwAMsZeytmzZyEIAoKCgvT2z507F4IgoGfPnnr7161bB0EQsHTp0tc5TINlCIUqY6z5cAHIGHsp/fr1g1KpREZGBiorK3X6U1NTIQgCcnNzUVBQoLcfAAICAl77WBljjElxAcgYeynGxsbw9vaGWq3GDz/8IOkrLi7GpUuXMHbsWAC/FHtaGo0G6enpkMvlGDhw4BsbM2OMsRe4AGSMvTR/f38AQFpamqT91KlTICLMmTMHNjY2OgXgxYsX8eDBAwwcOBAymQzr169HYGAgHBwcIJfLYWdnh3HjxiEnJ0ey3NatWyEIAlasWKF3POfPn4cgCPjd734nab937x7mzZuH9957D3K5HLa2thg/fjwuX77cqPnu27cPQ4YMQbt27WBmZgYXFxesXbsWVVVVkrjk5GQIgoDk5GQcPXoUgwYNgoWFBdq3b4+wsDAUFxfrXf/mzZvh7OwMMzMzODg4ICoqCuXl5RAEAX5+fmKcIAg4deqU+Fz70HfOX15eHsaOHYt27dpBoVBg6NChuHjxYqPmzRgzPFwAMsZemrYArFngpaamwtzcHJ6envD29tbbr12+pKQEc+fORUVFBUaMGIF58+bBz88PBw8exKBBgyRHF8eNGweFQoFt27bpHc/WrVsBAKGhoWLbjRs30LdvX6xbtw5du3bF7NmzMWLECBw+fBienp7Izs5u0FyXLFmCMWPGIDc3F+PGjUNERATMzc2xaNEiTJo0Se8y+/fvx6hRo9CpUydERESga9eu+PrrrzF69Gid2GXLlmHWrFkoLi5GeHg4fvOb32Dnzp2YOHGiTmxsbCxUKpX4XPsYM2aMJO7WrVvw9PRESUkJpk2bhmHDhuHEiRPw9/dHYWFhg+bNGDNQxBhjL6myspKsra1JoVDQs2fPxHYXFxfy9/cnIqLExEQCQPn5+WL/qFGjCACdPn2aysvL6b///a/Oui9fvkxKpZKGDh0qaQ8JCSEAlJ2drTOWt99+m+zt7amyslJsHzRoEBkZGdHhw4cl8bm5uWRpaUmurq6Sdl9fX6r50nj06FECQIGBgaRWq8V2jUZDs2bNIgC0e/dusT0pKYkAkLGxMZ05c0YyRj8/PwJAWVlZkrEYGRlR586dqbCwUGx/9OgR9e7dmwCQr69vvePUunnzJgEgABQfHy/pi4mJIQC0evVqvcsyxtoGPgLIGHtpRkZG8PHxQVlZGc6dOwcAKCoqwpUrV8SvLH19fQH8ctRPe/6fubk5PDw8IJfL0blzZ511Ozs7w9/fH6dPn8bz58/Fdu3RvZSUFEn80aNHUVhYiEmTJsHIyAgAkJOTg8zMTISFhSEwMFAS3717d4SHh+PSpUv1fhW8YcMGAMAXX3wBhUIhtguCgPj4eAiCgO3bt+ssFxwcDC8vL0m+wsLCAEByZHP79u2oqqrCggULYGdnJ7ZbWloiJiamzrHVxdHREYsWLZK0TZ8+XWf7jLG2x7i5B8AYa938/Pzw3XffITU1FV5eXkhLSwMRiQVgnz59YG1tjdTUVISGhuLChQsoLS3F0KFDYWpqCgC4cOECPv30U5w5cwYFBQWSgg8A7t+/j44dOwIAhgwZgo4dO2LHjh1ITEyEsfGLlzFtQVj969+zZ88CAAoLCxEXF6cz9p9++kn86+LiUuscz549C4VCgS+//FJvv7m5ubiu6vr27avT1qVLFwBAaWmp2KY9J2/w4ME68dULyMbq06cPZDLp53x922eMtT1cADLGmqT6hSAxMTFIS0uDmZkZPDw8AAAymQyDBw8WjwDWvP1LZmam+Hz48OHo1q0blEolBEHA3r17cfHiRVRUVIjbMzIyQnBwMBISEnDkyBGMHDkSarUae/fuRe/eveHu7i7GlpSUAAAOHDiAAwcO1DqHsrKyOudYUlKCyspKLF++vFHrsLKy0mnTFqzVLxx59OgRAEiO/mm9/fbbdY6tLg3dPmOs7eECkDHWJG5ubmjXrh0yMzPx7NkzpKamwtPTE3K5XIzx8/PDgQMHcOvWLfGKYW3huHLlSlRUVCA9PV3nCNjZs2f1XrEaGhqKhIQEpKSkYOTIkfj222/x5MkTydE/4JcCaP369YiMjHzpOVpZWUEQBNy/f/+l11Hf+oEXVytrL+7Q4os1GGOvA58DyBhrEplMBl9fXzx9+hT79+/H1atXJbcsAX45D/D48eNIT0+HUqlEv379ALy4StfGxkan+Hvy5AnOnz+vd5tubm5wdXXFvn378PjxY6SkpOi9/Yv2KGRWVlaT5ujh4YHi4mJcv369SeupjZubGwAgIyNDpy8zM1PvMtrzHPlIHmPsZXAByBhrMu3RPO1XpDULQHd3d1haWuKzzz7Dw4cP4e3tLX4VqVKp8ODBA1y5ckWMr6qqwsKFC1FUVFTrNkNDQ/H06VP89a9/xcmTJ+Hr6wsHBwdJzIABA+Dh4YHt27fjm2++0VmHRqMR76dXlzlz5gAApk2bpvcefgUFBbh69Wq966nNpEmTIJPJkJCQIDnKWFZWhpUrV+pdxsbGBgCQn5//0ttljLVd/BUwY6zJtAXg5cuXYWZmBk9PT0m/kZERvLy8cPjwYUk8AMyePRtHjx7F4MGDMXHiRJiZmSEtLQ0///wz/Pz8dG4yrRUcHIzFixdj+fLl0Gg0Ol//am3fvh3+/v6YNGkS1q1bB3d3d5ibm+POnTvIyspCUVERysvL65xfUFAQli5dij//+c947733EBQUBJVKheLiYuTl5SE9PR2ffPIJevXq1dCUSfTo0QOLFy/GqlWr4OrqiokTJ8LY2Bh79uyBq6srLl++rHMxR0BAAHbv3o3x48fjgw8+gJmZGdzc3DBq1KiXGgNjrG3hI4CMsSZzcXGBra0tAOic/6el/RoYkBaAH374IXbv3g0nJyekpKTgH//4B3r27Ilz587pnA9XXefOnREQEIDnz5/DzMwMEyZM0Bvn6OiInJwcxMTEQK1WIykpCZs3b8aFCxfg4+Oj9/Yt+qxYsQLHjh2Dt7c3Tpw4gcTERHz//feoqKhAXFycztfPjbVy5Up8/vnnaNeuHTZt2oSdO3diwoQJ+PzzzwHoXtARHh6OqKgo3L9/H2vWrMHSpUvx7bffNmkMjLG2QyAiau5BMMYY0+/48eMYNmwYoqKisGbNmuYeDmPMQPARQMYYawGKiop0LugoLS3FkiVLAEDnZ94YY6wp+BxAxhhrAbZt24a1a9ciICAAnTp1wt27d3H48GHcu3cPU6ZMwcCBA5t7iIwxA8IFIGOMtQCDBg1C3759cfz4cZSUlMDIyAi9evXC0qVLERER0dzDY4wZmP8D3ajz76gKc9EAAAAASUVORK5CYII=",
|
|
818
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABj3UlEQVR4nO3dd3iT5cIG8DvpSEsXo5QySqHsUUH2pmUVQQUFBwgCCspBRAUB8SDgQFDBg0c9ivoJKoqiIqggIBvKlL13oYwWKHTT0jbP90dJmr2a5E3y3r/r4qJ98yR58jbjzjMVQggBIiIiIpINpdQVICIiIiL3YgAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQAkIiIikhl/qSvgzdRqNa5evYqwsDAoFAqpq0NEREQ2EEIgJycHNWrUgFIpz7YwBsByuHr1KmJiYqSuBhERETkgNTUVtWrVkroakmAALIewsDAApU+g8PBwiWtDREREtsjOzkZMTIz2c1yOGADLQdPtGx4ezgBIRETkZeQ8fEueHd9EREREMsYASERERCQzDIBEREREMsMASERERCQzDIBEREREMsMASERERCQzDIBEREREMsMASERERCQzDIBEREREMsMASERERCQzDIBEREREMsMASERERCQzDIBEREQkqa+3X8Afh65KXQ1Z8Ze6AkRERCRfZ6/n4q0/jwMAHmpRQ+LayAdbAImIiEgyt/PvSl0FWWIAJCIiIskIIXUN5IkBkIiIiEhmGACJiIiIZIYBkIiIiCQj2AcsCQZAIiIikgzjnzQYAImIiIhkhgGQiIiISGYYAImIiEgyHAIoDQZAIiIikozgKEBJMAASERERyQwDIBEREUmHDYCSYAAkIiIiyejmP64J6D4MgEREROQRmP/chwGQiIiIPALzn/swABIREZFk2OonDQZAIiIikozuMjAcA+g+DIBERETkERj/3IcBkIiIiCTDRj9pMAASERGRR2AYdB8GQCIiIpKM3jqA7AR2GwZAIiIi8ghsAXQfBkAiIiKSDGf+SoMBkIiIiEhmGACJiIjII/ScvwU7z2VIXQ1ZYAAkIiIiyeh2AF/JvIMhX+6SrC5ywgBIRERE0uEQQEkwABIRERHJDAMgERERkcwwABIREZFkuPizNBgAiYiISDJcBlAaDIBEREREMsMASERERCQzDIBEREREMsMASERERJJRKKSugTwxABIRERHJDAMgERERkcwwABIREZFkFGAfsBQYAImIiIhkhgGQiIiIpMMGQEkwABIRERHJjNcHwCVLluD5559HmzZtoFKpoFAosHjxYrPls7OzMXHiRMTGxkKlUqFOnTqYPHkycnNz3VdpIiIiIgn5S12B8po+fTouXryIyMhIVK9eHRcvXjRbNi8vD927d8fBgwfRp08fDBkyBAcOHMC8efOwZcsWbN26FUFBQW6sPREREZH7eX0L4FdffYWUlBTcuHEDY8eOtVj2/fffx8GDBzF16lSsXbsWc+fOxdq1azF16lTs3bsX//nPf9xUayIiIiLpeH0A7NWrF2JjY62WE0Lgq6++QmhoKN544w29y9544w2Ehobiq6++clU1iYiIyBQhdQXkyesDoK3OnDmDq1evonPnzggJCdG7LCQkBJ07d8b58+eRmpoqUQ2JiIiI3ENWARAAGjRoYPJyzXFNOVMKCwuRnZ2t94+IiIjI28gmAGZlZQEAIiIiTF4eHh6uV86UOXPmICIiQvsvJibG+RUlIiKSEcE+YEnIJgA6w7Rp05CVlaX9x+5iIiIi8kZevwyMrTQtf+Za+DTdueZaCAFApVJBpVI5v3JEREREbiSbFkBrY/ysjREkIiIi5xPsAZaErAJgjRo1kJycjLy8PL3L8vLykJycjLp163JcHxEREfk82QRAhUKB0aNHIzc3F2+//bbeZW+//TZyc3MxZswYiWpHRERE5D5ePwbwq6++wvbt2wEAR44c0R7bvHkzAKBLly4YPXo0AGDKlClYuXIl3nvvPRw4cACtWrXC/v37sW7dOrRt2xYvv/yyFA+BiIiIyK28PgBu374d33zzjd6x5ORkJCcna3/XBMCQkBBs2bIFs2bNwq+//opNmzahevXqmDRpEmbOnIng4GC31p2IiEjuOAZQGgoheOodlZ2djYiICGRlZWnXESQiIiLbrT+ejtHf/qN3LGVuf5feJz+/ZTQGkIiIiIhKMQASERGRZNgNKQ0GQCIiIiKZYQAkIiIikhkGQCIiIpIM56JKgwGQiIiISGYYAImIiIhkhgGQiIiIJMMOYGkwABIRERHJDAMgERERkcwwABIRERHJDAMgERERSYarwEiDAZDIC3y9/QKS/rMVN3IKpa4KERH5AAZAIi/w1p/HcSo9Bx9tOC11VYiIyAcwABJ5kbvFaqmrQETkZOwDlgIDIJEX4VgZIiJyBgZAIiIiIplhACTyIgqF1DUgInIu9mxIgwGQyIvwjZKIiJyBAZCIiIhIZhgAiYiISDLs2JAGAyARERGRzDAAerjbeXcxY+VRHLmcJXVViIiIyEcwAHq4mb8fw7c7L+KhT7ZLXRUiIiKn4+Q2aTAAerhTaTnan5ftTZWwJkRERGWEEHj7z+P4att5qatCDmAA9CJTfj0Mwa9KRETkAY5dzcb/bb+Ad1adkLoq5AAGQCIiIrJb/t0SqatA5cAASERERHZz1s5EggvBSIIBkIiIiEhmGACJiIiIZIYB0MM5q4mdiIjImZz18cS5jdJgACQiIiKSGQZAIiIisht7qLwbAyCRF2FPCRH5Gr6vSYMBkIiIiEhm/KWuAJlWohY4fyOXg2NJD3tciMhz8B3JmzEAeqjJPx/C8gNXpK4GeRh+HyAiX8MtTqXBLmAPZS788XVCRESehiHO+zAAEnkRdrgQkafQnQXM/Od9GACJvAjfY4mIyBkYAImIiMhuuj0S/HLqfRgAiYiIqFw4BtD7MAASERFRuTD+eR8GQCIiIrKbwkl7wbHxUBoMgERERFQuDHHehwGQiIiIykWwE9jrMAASERGR3fRmAZcj/zE8SoMBkMiLsJuFiIicgQHQy/Dzn4iIPIGT5oCQRBgAibwI33CJyBOZ6p3YdOo6xn2/D7fz7tp9XXI9f6krQES24xslEXkiU+P4Ri3aCwAIUwXgvcH3ubtKZAVbAImIiMhuCtjWJZGWXeDimpAjZBcA69SpA4VCYfJfQkKC1NUjsohdwETkidg74X1k2QUcERGBl19+2eh4nTp13F4XInvwTZaIPJGltyZrX1z5viYNWQbAihUrYtasWVJXg4iIyGvpBjthR4r7btdFXM8uwKQ+jVxQK7KVLAMgERERSeONFUcBAA+3qIEG1cIkro18yTIAFhYWYvHixbh69SrCw8PRtm1btG/fXupqEREReSVHenFzCosdvi6VnywDYFpaGkaNGqV3rG3btli6dCnq1atn9nqFhYUoLCzU/p6dne2yOhIREXkLjuPzPrKbBTxq1Chs2LAB6enpyMvLw4EDBzB8+HDs3bsXPXv2RE5OjtnrzpkzBxEREdp/MTExbqw5ERGRh3IgAHJRA2nJLgDOnDkTPXr0QFRUFCpUqICWLVvi22+/xfDhw3Hx4kV8+eWXZq87bdo0ZGVlaf+lpqa6seZERESew9ZlqawVs2cCCTmP7AKgOc8//zwAIDk52WwZlUqF8PBwvX/uxhcKERF5GlM7gZBnYwC8JzIyEgCQl5cncU2IiIi8i6W2CYVOU6FuIwYjo7QYAO/ZvXs3AC4GTUREZAvdreAshTm90GeiIIOgNGQVAE+ePIn8/HyTx6dOnQoAGDp0qLurRUREJAsMe55DVsvA/Pjjj/jwww/RrVs3xMbGIiQkBKdPn8bq1atRVFSEadOmoVu3blJXk4iIyOPZuhOIuS5gkpasAmBiYiJOnDiBAwcOYNu2bcjPz0dkZCT69euHcePGoU+fPlJX0apitYC/n9S1ICIiX3bnbgl2nLuJTvUiERxo/UPH1linZv7zGLIKgN27d0f37t2lrka5dJyzAXv/3Qv+frLqvSciIjea8uth/HHoKga0rIGPnrxfezwjtxBbTt9Av/jqeuVtbdgzOVuYoVASTBFe5nZ+Ea5lFUhdDSIi8mF/HLoKAFh58Kre8SFf7sLEZYfw7uoTNoc+3XUA2QPsORgAibwI19oiIimdTs8FAPx1NE3vON+bvA8DIBEREdnFqCXP1i5gkz3ADI9SYAAkIiIiOwm94GZrhLM17KXeMl6yjZyLAZCIiIjs4uhYPt3rWbqN/ZduO3YHZDMGQCIiIgmdvZ6LD9aeRGb+Xamr4jBbA6HaREHD8YTmypFzyWoZGCIiIk+TtGArStQCFzPy8cnQVlJXx2Z6rXkWunb1Fow2OJ6VX4TNp24YXUetdkIFySK2ABIREUmo5N7qyAdTM6WtiB2M5oA4OAkkp7DIZDm2ALoeA6AX+nZnitRVICIisp/NC0aTqzEAeqEvt11AGheDJiIiiRju6evoLGDdfYIt3T45HwOgl8q7Wyx1FYiIyAdsOnkdP+29ZNd1jLuAbQtsts4CZv5zPQZAIiLSyi4owooDV5BXyC+ZcjFq8V5M/fUIzqTn2HU9W8McABy5nIWJPx3Elcw7esdNt/8BagZAl+MsYC9l7kVDPo5viuRiL3y/H9vO3ET/+Or49Cn3zEi9lnUHBUVq1I0Mccv9kWnXcwrRoFqYTWXta6FT4KFPtgMADl3OtOkanATiemwB9GIlaoHl+y/jUgZXTCci59h25iYAYNWRa267z45zNiJx3mbczvPedfA8QXnHzbkjdJ27kafzm4CZIYD8rusGDIBeSgBYuucSJi47hG4fbJK6OuQubPolH3aR2385bPLPh5A4bzPu3C1x+DbsyX9CGGwF50BiE8L89TgJxPUYAL3Y7gu3pK4CuRvfE8mHsdvPcT/vu4yUjHz8ddTxltvynH1b9/g1vD9z1+JTwfUYAL0UG4KIyNfI/UO/xAkzH8x1qdrCngAuUP6/l1otzLb0OeNckGUMgF6MTeQyxORPPk3e72nXsgqkfV+3564NylqqtqVxfuauV54gS7ZhACTyJvL+fCQfx0YfIL8cY/jKqzxd8JauucXEXr9Aafi7nc+JP1JhACQiItnx1B6UnALT6y+uOXoNx65mufS+7QnglsbvGbpbojZ5/MiVTDz8SbLJy9gA6HoMgF7K3PY5RETeyl2ZbMbKo+g0dyOy8ovcc4d2MLXL06HUTIxdsh/9/7vd6fenG4QtheIiMyHO8LpXMu9g+oojOHcj1+p9L0pOsa2S5BIMgF7qUGqm1FUgstmSXRfRcc4GnL1u/UOB5EU3dLhrFvC3Oy/iWlYBfrRz+zN3MBXCzlh53fx9PF37s8LOtjO93TzMlJnyyyE0m7nW4h70muu+8uNBLNl1CQM/Nd2yZys2crgeA6CXevmngygstvyNjMhTTF9xFNeyCvDv345IXRXyEOdv5OLs9Vy7thNzNk/oBDac7erIORjz7T/an+3NTbp3Z64FcNk/l3G3WI3vdqXoldUtX6IWePnHA9iTUro8mbmubF1KhjxJcSs4L1ZQJN1gYSJHcGkHAoC7xWr0mL8FAHD8rSTtcUfWkvN2FzPy9H5390tEvwXWjusZ/L7q8DWsOHjVOZUit2ALoBfTbNlEROQOuYXFGPzZDnyx9Vy5bkd3t4qsOzrj8Lwg/wkhcOxqltO+gBs+ZHeE4LvFauw+n4G7xWqDFkDL18srLHvMQujX3ZYWP3uwcdD1GAB9SE5BEVtYyKPx2elc17Lu4MO/T+N6tvmxWc60bG8q/rl4G++uPum029QNHZ709vX19gsY8Gmy0USR3w9dRf//bseQL3c55X4MQ9fUXw475XYtmfXHMTzxxS7M/P2o3rhLa+Fz8Y4Us5c5ElwZ8qTFAOgjrmbeQfysdXjs8x1SV4WI3GTE13vw3w1n9MaA2UOypVB0Pvj1WqDc/BXB0sN/68/jOJSaiS+2lbZ2pt7KR4laYOme0okjBy5lOqsWer8dupyFYgszbkvUwuJkDFv8sLv0MSzdk6p3Dk5ey3H4Np39VGI2dD0GQB+x+kjp/o/7HXxTSr2Vj4nLDuJUmuNvAETWeOraa97qdHrp7NBDly2vD3cr7y4+WHsSKTfLxpt9syMFbWdvwJl021/zqgDnf2ToL0Pi9Jsvt4IiNdYeS0PX9zfhX0v2Ob2V0tRjvpZVgDmrT+BSRr7RZc9/tw8d5mzA1tOmF1cuj082nbW5rIDwyL8X2c7mV/PPP/9stUxJSQmmTp1argqRY8o7Zf7Zb/Zi+f4reOgT568zRZ4p/24x7rp5Jjk/L6Txzqrj+HTTOfT9aKv22Mzfj+FmbiH+veKozbfjig98W5Yhkdr/bbsAAFh3PN3pX2JM3drz3+3Dwq3nMdhEj876E6VLvny57bzJ27P3s0DKEMcuYGnZHACfeOIJjB49Gvn5xt9IAODs2bPo2LEj5s2b57TKke3e/vN4ua6vaUlwdyAg+zjrvbqwuATtZ29Ap7kb2ConA0futRAWFBm/vu0ZN+zqZ4rmuXgpIx8JH2zC4M924FJGvsueo7Z0OSug3/Lp7HHWph7a8WvZAIDrOYV2XU/j7+Pp+OfecizWOLr2ouHVHPkb2btmITmXzQEwKSkJX3/9NVq3bo2DBw/qXbZ48WK0atUK+/fvx+uvv+7sOhKRk13NLEBOYTFu5t6VdO9Rcg8/pYd90JpZ+0/z4+zVx5GSkY9/Lt5Gtw82IWnBVry49IBbq6hL5V/2Uen0LmAHY7W5612+nY8x3/6DwZ/v1C9vJqA5+nAKi9VYc/Sa9vd9l247eEtmsHnQ5WwOgH/99Rfmz5+PCxcuoEOHDpg/fz4yMzMxZMgQPPvss6hUqRI2bdqEt99+25X1JZI1Z70lVgj00/58x43rScq5sfGnvZfw7OK9ekuguFphcQmyC4r0ugWPXc3CAJ1dGuxquXHSH1A3vOj9fO/2DVvZTqfn4o9Dzl9jTvNw1GqBnIIivTpoKBRAoE4AdHoXsIM3l3w2A5+aGLOXrjNBRPd8DvzfDoz9bp+J+9evgD3Pzy/vdY0DwNEr2TZfjzyDXSN6X3nlFezatQtxcXGYMmUKatasiWXLluHRRx/FoUOH0LVrV1fVk4jgvC44qXZfkHH+w9Rfj2DDyev4dmeK2+6zy3ubcN+sddpwAwDPLN6rt5WkrX+TlJt5Ttt9yNzzT/OzKsAPpriqK/iZb/YiftY6HLh0G53nbsQ7BkNqdAO0s1sAbemCNdeA+8HaU3oTewDAT2ncXX30ShYOpWZizbE0E/ev/7upUOkqlhr52P7nenZP6WrRogUefPBBCCFw584dVKlSBW+++SYqVqzoguqRo347cLnci7WS7zLXAkOul11QZL2Qk9y4N4bs8u072mO38/TvPz2rAD/tvWRxYeOd5zKQMG8z3ll1win1EuZ+vvdLoJ/pjyZHAmhRiRqrDl/TngtTNp8qnVH7yP924GpWAb7aXtaypVDoj1Rz9n7F1m7uZFo2Pt5oPpTl3dVfgFn31N29t5xMsU7KUxsmPoNfLxgESvJddgXA1NRUdOvWDfPnz0fLli0xbdo0ZGZmom3btvj8889dVUdywCs/HcK7q0/iu50p2M4dQ8iAMPcJTD7PsNXlalYBpv56BPPXnTIqW6IWGPvdPqcteqyhv/SL7lZkpT+ba/0pNDGJxZovtp7HCz/sx0Cdbm97GNbF3Yvt912wzWIoM9xPV6nTXHjpVumkTd1zrJlgomH4BbBY7b6JgGzlk5Zdy8C0aNECO3bswEsvvYRdu3Zh9uzZ2LZtG6Kjo/HCCy/gkUcewa1bts08Ivd4Y+UxDPu/3XpdQESS5T85DwK8x9GZjyeuZaPDuxvw095L5bp/cxNCNp68bnRs6+kbJrsNy0v3WaCbp7Q/mjlFjoSTtffqfyXzjtFlH6w1Dr2m6HYBm3sKF5Wo8cHak9h5LkN7LPnsTaw4cMXibZf3JbEo+YLZy/ou2AZAP7Q++LH+Ul+G919U4hmvUc+ohW+zaxmYwMBArF69Gh9++CECAwMBAO3bt8ehQ4cwdOhQrFy5Ei1atHBZZclxlmZ65t917h6O5PmkWnyXb+qOe/XnQ0jLLm2tKw/DFiNLLHULl2c83sYTZWHT8LkohMDy/aZDk62tb9ey7pit38RlB22vKAAoYFMX8A+7L+HTTef0Wkuf+mo3Xv7pIM5ez9Uru+FEOjbcW8+vvEMwlv1zWe/3hVuM1we0dNoMH0+xp+zHxy+LLmdzAHzggQdw+PBhJCUlGV0WGhqK7777Dt9++y1ycriThCey9JY/7vv9Lr3v6zkFWHM0zeVdJ3eL1fjXkn3oPHejyW/7VEZ//1W+0bpTsVpgzl8nsPmUcYubJbprdAohsOt8hoXS5tmzIoylrFiep82UX8v2u9V9W7h8Ox+PGSxfoks3nBxMzcS1LOPX+eLkC+g4ZyM6ztmIIoMt1a7nFJgNl+ao1QK/68xANvd6OX8j1+RxAHr1zCssxrPf/INnv/kH+XeL3ZJzFloYD2549yXu7AK28ATju5Lr2RwAV61ahaioKItlhg0bZrRGILmf4awwAGj37ga8u/qEye4IzQBoV+m7YBvGLtmH71w8+3Hm70fx19E0XMm8gzmrnTNY3VdJtfuC5n5zCorw2eZzJre68nXL91/Gwi3nMXLRXodvY+PJ63jyC8fG5SntWhPQ+gd0YXEJ3ltzEmuO2tZVnHxWf0xyenbZsiXvrDqBfy6aX09O8yXyVFoOBn6ajI5zNupdfrdYjVl/lM7gTcsuwBdbz+s9Aj8H1pbT7JurcVHnOas7ocJoboXOi0z3y6/uRJa8whKXv/62n7lp8T3ecGJNUYlw20QlS38Nfi91Padv7FinTh1n3yTZKWHeZpPHv9h6Hi//dNDoW7E52QVF+Hr7Bb03aEfcyrsLANhgYoyRoRs5hSgqUeNihv0z0ZbuSdX+XOwh41g8lam119zprT+O4701J9H/421uv+/yUKsFCovtX8dPtwXJ0u4Oluj+lTaZaD3sNGeDTWvlZebb/uH+roUvUmohkHWnCI2mr8Fnm89h7JLSNebO3cjFouQLeu8zZ6/n4I9DVyGEwFNf7da7nae/3mNzfTQtgLrL2OjadkY/6Hyw9hQy75Q93tbvrDe6zsk0y+vX5RkMnyk2E+b+Pp6uV0439OUUFGPN0TSjNfbUQrj89Tfs/3ZbvLzzXP0QvefCLdw3a50rq1TGYgsz38Ndzd/Wglu3brVe6J5u3bo5VBlyj38t2YePnrwfISrLf/7Xlx/Bn4ev4btdF7Hp1QSbb/96TgFu5BSiWY0Iu+q163yGXqvGR0+2xICWNe26DTI296+TCFX5YXyPBtpjUq0DqLHzXvdlToHnjT8tLC5BoJ/SZPfUo5/twMm0bOyb3tvi62fjyXRUCVGhRUxFAMCEcuxikXorH++vPaU3jszUOL6rWQV4cekBPNSihkP3Y2rsl2YWqSlCAKsOX9M79tKPB7DyYGkIvZV3F2O718OZ67naGbjlXXR8cfIFvDmgud7WbBrbz9zEs9/8Y3T8opVWZs1ECUfsvpCBr5NT8ObDzZBm8EVZ93y+8tNBFKsFBreuhal9G2uPX88ulHVXp9GSNDrkfF7cxeYAmJCQYPMm0yUl3FrKk60/cR0J8zZjYMsaJvcGPXI5C/G1IvDnvTf3CzfzIISw+e/fbvYGAMDfr3RDg2phRpen3spHldBAVAjUf/p9rbP2FgB8te2CwwFwzbE0XMu6g+oRwVbL3swtRJWQQLs3UZfC6XT7xthevp2Pz7eUjv8Z270e/O8tEubON9fM/Lvan49dzcLCLecsvvFL6VbeXXSauwFd6kfiqxFttcdv5hZi/A/7cfBey9PuCxno0bia9jqVQwK1Za9k3sEzi0uDyIU5/Wwa+6r7+krPLsCu8xnoF18dAX5KjPt+P45cydIrb6oFUNe6Y2kI8Levg+diRr5df5cf917CjJXH9I5pwh9QuqDwltM3cPhyWd2n/HIY5fHNzosICvDTO6fFJWqk5xRabelyBU03fqJBr8trvx5G/ahQ7e+aMPjLvsuYnNRI5/p78MXTrV1fUQ+VYiGcswHQ9WwOgDNmzDD5AZmVlYX9+/dj69at6N+/P9q0aePUCpJr3Mgp1NvGR9dDn2zHvum99I6tOnIND95nX8vCvou39QKgEKUBps9/tqJqmAp7/61/H4ZPL1vymFotMP/vU2hVu5LRZe+sOoFPh7ayeP01R69h7JL9GNKuNuY8Gm+xbHZBEVYeuIK+zaujapjKZBkhBLILihERHGC98g44dtW+7ZZ0A36JENoXvLVZwPl3i3H2ei6a1YiAEEIbHB0x1WDA/5y/Tjp8W84khMC2MzfRoFqo9ovCn4evoqBIjfUn9APWgvWnset82RJXs1edwB+HrqFTvSqY/MthTE5qhBcS6wMAbueVBd5zN/Iw4BP9ZTcMbTiRjld/PoSXejZAiMofb/95HNkFxbiSeQfjEurjlInQn3rL/CSnHWdv4jkTW37Zwp5dIAzDnyG1gF74c5aFW/VnuX636yLe/OO4mdLS+HFvqtnLen24RftzRt5d7L+Y6YYaeR/mP9ezOQDOmjXL4uW//PILRo4ciTfffLO8dSIPkHpb/wPmrT+OI6+wGI+3idF+ETh7PRcXbubhwKXbeKlXA6j89bdvMvUC1oyTMbUqvyPro606cg2fbjI9wy2vUL97UQiBGzmFiAoP0h7TrAO2dM8lqwFw2vIjWHX4Gn7Yk4q/XuqK7IIiDP5sB5KaRWNSn9Jv9dNXHMX3uy9hybPt0bl+FZe0KhaXqO0IZGV/hV/2XcZT7WMNjppehuLR/+3AybTS4BEdHoTNkxMQZGZ7LmvWHku3Xgilf69DlzPRrk5lk48vr7DY6rAFe2w6dV3bUnfqnb5Yeywd2XdMj4/LL9Tv1Th3Iw/nbuTht3uTqj5YewqNo8NQJzJEb521hVvOGY0hM6TptpxlEGI2nbyOcQn17R4LNfQrx1vC5v992uHrSsXTwp81hsMeZnPCmkkcA+h6Tns3HTx4ML755htMmzYNa9euddbNkkQMdwW4nlOIqb8eQcUKgUhqFo0LN/P0vsmGBvljXEJ9vesYvn63n72JUBMf4EIIvPTjQaMFZ3Wj07kbufh6+wWM7V4PMZUraI9ftbDcS1pWAZbsuojBrWshKMAPU345jJ/3XcbTHWPx5sPNbApn17LuICP3Lp7/bp92aZkT91bS/37XJZxOz8Xp9LPaAPj9vRmDb6w8CpW/ErUrV8AXTzveKv7T3ktGrSi7L9xCh7gquHw7H7FVQixeX/dv8O/fjqJXk2qYveqEwbIWxtfThD+gdDbl/ku30alepPbYxYw8PP/dPjzXLQ6xVUJQVKJGh7gqRreTamEMWVkdS7s/n/1mL3adv6XXmqbx+6GrmLD0AKb3b4LRXeOs3qYtks+WLaPS9p31yDb4YNYdQmBqzJmhZ7/5B+3qVtY7Zm3C1fUc8xOsFFDgryPXPGZhXiJ3Yv5zPed9nQbQpEkTbgnnI7aZ2T7u5LUcJDWLxt4L+ju+aAaobz1dNgtPQOh1hwEwuavA+hPX9QKJRkGRGo9/vhM9m0Rh4dbzuJV3F/+k3MbaV8omGVkasnQyLQfTVxxFys08vJrUCD/vK10w9dudFxEc4Idp/ZqYvzJKWykNl5nQpbte1g+7L2Fo+9ra3zVbN51My4EQAtNXHEWNisF6weabHSm4cDMPMx9qajaMmlr0V3cWZf/46vj0KdPd3EII7DNYUqP9uxtMlrNm3bF0XMsswKDWtQCUtnSeTMvBxGWHyh7PM+3QvWFVvesZLoBrSos31+Htgc21XawfrD2FMV3jEOivxJXMOygsKtFOonhn1QmjAJh/txgjv96L7o2qGgVHS3R3xDAMfwDQcc5GpMztDwBGrdvm7DF4XVzNsjyDXjNe1uRtpdzCnhTurETyxD3KXc+pAfDAgQNQKp2+sgx5EM2L8nb+XcMLIITA23+WdccIAUz6+RCsGfOt8cw9ANqxT7ofgqfSc/B/2y9g4ZZz+OaZdjYtYvzr/stYaRAwF249b3KCybkbufj3b0cwoUcDFFpovbmaeQef6IyXev23I+hYz7gFDACOXsnWtgyGBPphZOe6AICZv5eOoXq4ZQ2TYxhtmTyw6sg1fGrmso82nMGC9Wes3kZeofVJW4t3pAAA4mtFoGG1MJOBacTXe7SB6Ux6DraeuYn31lgf75ddUIyXfjyod6zh9L8wqnMdLEpOsXjdlJt52mWP9qTcwl9Hr2Fgy5rakJiVX4SICmXjMb/Yeg7vrj6JGhFBRq11pnT/YBMWjWyLFQftWzxYwzAQEpFt2ALoejYHwEuXTO8/WVxcjCtXrmDx4sXYuHEjBg4c6Ky6kQfSvCgNB/IvP3AFyw0WmT6dnmNyf1FdjqyppgmZD3xk2/INt82se7bngv5OCvPWntKGul3nd+ObZ9qZvc1Oc41bBj9YazrsfPh3WXf6rD+Oo2G1MIxYVLb2mWZtMMMxbrYuHZJyMw/rjqfh3dWl99+uTmWMTYizKfwBpZN+3hsUj/M38rBw63nMe8z8do59/rMVB97ojWIz4XjFgSv4fMs5vS5kR1kLf1l3iozWvDx6JRtHr2Sjd9NqWHXkGt5fU3ruD8/qgzCVv/YcXc0qwIqD1tfMu5iRjx7zt1gtR0TOxfznegph40hLpdL0ulgaQgjUq1cPGzZsQO3atc2W8yXZ2dmIiIhAVlYWwsPDnXrbdV5b5dTbc6bERlWxyQm7h8x5NB7TlpdvX1Nf8MnQ+5FbUIzXlh+Byl+JdnUro2bFYIszCeVs0ci2SGwchekrjmDJLtNfTD8YfB8ml3PJESJf9+eLXTB71QntupyeZGrfxvhXQj2X3b4rP7+9hc0tgE8//bTJAKhUKlGpUiW0bdsWAwYMQFBQkIlrky9xRvgDwPB3z/gfylr6CovVZsdfUqlRi61vocbw5z5xkSE4b2L7SV/xVPva2iEczhIe5I/l4zpjb8ott74PNqwWityCYu3Y1OY1IxBpZkkrqXEMoOvZHAAXL17swmoQEZGn+WTo/XpfUEzSaRfoEFdZb71EV3h/0H3o3bQa7n/7b73jNSsGa2fqm/PuI/F4/TfbA1eAnwKzH4kvdwBsXjMcR6+UreHZvVEU6keFon5UqEsDYGRoICKCA3DuRh661I/EktHt9VZvACzvxysljgF0PadOAiEiIt/RP746xsP6WNRFI9si+exNvPZAY1zPKUSlCoEI9Fei3uurtWXa1qmEvSm3LdyKdeMS6uHxtjEmL6sTWcFqAAwO1J+k2DGuisXuz92vly5WH+CnMFqOp0fjKLNjnFdN6IL6UaF4+ceD6NawKoa0q603rEd3BYGm1cNx/Jp9C7xb0rZOJXw9si3WHUtHr6bVkFdYjF/3XdauUmA4cc4LNkAiF5HllN29e/eiX79+qFixIkJCQtChQwcsW7ZM6moREXkUW9bKVAClYzIfbAp/PyVqVAxGcKAf/JQK7H69p7bcgifvx4U5/fBqn4aoFl7W7Tj43tJClvwwpj2Gd4jVW+ZnWAf9seY9GldDv/hoo+vWjQzB5KRGOPpmEvrH6+9mtPS5Dvi3heWgNFv8/Ty2EwAgrmoIDs7ojZS5/fH1yLbaWe+GlAoFVP5++GxYawxpV1rPaQ+U7QGsm8H8/Syf415Nqlm83NR9hwUFYFDrWogIDkCNisF4sWcDVAlVGd23prwn4kLQrme2BTAuzrHFVhUKBc6dM70zgyfYtGkTkpKSEBQUhCeffBJhYWH49ddf8cQTTyA1NRWTJk2SuopEJFPDOtQ2O7HFXlP7NrZpGR5zBrUqDWaDW9fCL/fW0NTo07Qa1t3b1cdSSKwWHoQVL3RGZv5d1KxYuqj2+B4N8Hz3ehj+f7vRvEYE6keFGt2+oU71IvUWIgeAGQ82w4CWNVE9IggHLmXigebROHbFeOu5cQn18Fgb062Ghn4b1wmP/G+H0fGWMRXNhj2NShUCtCsOmApVIzrV0a6e0F5nCSLd9ShN+WpEG7smBVq7PVtaAHdO62FxDVR3WHc8HVcyS8cq9moShZ52BmGyzmwLoFqthhDC7n9qteWV76VUXFyMMWPGQKlUYuvWrfjiiy8wf/58HDp0CA0bNsTrr7+OixcvSl1N7DzneTOyiKhM//jqTr/NWpWC8c7AePib+QA//c4DWD6uk0239Xq/xmgUHWp0vHP9srUqo8ODsGhkW7O3UbNSaWCLq2q820ygf9lHh7X2o5YxFZHQKErvWICfEj8+1xHTH2yqF0BWvtAZ4UH+CLNhy79AfyXa1qmMWpUq4KEWNeDvp0SXBpFG5cKCbB/pdL+J9TitqXKvlVD3MZraqTEowA9bJifg/UH3YViHWO1xw7+3pWWYbGEtAGq2vJzSt3T3IlNbcAY7sO1jVxPnvjwOX87C0j2XsHTPJRwxEeyp/My+MlJSUtxYDffYuHEjzp07h1GjRqFly5ba4xEREXj99dcxcuRIfPPNN5gxY4Z0lQSwywOn5BNRmbcGNMMnQ+/HE1/sAgAsebY9Um/nIyjAD53vrRHZICoUZ2zYCUVDs9fyyvGd8fmW89h08jpydfazDvRXolXtSuhUrwp2WPiSGFM5GM91q4c/TOyuo/v9vFmNcCQ2jjIqo3WvpeiZznW16ykCQGyVCnjtgcb48/A1AOUfQ6YbQFrEVMThWUkAgEbT/0JhsX0NCo/cXxMBfkq0qFUR3+++iMOXs6y2HMXXitD7vVeTKKw/YXn9Ul0rXuiMPw9fw1MdaqOwuAS384oQF2kcvgEgtkqI0faNhoFtcOtaeNWGBfSf7hiLb3caN1hYC4Cd6kXi5Nt9tc83w+LvD7rPoX3ZdbfoBEqDcYbBTlD2mNS7ofZnWxZtJ/tZ/GqUnZ2NoKAgBAYGuqs+LrV582YAQJ8+fYwuS0oqfdPZskX6RV9bxERYL0REkhjdpa52PNVPz3UAUNoNWq9q6Yf+7Eea4+iVLMweGI84nUkQusZ0rYsvt13QO6YZ89SsRgQ+HnI/TlzLRr//bjMas1W7cgWLAVAT8ro1rIqgACXuq1lRu5uOLTvnaG/nXtGgAD/MeqgpZv1xHB8+3gKPtrI+Zs8e5gKkI8FSoVDgoRal4/ysbfWo0SGuChYOb41691o6q4bZt5RZTOUK2vXq/vdUa7uuC1gPbOY82qqWNgB+9GRL7W465lqQdQXptPAZdlerApRQODA7wPBuQ4P8yxUAX+zZwOHrkm0sBsBKlSph1qxZeOONN7THdu/ejd27d2PChAkur5yznTlTujNCgwbGT6zo6GiEhoZqy5hSWFiIwsJC7e/Z2c6buaWrR2OOdSByBc2yHlMcWCewafVw/PqvTggOLPvwNDX+7an2sUbHDJm63r8S9PcxblI9HBfm9MeZ9By97ewmJzWyuEh47XstMRHBATg4ow8C/ZTaIKqb/6xFQd112EZ2rovBbWIQqtM1q2nhfOi+GqaubjNPmISQ1Kxs8kjTGu5dFLhBVBiSz5av10e3Jdfe82lq91Zrt/DgfdUR6K/E8v1luz8ZthraEkRJWhZzvmZcn641a9bglVdecWmlXCUrq3QcQUSE6Ra28PBwbRlT5syZg4iICO2/mBjbBhYTkWVdG0Ri0Sjz49GsGdW5jvbnKX0b4dFWxvs8A6UfUo+bmRAwomMsFo1si9gqFbDgiZZ6lz3XLQ4/j+2oF/7KQ/czumfjKGyZnGB2NmyDamGI0mmV0rQ+Gprevwn6xUdj3uNlY8iCAvygVCrwQPPSgDOmWxzuu9fl+ZiJ+6sbWdY9adhYGGowLm/Z8x3xxfDWGFvO3RrMtgBKtELdkLYx+He/JvjzxS5uub9JfRpaL2SC7mezn85JtL9F0bi8tdnfU/s2Rrs6+t2yhnfraMsmuQ/XAbTDtGnTMHHiRO3v2dnZDIFE5dCtYVXMeTQeNSsGQwiBz55qhX99v9/u23m5Z0Pt3sFxkaEY3iEW0eFB+N9mgxUJ7n0mffV0G4z+9h/tYd0ZnprWlJd/Oqg9NrF3Q71uM1spFGVByl+pQPG9ftUOcVXQvm5lLEpOwdsDm6PGvRmy5dE6thJGdzW9esOnQ1shPacA1SOC0bVBJFIy8tCoWhgA4PNhrfHyTwew+dVEREcEaWecWmshrBQSiD7NjJddsZe5FiupGgb9/ZQY082xVTAcERYUgC+Gt8Zz3+1DhzjHxrrpnkPN0jW2MnWerZ16tRBoU0d/woxhaPSEll2yTFYBUNPyZ66VLzs7G5UqmZ8FplKpoFJ55rY55Js0Hwze6OTbfXH2ei4e/Hi72TIVAvy0y4MoFAo8YMfs2ha1InDoculrWaEEXnugMQ6lZqJ302rwUyowpW9jXMzIx67zGejdtBp+3JuK1/qWrsXWs4mFyQ8GFjzR0qHwB5R+kGqC1J8TuuCdP0/ggfhoJDSsCoVC4bbhHkqlAtUjSs9zUIAfGkeXdXP2bR6Nk80fMLqOPeMFy4M5AejTLBqbXk1ArUr6XwRMtdKaolSWjgP8Zd9lvNqnkV33rdtQF1M5GH2aWg/1agHUjwozuB0FggKUKCgqHYRantbyKnaGWHKMrAKgZuzfmTNn0Lq1/mDdtLQ05Obmol27dlJUjcgkZ7QMSWHTqwkICvBD85oRaFI9HCfM7HRgar/P38Z1wsm0HL0tsno2jsIGg10Xloxuj/hZ6wAAKn8lxnY37or89KlWpfcjBMYl1EdM5bKwaWp3B13Lnu+IE9eyMaCl42PcFDpNgI2jw7FkdHuHb8vt3LQOr7lwLbdcqNv9rmHrn0CpUGBAy5oY0NL00Adr19XY8moilEoFCopKLF6nRG1cM4UCiAoLwqVb+QCAkEDH44W7x2HKlax2AunevTsAYN26dUaXrV27Vq8MEQBUj7BvRqAzJDSqqv25jokPBUdpuvwc8dGTLW0q98Po9ljxQme9D7MvhpufGWmqken+2pW0uycApX+D/xvZFr0MWu3CggLw43Md8MvYjlD5W25tUCgUqF2lgl43lbUGrnZ1K2NEpzo27YZhTgUHWw49gbtaABMaVUXPxlF64zgB23Yh8XWm/gZRYSqj14JfOc6V7jWVNo7bM7VLh+FVx90bG9regSVc3PXckzurEX3JkiXYtWuX9vezZ88CAPr162eyvEKhwKpVtq9a7k49e/ZEXFwcfvjhB0yYMEG7FmBWVhbeffddBAYG4umnn5a2kuRRWsVWwuBWtTBq8d5y31Zc1RBEhwdZXMIDALrUj4RSoUBUmAqhKn+TS4ZoVAj0w5bJiWg7e73F2wz0UyKhcVWcSs+xWK5htVCcTjdeu653U9u6KjvVN14M1nB9sP8OuR8TllrfX/b38Z3xycazeO3eFloLh7fR21sWKB1L56gvn26DZ7/Zq10Y1xUWP9MWL/5wADMeauay++jdtBqu3L6D+JrOXT7KkcWAHaHy98P/mViQmvEPJpsAd7zWA35KBQ6kZmqPlScrmwra1sbv1apUwejYc93qYe2xdO3vnepHYvfrPeGnVKDNO5bfnwx58H4SPsVqADx79qw29Olas2aNyfKe/K3N398fX331FZKSktCtWze9reAuXryIefPmoU6dOlJXk6wY2akOFu9IsVquflQo/BQKvDWgmXbBXlP+md4L28/c1Bv0X7tyBYQH++Oth5uhSqgK6yd2w9bTNzGoVS3sPJ+BsUvsH5e3/pXuUCoV2kH27w++D9/vvoQBLWrgrT+Pa8spFAp8rfOBGB4UoHc7K17ojIGfJgMAujesiqph+uNSH72/JpYfuKJ3bEDLGnilV0OcuJaDradvmK3jXy91Q1GJGlcz72DYV7txNasALWpFmJ2RqTsOz1YPt6ihDYCWvuffV6sivni6jfZ3P6UC7wxsjukrjmrXXSuPxMZROP3OA/A3tW2Dk7SOrYwd03paL2in8Yn18cmms3imc13MeKgphBBOe++d9VBT/HH4Gka7cSIEmWaqJczU87U8f3tTYU/30FsDmmHGymMAgCOz+qBELYzG93W79z70QPNoLNx6HnH3egCqhQfhtgNrAbIF0D0sBsALF0y3OnizxMREbN++HTNnzsRPP/2EoqIixMfH47333sMTTzwhdfXIgkGtauGJtjFoV7cyXnugMd5dfQKbT91AVJgK/1y8bVR+3cvdoFBYfnOMCA5AZKgKD7Wogcz8u5j1R2kQ+3jI/WgRU1Fbrn5UmHbQc9/m+oOkW8dWwj4T92/IsHulS/1I7ZIkegHQ4Hp+BpvF63ZLm3powzrGagPg3Efj4e+nRL/4aAQF+GFouxiLAdBPqYCf0g9xVUOxcnwXLPsnFY+1qYUAMxvWL32uA5rOWGv29qyx931+WIdY9G5aDVFhzpmM5crw50qT+jTEwy1roP69xaed+cV7ZOe6GNm5rtNuz2Ge25bgNiaG2mk5KyNZmwXcOrYS+sdXR+0qFRBm8GV0aPva+GH3Jbzcq3R8/cQ+DdG0Rji66PQEOPLUZP5zD4sBMDbW+oKm3qhdu3b466+/pK4G2Wm+wfpmbw1orv3dcLP0Xk2i9AKXZsB/dHgQ/vNESwz5srRFsFvD0vF2fkoFhnesow2Atr5p9W5aDV8Mb42608q6Juc91sJoK6fG0WXj7/ZN74WsO0VmJ3joBk8AGNCypt5WXNXCywKg5tv7olFtMWpRaTe1EKXrdB1MvY3BrWvphZyO9czv12k4CL1qmAovJJYtTrzulW4oUQscuZKlXUi5QqC/doJGRLD+h4Mpxstc2P9Or/v45UqhUKBhOcZ0ylnvptXw9/F0vZDiqSy9OuqZ2KPZEabe6nRbBZUKhXYylaHZA5vj9X5NtGtEqvz9jCaiOLKeI1sA3UNWs4DJs7w9oBny7pZg7l8n9Y6HqfyRo7MHKgAEBdjWUvOvhHoIVfljqM4kAgD4bVxnfLThDKYkNUIDMx+cug10tq5hpYB+68sTbWLwyP01ERWmwtNf70G9qiGY9kATtNVZNLVKqMpoMd+3BzbHGyuO4oHm0Wgdq78UkamJBNP7N8HiHSmYem9Zk8RGUWhXtzKuZpaOBTO8DY2I4AAcfysJz327D9vP3tS7zNqbriZwNKkejvCgAG1L5PuD78Oi5BSzCxnrMrcIM5GhdnUqY8PJ6wgLcu7H1PzHW2DN0TQk2bDcidRMTbbQqFghENunJpZ7rKapiR+6b3+W3goVCoXRAuHGheyv0/COvtn45GkYAGVuSLsYLN1jflspc4a2r42WMRVx+VY+/rvReIzoe4PisXDLeZy/mQcAeLlXAyxYr7/NXlCAH/Lu6i83oFQAR95MwoYT6ahduQJu5BTiZFqO0QxBc+6rGWFyLbnmNSPwpc54MlN0g5ytLYCacmtf7oaM3ELtJIhuDaviyKw+qBDob9OK+MM7xGJ4B9NveqbqMrprnNGivz891wFqYX0F/gqB/mhSPcwoAD54n+1r8Ol2g1cJVeHVJPvWHtPgF30y54PHWuDr7Rds+mJhj/CgAK/5ImLt9WFqMoa9THYB6xysGFy+Nfkc6QJ2ZDkbsh8DoMw93sb+ANisRjjefaRs5qSpAPhE29p4om1tbdfswJY10bxGhN7uC4Bxt6Pm/a5nk9JZpw2qhZmcWWqOrW82j7aqieX7r+B5MwPdrX6rNdAoOgyAfsui4XgZR9nahaJQKGBmqJ5FT7SJKV2Ko4nrFyXWfKA93z0OC7ecxyQ7F60l+agcEujwFwtfYeuyLOVh7v3li+GtkXe3GNHlXAqLQzk9FwOgDGg2bTfF3gU3P3uqFTrWs33pjfmPtcDt/LuoExmCmMoV0LZOJexNKZ0wERTghz5Nq2F6/yZ4Z9UJAI63CEWGBuJm7l29rlZr9Xp7QHOEGAS9GQ82ReadIsRWsTy+pk1sJfxz8bbeenUu44J30EidLuhKIYF27cDhDNMeaIJJvRsh0N87J2EQuYMjX+jsZS5jOmObP/JsDIAyEFulgskAuGtaT6j8/TA5qRE+WHvKxDWN2RIUujYoa7EbpNN946dU4OexnfDJxjP45+Jt9G0eDYVCgdFd4/DRhjPIKSh2eC2z7VN74M7dElSycQshhUJhFP4A4Jkuts1+/GFMB1zLumM1KDqDK1ZWGtGpDubcG3tpbrygqzH8EVmmGYusu6e0q+7DVQxnqE/o2QD/3XDGTGlyJwZAGVrybHuEB/uXu2nfUeN7NDA69tu4zliUfAHjdGad2iMowM/h/VodEeivdEv4A1zThRIU4IfNrybgZFq20a4CROQZ3LGubmLjKHyy6azdw14cNbF3Q9SuXEFvpYTKIYG45cB6gVQ+DIAy06V+JLo00B9TV9PJ+83a2oqmq35UKGY/4rodGbyZ7odAj8bOC2t1IkOcutUcETmXpntWAddtzdw6thJWTeiCWhXLP6HEFN0Iq5mxbBhr61cNxZ68Wy65fzKPAVAmJic1wqWMfMwdZByyHm5RA2eu56BNncrateQMPXJ/TTxrJdglNqqKdx+NR/UI5wZKudN9s3yxh2MtpETkfVzdPavRrIZztxE0Z9Eo4y3/kppVw8yHmqHT3I1uqQOVYQCUiRcsdK0qlQpMTipdT27uo/F4bfkRfDq0FT78+xTO3ShdxuU/T7S0eh9+SgXDnwvor8nFOXVEcqH0sWGytSoZfz4seOJ+o63lyD0YAGWgqR3f7p5sVxuDWtdCgJ8Sl2/naycKkHQcWUnfU3HZPyLb1dPd6o+LZpKTMQD6uIm9G+I5Ozd1D7i3dVhMZXvHhPhOUPEkuo1+lnYGICLf8NNzHbDl9A083bEOAN95Z9X0YAi9Y9LUhRgAfd6EnsYzbm3Vt1k0Xu3TEC1jbFsmpFF0qMP3RbZh/CPyfe3jqqB9XNl6q74SkvgF1rMwAJJZSqXC5JIthla+0BnrjqdhfKLjYZPMc9dAcCIiZ9Nd7zM82Dm7I5FzMAD6IM2aSu7KDS1iKqJFTEX33JkM6XcBS1cPIiJ7BfgpsXxcJxQVqxFuYntMzfsbhzm6HwOgD3ohsT4C/ZXo3qCq1FUhJ9DP8XyHJJIbhUtXAnS9VrWl2W2ILGMA9EGB/koM7xArdTXISXSXfvH2b8gcA0REunxplQNv42OrDBH5Ht23R8YnIhny4YzEIc7SYQAk8nAcA0hEvo450P0YAIk8nH4XMBMgkdz4cjjy5cfm6RgAfcTkpEZSV4HIKsZXIvuxm5RcgQHQR1ja65d8BwMUEfkS7m8uHQZAH9SsRrjUVSAX8fYeYL7VE9nPl2fK+u4j83xcBsaHbJjUHZcy8rnmkg8TXt4G6N21JyLyHQyAPqRe1VDUq8r9eImIyDuU7QTCrUDcjV3ARN7Ey98fYypVkLoKRF6Hw+TIFdgCSORFvDX/LR3TAWeu56BjvSpSV4WIJKa7nBUngUiHLYA+oE0sx/zJhbf2kHSsVwVPd6wjdTWIvNJHT94PAJjxYFOJa0K+hC2APiBExT+jXHj7JBAisl/vptVw6p2+UPn7SV0Vl2E7oPuxBdAH9GwSJXUVyE28tQWQiMrHl8MfSYNNR17ui+Gt0bNJNamrQW7C/EdERM7AAOjl+jSLlroK5EbVwlVSV4GIiHwAAyCRF1g8qi2uZRWgcTR3eSEi38PJwO7HAEjkBRIacZwnERE5DyeBEBERkdtwLLNnYAugl+ofXx0NqnHbNyIi8n4KKMBo6F4MgF7q06daSV0FIiIi8lLsAiYiIiJJvTWgGQBgfGJ9iWsiH2wBJCIiIrcxNeH3yXa10btpNVQJ5VJX7sIWQCIiInIbcyP9GP7ciwGQiIiISGYYAImIiIhkhgGQiIiISGYYAImIiIhkhgHQQ70zsLnUVSAiIiIfxQDooQbeX1PqKhAREZGPYgAkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiInIfc1uBkFsxABIRERHJDAOgF/p+dHupq0BERERejAHQy0SGBqJz/Uipq0FEREReTDYBcNasWVAoFGb/paSkSF1FGymkrgARERF5OX+pK+BuI0aMQJ06dYyOV6xY0e11sYQxj4iIiFxFdgFw5MiRSEhIkLoaRERERJKRTRew7+D8eSIiIiof2bUAbt26Fbt374ZSqUSDBg3Qq1cvhIaGSl0tIiIiIreRXQCcOXOm3u8VK1bERx99hKefftrqdQsLC1FYWKj9PTs72+n1s46jA4mIiKh8ZNMF3KJFC3z99dc4f/487ty5gwsXLuDjjz+GQqHAyJEj8fvvv1u9jTlz5iAiIkL7LyYmxg01N8QuYCIiIiofhRDCaxLFpEmT9FrgrHnppZfQoEEDi2U2bNiA3r17o3nz5jh8+LDFsqZaAGNiYpCVlYXw8HCb62WLvMJiNJu51uh4ZGgg/pne26n3RURE5C7L9qZiyq+ln7cpc/tLUofs7GxERES45PPbW3hVF/DChQuRl5dnc/nBgwdbDYA9e/ZEvXr1cOTIEWRnZ1t8IqhUKqhUKpvv3zXYBUxERETl41UBMDc31yW3GxkZibNnzyI/P1+23wSIiIhIPmQzBtCcvLw8HDt2DCEhIYiM5BZrRERE5PtkEQBzcnJw+vRpo+N37tzBmDFjkJOTg8cffxz+/l7VIEpEROR1BCczegRZJJ6MjAw0btwYbdu2RZMmTRAdHY309HSsX78ely9fRnx8PD744AOpq6lHwaF+RERE5CKyCICVK1fGuHHjsGfPHqxevRq3b99GcHAwmjRpggkTJmD8+PEIDg6WuppEREREbiGLABgeHo5PPvlE6mo4BVsGiYiIqLxkMQbQl1QI9JO6CkREROTlGAC9TMUKgVJXgYiIiLwcAyARERGRzDAAEhEREckMAyARERG5jb+S0cMTyGIWMBEREXmG/vdVx3e7LqJ9XGWpqyJrDIBeJipMJXUViIiIHBYU4IcVL3SWuhqyx3ZYL/POwOZSV4GIiIi8HAOgFwkO8EO18CCpq0FERERejgHQQylgvOXHule6SVATIiIi8jUMgF6iWrgKMZUrSF0NIiIi8gEMgEREREQywwBIREREJDMMgF5CCKlrQERERL6CAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAvYTCeFlAIiIiIocwABIRERHJDAMgERERkcwwABIRERHJDAOgh+KYPyIiInIVBkAiIiIimWEAJCIiIpIZBkAvMalPI6mrQERERD7CX+oKkHU/jGmPTvUipa4GERER+Qi2AHqB6hHBUleBiIiIfAgDIBEREZHMMAASERERyQwDIBEREZHMMAB6Aa4JTURERM7EAOgFhNQVICIiIp/CAEhEREQkMwyARERERDLDAEhEREQkMwyARERERDLDAEhEREQkMwyARERERDLDAOgFuA4gERERORMDIBEREZHMMAASERERyQwDIBEREZHMMAASERERyQwDoBfgXsBERETkTAyAHkrBqb9ERETkIgyARERERDLDAOihhE6/LxsDiYiIyJkYAImIiIhkhgGQiIiISGYYAImIiIhkhgGQiIiISGa8NgAePHgQr7/+OpKSklC1alUoFAokJCRYvd7333+Pdu3aISQkBJUqVcKDDz6I/fv3u77CRERERB7CawPgihUrMGfOHGzevBnR0dE2XWf27NkYNmwYrl+/jrFjx+Kxxx7D1q1b0alTJyQnJ7u4xkRERESewV/qCjjqsccew8MPP4z4+HhkZGSgevXqFsufOXMGs2bNQsOGDbFnzx5EREQAAMaNG4cOHTpgzJgxOHr0KJRKr83ERERERDbx2rTTrFkztGrVCgEBATaVX7RoEYqLi/Hvf/9bG/4AoGXLlhgyZAhOnDiB7du3u6q65cJdQYiIiMiZvDYA2mvz5s0AgD59+hhdlpSUBADYsmWLO6tkM8HNgImIiMiJZBMAz5w5g9DQUJPjBRs0aKAtQ0REROTrvHYMoL2ysrIQFRVl8rLw8HBtGUsKCwtRWFio/T07O9t5FSQiIiJyE0kD4KRJk/QClTUvvfSStrVOCnPmzMGbb74p2f0TEREROYOkAXDhwoXIy8uzufzgwYMdDoARERFmW/g0LXm6k0NMmTZtGiZOnKh3vZiYGIfqQ0RERCQVSQNgbm6u2+6rQYMG2LlzJ9LS0ozGAWrG/lkLlyqVCiqVymV1JCIiInIH2UwC6d69OwBg3bp1RpetXbtWrwwRERGRL5NNABw1ahT8/f0xe/Zsva7ggwcPYunSpWjSpAm6dOkiYQ2JiIiI3MNrZwGfPHkSc+fOBQDcuXNHe2zkyJHaMosXL9b+3LBhQ8yaNQvTp09HixYtMGjQIOTk5ODHH38EAHz55ZceuwsIF4ImIiIiZ1II4Z3LDG/evBmJiYkWy5h6aN9//z0WLFiAY8eOITAwEJ07d8bbb7+NVq1a2V2H7Oxs7eQSzVIyzlJQVILGb6wBAGyZnIDYKiFOvX0iIiK5cuXnt7fw2hbAhIQEkwHPmqeeegpPPfWUC2pERERE5B08s8+T9HhnGy0RERF5KgZAIiIiIplhACQiIiKSGQZAIiIiIplhACQiIiKSGQZAL8B1AImIiMiZGACJiIiIZIYBkIiIiEhmGACJiIiIZIYBkIiIiEhmGACJiIiIZIYBkIiIiEhmGAA9lL+ybO2XihUCJawJERER+Rp/qStApvn7KbHyhc4oKlEjIjhA6uoQERGRD2EA9GAtYipKXQUiIiLyQewCJiIiIpIZBkAiIiIimWEAJCIiIpIZBkAiIiIimWEAJCIiIpIZBkAiIiIimWEAJCIiIpIZBkAiIiIimWEAJCIiIpIZBkAiIiIimWEAJCIiIpIZBkAiIiIimWEAJCIiIpIZf6kr4M2EEACA7OxsiWtCREREttJ8bms+x+WIAbAccnJyAAAxMTES14SIiIjslZOTg4iICKmrIQmFkHP8LSe1Wo2rV68iLCwMCoVC6uo4LDs7GzExMUhNTUV4eLjU1ZEUz0UpnocyPBeleB5K8TyU8eZzIYRATk4OatSoAaVSnqPh2AJYDkqlErVq1ZK6Gk4THh7udS9iV+G5KMXzUIbnohTPQymehzLeei7k2vKnIc/YS0RERCRjDIBEREREMsMASFCpVJg5cyZUKpXUVZEcz0UpnocyPBeleB5K8TyU4bnwbpwEQkRERCQzbAEkIiIikhkGQCIiIiKZYQAkIiIikhkGQCIiIiKZYQD0Ae+99x4UCgUUCgV27dpldHl2djYmTpyI2NhYqFQq1KlTB5MnT0Zubq7J21Or1fj4448RHx+P4OBgVK1aFUOGDMH58+fN1mHt2rXo3r07wsLCEB4ejsTERGzYsMFpj9GUOnXqaB+34b+EhASj8oWFhXjrrbfQoEEDBAUFoUaNGnjuuedw/fp1s/fx/fffo127dggJCUGlSpXw4IMPYv/+/WbL7927F/369UPFihUREhKCDh06YNmyZc54uFb99ttv6N27N6pUqYKgoCDUrVsXQ4YMQWpqql45X30+LF682OzzQfOvZ8+eetfx1XMhhMDy5cuRmJiI6tWro0KFCmjUqBGef/55k3X11fOgVqvxySefoFWrVqhQoQLCw8PRrVs3/P777ybLe/t5WLJkCZ5//nm0adMGKpUKCoUCixcvNlveEx/v6dOn8fjjjyMyMhLBwcFo0aIFPvvsM1nv2esygrzakSNHhEqlEiEhIQKA2Llzp97lubm5omXLlgKA6NOnj5g6daro06ePACDatm0r7ty5Y3Sbo0ePFgBEs2bNxJQpU8SwYcNEYGCgqFy5sjh9+rRR+e+++04AEFWrVhXjx48X48ePF1WrVhUKhUL8/PPPLnvssbGxIiIiQsycOdPo36JFi/TKlpSUiKSkJAFAdOjQQUydOlU8+uijQqFQiLi4OHH9+nWj23/nnXcEABEbGysmTpwoxowZI8LCwoRKpRLbt283Kr9x40YREBAgwsLCxJgxY8TEiRNFbGysACDmzZvnqtMg1Gq1eO655wQAUa9ePTFu3DgxdepUMXz4cFG7dm2xbds2bVlffj4cOHDA5HNh5syZolmzZgKAeO+992RxLiZOnCgAiOrVq4uxY8eKKVOmiKSkJKFQKERYWJg4cuSIz58HtVotBg0apH1djB8/XowZM0ZERUUJAOLjjz/WK+8L50HzfhMZGan92fC90JMf77Fjx0RERIQIDAwUw4YNE1OmTNG+dsePH1/u80P6GAC92N27d0WrVq1E+/btxbBhw0wGwBkzZggAYurUqXrHp06dKgCId999V+/4xo0bBQDRrVs3UVhYqD2+evVq7RuFrlu3bomKFSuKyMhIkZqaqj2empoqIiMjRWRkpMjOznbWQ9YTGxsrYmNjbSr79ddfCwBiyJAhQq1Wa49/9tlnAoB47rnn9MqfPn1a+Pv7i4YNG4rMzEzt8QMHDgiVSiWaNGkiSkpKtMeLiopEvXr1hEqlEgcOHNAez8zMFA0bNhSBgYEiJSXFsQdqxYIFCwQAMW7cOFFcXGx0eVFRkfZnX34+mFNYWCiqVKki/P39RVpamva4r56La9euCaVSKWJjY/Weu0II8eGHHwoAYtSoUdpjvnoefv75ZwFAdO7cWeTn52uP37hxQ8TGxgqVSiUuXLigPe4L5+Hvv//Wvs/MmTPHYgD0xMfbrVs3AUCsXr1ae6ywsFB07dpVABA7duyw/WSQVQyAXmzmzJlCpVKJY8eOiREjRhgFQLVaLWrUqCFCQ0NFbm6u3nVzc3NFaGioiIuL0zs+ZMgQAUBs2bLF6P4SEhIEAHHx4kXtsYULFwoA4s033zQqP2vWLAFAfPPNN+V9qCbZEwA7duwoABiFMLVaLeLi4kRISIjeh8S0adPM1n3kyJFG52jt2rVGH6waixcvNnuOyis/P19UqlRJxMXF6QU9U3z9+WDOTz/9JACIgQMHao/58rnYuXOnACCGDh1qdNnp06cFAPHggw8KIXz7PGi+FK9atcroMs2XphkzZgghfPM8WAqAnvh4T506JQCIxMREo/KbN282+/5KjuMYQC+1f/9+zJ49GzNnzkTTpk1Nljlz5gyuXr2Kzp07IyQkRO+ykJAQdO7cGefPn9cbI7Z582btZYaSkpIAAFu2bNErDwB9+vSxqbyzFRYWYvHixXj33XfxySefYPfu3UZlCgoKsHv3bjRq1AixsbF6lykUCvTu3Rt5eXn4559/tMftfVxSnYd169bh9u3bGDhwIEpKSrB8+XLMnTsXn3/+Oc6ePatXVg7PB1O++uorAMDo0aO1x3z5XDRo0ACBgYFITk5Gdna23mV//vknAGjHQvryeUhLSwMA1K1b1+gyzbGNGzcC8O3zYIonPl5L5bt06YKQkBC3v3f4OgZAL1RYWIinn34aLVu2xJQpU8yWO3PmDIDSDwRTNMc15fLy8nDt2jXUrVsXfn5+Vstbuw9T5Z0tLS0No0aNwr///W+8+OKL6NChA9q1a4dz585py5w7dw5qtdrm86D5OTQ0FNHR0TaX171MV3R0NEJDQ11yHvbt2wcA8PPzw3333YdBgwZh2rRp+Ne//oVGjRrh1VdftamOuse9+flg6OLFi9iwYQNq1aqFvn37ao/78rmoUqUK5s6di0uXLqFx48b417/+halTp6Jv376YOnUqxo0bh/Hjx1uto6l6etN5iIyMBABcuHDB6DLNsdOnT1uto6l6etN5MMUTH6+l8n5+fqhbty5SUlJQXFxs5dGRrRgAvdCMGTNw5swZLFq0yOSLUSMrKwsAEBERYfLy8PBwvXL2lrd2HVPlnWnUqFHYsGED0tPTkZeXhwMHDmD48OHYu3cvevbsiZycHKt1NFfPrKwsp50HzXVccR40M5g//PBDREREYM+ePcjJycHWrVvRsGFDzJ8/H5999pnNddQt523PB1MWLVoEtVqNkSNH6r1WfP1cvPLKK/jxxx+Rm5uLzz//HO+//z7Wrl2L9u3bY+jQofD397daR1P19Kbz8MADDwAA5s6di4KCAu3xjIwMLFiwAACQmZlptY6m6ulN58EUT3y8ttyHWq3Wvq9T+TEAepmdO3di3rx5mD59Opo3by51dSQ1c+ZM9OjRA1FRUahQoQJatmyJb7/9FsOHD8fFixfx5ZdfSl1Fl1Or1QCAwMBArFixAm3btkVoaCi6du2Kn3/+GUqlEvPnz5e4ltJQq9VYtGgRFAoFnnnmGamr41ZvvfUWhg0bhtdffx2pqanIycnBtm3bUFBQgISEBLPLoPiSoUOHIjExEdu2bUN8fDxefPFFjB07Fs2aNdMGEKWSH4EkX3z2e5Hi4mKMGDEC9913H1577TWr5TXfpMx9q9SMD9KUs7e8teuYKu8Ozz//PAAgOTlZ7/7tfVzOOg+a67jiPGhus02bNqhRo4beZc2bN0dcXBzOnTuHzMxM2T0f1q9fj0uXLqFHjx5G48B8+VysX78eM2fOxPjx4/Haa6+hVq1aCA0NRZcuXfDHH38gICAAkyZNslpHU/X0pvPg7++Pv/76C7NmzYJSqcQXX3yB5cuXY8CAAfjll18AAFFRUVbraKqe3nQeTPHEx2vLfSgUCoSFhZm8nOzHAOhFcnNzcebMGRw8eBCBgYF6C9x+8803AICOHTtCoVBgxYoVVseVGI65CAkJQfXq1XHhwgWUlJRYLa/7s6n7sDbOxFU0Y3/y8vIAAHFxcVAqlTafB83Pubm52oHktpTXvUxXWloacnNzXXIeGjVqBACoWLGiycs1x+/cuSO754OpyR8avnwu/vrrLwBAYmKi0WXR0dFo3Lgxzp49q/ec9MXzAAAqlQozZ87EqVOnUFhYiOvXr2PhwoW4cuUKgNIvTtbqaKqe3nYeDHni47VUvqSkBBcuXEDdunW1wxeo/BgAvYhKpcKzzz5r8p/mxfPwww/j2WefRZ06ddCgQQPUqFEDycnJ2jCkkZeXh+TkZNStWxcxMTHa4927d9deZmjt2rUAgG7duumVB0pno5orrynjLpqZwHXq1AEABAcHo127djh16hQuXryoV1YIgb///hshISHaDwPA/scl1XnQfMifOHHC6LKioiKcPXsWISEhqFq1qqyeDxkZGVi5ciUqV66MRx55xOhyXz4Xd+/eBQDcuHHD5OU3btyAUqlEQECAT58HS77//nsAwJNPPgnAt58Ppnji47VUfvv27cjLy3P788TnSb0ODTmHqXUAhXDPYp8RERFuX+T1xIkTIi8vz+Tx6Ohoo/Wq7F0I+tSpU3YvBB0XF2dxIWjdRWedSbN6/5dffql3/K233hIAxLBhw7THfPX5YOg///mPACAmTJhgtoyvnoulS5cK3NutwXAhaM3zvXPnztpjvnoehBAiKyvL6NjPP/8slEqlaNu2rd7C6b52HjxhIWh7H6+1haCTk5PtOgdkGQOgjzAXAHNzc0WLFi20L9DXXntNb7sf3cWPNQy3+xk+fLh2u59Tp04Zlbe03c+yZctc8nhnzpwpwsLCRP/+/cW4cePE5MmTxYABA0RAQIAAIKZNm6ZX3tRWcIMGDRIKhULUrVvXq7eCO3v2rHZ7q/79+4tJkyaJHj16aOt+7do1bVlffT4Yat68uQAgDh8+bLaMr56L4uJi7QdpVFSUGD16tHj11Ve1z4ng4GCxe/dunz8PQgjRuHFj0bt3bzFhwgQxZcoU7YLFcXFxRovC+8J5+PLLL8WIESPEiBEjRKtWrbRhX3NM90uiJz7eo0ePareCGz58OLeCczEGQB9hLgAKUdoK9fLLL4uYmBgREBAgateuLSZNmmT222ZJSYn46KOPRLNmzYRKpRJVqlQRTzzxhDh79qzZ+//rr79E165dRUhIiAgNDRXdu3cXf//9t9Men6HNmzeLxx9/XDRo0ECEh4cLf39/ER0dLQYMGCDWrl1r8joFBQVi1qxZol69eiIwMFBER0eL0aNH620PZmjJkiWiTZs2Ijg4WERERIh+/fqJffv2mS2/e/du0bdvXxEeHi6Cg4NFu3btxI8//ljux2vNpUuXxMiRI0V0dLQICAgQMTEx4oUXXhDp6elGZX3x+aBr9+7dAoBo166d1bK+ei4KCgrEnDlzxP333y8qVKgg/P39Rc2aNcWwYcPE8ePHjcr76nmYOXOmiI+PF2FhYSIoKEg0adJETJ8+3WTLoBDefx40nwPm/o0YMcLjH+/JkyfF4MGDReXKlYVKpRLx8fHi008/1eu5IedQCCGEvd3GREREROS9OAmEiIiISGYYAImIiIhkhgGQiIiISGYYAImIiIhkhgGQiIiISGYYAImIiIhkhgGQiIiISGYYAImIiIhkhgGQiEhHQkICFAqF1NUol5SUFCgUCowcOVLqqhCRh2IAJCKH7Nq1CwqFAn379jV5+csvvwyFQoHGjRubvHzBggVQKBR44403XFlNn+ULQZWIpMMASEQOadOmDUJDQ5GcnIzi4mKjyzdt2gSFQoFTp04hLS3N5OUA0KNHD5fXlYiI9DEAEpFD/P390bVrV+Tm5mLv3r16l2VkZODIkSN45JFHAJSFPQ21Wo1t27ZBpVKhY8eObqszERGVYgAkIoclJiYCADZv3qx3fMuWLRBCYMKECahcubJRADx06BBu376Njh07QqlU4uOPP0ZSUhJiYmKgUqkQFRWFRx99FAcOHNC73nfffQeFQoG33nrLZH32798PhUKBp556Su/49evX8corr6B+/fpQqVSIjIzEoEGDcPToUbse78qVK9GzZ09UqlQJQUFBaN68OebNm4eSkhK9cosXL4ZCocDixYuxbt06dOrUCRUqVECVKlUwYsQIZGRkmLz9hQsXolmzZggKCkJMTAymTJmCgoICKBQKJCQkaMspFAps2bJF+7Pmn6kxf2fPnsUjjzyCSpUqISQkBL169cKhQ4fsetxE5HsYAInIYZoAaBjwNm3ahODgYHTo0AFdu3Y1ebnm+rdu3cLLL7+MwsJC9OvXD6+88goSEhKwevVqdOrUSa918dFHH0VISAi+//57k/X57rvvAADDhw/XHjt37hxat26NBQsWoF69enjxxRfRr18/rFmzBh06dMDu3btteqzTpk3DwIEDcerUKTz66KMYN24cgoODMXnyZDz55JMmr/P777/joYceQo0aNTBu3DjUq1cP3377LQYMGGBUdsaMGRg7diwyMjIwZswYPPbYY1i2bBkef/xxo7IzZ85EbGys9mfNv4EDB+qVS0lJQYcOHXDr1i0888wz6N27NzZs2IDExESkp6fb9LiJyEcJIiIHFRcXi4iICBESEiLu3r2rPd68eXORmJgohBDiww8/FABEamqq9vKHHnpIABBbt24VBQUF4vLly0a3ffToUREaGip69eqld3zYsGECgNi9e7dRXapVqyaio6NFcXGx9ninTp2En5+fWLNmjV75U6dOibCwMBEfH693vHv37sLwrXHdunUCgEhKShK5ubna42q1WowdO1YAEL/88ov2+KJFiwQA4e/vL7Zv365Xx4SEBAFA7Ny5U68ufn5+ombNmiI9PV17PDs7WzRt2lQAEN27d7daT40LFy4IAAKAmDt3rt5l06dPFwDEnDlzTF6XiOSBLYBE5DA/Pz9069YNeXl52LNnDwDgxo0bOHbsmLbLsnv37gDKWv004/+Cg4PRvn17qFQq1KxZ0+i2mzVrhsTERGzduhVFRUXa45rWvSVLluiVX7duHdLT0/Hkk0/Cz88PAHDgwAHs2LEDI0aMQFJSkl75hg0bYsyYMThy5IjVruBPPvkEAPDFF18gJCREe1yhUGDu3LlQKBRYunSp0fWGDh2Kzp07652vESNGAIBey+bSpUtRUlKCSZMmISoqSns8LCwM06dPt1g3S+rWrYvJkyfrHXv22WeN7p+I5Mdf6goQkXdLSEjAH3/8gU2bNqFz587YvHkzhBDaANiyZUtERERg06ZNGD58OA4ePIjMzEz06tULgYGBAICDBw/i/fffx/bt25GWlqYX+ADg5s2bqF69OgCgZ8+eqF69On788Ud8+OGH8PcvfRvTBELd7t9du3YBANLT0zFr1iyjup88eVL7f/Pmzc0+xl27diEkJARff/21ycuDg4O1t6WrdevWRsdq1aoFAMjMzNQe04zJ69Kli1F53QBpr5YtW0Kp1P+eb+r+iUh+GACJqFx0J4JMnz4dmzdvRlBQENq3bw8AUCqV6NKli7YF0HD5lx07dmh/7tOnDxo0aIDQ0FAoFAqsWLEChw4dQmFhofb+/Pz8MHToUMyfPx9r165F//79kZubixUrVqBp06Zo1aqVtuytW7cAAKtWrcKqVavMPoa8vDyLj/HWrVsoLi7Gm2++addthIeHGx3TBFbdiSPZ2dkAoNf6p1GtWjWLdbPE1vsnIvlhACSicmnRogUqVaqEHTt24O7du9i0aRM6dOgAlUqlLZOQkIBVq1YhJSVFO2NYExxnz56NwsJCbNu2zagFbNeuXSZnrA4fPhzz58/HkiVL0L9/f/z666/Iz8/Xa/0DygLQxx9/jPHjxzv8GMPDw6FQKHDz5k2Hb8Pa7QOls5U1kzs0OFmDiFyBYwCJqFyUSiW6d++OO3fu4Pfff8eJEyf0liwBysYBrl+/Htu2bUNoaCjatGkDoHSWbuXKlY3CX35+Pvbv32/yPlu0aIH4+HisXLkSOTk5WLJkicnlXzStkDt37izXY2zfvj0yMjJw5syZct2OOS1atAAAJCcnG122Y8cOk9fRjHNkSx4ROYIBkIjKTdOap+kiNQyArVq1QlhYGD766CNkZWWha9eu2q7I2NhY3L59G8eOHdOWLykpwauvvoobN26Yvc/hw4fjzp07+O9//4uNGzeie/fuiImJ0SvTrl07tG/fHkuXLsVPP/1kdBtqtVq7np4lEyZMAAA888wzJtfwS0tLw4kTJ6zejjlPPvkklEol5s+fr9fKmJeXh9mzZ5u8TuXKlQEAqampDt8vEckXu4CJqNw0AfDo0aMICgpChw4d9C738/ND586dsWbNGr3yAPDiiy9i3bp16NKlCx5//HEEBQVh8+bNuHLlChISEowWmdYYOnQoXnvtNbz55ptQq9VG3b8aS5cuRWJiIp588kksWLAArVq1QnBwMC5duoSdO3fixo0bKCgosPj4+vbtizfeeANvv/026tevj759+yI2NhYZGRk4e/Ystm3bhnfeeQdNmjSx9ZTpadSoEV577TW8++67iI+Px+OPPw5/f38sX74c8fHxOHr0qNFkjh49euCXX37BoEGD8MADDyAoKAgtWrTAQw895FAdiEhe2AJIROXWvHlzREZGAoDR+D8NTTcwoB8AH3zwQfzyyy+Ii4vDkiVL8MMPP6Bx48bYs2eP0Xg4XTVr1kSPHj1QVFSEoKAgDB482GS5unXr4sCBA5g+fTpyc3OxaNEiLFy4EAcPHkS3bt1MLt9iyltvvYW///4bXbt2xYYNG/Dhhx/izz//RGFhIWbNmmXU/Wyv2bNn43//+x8qVaqEzz//HMuWLcPgwYPxv//9D4DxhI4xY8ZgypQpuHnzJt577z288cYb+PXXX8tVByKSD4UQQkhdCSIiMm39+vXo3bs3pkyZgvfee0/q6hCRj2ALIBGRB7hx44bRhI7MzExMmzYNAIy2eSMiKg+OASQi8gDff/895s2bhx49eqBGjRq4du0a1qxZg+vXr2PkyJHo2LGj1FUkIh/CAEhE5AE6deqE1q1bY/369bh16xb8/PzQpEkTvPHGGxg3bpzU1SMiH/P/h1Tk7TI4O0QAAAAASUVORK5CYII=",
|
|
1466
819
|
"text/html": [
|
|
1467
820
|
"\n",
|
|
1468
821
|
" <div style=\"display: inline-block;\">\n",
|
|
1469
822
|
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
|
|
1470
823
|
" Figure\n",
|
|
1471
824
|
" </div>\n",
|
|
1472
|
-
" <img src='' width=640.0/>\n",
|
|
825
|
+
" <img src='' width=640.0/>\n",
|
|
1473
826
|
" </div>\n",
|
|
1474
827
|
" "
|
|
1475
828
|
],
|
|
@@ -1486,12 +839,670 @@
|
|
|
1486
839
|
"modeldf.transpose().plot(xlabel='Wavelength', ylabel='Flux', legend=False)"
|
|
1487
840
|
]
|
|
1488
841
|
},
|
|
842
|
+
{
|
|
843
|
+
"cell_type": "markdown",
|
|
844
|
+
"metadata": {},
|
|
845
|
+
"source": [
|
|
846
|
+
"# Authorization\n",
|
|
847
|
+
"Your access to data is affected by how you login (or don't). Both `client.find` and `client.retrieve` allow you to request data (possibly implictly) from specific Datasets. Its possible for your combination of LOGIN and FIND (or RETIEVE) to work now, but fail later without you changing anything. For instance, if you don't login and ask for data from ALL Datasets at a time when all Datasets are public, your FIND will succeed. But if NOIRLab adds a new Dataset that is private, your same find will fail. To avoid the failure, you would have to explicitly request only the public Datasets, or to login as a user that is authorized to access the private Dataset.\n",
|
|
848
|
+
"\n",
|
|
849
|
+
"So summarize, there are three cases in which your FIND or RETRIEVE will be authorized:\n",
|
|
850
|
+
"1. All Datasets are Public (does not matter what you login status is)\n",
|
|
851
|
+
"2. You have explicitly requested only Public Datasets (does not matter what you login status is)\n",
|
|
852
|
+
"3. You are logged in and are authorized to access all the Private Datasets you have (explicitly or implicitly) requested.\n",
|
|
853
|
+
"\n",
|
|
854
|
+
"You might be authorized to access one Dataset, but not another. So, you must be careful in case #3 above to explictly request the correct Private Dataset(s)."
|
|
855
|
+
]
|
|
856
|
+
},
|
|
857
|
+
{
|
|
858
|
+
"cell_type": "markdown",
|
|
859
|
+
"metadata": {},
|
|
860
|
+
"source": [
|
|
861
|
+
"## Logging in and logging out"
|
|
862
|
+
]
|
|
863
|
+
},
|
|
1489
864
|
{
|
|
1490
865
|
"cell_type": "code",
|
|
1491
|
-
"execution_count":
|
|
866
|
+
"execution_count": 24,
|
|
1492
867
|
"metadata": {},
|
|
1493
868
|
"outputs": [],
|
|
1494
|
-
"source": [
|
|
869
|
+
"source": [
|
|
870
|
+
"if show_help:\n",
|
|
871
|
+
" client.login?\n",
|
|
872
|
+
" client.logout?"
|
|
873
|
+
]
|
|
874
|
+
},
|
|
875
|
+
{
|
|
876
|
+
"cell_type": "code",
|
|
877
|
+
"execution_count": 25,
|
|
878
|
+
"metadata": {},
|
|
879
|
+
"outputs": [
|
|
880
|
+
{
|
|
881
|
+
"name": "stdout",
|
|
882
|
+
"output_type": "stream",
|
|
883
|
+
"text": [
|
|
884
|
+
"Logged in successfully with email='test_user_1@noirlab.edu'\n"
|
|
885
|
+
]
|
|
886
|
+
}
|
|
887
|
+
],
|
|
888
|
+
"source": [
|
|
889
|
+
"client.login(auth_user, usrpw)"
|
|
890
|
+
]
|
|
891
|
+
},
|
|
892
|
+
{
|
|
893
|
+
"cell_type": "code",
|
|
894
|
+
"execution_count": 26,
|
|
895
|
+
"metadata": {
|
|
896
|
+
"scrolled": true
|
|
897
|
+
},
|
|
898
|
+
"outputs": [
|
|
899
|
+
{
|
|
900
|
+
"name": "stdout",
|
|
901
|
+
"output_type": "stream",
|
|
902
|
+
"text": [
|
|
903
|
+
"auth_status={'Authorized_DataReleases': ['SDSS-DR17'], 'All_DataReleases': ['BOSS-DR16', 'SDSS-DR16', 'SDSS-DR17', 'DESI-EDR'], 'All_Private_DataReleases': ['SDSS-DR17']}\n"
|
|
904
|
+
]
|
|
905
|
+
},
|
|
906
|
+
{
|
|
907
|
+
"data": {
|
|
908
|
+
"text/plain": [
|
|
909
|
+
"{'Loggedin_As': 'test_user_1@noirlab.edu',\n",
|
|
910
|
+
" 'Authorized_Datasets': {'SDSS-DR17'},\n",
|
|
911
|
+
" 'Unauthorized_Datasets': set(),\n",
|
|
912
|
+
" 'All_Private_Datasets': {'SDSS-DR17'},\n",
|
|
913
|
+
" 'All_Datasets': {'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16', 'SDSS-DR17'}}"
|
|
914
|
+
]
|
|
915
|
+
},
|
|
916
|
+
"execution_count": 26,
|
|
917
|
+
"metadata": {},
|
|
918
|
+
"output_type": "execute_result"
|
|
919
|
+
}
|
|
920
|
+
],
|
|
921
|
+
"source": [
|
|
922
|
+
"client.authorized"
|
|
923
|
+
]
|
|
924
|
+
},
|
|
925
|
+
{
|
|
926
|
+
"cell_type": "code",
|
|
927
|
+
"execution_count": 27,
|
|
928
|
+
"metadata": {},
|
|
929
|
+
"outputs": [
|
|
930
|
+
{
|
|
931
|
+
"name": "stdout",
|
|
932
|
+
"output_type": "stream",
|
|
933
|
+
"text": [
|
|
934
|
+
"Logged-out successfully. Previously logged-in with email test_user_1@noirlab.edu.\n"
|
|
935
|
+
]
|
|
936
|
+
}
|
|
937
|
+
],
|
|
938
|
+
"source": [
|
|
939
|
+
"client.logout() # can also be done with client.login(None)"
|
|
940
|
+
]
|
|
941
|
+
},
|
|
942
|
+
{
|
|
943
|
+
"cell_type": "code",
|
|
944
|
+
"execution_count": 28,
|
|
945
|
+
"metadata": {},
|
|
946
|
+
"outputs": [
|
|
947
|
+
{
|
|
948
|
+
"name": "stdout",
|
|
949
|
+
"output_type": "stream",
|
|
950
|
+
"text": [
|
|
951
|
+
"auth_status={'Authorized_DataReleases': ['BOSS-DR16', 'SDSS-DR16', 'DESI-EDR'], 'All_DataReleases': ['BOSS-DR16', 'SDSS-DR16', 'SDSS-DR17', 'DESI-EDR'], 'All_Private_DataReleases': ['SDSS-DR17']}\n"
|
|
952
|
+
]
|
|
953
|
+
},
|
|
954
|
+
{
|
|
955
|
+
"data": {
|
|
956
|
+
"text/plain": [
|
|
957
|
+
"{'Loggedin_As': 'Anonymous',\n",
|
|
958
|
+
" 'Authorized_Datasets': {'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'},\n",
|
|
959
|
+
" 'Unauthorized_Datasets': {'SDSS-DR17'},\n",
|
|
960
|
+
" 'All_Private_Datasets': {'SDSS-DR17'},\n",
|
|
961
|
+
" 'All_Datasets': {'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16', 'SDSS-DR17'}}"
|
|
962
|
+
]
|
|
963
|
+
},
|
|
964
|
+
"execution_count": 28,
|
|
965
|
+
"metadata": {},
|
|
966
|
+
"output_type": "execute_result"
|
|
967
|
+
}
|
|
968
|
+
],
|
|
969
|
+
"source": [
|
|
970
|
+
"client.authorized"
|
|
971
|
+
]
|
|
972
|
+
},
|
|
973
|
+
{
|
|
974
|
+
"cell_type": "markdown",
|
|
975
|
+
"metadata": {},
|
|
976
|
+
"source": [
|
|
977
|
+
"## FIND"
|
|
978
|
+
]
|
|
979
|
+
},
|
|
980
|
+
{
|
|
981
|
+
"cell_type": "markdown",
|
|
982
|
+
"metadata": {},
|
|
983
|
+
"source": [
|
|
984
|
+
"### Pass FIND with Public DRs as Anonymous"
|
|
985
|
+
]
|
|
986
|
+
},
|
|
987
|
+
{
|
|
988
|
+
"cell_type": "code",
|
|
989
|
+
"execution_count": 29,
|
|
990
|
+
"metadata": {},
|
|
991
|
+
"outputs": [
|
|
992
|
+
{
|
|
993
|
+
"name": "stdout",
|
|
994
|
+
"output_type": "stream",
|
|
995
|
+
"text": [
|
|
996
|
+
"Logged-out successfully. Previously logged-in with email None.\n"
|
|
997
|
+
]
|
|
998
|
+
}
|
|
999
|
+
],
|
|
1000
|
+
"source": [
|
|
1001
|
+
"client.logout()"
|
|
1002
|
+
]
|
|
1003
|
+
},
|
|
1004
|
+
{
|
|
1005
|
+
"cell_type": "code",
|
|
1006
|
+
"execution_count": 30,
|
|
1007
|
+
"metadata": {},
|
|
1008
|
+
"outputs": [
|
|
1009
|
+
{
|
|
1010
|
+
"name": "stdout",
|
|
1011
|
+
"output_type": "stream",
|
|
1012
|
+
"text": [
|
|
1013
|
+
"{'META': {'endpoint': 'sparc/find'},\n",
|
|
1014
|
+
" 'PARAMETERS': {'limit': 2,\n",
|
|
1015
|
+
" 'include': 'dec,ra,sparcl_id,specid',\n",
|
|
1016
|
+
" 'offset': 0,\n",
|
|
1017
|
+
" 'format': 'json',\n",
|
|
1018
|
+
" 'drs': ['BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'],\n",
|
|
1019
|
+
" 'private_drs': ['SDSS-DR17'],\n",
|
|
1020
|
+
" 'json_payload': {'outfields': ['sparcl_id',\n",
|
|
1021
|
+
" 'specid',\n",
|
|
1022
|
+
" 'ra',\n",
|
|
1023
|
+
" 'dec',\n",
|
|
1024
|
+
" 'redshift',\n",
|
|
1025
|
+
" 'spectype',\n",
|
|
1026
|
+
" 'data_release',\n",
|
|
1027
|
+
" 'redshift_err'],\n",
|
|
1028
|
+
" 'search': [['spectype', 'GALAXY'],\n",
|
|
1029
|
+
" ['redshift', 0.5, 0.9],\n",
|
|
1030
|
+
" ['data_release',\n",
|
|
1031
|
+
" 'BOSS-DR16',\n",
|
|
1032
|
+
" 'SDSS-DR16']]}},\n",
|
|
1033
|
+
" 'HEADER': {'dec': 'np.float64',\n",
|
|
1034
|
+
" 'sparcl_id': 'str',\n",
|
|
1035
|
+
" 'redshift_err': 'np.float64',\n",
|
|
1036
|
+
" 'data_release': 'category',\n",
|
|
1037
|
+
" 'specid': 'np.int64',\n",
|
|
1038
|
+
" 'redshift': 'np.float64',\n",
|
|
1039
|
+
" 'spectype': 'category',\n",
|
|
1040
|
+
" 'ra': 'np.float64'},\n",
|
|
1041
|
+
" 'WARNINGS': ['OFFSET parameter needs SORT but it was not provided. Using '\n",
|
|
1042
|
+
" \"default 'sparcl_id' for sorting\"]}\n",
|
|
1043
|
+
"{'dec': 28.063643, 'sparcl_id': 'bb3d4287-8a2f-479f-9c7f-1053051e4925', 'redshift_err': 0.000331654009642079, 'data_release': 'BOSS-DR16', 'specid': -6444532452352045056, 'redshift': 0.761636912822723, 'spectype': 'GALAXY', 'ra': 132.14379, '_dr': 'BOSS-DR16'}\n",
|
|
1044
|
+
"\n",
|
|
1045
|
+
"SUCCESS: found.count=1 records from FIND\n"
|
|
1046
|
+
]
|
|
1047
|
+
}
|
|
1048
|
+
],
|
|
1049
|
+
"source": [
|
|
1050
|
+
"out = ['sparcl_id','specid', 'ra', 'dec', 'redshift', 'spectype', 'data_release', 'redshift_err']\n",
|
|
1051
|
+
"cons = {'spectype': ['GALAXY'],\n",
|
|
1052
|
+
" 'redshift': [0.5, 0.9],\n",
|
|
1053
|
+
" 'data_release': ['BOSS-DR16', 'SDSS-DR16']}\n",
|
|
1054
|
+
"found = client.find(outfields=out, constraints=cons, limit=2)\n",
|
|
1055
|
+
"pp(found.info)\n",
|
|
1056
|
+
"print(found.records[0])\n",
|
|
1057
|
+
"print(f'\\nSUCCESS: {found.count=} records from FIND')"
|
|
1058
|
+
]
|
|
1059
|
+
},
|
|
1060
|
+
{
|
|
1061
|
+
"cell_type": "markdown",
|
|
1062
|
+
"metadata": {},
|
|
1063
|
+
"source": [
|
|
1064
|
+
"### Fail FIND with prviate DR as Anonymous"
|
|
1065
|
+
]
|
|
1066
|
+
},
|
|
1067
|
+
{
|
|
1068
|
+
"cell_type": "code",
|
|
1069
|
+
"execution_count": 31,
|
|
1070
|
+
"metadata": {},
|
|
1071
|
+
"outputs": [
|
|
1072
|
+
{
|
|
1073
|
+
"name": "stdout",
|
|
1074
|
+
"output_type": "stream",
|
|
1075
|
+
"text": [
|
|
1076
|
+
"auth_status={'Authorized_DataReleases': ['BOSS-DR16', 'SDSS-DR16', 'DESI-EDR'], 'All_DataReleases': ['BOSS-DR16', 'SDSS-DR16', 'SDSS-DR17', 'DESI-EDR'], 'All_Private_DataReleases': ['SDSS-DR17']}\n"
|
|
1077
|
+
]
|
|
1078
|
+
},
|
|
1079
|
+
{
|
|
1080
|
+
"data": {
|
|
1081
|
+
"text/plain": [
|
|
1082
|
+
"{'Loggedin_As': 'Anonymous',\n",
|
|
1083
|
+
" 'Authorized_Datasets': {'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'},\n",
|
|
1084
|
+
" 'Unauthorized_Datasets': {'SDSS-DR17'},\n",
|
|
1085
|
+
" 'All_Private_Datasets': {'SDSS-DR17'},\n",
|
|
1086
|
+
" 'All_Datasets': {'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16', 'SDSS-DR17'}}"
|
|
1087
|
+
]
|
|
1088
|
+
},
|
|
1089
|
+
"execution_count": 31,
|
|
1090
|
+
"metadata": {},
|
|
1091
|
+
"output_type": "execute_result"
|
|
1092
|
+
}
|
|
1093
|
+
],
|
|
1094
|
+
"source": [
|
|
1095
|
+
"client.authorized"
|
|
1096
|
+
]
|
|
1097
|
+
},
|
|
1098
|
+
{
|
|
1099
|
+
"cell_type": "code",
|
|
1100
|
+
"execution_count": 32,
|
|
1101
|
+
"metadata": {},
|
|
1102
|
+
"outputs": [
|
|
1103
|
+
{
|
|
1104
|
+
"name": "stdout",
|
|
1105
|
+
"output_type": "stream",
|
|
1106
|
+
"text": [
|
|
1107
|
+
"SUCCESS: Could not execute find: [UNKNOWN] uname='ANONYMOUS' is declined access to datasets: SDSS-DR17. requested_private_drs={'SDSS-DR17'} my_auth=set() [NODRACCESS] None\n"
|
|
1108
|
+
]
|
|
1109
|
+
}
|
|
1110
|
+
],
|
|
1111
|
+
"source": [
|
|
1112
|
+
"out = ['sparcl_id','specid', 'ra', 'dec', 'redshift', 'spectype', 'data_release', 'redshift_err']\n",
|
|
1113
|
+
"cons = {'spectype': ['GALAXY'],\n",
|
|
1114
|
+
" 'redshift': [0.5, 0.9],\n",
|
|
1115
|
+
" 'data_release': ['BOSS-DR16',priv_dr]}\n",
|
|
1116
|
+
"try:\n",
|
|
1117
|
+
" found = client.find(outfields=out, constraints=cons, limit=2)\n",
|
|
1118
|
+
" print('FOUND info:')\n",
|
|
1119
|
+
" pp(found.info)\n",
|
|
1120
|
+
" print(f'\\nFOUND records. {found.records[0]=}')\n",
|
|
1121
|
+
" gotrecord = True\n",
|
|
1122
|
+
"except Exception as err:\n",
|
|
1123
|
+
" gotrecord = False\n",
|
|
1124
|
+
" print(f'SUCCESS: Could not execute find: {err}')\n",
|
|
1125
|
+
"\n",
|
|
1126
|
+
"if gotrecord:\n",
|
|
1127
|
+
" raise Exception('Wrongly got record from PRIVATE DR {priv_dr}')"
|
|
1128
|
+
]
|
|
1129
|
+
},
|
|
1130
|
+
{
|
|
1131
|
+
"cell_type": "markdown",
|
|
1132
|
+
"metadata": {},
|
|
1133
|
+
"source": [
|
|
1134
|
+
"### Fail FIND with prviate DR as Unauthorized"
|
|
1135
|
+
]
|
|
1136
|
+
},
|
|
1137
|
+
{
|
|
1138
|
+
"cell_type": "code",
|
|
1139
|
+
"execution_count": 33,
|
|
1140
|
+
"metadata": {},
|
|
1141
|
+
"outputs": [
|
|
1142
|
+
{
|
|
1143
|
+
"name": "stdout",
|
|
1144
|
+
"output_type": "stream",
|
|
1145
|
+
"text": [
|
|
1146
|
+
"Logged in successfully with email='test_user_2@noirlab.edu'\n"
|
|
1147
|
+
]
|
|
1148
|
+
}
|
|
1149
|
+
],
|
|
1150
|
+
"source": [
|
|
1151
|
+
"client.login(unauth_user, usrpw)"
|
|
1152
|
+
]
|
|
1153
|
+
},
|
|
1154
|
+
{
|
|
1155
|
+
"cell_type": "code",
|
|
1156
|
+
"execution_count": 34,
|
|
1157
|
+
"metadata": {},
|
|
1158
|
+
"outputs": [
|
|
1159
|
+
{
|
|
1160
|
+
"name": "stdout",
|
|
1161
|
+
"output_type": "stream",
|
|
1162
|
+
"text": [
|
|
1163
|
+
"SUCCESS: Could not execute find: [UNKNOWN] uname='test_user_2@noirlab.edu' is declined access to datasets: SDSS-DR17. requested_private_drs={'SDSS-DR17'} my_auth=set() [NODRACCESS] None\n"
|
|
1164
|
+
]
|
|
1165
|
+
}
|
|
1166
|
+
],
|
|
1167
|
+
"source": [
|
|
1168
|
+
"try:\n",
|
|
1169
|
+
" found = client.find(outfields=out, constraints=cons, limit=2)\n",
|
|
1170
|
+
" print('FOUND info:')\n",
|
|
1171
|
+
" pp(found.info)\n",
|
|
1172
|
+
" print(f'\\nFOUND records. {found.records[0]=}')\n",
|
|
1173
|
+
" gotrecord = True\n",
|
|
1174
|
+
"except Exception as err:\n",
|
|
1175
|
+
" gotrecord = False\n",
|
|
1176
|
+
" print(f'SUCCESS: Could not execute find: {err}')\n",
|
|
1177
|
+
"\n",
|
|
1178
|
+
"if gotrecord:\n",
|
|
1179
|
+
" raise Exception('Wrongly got record from PRIVATE DR {priv_dr}')"
|
|
1180
|
+
]
|
|
1181
|
+
},
|
|
1182
|
+
{
|
|
1183
|
+
"cell_type": "markdown",
|
|
1184
|
+
"metadata": {},
|
|
1185
|
+
"source": [
|
|
1186
|
+
"### Pass FIND with prviate DR as Authorized"
|
|
1187
|
+
]
|
|
1188
|
+
},
|
|
1189
|
+
{
|
|
1190
|
+
"cell_type": "code",
|
|
1191
|
+
"execution_count": 35,
|
|
1192
|
+
"metadata": {},
|
|
1193
|
+
"outputs": [
|
|
1194
|
+
{
|
|
1195
|
+
"name": "stdout",
|
|
1196
|
+
"output_type": "stream",
|
|
1197
|
+
"text": [
|
|
1198
|
+
"Logged in successfully with email='test_user_1@noirlab.edu'\n"
|
|
1199
|
+
]
|
|
1200
|
+
}
|
|
1201
|
+
],
|
|
1202
|
+
"source": [
|
|
1203
|
+
"client.login(auth_user, usrpw)"
|
|
1204
|
+
]
|
|
1205
|
+
},
|
|
1206
|
+
{
|
|
1207
|
+
"cell_type": "code",
|
|
1208
|
+
"execution_count": 36,
|
|
1209
|
+
"metadata": {},
|
|
1210
|
+
"outputs": [
|
|
1211
|
+
{
|
|
1212
|
+
"name": "stdout",
|
|
1213
|
+
"output_type": "stream",
|
|
1214
|
+
"text": [
|
|
1215
|
+
"FOUND info:\n",
|
|
1216
|
+
"{'META': {'endpoint': 'sparc/find'},\n",
|
|
1217
|
+
" 'PARAMETERS': {'limit': 2,\n",
|
|
1218
|
+
" 'include': 'dec,ra,sparcl_id,specid',\n",
|
|
1219
|
+
" 'offset': 0,\n",
|
|
1220
|
+
" 'format': 'json',\n",
|
|
1221
|
+
" 'drs': ['BOSS-DR16', 'DESI-EDR', 'SDSS-DR16', 'SDSS-DR17'],\n",
|
|
1222
|
+
" 'private_drs': ['SDSS-DR17'],\n",
|
|
1223
|
+
" 'json_payload': {'outfields': ['sparcl_id',\n",
|
|
1224
|
+
" 'specid',\n",
|
|
1225
|
+
" 'ra',\n",
|
|
1226
|
+
" 'dec',\n",
|
|
1227
|
+
" 'redshift',\n",
|
|
1228
|
+
" 'spectype',\n",
|
|
1229
|
+
" 'data_release',\n",
|
|
1230
|
+
" 'redshift_err'],\n",
|
|
1231
|
+
" 'search': [['spectype', 'GALAXY'],\n",
|
|
1232
|
+
" ['redshift', 0.5, 0.9],\n",
|
|
1233
|
+
" ['data_release',\n",
|
|
1234
|
+
" 'BOSS-DR16',\n",
|
|
1235
|
+
" 'SDSS-DR17']]}},\n",
|
|
1236
|
+
" 'HEADER': {'dec': 'np.float64',\n",
|
|
1237
|
+
" 'sparcl_id': 'str',\n",
|
|
1238
|
+
" 'redshift_err': 'np.float64',\n",
|
|
1239
|
+
" 'data_release': 'category',\n",
|
|
1240
|
+
" 'specid': 'np.int64',\n",
|
|
1241
|
+
" 'redshift': 'np.float64',\n",
|
|
1242
|
+
" 'spectype': 'category',\n",
|
|
1243
|
+
" 'ra': 'np.float64'},\n",
|
|
1244
|
+
" 'WARNINGS': ['OFFSET parameter needs SORT but it was not provided. Using '\n",
|
|
1245
|
+
" \"default 'sparcl_id' for sorting\"]}\n"
|
|
1246
|
+
]
|
|
1247
|
+
}
|
|
1248
|
+
],
|
|
1249
|
+
"source": [
|
|
1250
|
+
"found = client.find(outfields=out, constraints=cons, limit=2)\n",
|
|
1251
|
+
"print('FOUND info:')\n",
|
|
1252
|
+
"pp(found.info)"
|
|
1253
|
+
]
|
|
1254
|
+
},
|
|
1255
|
+
{
|
|
1256
|
+
"cell_type": "markdown",
|
|
1257
|
+
"metadata": {},
|
|
1258
|
+
"source": [
|
|
1259
|
+
"### Fail FIND with Unknown user\n",
|
|
1260
|
+
"User is authenticated with SSO, but is unknown to SPARCL"
|
|
1261
|
+
]
|
|
1262
|
+
},
|
|
1263
|
+
{
|
|
1264
|
+
"cell_type": "code",
|
|
1265
|
+
"execution_count": 37,
|
|
1266
|
+
"metadata": {},
|
|
1267
|
+
"outputs": [
|
|
1268
|
+
{
|
|
1269
|
+
"name": "stdout",
|
|
1270
|
+
"output_type": "stream",
|
|
1271
|
+
"text": [
|
|
1272
|
+
"Logged in successfully with email='test_user_3@noirlab.edu'\n"
|
|
1273
|
+
]
|
|
1274
|
+
}
|
|
1275
|
+
],
|
|
1276
|
+
"source": [
|
|
1277
|
+
"client.login(non_user, usrpw)"
|
|
1278
|
+
]
|
|
1279
|
+
},
|
|
1280
|
+
{
|
|
1281
|
+
"cell_type": "code",
|
|
1282
|
+
"execution_count": 38,
|
|
1283
|
+
"metadata": {},
|
|
1284
|
+
"outputs": [
|
|
1285
|
+
{
|
|
1286
|
+
"name": "stdout",
|
|
1287
|
+
"output_type": "stream",
|
|
1288
|
+
"text": [
|
|
1289
|
+
"SUCCESS: Could not execute find: [UNKNOWN] uname='ANONYMOUS' is declined access to datasets: SDSS-DR17. requested_private_drs={'SDSS-DR17'} my_auth=set() [NODRACCESS] None\n"
|
|
1290
|
+
]
|
|
1291
|
+
}
|
|
1292
|
+
],
|
|
1293
|
+
"source": [
|
|
1294
|
+
"try:\n",
|
|
1295
|
+
" found = client.find(outfields=out, constraints=cons, limit=2)\n",
|
|
1296
|
+
" print('FOUND info:')\n",
|
|
1297
|
+
" pp(found.info)\n",
|
|
1298
|
+
" print(f'\\nFOUND records. {found.records[0]=}')\n",
|
|
1299
|
+
" gotrecord = True\n",
|
|
1300
|
+
"except Exception as err:\n",
|
|
1301
|
+
" gotrecord = False\n",
|
|
1302
|
+
" print(f'SUCCESS: Could not execute find: {err}')\n",
|
|
1303
|
+
"\n",
|
|
1304
|
+
"if gotrecord:\n",
|
|
1305
|
+
" raise Exception('Wrongly got record from PRIVATE DR {priv_dr}')"
|
|
1306
|
+
]
|
|
1307
|
+
},
|
|
1308
|
+
{
|
|
1309
|
+
"cell_type": "markdown",
|
|
1310
|
+
"metadata": {},
|
|
1311
|
+
"source": [
|
|
1312
|
+
"## RETRIEVE"
|
|
1313
|
+
]
|
|
1314
|
+
},
|
|
1315
|
+
{
|
|
1316
|
+
"cell_type": "markdown",
|
|
1317
|
+
"metadata": {},
|
|
1318
|
+
"source": [
|
|
1319
|
+
"### Pass RETRIEVE with public DRs as Anonymous"
|
|
1320
|
+
]
|
|
1321
|
+
},
|
|
1322
|
+
{
|
|
1323
|
+
"cell_type": "code",
|
|
1324
|
+
"execution_count": 39,
|
|
1325
|
+
"metadata": {},
|
|
1326
|
+
"outputs": [
|
|
1327
|
+
{
|
|
1328
|
+
"name": "stdout",
|
|
1329
|
+
"output_type": "stream",
|
|
1330
|
+
"text": [
|
|
1331
|
+
"auth_status={'Authorized_DataReleases': ['BOSS-DR16', 'SDSS-DR16', 'DESI-EDR'], 'All_DataReleases': ['BOSS-DR16', 'SDSS-DR16', 'SDSS-DR17', 'DESI-EDR'], 'All_Private_DataReleases': ['SDSS-DR17']}\n"
|
|
1332
|
+
]
|
|
1333
|
+
},
|
|
1334
|
+
{
|
|
1335
|
+
"data": {
|
|
1336
|
+
"text/plain": [
|
|
1337
|
+
"{'Loggedin_As': 'test_user_3@noirlab.edu',\n",
|
|
1338
|
+
" 'Authorized_Datasets': {'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'},\n",
|
|
1339
|
+
" 'Unauthorized_Datasets': {'SDSS-DR17'},\n",
|
|
1340
|
+
" 'All_Private_Datasets': {'SDSS-DR17'},\n",
|
|
1341
|
+
" 'All_Datasets': {'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16', 'SDSS-DR17'}}"
|
|
1342
|
+
]
|
|
1343
|
+
},
|
|
1344
|
+
"execution_count": 39,
|
|
1345
|
+
"metadata": {},
|
|
1346
|
+
"output_type": "execute_result"
|
|
1347
|
+
}
|
|
1348
|
+
],
|
|
1349
|
+
"source": [
|
|
1350
|
+
"client.authorized"
|
|
1351
|
+
]
|
|
1352
|
+
},
|
|
1353
|
+
{
|
|
1354
|
+
"cell_type": "code",
|
|
1355
|
+
"execution_count": 40,
|
|
1356
|
+
"metadata": {},
|
|
1357
|
+
"outputs": [
|
|
1358
|
+
{
|
|
1359
|
+
"name": "stdout",
|
|
1360
|
+
"output_type": "stream",
|
|
1361
|
+
"text": [
|
|
1362
|
+
"got.records[0].spectype='GALAXY' len(got.records[0].flux)=4621\n"
|
|
1363
|
+
]
|
|
1364
|
+
}
|
|
1365
|
+
],
|
|
1366
|
+
"source": [
|
|
1367
|
+
"inc = ['specid', 'data_release', 'redshift', 'flux', 'spectype']\n",
|
|
1368
|
+
"got = client.retrieve(uuid_list=found.ids,\n",
|
|
1369
|
+
" include=inc,\n",
|
|
1370
|
+
" dataset_list=['SDSS-DR16','BOSS-DR16'])\n",
|
|
1371
|
+
"print(f'{got.records[0].spectype=} {len(got.records[0].flux)=}')"
|
|
1372
|
+
]
|
|
1373
|
+
},
|
|
1374
|
+
{
|
|
1375
|
+
"cell_type": "markdown",
|
|
1376
|
+
"metadata": {},
|
|
1377
|
+
"source": [
|
|
1378
|
+
"### Fail RETRIEVE with private DR as Anonymous"
|
|
1379
|
+
]
|
|
1380
|
+
},
|
|
1381
|
+
{
|
|
1382
|
+
"cell_type": "code",
|
|
1383
|
+
"execution_count": 41,
|
|
1384
|
+
"metadata": {},
|
|
1385
|
+
"outputs": [
|
|
1386
|
+
{
|
|
1387
|
+
"name": "stdout",
|
|
1388
|
+
"output_type": "stream",
|
|
1389
|
+
"text": [
|
|
1390
|
+
"Correctly could not retrieve: [UNKNOWN] uname='ANONYMOUS' is declined access to datasets: SDSS-DR17. requested_private_drs={'SDSS-DR17'} my_auth=set() [NODRACCESS] None\n"
|
|
1391
|
+
]
|
|
1392
|
+
}
|
|
1393
|
+
],
|
|
1394
|
+
"source": [
|
|
1395
|
+
"try:\n",
|
|
1396
|
+
" got = client.retrieve(uuid_list=found.ids,\n",
|
|
1397
|
+
" include=inc,\n",
|
|
1398
|
+
" dataset_list=['SDSS-DR16',priv_dr,'BOSS-DR16'])\n",
|
|
1399
|
+
" gotrecord = True\n",
|
|
1400
|
+
"except Exception as err:\n",
|
|
1401
|
+
" gotrecord = False\n",
|
|
1402
|
+
" print(f'Correctly could not retrieve: {err}')\n",
|
|
1403
|
+
"\n",
|
|
1404
|
+
"if gotrecord:\n",
|
|
1405
|
+
" raise Exception('Wrongly got record from PRIVATE DR {priv_dr}')"
|
|
1406
|
+
]
|
|
1407
|
+
},
|
|
1408
|
+
{
|
|
1409
|
+
"cell_type": "markdown",
|
|
1410
|
+
"metadata": {},
|
|
1411
|
+
"source": [
|
|
1412
|
+
"### Pass RETRIEVE with private DRs as Authorized"
|
|
1413
|
+
]
|
|
1414
|
+
},
|
|
1415
|
+
{
|
|
1416
|
+
"cell_type": "code",
|
|
1417
|
+
"execution_count": 42,
|
|
1418
|
+
"metadata": {},
|
|
1419
|
+
"outputs": [
|
|
1420
|
+
{
|
|
1421
|
+
"name": "stdout",
|
|
1422
|
+
"output_type": "stream",
|
|
1423
|
+
"text": [
|
|
1424
|
+
"Logged in successfully with email='test_user_1@noirlab.edu'\n"
|
|
1425
|
+
]
|
|
1426
|
+
}
|
|
1427
|
+
],
|
|
1428
|
+
"source": [
|
|
1429
|
+
"client.login(auth_user, usrpw)"
|
|
1430
|
+
]
|
|
1431
|
+
},
|
|
1432
|
+
{
|
|
1433
|
+
"cell_type": "code",
|
|
1434
|
+
"execution_count": 43,
|
|
1435
|
+
"metadata": {},
|
|
1436
|
+
"outputs": [
|
|
1437
|
+
{
|
|
1438
|
+
"name": "stdout",
|
|
1439
|
+
"output_type": "stream",
|
|
1440
|
+
"text": [
|
|
1441
|
+
"auth_status={'Authorized_DataReleases': ['SDSS-DR17'], 'All_DataReleases': ['BOSS-DR16', 'SDSS-DR16', 'SDSS-DR17', 'DESI-EDR'], 'All_Private_DataReleases': ['SDSS-DR17']}\n"
|
|
1442
|
+
]
|
|
1443
|
+
},
|
|
1444
|
+
{
|
|
1445
|
+
"data": {
|
|
1446
|
+
"text/plain": [
|
|
1447
|
+
"{'Loggedin_As': 'test_user_1@noirlab.edu',\n",
|
|
1448
|
+
" 'Authorized_Datasets': {'SDSS-DR17'},\n",
|
|
1449
|
+
" 'Unauthorized_Datasets': set(),\n",
|
|
1450
|
+
" 'All_Private_Datasets': {'SDSS-DR17'},\n",
|
|
1451
|
+
" 'All_Datasets': {'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16', 'SDSS-DR17'}}"
|
|
1452
|
+
]
|
|
1453
|
+
},
|
|
1454
|
+
"execution_count": 43,
|
|
1455
|
+
"metadata": {},
|
|
1456
|
+
"output_type": "execute_result"
|
|
1457
|
+
}
|
|
1458
|
+
],
|
|
1459
|
+
"source": [
|
|
1460
|
+
"client.authorized"
|
|
1461
|
+
]
|
|
1462
|
+
},
|
|
1463
|
+
{
|
|
1464
|
+
"cell_type": "code",
|
|
1465
|
+
"execution_count": 44,
|
|
1466
|
+
"metadata": {},
|
|
1467
|
+
"outputs": [
|
|
1468
|
+
{
|
|
1469
|
+
"name": "stdout",
|
|
1470
|
+
"output_type": "stream",
|
|
1471
|
+
"text": [
|
|
1472
|
+
"got.count=1\n"
|
|
1473
|
+
]
|
|
1474
|
+
}
|
|
1475
|
+
],
|
|
1476
|
+
"source": [
|
|
1477
|
+
"got = client.retrieve(uuid_list=found.ids,\n",
|
|
1478
|
+
" include=inc,\n",
|
|
1479
|
+
" dataset_list=['SDSS-DR16',priv_dr,'BOSS-DR16'])\n",
|
|
1480
|
+
"print(f'{got.count=}')"
|
|
1481
|
+
]
|
|
1482
|
+
},
|
|
1483
|
+
{
|
|
1484
|
+
"cell_type": "markdown",
|
|
1485
|
+
"metadata": {},
|
|
1486
|
+
"source": [
|
|
1487
|
+
"# All Done"
|
|
1488
|
+
]
|
|
1489
|
+
},
|
|
1490
|
+
{
|
|
1491
|
+
"cell_type": "code",
|
|
1492
|
+
"execution_count": 45,
|
|
1493
|
+
"metadata": {},
|
|
1494
|
+
"outputs": [
|
|
1495
|
+
{
|
|
1496
|
+
"name": "stdout",
|
|
1497
|
+
"output_type": "stream",
|
|
1498
|
+
"text": [
|
|
1499
|
+
"Run finished: 2024-02-28 06:08:03.328587\n"
|
|
1500
|
+
]
|
|
1501
|
+
}
|
|
1502
|
+
],
|
|
1503
|
+
"source": [
|
|
1504
|
+
"print(f'Run finished: {str(datetime.now())}')"
|
|
1505
|
+
]
|
|
1495
1506
|
}
|
|
1496
1507
|
],
|
|
1497
1508
|
"metadata": {
|