sparclclient 1.2.1.dev7__py2.py3-none-any.whl → 1.2.2__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -6,7 +6,7 @@
6
6
  "tags": []
7
7
  },
8
8
  "source": [
9
- "# SPARCLCLIENT"
9
+ "# SPARCLCLIENT Example Usage"
10
10
  ]
11
11
  },
12
12
  {
@@ -18,23 +18,10 @@
18
18
  "outputs": [],
19
19
  "source": [
20
20
  "__author__ = 'Steve Pothier <steve.pothier@noirlab.edu>'\n",
21
- "__version__ = '20231103' # yyyymmdd; \n",
21
+ "__version__ = '20240306' # yyyymmdd; \n",
22
22
  "__keywords__ = ['HowTo', 'astronomy', 'tutorial', 'client', 'sparcl', 'NOIRlab']"
23
23
  ]
24
24
  },
25
- {
26
- "cell_type": "markdown",
27
- "metadata": {
28
- "editable": true,
29
- "slideshow": {
30
- "slide_type": ""
31
- },
32
- "tags": []
33
- },
34
- "source": [
35
- "This notebook demonstrates using the `sparclclient` package to get metadata and spectra data from the ...."
36
- ]
37
- },
38
25
  {
39
26
  "cell_type": "markdown",
40
27
  "metadata": {
@@ -42,14 +29,12 @@
42
29
  },
43
30
  "source": [
44
31
  "## Table of contents\n",
45
- "* [Goals & Summary](#goalssummary)\n",
32
+ "* [Goals & Summary](#goals)\n",
46
33
  "* [Imports and setup](#imports)\n",
47
- "* [Discover Images](#discover)\n",
48
- "* [Get HDU](#gethdu)\n",
49
- "* [Get cutout of object](#cutout)\n",
50
- "* [Generate photo album](#album)\n",
51
- "* [Find all Messier objects](#messier)\n",
52
- "* [Save Messier snapshots](#save_album)"
34
+ "* [Install SPARCLCLIENT](#install)\n",
35
+ "* [Prepare to use sparcl](#prepare)\n",
36
+ "* [Get general info from SPARCL](#info)\n",
37
+ "* [Get Metadata and Spectra](#get)"
53
38
  ]
54
39
  },
55
40
  {
@@ -60,13 +45,9 @@
60
45
  "source": [
61
46
  "<a class=\"anchor\" id=\"goals\"></a>\n",
62
47
  "## Goals & Summary \n",
63
- "Demonstrate the use of the `astroget` package to get metadata and pixel data from the [NOIRLab Astro Data Archive](https://astroarchive.noirlab.edu/). \n",
48
+ "Demonstrate the use of the `sparclclient` package to get metadata and spectra data from the [NOIRLab SPARCL Server](https://astrosparcl.datalab.noirlab.edu/). Show how to get non-public data if you have authorized credentials.\n",
64
49
  "- Discovery: Search for matching metadata and return metadata records.\n",
65
- "- Find images containing regions of sky (SIA)\n",
66
- "- Retrieve images\n",
67
- " + Full FITS file\n",
68
- " + Single HDU of FITS file\n",
69
- " + Cutout of rectangular region of one HDU of a FITS file (as a new FITS file)\n"
50
+ "- Retrieve spectra"
70
51
  ]
71
52
  },
72
53
  {
@@ -82,39 +63,42 @@
82
63
  {
83
64
  "cell_type": "code",
84
65
  "execution_count": 2,
85
- "metadata": {},
66
+ "metadata": {
67
+ "tags": []
68
+ },
86
69
  "outputs": [],
87
70
  "source": [
88
71
  "from pprint import pformat as pf\n",
72
+ "from pprint import pp\n",
89
73
  "import os.path\n",
90
74
  "from importlib import reload\n",
91
75
  "from collections import defaultdict\n",
92
76
  "from datetime import datetime\n",
93
77
  "import warnings\n",
78
+ "from getpass import getpass\n",
94
79
  "\n",
95
80
  "import matplotlib.pyplot as plt\n",
96
- "from astropy.io import fits\n",
97
- "from astropy.coordinates import SkyCoord\n",
98
- "from astropy import units as u\n",
99
- "from astropy.wcs import WCS\n",
100
81
  "import numpy as np\n",
101
82
  "import pandas as pd\n",
83
+ "from IPython.display import display, Markdown, Latex\n",
102
84
  "\n",
103
85
  "class StopExecution(Exception):\n",
104
86
  " def _render_traceback_(self):\n",
105
87
  " pass\n",
106
88
  "\n",
107
- "# Suppress astropy warnings such as:\n",
108
- "# WARNING: The following header keyword is invalid or follows an unrecognized ...\n",
109
- "from astropy.utils.exceptions import AstropyWarning\n",
110
- "warnings.simplefilter('ignore', category=AstropyWarning)\n",
111
- "\n",
112
89
  "# %matplotlib inline\n",
113
90
  "# requires installing ipympl\n",
114
91
  "%matplotlib widget\n",
115
92
  "plt.rcParams['font.size'] = 14"
116
93
  ]
117
94
  },
95
+ {
96
+ "cell_type": "raw",
97
+ "metadata": {},
98
+ "source": [
99
+ "### "
100
+ ]
101
+ },
118
102
  {
119
103
  "cell_type": "markdown",
120
104
  "metadata": {
@@ -122,49 +106,59 @@
122
106
  },
123
107
  "source": [
124
108
  "<a class=\"anchor\" id=\"install\"></a>\n",
125
- "## Install the most recent version of the `sparclclient`:\n",
109
+ "## Install most recent version of the SPARCLCLIENT\n",
126
110
  "*NOTE: After installing the most recent version, please restart your kernel.*"
127
111
  ]
128
112
  },
129
113
  {
130
114
  "cell_type": "code",
131
115
  "execution_count": 3,
132
- "metadata": {},
116
+ "metadata": {
117
+ "tags": []
118
+ },
133
119
  "outputs": [
134
120
  {
135
121
  "name": "stdout",
136
122
  "output_type": "stream",
137
123
  "text": [
138
- "Requirement already satisfied: sparclclient==1.2.1.dev2 in /home/pothiers/sandbox/sparclclient/venv/lib/python3.10/site-packages (1.2.1.dev2)\n",
139
- "Requirement already satisfied: requests==2.31.0 in /home/pothiers/sandbox/sparclclient/venv/lib/python3.10/site-packages (from sparclclient==1.2.1.dev2) (2.31.0)\n",
140
- "Requirement already satisfied: numpy in /home/pothiers/sandbox/sparclclient/venv/lib/python3.10/site-packages (from sparclclient==1.2.1.dev2) (1.26.1)\n",
141
- "Requirement already satisfied: spectres in /home/pothiers/sandbox/sparclclient/venv/lib/python3.10/site-packages (from sparclclient==1.2.1.dev2) (2.2.0)\n",
142
- "Requirement already satisfied: charset-normalizer<4,>=2 in /home/pothiers/sandbox/sparclclient/venv/lib/python3.10/site-packages (from requests==2.31.0->sparclclient==1.2.1.dev2) (3.3.2)\n",
143
- "Requirement already satisfied: idna<4,>=2.5 in /home/pothiers/sandbox/sparclclient/venv/lib/python3.10/site-packages (from requests==2.31.0->sparclclient==1.2.1.dev2) (3.4)\n",
144
- "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/pothiers/sandbox/sparclclient/venv/lib/python3.10/site-packages (from requests==2.31.0->sparclclient==1.2.1.dev2) (2.0.7)\n",
145
- "Requirement already satisfied: certifi>=2017.4.17 in /home/pothiers/sandbox/sparclclient/venv/lib/python3.10/site-packages (from requests==2.31.0->sparclclient==1.2.1.dev2) (2023.7.22)\n"
124
+ "Processing /home/pothiers/sandbox/sparclclient\n",
125
+ " Installing build dependencies ... \u001b[?25ldone\n",
126
+ "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n",
127
+ "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n",
128
+ "\u001b[?25hBuilding wheels for collected packages: sparclclient\n",
129
+ " Building wheel for sparclclient (pyproject.toml) ... \u001b[?25ldone\n",
130
+ "\u001b[?25h Created wheel for sparclclient: filename=sparclclient-1.2.2b8-py2.py3-none-any.whl size=3533665 sha256=fc035800e3269eccc70d3658f293c93d2fe7f07850a17cbdb47c9b2ce0de36ad\n",
131
+ " Stored in directory: /tmp/pip-ephem-wheel-cache-lko1mvqq/wheels/9b/de/a2/3f7a82cf4ca7c9e775a1ed1daeea35010570464a1aaa8c370c\n",
132
+ "Successfully built sparclclient\n",
133
+ "Installing collected packages: sparclclient\n",
134
+ " Attempting uninstall: sparclclient\n",
135
+ " Found existing installation: sparclclient 1.2.2b8\n",
136
+ " Uninstalling sparclclient-1.2.2b8:\n",
137
+ " Successfully uninstalled sparclclient-1.2.2b8\n",
138
+ "Successfully installed sparclclient-1.2.2b8\n"
146
139
  ]
147
140
  }
148
141
  ],
149
142
  "source": [
150
- "! pip install sparclclient==1.2.1.dev2 # A specific version \n",
151
- "#!pip install -upgrade sparclclient # Latest released version\n",
152
- "#!pip install --pre -upgrade sparclclient # Lastest pre-released version\n",
143
+ "# !pip install --upgrade sparclclient # Latest released version\n",
144
+ "# !pip install --pre --upgrade sparclclient # Lastest pre-released version\n",
153
145
  "\n",
154
- "# Uncomment next line to load ASTROGET from local current version of software.\n",
155
- "#! pip install --pre --upgrade ../.."
146
+ "# Uncomment next line to load SPARCLCLIENT from local current version of software.\n",
147
+ "!pip install --pre --upgrade ../.."
156
148
  ]
157
149
  },
158
150
  {
159
151
  "cell_type": "code",
160
152
  "execution_count": 4,
161
- "metadata": {},
153
+ "metadata": {
154
+ "tags": []
155
+ },
162
156
  "outputs": [
163
157
  {
164
158
  "name": "stdout",
165
159
  "output_type": "stream",
166
160
  "text": [
167
- "Run started: 2023-11-05 19:16:24.677061\n"
161
+ "Run started: 2024-05-02 10:22:12.795845\n"
168
162
  ]
169
163
  }
170
164
  ],
@@ -184,322 +178,68 @@
184
178
  },
185
179
  "source": [
186
180
  "<a class=\"anchor\" id=\"prepare\"></a>\n",
187
- "# Prepare to use SPARCLCLIENT"
181
+ "# Configure SPARCLCLIENT"
188
182
  ]
189
183
  },
190
184
  {
191
185
  "cell_type": "code",
192
186
  "execution_count": 5,
193
- "metadata": {},
187
+ "metadata": {
188
+ "scrolled": true,
189
+ "tags": []
190
+ },
194
191
  "outputs": [
195
192
  {
196
- "name": "stdout",
193
+ "name": "stdin",
197
194
  "output_type": "stream",
198
195
  "text": [
199
- "Help on class SparclClient in module sparcl.client:\n",
200
- "\n",
201
- "class SparclClient(builtins.object)\n",
202
- " | SparclClient(*, email=None, password=None, url='https://astrosparcl.datalab.noirlab.edu', verbose=False, show_curl=False, connect_timeout=1.1, read_timeout=5400)\n",
203
- " | \n",
204
- " | Provides interface to SPARCL Server.\n",
205
- " | When using this to report a bug, set verbose to True. Also print\n",
206
- " | your instance of this. The results will include important info\n",
207
- " | about the Client and Server that is usefule to Developers.\n",
208
- " | \n",
209
- " | Args:\n",
210
- " | url (:obj:`str`, optional): Base URL of SPARC Server. Defaults\n",
211
- " | to 'https://astrosparcl.datalab.noirlab.edu'.\n",
212
- " | \n",
213
- " | verbose (:obj:`bool`, optional): Default verbosity is set to\n",
214
- " | False for all client methods.\n",
215
- " | \n",
216
- " | connect_timeout (:obj:`float`, optional): Number of seconds to\n",
217
- " | wait to establish connection with server. Defaults to\n",
218
- " | 1.1.\n",
219
- " | \n",
220
- " | read_timeout (:obj:`float`, optional): Number of seconds to\n",
221
- " | wait for server to send a response. Generally time to\n",
222
- " | wait for first byte. Defaults to 5400.\n",
223
- " | \n",
224
- " | Example:\n",
225
- " | >>> client = SparclClient()\n",
226
- " | \n",
227
- " | Raises:\n",
228
- " | Exception: Object creation compares the version from the\n",
229
- " | Server against the one expected by the Client. Throws an\n",
230
- " | error if the Client is a major version or more behind.\n",
231
- " | \n",
232
- " | Methods defined here:\n",
233
- " | \n",
234
- " | __init__(self, *, email=None, password=None, url='https://astrosparcl.datalab.noirlab.edu', verbose=False, show_curl=False, connect_timeout=1.1, read_timeout=5400)\n",
235
- " | Create client instance.\n",
236
- " | \n",
237
- " | __repr__(self)\n",
238
- " | Return repr(self).\n",
239
- " | \n",
240
- " | find(self, outfields=None, *, constraints={}, limit=500, sort=None, verbose=None)\n",
241
- " | Find records in the SPARC database.\n",
242
- " | \n",
243
- " | Args:\n",
244
- " | outfields (:obj:`list`, optional): List of fields to return.\n",
245
- " | Only CORE fields may be passed to this parameter.\n",
246
- " | Defaults to None, which will return only the sparcl_id\n",
247
- " | and _dr fields.\n",
248
- " | \n",
249
- " | constraints (:obj:`dict`, optional): Key-Value pairs of\n",
250
- " | constraints to place on the record selection. The Key\n",
251
- " | part of the Key-Value pair is the field name and the\n",
252
- " | Value part of the Key-Value pair is a list of values.\n",
253
- " | Defaults to no constraints. This will return all records in the\n",
254
- " | database subject to restrictions imposed by the ``limit``\n",
255
- " | parameter.\n",
256
- " | \n",
257
- " | limit (:obj:`int`, optional): Maximum number of records to\n",
258
- " | return. Defaults to 500.\n",
259
- " | \n",
260
- " | sort (:obj:`list`, optional): Comma separated list of fields\n",
261
- " | to sort by. Defaults to None. (no sorting)\n",
262
- " | \n",
263
- " | verbose (:obj:`bool`, optional): Set to True for in-depth return\n",
264
- " | statement. Defaults to False.\n",
265
- " | \n",
266
- " | Returns:\n",
267
- " | :class:`~sparcl.Results.Found`: Contains header and records.\n",
268
- " | \n",
269
- " | Example:\n",
270
- " | >>> client = SparclClient()\n",
271
- " | >>> outs = ['sparcl_id', 'ra', 'dec']\n",
272
- " | >>> cons = {'spectype': ['GALAXY'], 'redshift': [0.5, 0.9]}\n",
273
- " | >>> found = client.find(outfields=outs, constraints=cons)\n",
274
- " | >>> sorted(list(found.records[0].keys()))\n",
275
- " | ['_dr', 'dec', 'ra', 'sparcl_id']\n",
276
- " | \n",
277
- " | get_all_fields(self, *, dataset_list=None)\n",
278
- " | Get fields tagged as 'all' that are in DATASET_LIST.\n",
279
- " | These are the fields used for the ALL value of the include parameter\n",
280
- " | of client.retrieve().\n",
281
- " | \n",
282
- " | Args:\n",
283
- " | dataset_list (:obj:`list`, optional): List of data sets from\n",
284
- " | which to get all fields. Defaults to None, which\n",
285
- " | will return the intersection of all fields in all\n",
286
- " | data sets hosted on the SPARC database.\n",
287
- " | \n",
288
- " | Returns:\n",
289
- " | List of fields tagged as 'all' from DATASET_LIST.\n",
290
- " | \n",
291
- " | Example:\n",
292
- " | >>> client = SparclClient()\n",
293
- " | >>> client.get_all_fields()\n",
294
- " | ['data_release', 'datasetgroup', 'dateobs', 'dateobs_center', 'dec', 'exptime', 'flux', 'instrument', 'ivar', 'mask', 'model', 'ra', 'redshift', 'redshift_err', 'redshift_warning', 'site', 'sparcl_id', 'specid', 'specprimary', 'spectype', 'survey', 'targetid', 'telescope', 'wave_sigma', 'wavelength', 'wavemax', 'wavemin']\n",
295
- " | \n",
296
- " | get_available_fields(self, *, dataset_list=None)\n",
297
- " | Get subset of fields that are in all (or selected) DATASET_LIST.\n",
298
- " | This may be a bigger list than will be used with the ALL keyword to\n",
299
- " | client.retreive().\n",
300
- " | \n",
301
- " | Args:\n",
302
- " | dataset_list (:obj:`list`, optional): List of data sets from\n",
303
- " | which to get available fields. Defaults to None, which\n",
304
- " | will return the intersection of all available fields in\n",
305
- " | all data sets hosted on the SPARC database.\n",
306
- " | \n",
307
- " | Returns:\n",
308
- " | Set of fields available from data sets in DATASET_LIST.\n",
309
- " | \n",
310
- " | Example:\n",
311
- " | >>> client = SparclClient()\n",
312
- " | >>> sorted(client.get_available_fields())\n",
313
- " | ['data_release', 'datasetgroup', 'dateobs', 'dateobs_center', 'dec', 'dirpath', 'exptime', 'extra_files', 'filename', 'filesize', 'flux', 'instrument', 'ivar', 'mask', 'model', 'ra', 'redshift', 'redshift_err', 'redshift_warning', 'site', 'sparcl_id', 'specid', 'specprimary', 'spectype', 'survey', 'targetid', 'telescope', 'updated', 'wave_sigma', 'wavelength', 'wavemax', 'wavemin']\n",
314
- " | \n",
315
- " | get_default_fields(self, *, dataset_list=None)\n",
316
- " | Get fields tagged as 'default' that are in DATASET_LIST.\n",
317
- " | These are the fields used for the DEFAULT value of the include\n",
318
- " | parameter of client.retrieve().\n",
319
- " | \n",
320
- " | Args:\n",
321
- " | dataset_list (:obj:`list`, optional): List of data sets from\n",
322
- " | which to get the default fields. Defaults to None, which\n",
323
- " | will return the intersection of default fields in all\n",
324
- " | data sets hosted on the SPARC database.\n",
325
- " | \n",
326
- " | Returns:\n",
327
- " | List of fields tagged as 'default' from DATASET_LIST.\n",
328
- " | \n",
329
- " | Example:\n",
330
- " | >>> client = SparclClient()\n",
331
- " | >>> client.get_default_fields()\n",
332
- " | ['dec', 'flux', 'ra', 'sparcl_id', 'specid', 'wavelength']\n",
333
- " | \n",
334
- " | missing(self, uuid_list, *, dataset_list=None, countOnly=False, verbose=False)\n",
335
- " | Return the subset of sparcl_ids in the given uuid_list that are\n",
336
- " | NOT stored in the SPARC database.\n",
337
- " | \n",
338
- " | Args:\n",
339
- " | uuid_list (:obj:`list`): List of sparcl_ids.\n",
340
- " | \n",
341
- " | dataset_list (:obj:`list`, optional): List of data sets from\n",
342
- " | which to find missing sparcl_ids. Defaults to None, meaning\n",
343
- " | all data sets hosted on the SPARC database.\n",
344
- " | \n",
345
- " | countOnly (:obj:`bool`, optional): Set to True to return only\n",
346
- " | a count of the missing sparcl_ids from the uuid_list.\n",
347
- " | Defaults to False.\n",
348
- " | \n",
349
- " | verbose (:obj:`bool`, optional): Set to True for in-depth return\n",
350
- " | statement. Defaults to False.\n",
351
- " | \n",
352
- " | Returns:\n",
353
- " | A list of the subset of sparcl_ids in the given uuid_list that\n",
354
- " | are NOT stored in the SPARC database.\n",
355
- " | \n",
356
- " | Example:\n",
357
- " | >>> client = SparclClient()\n",
358
- " | >>> ids = ['ddbb57ee-8e90-4a0d-823b-0f5d97028076',]\n",
359
- " | >>> client.missing(ids)\n",
360
- " | ['ddbb57ee-8e90-4a0d-823b-0f5d97028076']\n",
361
- " | \n",
362
- " | missing_specids(self, specid_list, *, dataset_list=None, countOnly=False, verbose=False)\n",
363
- " | Return the subset of specids in the given specid_list that are\n",
364
- " | NOT stored in the SPARC database.\n",
365
- " | \n",
366
- " | Args:\n",
367
- " | specid_list (:obj:`list`): List of specids.\n",
368
- " | \n",
369
- " | dataset_list (:obj:`list`, optional): List of data sets from\n",
370
- " | which to find missing specids. Defaults to None, meaning\n",
371
- " | all data sets hosted on the SPARC database.\n",
372
- " | \n",
373
- " | countOnly (:obj:`bool`, optional): Set to True to return only\n",
374
- " | a count of the missing specids from the specid_list.\n",
375
- " | Defaults to False.\n",
376
- " | \n",
377
- " | verbose (:obj:`bool`, optional): Set to True for in-depth return\n",
378
- " | statement. Defaults to False.\n",
379
- " | \n",
380
- " | Returns:\n",
381
- " | A list of the subset of specids in the given specid_list that\n",
382
- " | are NOT stored in the SPARC database.\n",
383
- " | \n",
384
- " | Example:\n",
385
- " | >>> client = SparclClient(url=_PAT)\n",
386
- " | >>> specids = ['7972592460248666112', '3663710814482833408']\n",
387
- " | >>> client.missing_specids(specids + ['bad_id'])\n",
388
- " | ['bad_id']\n",
389
- " | \n",
390
- " | retrieve(self, uuid_list, *, include='DEFAULT', dataset_list=None, limit=500, verbose=None)\n",
391
- " | Retrieve spectra records from the SPARC database by list of\n",
392
- " | sparcl_ids.\n",
393
- " | \n",
394
- " | Args:\n",
395
- " | uuid_list (:obj:`list`): List of sparcl_ids.\n",
396
- " | \n",
397
- " | include (:obj:`list`, optional): List of field names to include\n",
398
- " | in each record. Defaults to 'DEFAULT', which will return\n",
399
- " | the fields tagged as 'default'.\n",
400
- " | \n",
401
- " | dataset_list (:obj:`list`, optional): List of data sets from\n",
402
- " | which to retrieve spectra data. Defaults to None, meaning all\n",
403
- " | data sets hosted on the SPARC database.\n",
404
- " | \n",
405
- " | limit (:obj:`int`, optional): Maximum number of records to\n",
406
- " | return. Defaults to 500. Maximum allowed is 24,000.\n",
407
- " | \n",
408
- " | verbose (:obj:`bool`, optional): Set to True for in-depth return\n",
409
- " | statement. Defaults to False.\n",
410
- " | \n",
411
- " | Returns:\n",
412
- " | :class:`~sparcl.Results.Retrieved`: Contains header and records.\n",
413
- " | \n",
414
- " | Example:\n",
415
- " | >>> client = SparclClient()\n",
416
- " | >>> ids = ['00000f0b-07db-4234-892a-6e347db79c89',]\n",
417
- " | >>> inc = ['sparcl_id', 'flux', 'wavelength', 'model']\n",
418
- " | >>> ret = client.retrieve(uuid_list=ids, include=inc)\n",
419
- " | >>> type(ret.records[0].wavelength)\n",
420
- " | <class 'numpy.ndarray'>\n",
421
- " | \n",
422
- " | retrieve_by_specid(self, specid_list, *, svc='spectras', format='pkl', include='DEFAULT', dataset_list=None, limit=500, verbose=False)\n",
423
- " | Retrieve spectra records from the SPARC database by list of specids.\n",
424
- " | \n",
425
- " | Args:\n",
426
- " | specid_list (:obj:`list`): List of specids.\n",
427
- " | \n",
428
- " | include (:obj:`list`, optional): List of field names to include\n",
429
- " | in each record. Defaults to 'DEFAULT', which will return\n",
430
- " | the fields tagged as 'default'.\n",
431
- " | \n",
432
- " | dataset_list (:obj:`list`, optional): List of data sets from\n",
433
- " | which to retrieve spectra data. Defaults to None, meaning all\n",
434
- " | data sets hosted on the SPARC database.\n",
435
- " | \n",
436
- " | limit (:obj:`int`, optional): Maximum number of records to\n",
437
- " | return. Defaults to 500. Maximum allowed is 24,000.\n",
438
- " | \n",
439
- " | verbose (:obj:`bool`, optional): Set to True for in-depth return\n",
440
- " | statement. Defaults to False.\n",
441
- " | \n",
442
- " | Returns:\n",
443
- " | :class:`~sparcl.Results.Retrieved`: Contains header and records.\n",
444
- " | \n",
445
- " | Example:\n",
446
- " | >>> client = SparclClient()\n",
447
- " | >>> sids = [5840097619402313728, -8985592895187431424]\n",
448
- " | >>> inc = ['specid', 'flux', 'wavelength', 'model']\n",
449
- " | >>> ret = client.retrieve_by_specid(specid_list=sids, include=inc)\n",
450
- " | >>> len(ret.records[0].wavelength)\n",
451
- " | 4617\n",
452
- " | \n",
453
- " | ----------------------------------------------------------------------\n",
454
- " | Readonly properties defined here:\n",
455
- " | \n",
456
- " | all_datasets\n",
457
- " | \n",
458
- " | version\n",
459
- " | Return version of Server Rest API used by this client.\n",
460
- " | If the Rest API changes such that the Major version increases,\n",
461
- " | a new version of this module will likely need to be used.\n",
462
- " | \n",
463
- " | Returns:\n",
464
- " | API version (:obj:`float`).\n",
465
- " | \n",
466
- " | Example:\n",
467
- " | >>> client = SparclClient()\n",
468
- " | >>> client.version\n",
469
- " | 9.0\n",
470
- " | \n",
471
- " | ----------------------------------------------------------------------\n",
472
- " | Data descriptors defined here:\n",
473
- " | \n",
474
- " | __dict__\n",
475
- " | dictionary for instance variables (if defined)\n",
476
- " | \n",
477
- " | __weakref__\n",
478
- " | list of weak references to the object (if defined)\n",
479
- " | \n",
480
- " | ----------------------------------------------------------------------\n",
481
- " | Data and other attributes defined here:\n",
482
- " | \n",
483
- " | KNOWN_GOOD_API_VERSION = 11.0\n",
484
- "\n"
196
+ " ········\n"
485
197
  ]
486
- },
198
+ }
199
+ ],
200
+ "source": [
201
+ "# How much output to we want to show?\n",
202
+ "show_help = False # HELP for client functions\n",
203
+ "show_curl = True # Show the underlying SPARCL Server API call\n",
204
+ "verbose = True\n",
205
+ "\n",
206
+ "server = 'https://astrosparcl.datalab.noirlab.edu' # Public Server\n",
207
+ "server = 'https://sparc1.datalab.noirlab.edu' # internal TEST Server\n",
208
+ "server = 'http://localhost:8050' # internal DEV Server\n",
209
+ "\n",
210
+ "priv_dr = 'SDSS-DR17-test'\n",
211
+ "pub_dr = 'BOSS-DR16'\n",
212
+ "\n",
213
+ "# Authenticated Users that are never authorized for anything important.\n",
214
+ "# These are authenticated on both Public and Test SSO servers.\n",
215
+ "auth_user = 'test_user_1@noirlab.edu'\n",
216
+ "unauth_user = 'test_user_2@noirlab.edu'\n",
217
+ "non_user = 'test_user_3@noirlab.edu'\n",
218
+ "usrpw = getpass()"
219
+ ]
220
+ },
221
+ {
222
+ "cell_type": "code",
223
+ "execution_count": 6,
224
+ "metadata": {
225
+ "scrolled": true,
226
+ "tags": []
227
+ },
228
+ "outputs": [
487
229
  {
488
- "data": {
489
- "text/plain": [
490
- "(sparclclient:1.2.1.dev2, api:11.0, https://sparc1.datalab.noirlab.edu/sparc, verbose=False, connect_timeout=1.1, read_timeout=5400.0)"
491
- ]
492
- },
493
- "execution_count": 5,
494
- "metadata": {},
495
- "output_type": "execute_result"
230
+ "name": "stdout",
231
+ "output_type": "stream",
232
+ "text": [
233
+ "apiurl=http://localhost:8050/sparc\n",
234
+ "client=(sparclclient:1.2.2b8, api:11.0, http://localhost:8050/sparc, client_hash=f7bd410278bee26a425387c598dd47e80a8fcdcb, verbose=True, connect_timeout=1.1, read_timeout=5400.0)\n"
235
+ ]
496
236
  }
497
237
  ],
498
238
  "source": [
499
- "server='https://sparc1.datalab.noirlab.edu' \n",
500
- "help(sparcl.client.SparclClient)\n",
501
- "client = sparcl.client.SparclClient(url=server, show_curl=True)\n",
502
- "client"
239
+ "if show_help:\n",
240
+ " help(sparcl.client.SparclClient)\n",
241
+ "client = sparcl.client.SparclClient(url=server, show_curl=show_curl, verbose=verbose)\n",
242
+ "print(f'{client=}')"
503
243
  ]
504
244
  },
505
245
  {
@@ -507,7 +247,7 @@
507
247
  "metadata": {},
508
248
  "source": [
509
249
  "<a class=\"anchor\" id=\"info\"></a>\n",
510
- "# Info"
250
+ "# General Info from SPARCL"
511
251
  ]
512
252
  },
513
253
  {
@@ -515,22 +255,24 @@
515
255
  "metadata": {},
516
256
  "source": [
517
257
  "<a class=\"anchor\" id=\"datasets\"></a>\n",
518
- "## Data sets available in SPARCL\n",
258
+ "## Data sets available\n",
519
259
  "List all currently available data sets from the server/url associated with client"
520
260
  ]
521
261
  },
522
262
  {
523
263
  "cell_type": "code",
524
- "execution_count": 6,
525
- "metadata": {},
264
+ "execution_count": 7,
265
+ "metadata": {
266
+ "tags": []
267
+ },
526
268
  "outputs": [
527
269
  {
528
270
  "data": {
529
271
  "text/plain": [
530
- "{'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16', 'SDSS-DR17'}"
272
+ "{'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16', 'SDSS-DR17-test'}"
531
273
  ]
532
274
  },
533
- "execution_count": 6,
275
+ "execution_count": 7,
534
276
  "metadata": {},
535
277
  "output_type": "execute_result"
536
278
  }
@@ -544,53 +286,29 @@
544
286
  "metadata": {},
545
287
  "source": [
546
288
  "<a class=\"anchor\" id=\"defaultfieldnames\"></a>\n",
547
- "## Get default field names\n",
289
+ "## Default field names\n",
548
290
  "Gets fields tagged as 'default' that are common to all data sets in the `dataset_list` passed to the function. If `dataset_list` is None (the default), the function returns the intersection of 'default' fields across all datasets currently available in the SPARC database. The following example of this function produces the same output as it would with no `dataset_list` argument because we currently only have SDSS-DR16 and BOSS-DR16 records in the SPARC database."
549
291
  ]
550
292
  },
551
293
  {
552
294
  "cell_type": "code",
553
- "execution_count": 7,
554
- "metadata": {},
555
- "outputs": [
556
- {
557
- "data": {
558
- "text/plain": [
559
- "\u001b[0;31mSignature:\u001b[0m \u001b[0mclient\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_default_fields\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdataset_list\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
560
- "\u001b[0;31mDocstring:\u001b[0m\n",
561
- "Get fields tagged as 'default' that are in DATASET_LIST.\n",
562
- "These are the fields used for the DEFAULT value of the include\n",
563
- "parameter of client.retrieve().\n",
564
- "\n",
565
- "Args:\n",
566
- " dataset_list (:obj:`list`, optional): List of data sets from\n",
567
- " which to get the default fields. Defaults to None, which\n",
568
- " will return the intersection of default fields in all\n",
569
- " data sets hosted on the SPARC database.\n",
570
- "\n",
571
- "Returns:\n",
572
- " List of fields tagged as 'default' from DATASET_LIST.\n",
573
- "\n",
574
- "Example:\n",
575
- " >>> client = SparclClient()\n",
576
- " >>> client.get_default_fields()\n",
577
- " ['dec', 'flux', 'ra', 'sparcl_id', 'specid', 'wavelength']\n",
578
- "\u001b[0;31mFile:\u001b[0m ~/sandbox/sparclclient/venv/lib/python3.10/site-packages/sparcl/client.py\n",
579
- "\u001b[0;31mType:\u001b[0m method"
580
- ]
581
- },
582
- "metadata": {},
583
- "output_type": "display_data"
584
- }
585
- ],
295
+ "execution_count": 8,
296
+ "metadata": {
297
+ "scrolled": true,
298
+ "tags": []
299
+ },
300
+ "outputs": [],
586
301
  "source": [
587
- "client.get_default_fields?"
302
+ "if show_help:\n",
303
+ " client.get_default_fields?"
588
304
  ]
589
305
  },
590
306
  {
591
307
  "cell_type": "code",
592
- "execution_count": 8,
593
- "metadata": {},
308
+ "execution_count": 9,
309
+ "metadata": {
310
+ "tags": []
311
+ },
594
312
  "outputs": [
595
313
  {
596
314
  "data": {
@@ -598,7 +316,7 @@
598
316
  "['dec', 'flux', 'ra', 'sparcl_id', 'specid', 'wavelength']"
599
317
  ]
600
318
  },
601
- "execution_count": 8,
319
+ "execution_count": 9,
602
320
  "metadata": {},
603
321
  "output_type": "execute_result"
604
322
  }
@@ -612,14 +330,16 @@
612
330
  "metadata": {},
613
331
  "source": [
614
332
  "<a class=\"anchor\" id=\"allfieldnames\"></a>\n",
615
- "## Get all field names\n",
333
+ "## All field names\n",
616
334
  "Gets fields tagged as 'all' that are common to all data sets in the `dataset_list` passed to the function. If `dataset_list` is None (the default), the function returns the intersection of 'all' fields across all datasets currently available in the SPARC database. The following example of this function produces the same output as it would with no `dataset_list` argument because we currently only have SDSS-DR16 and BOSS-DR16 records in the SPARC database."
617
335
  ]
618
336
  },
619
337
  {
620
338
  "cell_type": "code",
621
- "execution_count": 9,
622
- "metadata": {},
339
+ "execution_count": 10,
340
+ "metadata": {
341
+ "tags": []
342
+ },
623
343
  "outputs": [
624
344
  {
625
345
  "data": {
@@ -634,7 +354,7 @@
634
354
  " dataset_list (:obj:`list`, optional): List of data sets from\n",
635
355
  " which to get all fields. Defaults to None, which\n",
636
356
  " will return the intersection of all fields in all\n",
637
- " data sets hosted on the SPARC database.\n",
357
+ " data sets hosted on the SPARCL database.\n",
638
358
  "\n",
639
359
  "Returns:\n",
640
360
  " List of fields tagged as 'all' from DATASET_LIST.\n",
@@ -657,8 +377,10 @@
657
377
  },
658
378
  {
659
379
  "cell_type": "code",
660
- "execution_count": 10,
661
- "metadata": {},
380
+ "execution_count": 11,
381
+ "metadata": {
382
+ "tags": []
383
+ },
662
384
  "outputs": [
663
385
  {
664
386
  "name": "stdout",
@@ -676,13 +398,16 @@
676
398
  "cell_type": "markdown",
677
399
  "metadata": {},
678
400
  "source": [
679
- "## Version of Server API used by this client"
401
+ "## Version of Server API used by this client\n",
402
+ "The SPARCL Client you use must match the version of the SPARCL Server you use. The server is specified with the client.SparclClient `url` parameter. If Server and Client are incompatible, when you excecute SparclClient() you will instructed to upgrade your client."
680
403
  ]
681
404
  },
682
405
  {
683
406
  "cell_type": "code",
684
- "execution_count": 11,
685
- "metadata": {},
407
+ "execution_count": 12,
408
+ "metadata": {
409
+ "tags": []
410
+ },
686
411
  "outputs": [
687
412
  {
688
413
  "data": {
@@ -690,7 +415,7 @@
690
415
  "11.0"
691
416
  ]
692
417
  },
693
- "execution_count": 11,
418
+ "execution_count": 12,
694
419
  "metadata": {},
695
420
  "output_type": "execute_result"
696
421
  }
@@ -748,89 +473,35 @@
748
473
  },
749
474
  {
750
475
  "cell_type": "code",
751
- "execution_count": 12,
476
+ "execution_count": 13,
752
477
  "metadata": {
753
478
  "editable": true,
754
- "jupyter": {
755
- "source_hidden": true
756
- },
479
+ "scrolled": true,
757
480
  "slideshow": {
758
481
  "slide_type": ""
759
482
  },
760
483
  "tags": []
761
484
  },
762
- "outputs": [
763
- {
764
- "data": {
765
- "text/plain": [
766
- "\u001b[0;31mSignature:\u001b[0m\n",
767
- "\u001b[0mclient\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfind\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n",
768
- "\u001b[0;34m\u001b[0m \u001b[0moutfields\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
769
- "\u001b[0;34m\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
770
- "\u001b[0;34m\u001b[0m \u001b[0mconstraints\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
771
- "\u001b[0;34m\u001b[0m \u001b[0mlimit\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m500\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
772
- "\u001b[0;34m\u001b[0m \u001b[0msort\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
773
- "\u001b[0;34m\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
774
- "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
775
- "\u001b[0;31mDocstring:\u001b[0m\n",
776
- "Find records in the SPARC database.\n",
777
- "\n",
778
- "Args:\n",
779
- " outfields (:obj:`list`, optional): List of fields to return.\n",
780
- " Only CORE fields may be passed to this parameter.\n",
781
- " Defaults to None, which will return only the sparcl_id\n",
782
- " and _dr fields.\n",
783
- "\n",
784
- " constraints (:obj:`dict`, optional): Key-Value pairs of\n",
785
- " constraints to place on the record selection. The Key\n",
786
- " part of the Key-Value pair is the field name and the\n",
787
- " Value part of the Key-Value pair is a list of values.\n",
788
- " Defaults to no constraints. This will return all records in the\n",
789
- " database subject to restrictions imposed by the ``limit``\n",
790
- " parameter.\n",
791
- "\n",
792
- " limit (:obj:`int`, optional): Maximum number of records to\n",
793
- " return. Defaults to 500.\n",
794
- "\n",
795
- " sort (:obj:`list`, optional): Comma separated list of fields\n",
796
- " to sort by. Defaults to None. (no sorting)\n",
797
- "\n",
798
- " verbose (:obj:`bool`, optional): Set to True for in-depth return\n",
799
- " statement. Defaults to False.\n",
800
- "\n",
801
- "Returns:\n",
802
- " :class:`~sparcl.Results.Found`: Contains header and records.\n",
803
- "\n",
804
- "Example:\n",
805
- " >>> client = SparclClient()\n",
806
- " >>> outs = ['sparcl_id', 'ra', 'dec']\n",
807
- " >>> cons = {'spectype': ['GALAXY'], 'redshift': [0.5, 0.9]}\n",
808
- " >>> found = client.find(outfields=outs, constraints=cons)\n",
809
- " >>> sorted(list(found.records[0].keys()))\n",
810
- " ['_dr', 'dec', 'ra', 'sparcl_id']\n",
811
- "\u001b[0;31mFile:\u001b[0m ~/sandbox/sparclclient/venv/lib/python3.10/site-packages/sparcl/client.py\n",
812
- "\u001b[0;31mType:\u001b[0m method"
813
- ]
814
- },
815
- "metadata": {},
816
- "output_type": "display_data"
817
- }
818
- ],
485
+ "outputs": [],
819
486
  "source": [
820
- "client.find?"
487
+ "if show_help:\n",
488
+ " client.find?"
821
489
  ]
822
490
  },
823
491
  {
824
492
  "cell_type": "markdown",
825
493
  "metadata": {},
826
494
  "source": [
827
- "#### Define the fields we want returned (`outfields`) and the constraints (`constraints`):"
495
+ "#### Define fields and constraints for metadata FIND\n",
496
+ "Define the fields we want returned (`outfields`) and the constraints (`constraints`)"
828
497
  ]
829
498
  },
830
499
  {
831
500
  "cell_type": "code",
832
- "execution_count": 13,
833
- "metadata": {},
501
+ "execution_count": 14,
502
+ "metadata": {
503
+ "tags": []
504
+ },
834
505
  "outputs": [],
835
506
  "source": [
836
507
  "out = ['sparcl_id','specid', 'ra', 'dec', 'redshift', 'spectype', 'data_release', 'redshift_err']\n",
@@ -843,22 +514,26 @@
843
514
  "cell_type": "markdown",
844
515
  "metadata": {},
845
516
  "source": [
846
- "#### Execute the `client.find()` method with our parameters:\n",
517
+ "#### Execute FIND\n",
518
+ "Execute the `client.find()` method with our parameters.\n",
847
519
  "The `limit` argument here is being used for demonstration purposes only, and simply returns only the first 20 results here."
848
520
  ]
849
521
  },
850
522
  {
851
523
  "cell_type": "code",
852
- "execution_count": 14,
524
+ "execution_count": 15,
853
525
  "metadata": {
854
- "scrolled": true
526
+ "scrolled": true,
527
+ "tags": []
855
528
  },
856
529
  "outputs": [
857
530
  {
858
531
  "name": "stdout",
859
532
  "output_type": "stream",
860
533
  "text": [
861
- "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"specid\", \"ra\", \"dec\", \"redshift\", \"spectype\", \"data_release\", \"redshift_err\"], \"search\": [[\"spectype\", \"GALAXY\"], [\"redshift\", 0.5, 0.9], [\"data_release\", \"BOSS-DR16\", \"SDSS-DR16\"]]}' 'https://sparc1.datalab.noirlab.edu/sparc/find/?limit=20' | python3 -m json.tool\n"
534
+ "url=http://localhost:8050/sparc/find/?limit=20 sspec={'outfields': ['sparcl_id', 'specid', 'ra', 'dec', 'redshift', 'spectype', 'data_release', 'redshift_err'], 'search': [['spectype', 'GALAXY'], ['redshift', 0.5, 0.9], ['data_release', 'BOSS-DR16', 'SDSS-DR16']]}\n",
535
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"specid\", \"ra\", \"dec\", \"redshift\", \"spectype\", \"data_release\", \"redshift_err\"], \"search\": [[\"spectype\", \"GALAXY\"], [\"redshift\", 0.5, 0.9], [\"data_release\", \"BOSS-DR16\", \"SDSS-DR16\"]]}' 'http://localhost:8050/sparc/find/?limit=20' | python3 -m json.tool\n",
536
+ "Record key counts: {'spectype': 20, 'redshift': 20, 'sparcl_id': 20, 'ra': 20, 'dec': 20, 'specid': 20, '_dr': 20, 'data_release': 20, 'redshift_err': 20}\n"
862
537
  ]
863
538
  }
864
539
  ],
@@ -868,8 +543,19 @@
868
543
  },
869
544
  {
870
545
  "cell_type": "code",
871
- "execution_count": 15,
872
- "metadata": {},
546
+ "execution_count": null,
547
+ "metadata": {
548
+ "scrolled": true
549
+ },
550
+ "outputs": [],
551
+ "source": []
552
+ },
553
+ {
554
+ "cell_type": "code",
555
+ "execution_count": 16,
556
+ "metadata": {
557
+ "tags": []
558
+ },
873
559
  "outputs": [
874
560
  {
875
561
  "data": {
@@ -892,256 +578,256 @@
892
578
  " <thead>\n",
893
579
  " <tr style=\"text-align: right;\">\n",
894
580
  " <th></th>\n",
895
- " <th>redshift_err</th>\n",
896
- " <th>sparcl_id</th>\n",
897
- " <th>data_release</th>\n",
898
581
  " <th>redshift</th>\n",
899
- " <th>specid</th>\n",
582
+ " <th>ra</th>\n",
900
583
  " <th>dec</th>\n",
584
+ " <th>data_release</th>\n",
585
+ " <th>specid</th>\n",
586
+ " <th>redshift_err</th>\n",
901
587
  " <th>spectype</th>\n",
902
- " <th>ra</th>\n",
588
+ " <th>sparcl_id</th>\n",
903
589
  " <th>_dr</th>\n",
904
590
  " </tr>\n",
905
591
  " </thead>\n",
906
592
  " <tbody>\n",
907
593
  " <tr>\n",
908
594
  " <th>0</th>\n",
909
- " <td>0.000241</td>\n",
910
- " <td>559c7b68-75d8-11ee-a90d-525400aad0aa</td>\n",
911
- " <td>BOSS-DR16</td>\n",
912
- " <td>0.675723</td>\n",
913
- " <td>-6444647351317147648</td>\n",
914
- " <td>28.038851</td>\n",
595
+ " <td>0.545929</td>\n",
596
+ " <td>246.74298</td>\n",
597
+ " <td>35.985258</td>\n",
598
+ " <td>SDSS-DR16</td>\n",
599
+ " <td>1506516519029336064</td>\n",
600
+ " <td>0.000422</td>\n",
915
601
  " <td>GALAXY</td>\n",
916
- " <td>134.10755</td>\n",
917
- " <td>BOSS-DR16</td>\n",
602
+ " <td>2c6c82dc-fe87-11ee-838b-08002725f1ef</td>\n",
603
+ " <td>SDSS-DR16</td>\n",
918
604
  " </tr>\n",
919
605
  " <tr>\n",
920
606
  " <th>1</th>\n",
921
- " <td>0.000242</td>\n",
922
- " <td>55d7d47d-75d8-11ee-ba50-525400aad0aa</td>\n",
923
- " <td>BOSS-DR16</td>\n",
924
- " <td>0.782685</td>\n",
925
- " <td>-6444646251805519872</td>\n",
926
- " <td>28.084685</td>\n",
607
+ " <td>0.667431</td>\n",
608
+ " <td>245.40676</td>\n",
609
+ " <td>36.438884</td>\n",
610
+ " <td>SDSS-DR16</td>\n",
611
+ " <td>1506548404866541568</td>\n",
612
+ " <td>0.000026</td>\n",
927
613
  " <td>GALAXY</td>\n",
928
- " <td>134.23727</td>\n",
929
- " <td>BOSS-DR16</td>\n",
614
+ " <td>3063feb6-fe87-11ee-8aa0-08002725f1ef</td>\n",
615
+ " <td>SDSS-DR16</td>\n",
930
616
  " </tr>\n",
931
617
  " <tr>\n",
932
618
  " <th>2</th>\n",
933
- " <td>0.000424</td>\n",
934
- " <td>565fd69e-75d8-11ee-b584-525400aad0aa</td>\n",
935
- " <td>BOSS-DR16</td>\n",
936
- " <td>0.797439</td>\n",
937
- " <td>-6444643503026450432</td>\n",
938
- " <td>28.226386</td>\n",
619
+ " <td>0.502511</td>\n",
620
+ " <td>246.45702</td>\n",
621
+ " <td>36.657405</td>\n",
622
+ " <td>SDSS-DR16</td>\n",
623
+ " <td>1506572869000259584</td>\n",
624
+ " <td>0.000172</td>\n",
939
625
  " <td>GALAXY</td>\n",
940
- " <td>133.98095</td>\n",
941
- " <td>BOSS-DR16</td>\n",
626
+ " <td>336d71cf-fe87-11ee-9390-08002725f1ef</td>\n",
627
+ " <td>SDSS-DR16</td>\n",
942
628
  " </tr>\n",
943
629
  " <tr>\n",
944
630
  " <th>3</th>\n",
945
- " <td>0.000238</td>\n",
946
- " <td>56cd210b-75d8-11ee-b3b9-525400aad0aa</td>\n",
947
- " <td>BOSS-DR16</td>\n",
948
- " <td>0.647712</td>\n",
949
- " <td>-6444641304003194880</td>\n",
950
- " <td>28.429551</td>\n",
631
+ " <td>0.724874</td>\n",
632
+ " <td>246.89323</td>\n",
633
+ " <td>37.209662</td>\n",
634
+ " <td>SDSS-DR16</td>\n",
635
+ " <td>1506578916314212352</td>\n",
636
+ " <td>11.831918</td>\n",
951
637
  " <td>GALAXY</td>\n",
952
- " <td>134.54531</td>\n",
953
- " <td>BOSS-DR16</td>\n",
638
+ " <td>342e5eaa-fe87-11ee-9047-08002725f1ef</td>\n",
639
+ " <td>SDSS-DR16</td>\n",
954
640
  " </tr>\n",
955
641
  " <tr>\n",
956
642
  " <th>4</th>\n",
957
- " <td>0.000274</td>\n",
958
- " <td>56e8876a-75d8-11ee-a38d-525400aad0aa</td>\n",
959
- " <td>BOSS-DR16</td>\n",
960
- " <td>0.886086</td>\n",
961
- " <td>-6444640754247380992</td>\n",
962
- " <td>28.452505</td>\n",
643
+ " <td>0.741196</td>\n",
644
+ " <td>247.40873</td>\n",
645
+ " <td>36.381456</td>\n",
646
+ " <td>SDSS-DR16</td>\n",
647
+ " <td>1506596508500256768</td>\n",
648
+ " <td>0.614932</td>\n",
963
649
  " <td>GALAXY</td>\n",
964
- " <td>134.46525</td>\n",
965
- " <td>BOSS-DR16</td>\n",
650
+ " <td>36565b1b-fe87-11ee-b857-08002725f1ef</td>\n",
651
+ " <td>SDSS-DR16</td>\n",
966
652
  " </tr>\n",
967
653
  " <tr>\n",
968
654
  " <th>5</th>\n",
969
- " <td>0.000311</td>\n",
970
- " <td>57032782-75d8-11ee-b0e2-525400aad0aa</td>\n",
655
+ " <td>0.675723</td>\n",
656
+ " <td>134.10755</td>\n",
657
+ " <td>28.038851</td>\n",
971
658
  " <td>BOSS-DR16</td>\n",
972
- " <td>0.898559</td>\n",
973
- " <td>-6444640204491567104</td>\n",
974
- " <td>28.450988</td>\n",
659
+ " <td>-6444647351317147648</td>\n",
660
+ " <td>0.000241</td>\n",
975
661
  " <td>GALAXY</td>\n",
976
- " <td>134.43695</td>\n",
662
+ " <td>5182df54-fe87-11ee-a660-08002725f1ef</td>\n",
977
663
  " <td>BOSS-DR16</td>\n",
978
664
  " </tr>\n",
979
665
  " <tr>\n",
980
666
  " <th>6</th>\n",
981
- " <td>0.000315</td>\n",
982
- " <td>571ee9b7-75d8-11ee-86ec-525400aad0aa</td>\n",
667
+ " <td>0.782685</td>\n",
668
+ " <td>134.23727</td>\n",
669
+ " <td>28.084685</td>\n",
983
670
  " <td>BOSS-DR16</td>\n",
984
- " <td>0.566015</td>\n",
985
- " <td>-6444639654735753216</td>\n",
986
- " <td>27.305313</td>\n",
671
+ " <td>-6444646251805519872</td>\n",
672
+ " <td>0.000242</td>\n",
987
673
  " <td>GALAXY</td>\n",
988
- " <td>133.95386</td>\n",
674
+ " <td>51ad9b94-fe87-11ee-af3e-08002725f1ef</td>\n",
989
675
  " <td>BOSS-DR16</td>\n",
990
676
  " </tr>\n",
991
677
  " <tr>\n",
992
678
  " <th>7</th>\n",
993
- " <td>0.000412</td>\n",
994
- " <td>573c5312-75d8-11ee-a6a5-525400aad0aa</td>\n",
679
+ " <td>0.797439</td>\n",
680
+ " <td>133.98095</td>\n",
681
+ " <td>28.226386</td>\n",
995
682
  " <td>BOSS-DR16</td>\n",
996
- " <td>0.599517</td>\n",
997
- " <td>-6444639104979939328</td>\n",
998
- " <td>27.381025</td>\n",
683
+ " <td>-6444643503026450432</td>\n",
684
+ " <td>0.000424</td>\n",
999
685
  " <td>GALAXY</td>\n",
1000
- " <td>134.05133</td>\n",
686
+ " <td>521321c8-fe87-11ee-946d-08002725f1ef</td>\n",
1001
687
  " <td>BOSS-DR16</td>\n",
1002
688
  " </tr>\n",
1003
689
  " <tr>\n",
1004
690
  " <th>8</th>\n",
1005
- " <td>0.000338</td>\n",
1006
- " <td>575ba44a-75d8-11ee-8ea2-525400aad0aa</td>\n",
691
+ " <td>0.647712</td>\n",
692
+ " <td>134.54531</td>\n",
693
+ " <td>28.429551</td>\n",
1007
694
  " <td>BOSS-DR16</td>\n",
1008
- " <td>0.812179</td>\n",
1009
- " <td>-6444638555224125440</td>\n",
1010
- " <td>27.333753</td>\n",
1011
- " <td>GALAXY</td>\n",
1012
- " <td>133.95189</td>\n",
695
+ " <td>-6444641304003194880</td>\n",
696
+ " <td>0.000238</td>\n",
697
+ " <td>GALAXY</td>\n",
698
+ " <td>52643970-fe87-11ee-abb3-08002725f1ef</td>\n",
1013
699
  " <td>BOSS-DR16</td>\n",
1014
700
  " </tr>\n",
1015
701
  " <tr>\n",
1016
702
  " <th>9</th>\n",
1017
- " <td>0.000337</td>\n",
1018
- " <td>5777698e-75d8-11ee-9cc0-525400aad0aa</td>\n",
703
+ " <td>0.886086</td>\n",
704
+ " <td>134.46525</td>\n",
705
+ " <td>28.452505</td>\n",
1019
706
  " <td>BOSS-DR16</td>\n",
1020
- " <td>0.795586</td>\n",
1021
- " <td>-6444638005468311552</td>\n",
1022
- " <td>27.571681</td>\n",
707
+ " <td>-6444640754247380992</td>\n",
708
+ " <td>0.000274</td>\n",
1023
709
  " <td>GALAXY</td>\n",
1024
- " <td>134.21014</td>\n",
710
+ " <td>5278859e-fe87-11ee-8427-08002725f1ef</td>\n",
1025
711
  " <td>BOSS-DR16</td>\n",
1026
712
  " </tr>\n",
1027
713
  " <tr>\n",
1028
714
  " <th>10</th>\n",
1029
- " <td>0.000287</td>\n",
1030
- " <td>57d0abaf-75d8-11ee-9722-525400aad0aa</td>\n",
715
+ " <td>0.898559</td>\n",
716
+ " <td>134.43695</td>\n",
717
+ " <td>28.450988</td>\n",
1031
718
  " <td>BOSS-DR16</td>\n",
1032
- " <td>0.554642</td>\n",
1033
- " <td>-6444636356200869888</td>\n",
1034
- " <td>27.491442</td>\n",
719
+ " <td>-6444640204491567104</td>\n",
720
+ " <td>0.000311</td>\n",
1035
721
  " <td>GALAXY</td>\n",
1036
- " <td>134.11568</td>\n",
722
+ " <td>52913c34-fe87-11ee-844b-08002725f1ef</td>\n",
1037
723
  " <td>BOSS-DR16</td>\n",
1038
724
  " </tr>\n",
1039
725
  " <tr>\n",
1040
726
  " <th>11</th>\n",
1041
- " <td>0.000177</td>\n",
1042
- " <td>580a251a-75d8-11ee-93f9-525400aad0aa</td>\n",
727
+ " <td>0.566015</td>\n",
728
+ " <td>133.95386</td>\n",
729
+ " <td>27.305313</td>\n",
1043
730
  " <td>BOSS-DR16</td>\n",
1044
- " <td>0.688878</td>\n",
1045
- " <td>-6444635256689242112</td>\n",
1046
- " <td>27.657880</td>\n",
731
+ " <td>-6444639654735753216</td>\n",
732
+ " <td>0.000315</td>\n",
1047
733
  " <td>GALAXY</td>\n",
1048
- " <td>134.19652</td>\n",
734
+ " <td>52a796f0-fe87-11ee-b337-08002725f1ef</td>\n",
1049
735
  " <td>BOSS-DR16</td>\n",
1050
736
  " </tr>\n",
1051
737
  " <tr>\n",
1052
738
  " <th>12</th>\n",
1053
- " <td>0.000194</td>\n",
1054
- " <td>587921ca-75d8-11ee-9ade-525400aad0aa</td>\n",
739
+ " <td>0.599517</td>\n",
740
+ " <td>134.05133</td>\n",
741
+ " <td>27.381025</td>\n",
1055
742
  " <td>BOSS-DR16</td>\n",
1056
- " <td>0.638226</td>\n",
1057
- " <td>-6444633057665986560</td>\n",
1058
- " <td>28.080178</td>\n",
743
+ " <td>-6444639104979939328</td>\n",
744
+ " <td>0.000412</td>\n",
1059
745
  " <td>GALAXY</td>\n",
1060
- " <td>133.85629</td>\n",
746
+ " <td>52bbb47f-fe87-11ee-b8d7-08002725f1ef</td>\n",
1061
747
  " <td>BOSS-DR16</td>\n",
1062
748
  " </tr>\n",
1063
749
  " <tr>\n",
1064
750
  " <th>13</th>\n",
1065
- " <td>0.000294</td>\n",
1066
- " <td>58a1997f-75d8-11ee-aaf9-525400aad0aa</td>\n",
751
+ " <td>0.812179</td>\n",
752
+ " <td>133.95189</td>\n",
753
+ " <td>27.333753</td>\n",
1067
754
  " <td>BOSS-DR16</td>\n",
1068
- " <td>0.614235</td>\n",
1069
- " <td>-6444632233032265728</td>\n",
1070
- " <td>27.907149</td>\n",
755
+ " <td>-6444638555224125440</td>\n",
756
+ " <td>0.000338</td>\n",
1071
757
  " <td>GALAXY</td>\n",
1072
- " <td>133.79296</td>\n",
758
+ " <td>52cfb971-fe87-11ee-be51-08002725f1ef</td>\n",
1073
759
  " <td>BOSS-DR16</td>\n",
1074
760
  " </tr>\n",
1075
761
  " <tr>\n",
1076
762
  " <th>14</th>\n",
1077
- " <td>0.000317</td>\n",
1078
- " <td>58cb1ab5-75d8-11ee-be72-525400aad0aa</td>\n",
763
+ " <td>0.795586</td>\n",
764
+ " <td>134.21014</td>\n",
765
+ " <td>27.571681</td>\n",
1079
766
  " <td>BOSS-DR16</td>\n",
1080
- " <td>0.804484</td>\n",
1081
- " <td>-6444631408398544896</td>\n",
1082
- " <td>28.192423</td>\n",
767
+ " <td>-6444638005468311552</td>\n",
768
+ " <td>0.000337</td>\n",
1083
769
  " <td>GALAXY</td>\n",
1084
- " <td>133.87033</td>\n",
770
+ " <td>52e3cf35-fe87-11ee-b89c-08002725f1ef</td>\n",
1085
771
  " <td>BOSS-DR16</td>\n",
1086
772
  " </tr>\n",
1087
773
  " <tr>\n",
1088
774
  " <th>15</th>\n",
1089
- " <td>0.000191</td>\n",
1090
- " <td>593b4910-75d8-11ee-84d5-525400aad0aa</td>\n",
775
+ " <td>0.554642</td>\n",
776
+ " <td>134.11568</td>\n",
777
+ " <td>27.491442</td>\n",
1091
778
  " <td>BOSS-DR16</td>\n",
1092
- " <td>0.803163</td>\n",
1093
- " <td>-6444629209375289344</td>\n",
1094
- " <td>28.359336</td>\n",
779
+ " <td>-6444636356200869888</td>\n",
780
+ " <td>0.000287</td>\n",
1095
781
  " <td>GALAXY</td>\n",
1096
- " <td>133.83085</td>\n",
782
+ " <td>53203e47-fe87-11ee-b26f-08002725f1ef</td>\n",
1097
783
  " <td>BOSS-DR16</td>\n",
1098
784
  " </tr>\n",
1099
785
  " <tr>\n",
1100
786
  " <th>16</th>\n",
1101
- " <td>0.000273</td>\n",
1102
- " <td>5998174b-75d8-11ee-a4b9-525400aad0aa</td>\n",
787
+ " <td>0.688878</td>\n",
788
+ " <td>134.19652</td>\n",
789
+ " <td>27.657880</td>\n",
1103
790
  " <td>BOSS-DR16</td>\n",
1104
- " <td>0.581960</td>\n",
1105
- " <td>-6444627560107847680</td>\n",
1106
- " <td>27.463273</td>\n",
791
+ " <td>-6444635256689242112</td>\n",
792
+ " <td>0.000177</td>\n",
1107
793
  " <td>GALAXY</td>\n",
1108
- " <td>133.87123</td>\n",
794
+ " <td>534af931-fe87-11ee-8467-08002725f1ef</td>\n",
1109
795
  " <td>BOSS-DR16</td>\n",
1110
796
  " </tr>\n",
1111
797
  " <tr>\n",
1112
798
  " <th>17</th>\n",
1113
- " <td>0.000245</td>\n",
1114
- " <td>5a0d076c-75d8-11ee-a7e3-525400aad0aa</td>\n",
799
+ " <td>0.638226</td>\n",
800
+ " <td>133.85629</td>\n",
801
+ " <td>28.080178</td>\n",
1115
802
  " <td>BOSS-DR16</td>\n",
1116
- " <td>0.647886</td>\n",
1117
- " <td>-6444625361084592128</td>\n",
1118
- " <td>27.582793</td>\n",
803
+ " <td>-6444633057665986560</td>\n",
804
+ " <td>0.000194</td>\n",
1119
805
  " <td>GALAXY</td>\n",
1120
- " <td>133.73666</td>\n",
806
+ " <td>539b0add-fe87-11ee-b991-08002725f1ef</td>\n",
1121
807
  " <td>BOSS-DR16</td>\n",
1122
808
  " </tr>\n",
1123
809
  " <tr>\n",
1124
810
  " <th>18</th>\n",
1125
- " <td>0.000207</td>\n",
1126
- " <td>5a4a4247-75d8-11ee-944b-525400aad0aa</td>\n",
811
+ " <td>0.614235</td>\n",
812
+ " <td>133.79296</td>\n",
813
+ " <td>27.907149</td>\n",
1127
814
  " <td>BOSS-DR16</td>\n",
1128
- " <td>0.599279</td>\n",
1129
- " <td>-6444624261572964352</td>\n",
1130
- " <td>27.730007</td>\n",
815
+ " <td>-6444632233032265728</td>\n",
816
+ " <td>0.000294</td>\n",
1131
817
  " <td>GALAXY</td>\n",
1132
- " <td>133.69511</td>\n",
818
+ " <td>53b9cd41-fe87-11ee-8132-08002725f1ef</td>\n",
1133
819
  " <td>BOSS-DR16</td>\n",
1134
820
  " </tr>\n",
1135
821
  " <tr>\n",
1136
822
  " <th>19</th>\n",
1137
- " <td>0.000330</td>\n",
1138
- " <td>5a843b73-75d8-11ee-9d3a-525400aad0aa</td>\n",
823
+ " <td>0.804484</td>\n",
824
+ " <td>133.87033</td>\n",
825
+ " <td>28.192423</td>\n",
1139
826
  " <td>BOSS-DR16</td>\n",
1140
- " <td>0.623102</td>\n",
1141
- " <td>-6444623162061336576</td>\n",
1142
- " <td>27.833640</td>\n",
827
+ " <td>-6444631408398544896</td>\n",
828
+ " <td>0.000317</td>\n",
1143
829
  " <td>GALAXY</td>\n",
1144
- " <td>133.51599</td>\n",
830
+ " <td>53d853da-fe87-11ee-9f77-08002725f1ef</td>\n",
1145
831
  " <td>BOSS-DR16</td>\n",
1146
832
  " </tr>\n",
1147
833
  " </tbody>\n",
@@ -1149,52 +835,52 @@
1149
835
  "</div>"
1150
836
  ],
1151
837
  "text/plain": [
1152
- " redshift_err sparcl_id data_release redshift \\\n",
1153
- "0 0.000241 559c7b68-75d8-11ee-a90d-525400aad0aa BOSS-DR16 0.675723 \n",
1154
- "1 0.000242 55d7d47d-75d8-11ee-ba50-525400aad0aa BOSS-DR16 0.782685 \n",
1155
- "2 0.000424 565fd69e-75d8-11ee-b584-525400aad0aa BOSS-DR16 0.797439 \n",
1156
- "3 0.000238 56cd210b-75d8-11ee-b3b9-525400aad0aa BOSS-DR16 0.647712 \n",
1157
- "4 0.000274 56e8876a-75d8-11ee-a38d-525400aad0aa BOSS-DR16 0.886086 \n",
1158
- "5 0.000311 57032782-75d8-11ee-b0e2-525400aad0aa BOSS-DR16 0.898559 \n",
1159
- "6 0.000315 571ee9b7-75d8-11ee-86ec-525400aad0aa BOSS-DR16 0.566015 \n",
1160
- "7 0.000412 573c5312-75d8-11ee-a6a5-525400aad0aa BOSS-DR16 0.599517 \n",
1161
- "8 0.000338 575ba44a-75d8-11ee-8ea2-525400aad0aa BOSS-DR16 0.812179 \n",
1162
- "9 0.000337 5777698e-75d8-11ee-9cc0-525400aad0aa BOSS-DR16 0.795586 \n",
1163
- "10 0.000287 57d0abaf-75d8-11ee-9722-525400aad0aa BOSS-DR16 0.554642 \n",
1164
- "11 0.000177 580a251a-75d8-11ee-93f9-525400aad0aa BOSS-DR16 0.688878 \n",
1165
- "12 0.000194 587921ca-75d8-11ee-9ade-525400aad0aa BOSS-DR16 0.638226 \n",
1166
- "13 0.000294 58a1997f-75d8-11ee-aaf9-525400aad0aa BOSS-DR16 0.614235 \n",
1167
- "14 0.000317 58cb1ab5-75d8-11ee-be72-525400aad0aa BOSS-DR16 0.804484 \n",
1168
- "15 0.000191 593b4910-75d8-11ee-84d5-525400aad0aa BOSS-DR16 0.803163 \n",
1169
- "16 0.000273 5998174b-75d8-11ee-a4b9-525400aad0aa BOSS-DR16 0.581960 \n",
1170
- "17 0.000245 5a0d076c-75d8-11ee-a7e3-525400aad0aa BOSS-DR16 0.647886 \n",
1171
- "18 0.000207 5a4a4247-75d8-11ee-944b-525400aad0aa BOSS-DR16 0.599279 \n",
1172
- "19 0.000330 5a843b73-75d8-11ee-9d3a-525400aad0aa BOSS-DR16 0.623102 \n",
838
+ " redshift ra dec data_release specid \\\n",
839
+ "0 0.545929 246.74298 35.985258 SDSS-DR16 1506516519029336064 \n",
840
+ "1 0.667431 245.40676 36.438884 SDSS-DR16 1506548404866541568 \n",
841
+ "2 0.502511 246.45702 36.657405 SDSS-DR16 1506572869000259584 \n",
842
+ "3 0.724874 246.89323 37.209662 SDSS-DR16 1506578916314212352 \n",
843
+ "4 0.741196 247.40873 36.381456 SDSS-DR16 1506596508500256768 \n",
844
+ "5 0.675723 134.10755 28.038851 BOSS-DR16 -6444647351317147648 \n",
845
+ "6 0.782685 134.23727 28.084685 BOSS-DR16 -6444646251805519872 \n",
846
+ "7 0.797439 133.98095 28.226386 BOSS-DR16 -6444643503026450432 \n",
847
+ "8 0.647712 134.54531 28.429551 BOSS-DR16 -6444641304003194880 \n",
848
+ "9 0.886086 134.46525 28.452505 BOSS-DR16 -6444640754247380992 \n",
849
+ "10 0.898559 134.43695 28.450988 BOSS-DR16 -6444640204491567104 \n",
850
+ "11 0.566015 133.95386 27.305313 BOSS-DR16 -6444639654735753216 \n",
851
+ "12 0.599517 134.05133 27.381025 BOSS-DR16 -6444639104979939328 \n",
852
+ "13 0.812179 133.95189 27.333753 BOSS-DR16 -6444638555224125440 \n",
853
+ "14 0.795586 134.21014 27.571681 BOSS-DR16 -6444638005468311552 \n",
854
+ "15 0.554642 134.11568 27.491442 BOSS-DR16 -6444636356200869888 \n",
855
+ "16 0.688878 134.19652 27.657880 BOSS-DR16 -6444635256689242112 \n",
856
+ "17 0.638226 133.85629 28.080178 BOSS-DR16 -6444633057665986560 \n",
857
+ "18 0.614235 133.79296 27.907149 BOSS-DR16 -6444632233032265728 \n",
858
+ "19 0.804484 133.87033 28.192423 BOSS-DR16 -6444631408398544896 \n",
1173
859
  "\n",
1174
- " specid dec spectype ra _dr \n",
1175
- "0 -6444647351317147648 28.038851 GALAXY 134.10755 BOSS-DR16 \n",
1176
- "1 -6444646251805519872 28.084685 GALAXY 134.23727 BOSS-DR16 \n",
1177
- "2 -6444643503026450432 28.226386 GALAXY 133.98095 BOSS-DR16 \n",
1178
- "3 -6444641304003194880 28.429551 GALAXY 134.54531 BOSS-DR16 \n",
1179
- "4 -6444640754247380992 28.452505 GALAXY 134.46525 BOSS-DR16 \n",
1180
- "5 -6444640204491567104 28.450988 GALAXY 134.43695 BOSS-DR16 \n",
1181
- "6 -6444639654735753216 27.305313 GALAXY 133.95386 BOSS-DR16 \n",
1182
- "7 -6444639104979939328 27.381025 GALAXY 134.05133 BOSS-DR16 \n",
1183
- "8 -6444638555224125440 27.333753 GALAXY 133.95189 BOSS-DR16 \n",
1184
- "9 -6444638005468311552 27.571681 GALAXY 134.21014 BOSS-DR16 \n",
1185
- "10 -6444636356200869888 27.491442 GALAXY 134.11568 BOSS-DR16 \n",
1186
- "11 -6444635256689242112 27.657880 GALAXY 134.19652 BOSS-DR16 \n",
1187
- "12 -6444633057665986560 28.080178 GALAXY 133.85629 BOSS-DR16 \n",
1188
- "13 -6444632233032265728 27.907149 GALAXY 133.79296 BOSS-DR16 \n",
1189
- "14 -6444631408398544896 28.192423 GALAXY 133.87033 BOSS-DR16 \n",
1190
- "15 -6444629209375289344 28.359336 GALAXY 133.83085 BOSS-DR16 \n",
1191
- "16 -6444627560107847680 27.463273 GALAXY 133.87123 BOSS-DR16 \n",
1192
- "17 -6444625361084592128 27.582793 GALAXY 133.73666 BOSS-DR16 \n",
1193
- "18 -6444624261572964352 27.730007 GALAXY 133.69511 BOSS-DR16 \n",
1194
- "19 -6444623162061336576 27.833640 GALAXY 133.51599 BOSS-DR16 "
860
+ " redshift_err spectype sparcl_id _dr \n",
861
+ "0 0.000422 GALAXY 2c6c82dc-fe87-11ee-838b-08002725f1ef SDSS-DR16 \n",
862
+ "1 0.000026 GALAXY 3063feb6-fe87-11ee-8aa0-08002725f1ef SDSS-DR16 \n",
863
+ "2 0.000172 GALAXY 336d71cf-fe87-11ee-9390-08002725f1ef SDSS-DR16 \n",
864
+ "3 11.831918 GALAXY 342e5eaa-fe87-11ee-9047-08002725f1ef SDSS-DR16 \n",
865
+ "4 0.614932 GALAXY 36565b1b-fe87-11ee-b857-08002725f1ef SDSS-DR16 \n",
866
+ "5 0.000241 GALAXY 5182df54-fe87-11ee-a660-08002725f1ef BOSS-DR16 \n",
867
+ "6 0.000242 GALAXY 51ad9b94-fe87-11ee-af3e-08002725f1ef BOSS-DR16 \n",
868
+ "7 0.000424 GALAXY 521321c8-fe87-11ee-946d-08002725f1ef BOSS-DR16 \n",
869
+ "8 0.000238 GALAXY 52643970-fe87-11ee-abb3-08002725f1ef BOSS-DR16 \n",
870
+ "9 0.000274 GALAXY 5278859e-fe87-11ee-8427-08002725f1ef BOSS-DR16 \n",
871
+ "10 0.000311 GALAXY 52913c34-fe87-11ee-844b-08002725f1ef BOSS-DR16 \n",
872
+ "11 0.000315 GALAXY 52a796f0-fe87-11ee-b337-08002725f1ef BOSS-DR16 \n",
873
+ "12 0.000412 GALAXY 52bbb47f-fe87-11ee-b8d7-08002725f1ef BOSS-DR16 \n",
874
+ "13 0.000338 GALAXY 52cfb971-fe87-11ee-be51-08002725f1ef BOSS-DR16 \n",
875
+ "14 0.000337 GALAXY 52e3cf35-fe87-11ee-b89c-08002725f1ef BOSS-DR16 \n",
876
+ "15 0.000287 GALAXY 53203e47-fe87-11ee-b26f-08002725f1ef BOSS-DR16 \n",
877
+ "16 0.000177 GALAXY 534af931-fe87-11ee-8467-08002725f1ef BOSS-DR16 \n",
878
+ "17 0.000194 GALAXY 539b0add-fe87-11ee-b991-08002725f1ef BOSS-DR16 \n",
879
+ "18 0.000294 GALAXY 53b9cd41-fe87-11ee-8132-08002725f1ef BOSS-DR16 \n",
880
+ "19 0.000317 GALAXY 53d853da-fe87-11ee-9f77-08002725f1ef BOSS-DR16 "
1195
881
  ]
1196
882
  },
1197
- "execution_count": 15,
883
+ "execution_count": 16,
1198
884
  "metadata": {},
1199
885
  "output_type": "execute_result"
1200
886
  }
@@ -1227,78 +913,33 @@
1227
913
  },
1228
914
  {
1229
915
  "cell_type": "code",
1230
- "execution_count": 16,
916
+ "execution_count": 17,
1231
917
  "metadata": {
1232
- "scrolled": true
918
+ "scrolled": true,
919
+ "tags": []
1233
920
  },
1234
- "outputs": [
1235
- {
1236
- "data": {
1237
- "text/plain": [
1238
- "\u001b[0;31mSignature:\u001b[0m\n",
1239
- "\u001b[0mclient\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n",
1240
- "\u001b[0;34m\u001b[0m \u001b[0muuid_list\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
1241
- "\u001b[0;34m\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
1242
- "\u001b[0;34m\u001b[0m \u001b[0minclude\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'DEFAULT'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
1243
- "\u001b[0;34m\u001b[0m \u001b[0mdataset_list\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
1244
- "\u001b[0;34m\u001b[0m \u001b[0mlimit\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m500\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
1245
- "\u001b[0;34m\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
1246
- "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
1247
- "\u001b[0;31mDocstring:\u001b[0m\n",
1248
- "Retrieve spectra records from the SPARC database by list of\n",
1249
- "sparcl_ids.\n",
1250
- "\n",
1251
- "Args:\n",
1252
- " uuid_list (:obj:`list`): List of sparcl_ids.\n",
1253
- "\n",
1254
- " include (:obj:`list`, optional): List of field names to include\n",
1255
- " in each record. Defaults to 'DEFAULT', which will return\n",
1256
- " the fields tagged as 'default'.\n",
1257
- "\n",
1258
- " dataset_list (:obj:`list`, optional): List of data sets from\n",
1259
- " which to retrieve spectra data. Defaults to None, meaning all\n",
1260
- " data sets hosted on the SPARC database.\n",
1261
- "\n",
1262
- " limit (:obj:`int`, optional): Maximum number of records to\n",
1263
- " return. Defaults to 500. Maximum allowed is 24,000.\n",
1264
- "\n",
1265
- " verbose (:obj:`bool`, optional): Set to True for in-depth return\n",
1266
- " statement. Defaults to False.\n",
1267
- "\n",
1268
- "Returns:\n",
1269
- " :class:`~sparcl.Results.Retrieved`: Contains header and records.\n",
1270
- "\n",
1271
- "Example:\n",
1272
- " >>> client = SparclClient()\n",
1273
- " >>> ids = ['00000f0b-07db-4234-892a-6e347db79c89',]\n",
1274
- " >>> inc = ['sparcl_id', 'flux', 'wavelength', 'model']\n",
1275
- " >>> ret = client.retrieve(uuid_list=ids, include=inc)\n",
1276
- " >>> type(ret.records[0].wavelength)\n",
1277
- " <class 'numpy.ndarray'>\n",
1278
- "\u001b[0;31mFile:\u001b[0m ~/sandbox/sparclclient/venv/lib/python3.10/site-packages/sparcl/client.py\n",
1279
- "\u001b[0;31mType:\u001b[0m method"
1280
- ]
1281
- },
1282
- "metadata": {},
1283
- "output_type": "display_data"
1284
- }
1285
- ],
921
+ "outputs": [],
1286
922
  "source": [
1287
- "client.retrieve?"
923
+ "if show_help:\n",
924
+ " client.retrieve?"
1288
925
  ]
1289
926
  },
1290
927
  {
1291
928
  "cell_type": "markdown",
1292
929
  "metadata": {},
1293
930
  "source": [
1294
- "#### Use the IDs from the output of using `client.find()` to retrieve records from SPARCL:\n",
931
+ "#### Use IDs from FIND to RETRIEVE records\n",
932
+ "Use the IDs from the output of using `client.find()` to retrieve records from SPARCL. \n",
933
+ "\n",
1295
934
  "Note that `ids` in `found_I.ids` is a property name of the Found class. It is a list of records from all records, not a field name of a record."
1296
935
  ]
1297
936
  },
1298
937
  {
1299
938
  "cell_type": "code",
1300
- "execution_count": 17,
1301
- "metadata": {},
939
+ "execution_count": 18,
940
+ "metadata": {
941
+ "tags": []
942
+ },
1302
943
  "outputs": [],
1303
944
  "source": [
1304
945
  "# Define the fields to include in the retrieve function\n",
@@ -1307,16 +948,22 @@
1307
948
  },
1308
949
  {
1309
950
  "cell_type": "code",
1310
- "execution_count": 18,
1311
- "metadata": {},
951
+ "execution_count": 19,
952
+ "metadata": {
953
+ "tags": []
954
+ },
1312
955
  "outputs": [
1313
956
  {
1314
957
  "name": "stdout",
1315
958
  "output_type": "stream",
1316
959
  "text": [
1317
- "curl -X 'POST' -H 'Content-Type: application/json' -d '[\"559c7b68-75d8-11ee-a90d-525400aad0aa\", \"55d7d47d-75d8-11ee-ba50-525400aad0aa\", \"565fd69e-75d8-11ee-b584-525400aad0aa\", \"56cd210b-75d8-11ee-b3b9-525400aad0aa\", \"56e8876a-75d8-11ee-a38d-525400aad0aa\", \"57032782-75d8-11ee-b0e2-525400aad0aa\", \"571ee9b7-75d8-11ee-86ec-525400aad0aa\", \"573c5312-75d8-11ee-a6a5-525400aad0aa\", \"575ba44a-75d8-11ee-8ea2-525400aad0aa\", \"5777698e-75d8-11ee-9cc0-525400aad0aa\", \"57d0abaf-75d8-11ee-9722-525400aad0aa\", \"580a251a-75d8-11ee-93f9-525400aad0aa\", \"587921ca-75d8-11ee-9ade-525400aad0aa\", \"58a1997f-75d8-11ee-aaf9-525400aad0aa\", \"58cb1ab5-75d8-11ee-be72-525400aad0aa\", \"593b4910-75d8-11ee-84d5-525400aad0aa\", \"5998174b-75d8-11ee-a4b9-525400aad0aa\", \"5a0d076c-75d8-11ee-a7e3-525400aad0aa\", \"5a4a4247-75d8-11ee-944b-525400aad0aa\", \"5a843b73-75d8-11ee-9d3a-525400aad0aa\"]' 'https://sparc1.datalab.noirlab.edu/sparc/spectras/?include=mask%2Cflux%2Cspectype%2Credshift%2Cmodel%2Cspecid%2Civar%2Cdata_release%2Cwavelength&format=pkl&dataset_list=SDSS-DR16%2CBOSS-DR16' | python3 -m json.tool\n",
1318
- "CPU times: user 88.7 ms, sys: 36.2 ms, total: 125 ms\n",
1319
- "Wall time: 915 ms\n"
960
+ "Using url=\"http://localhost:8050/sparc/spectras/?include=mask%2Cspectype%2Cmodel%2Credshift%2Cwavelength%2Cspecid%2Civar%2Cdata_release%2Cflux&format=pkl&dataset_list=SDSS-DR16%2CBOSS-DR16\"\n",
961
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '[\"2c6c82dc-fe87-11ee-838b-08002725f1ef\", \"3063feb6-fe87-11ee-8aa0-08002725f1ef\", \"336d71cf-fe87-11ee-9390-08002725f1ef\", \"342e5eaa-fe87-11ee-9047-08002725f1ef\", \"36565b1b-fe87-11ee-b857-08002725f1ef\", \"5182df54-fe87-11ee-a660-08002725f1ef\", \"51ad9b94-fe87-11ee-af3e-08002725f1ef\", \"521321c8-fe87-11ee-946d-08002725f1ef\", \"52643970-fe87-11ee-abb3-08002725f1ef\", \"5278859e-fe87-11ee-8427-08002725f1ef\", \"52913c34-fe87-11ee-844b-08002725f1ef\", \"52a796f0-fe87-11ee-b337-08002725f1ef\", \"52bbb47f-fe87-11ee-b8d7-08002725f1ef\", \"52cfb971-fe87-11ee-be51-08002725f1ef\", \"52e3cf35-fe87-11ee-b89c-08002725f1ef\", \"53203e47-fe87-11ee-b26f-08002725f1ef\", \"534af931-fe87-11ee-8467-08002725f1ef\", \"539b0add-fe87-11ee-b991-08002725f1ef\", \"53b9cd41-fe87-11ee-8132-08002725f1ef\", \"53d853da-fe87-11ee-9f77-08002725f1ef\"]' 'http://localhost:8050/sparc/spectras/?include=mask%2Cspectype%2Cmodel%2Credshift%2Cwavelength%2Cspecid%2Civar%2Cdata_release%2Cflux&format=pkl&dataset_list=SDSS-DR16%2CBOSS-DR16' | python3 -m json.tool\n",
962
+ "Got response to post in 0.264625997049734 seconds\n",
963
+ "Got 20 spectra in 0.26 seconds (76 spectra/sec)\n",
964
+ "{'success': True, 'info': [\"Successfully found 20 records in dr_list=['SDSS-DR16', 'BOSS-DR16']\"], 'warnings': []}\n",
965
+ "CPU times: user 7.69 ms, sys: 10 ms, total: 17.7 ms\n",
966
+ "Wall time: 269 ms\n"
1320
967
  ]
1321
968
  },
1322
969
  {
@@ -1327,7 +974,7 @@
1327
974
  " 'warnings': []}}"
1328
975
  ]
1329
976
  },
1330
- "execution_count": 18,
977
+ "execution_count": 19,
1331
978
  "metadata": {},
1332
979
  "output_type": "execute_result"
1333
980
  }
@@ -1342,28 +989,30 @@
1342
989
  },
1343
990
  {
1344
991
  "cell_type": "code",
1345
- "execution_count": 19,
1346
- "metadata": {},
992
+ "execution_count": 20,
993
+ "metadata": {
994
+ "tags": []
995
+ },
1347
996
  "outputs": [
1348
997
  {
1349
998
  "data": {
1350
999
  "text/plain": [
1351
- "{'data_release': 'BOSS-DR16',\n",
1352
- " 'redshift': 0.6757226586341858,\n",
1000
+ "{'redshift': 0.5459291338920593,\n",
1001
+ " 'specid': 1506516519029336064,\n",
1353
1002
  " 'spectype': 'GALAXY',\n",
1354
- " 'specid': -6444647351317147648,\n",
1003
+ " 'data_release': 'SDSS-DR16',\n",
1004
+ " '_dr': 'SDSS-DR16',\n",
1355
1005
  " 'ivar': array([0., 0., 0., ..., 0., 0., 0.]),\n",
1356
- " 'wavelength': array([ 3580.13991843, 3580.96437103, 3581.78901348, ...,\n",
1357
- " 10368.11964061, 10370.50726326, 10372.89543574]),\n",
1358
- " 'flux': array([3.62588525, 3.62471676, 3.62354994, ..., 1.97833729, 1.97839582,\n",
1359
- " 1.97845423]),\n",
1360
- " 'mask': array([88080384, 88080384, 88080384, ..., 83886080, 83886080, 83886080]),\n",
1361
- " 'model': array([0.03469909, 0.03500503, 0.03542256, ..., 1.32534087, 1.31770504,\n",
1362
- " 1.31096995]),\n",
1363
- " '_dr': 'BOSS-DR16'}"
1006
+ " 'mask': array([16777216, 16777216, 16777216, ..., 16777216, 16777216, 16777216]),\n",
1007
+ " 'flux': array([1.23176956, 1.23148859, 1.23120809, ..., 4.00684404, 4.00690508,\n",
1008
+ " 4.00696611]),\n",
1009
+ " 'wavelength': array([3794.89706208, 3795.77097003, 3796.64507922, ..., 9217.22098659,\n",
1010
+ " 9219.34357452, 9221.46665124]),\n",
1011
+ " 'model': array([0.34971759, 0.35207507, 0.35443148, ..., 2.31373858, 2.30945611,\n",
1012
+ " 2.30356026])}"
1364
1013
  ]
1365
1014
  },
1366
- "execution_count": 19,
1015
+ "execution_count": 20,
1367
1016
  "metadata": {},
1368
1017
  "output_type": "execute_result"
1369
1018
  }
@@ -1373,35 +1022,44 @@
1373
1022
  ]
1374
1023
  },
1375
1024
  {
1376
- "cell_type": "code",
1377
- "execution_count": 20,
1025
+ "cell_type": "markdown",
1378
1026
  "metadata": {},
1027
+ "source": [
1028
+ "## Plot spectra"
1029
+ ]
1030
+ },
1031
+ {
1032
+ "cell_type": "code",
1033
+ "execution_count": 21,
1034
+ "metadata": {
1035
+ "tags": []
1036
+ },
1379
1037
  "outputs": [
1380
1038
  {
1381
1039
  "data": {
1382
1040
  "text/plain": [
1383
- "<matplotlib.legend.Legend at 0x7f3da4d42230>"
1041
+ "<matplotlib.legend.Legend at 0x7fd1f96db7c0>"
1384
1042
  ]
1385
1043
  },
1386
- "execution_count": 20,
1044
+ "execution_count": 21,
1387
1045
  "metadata": {},
1388
1046
  "output_type": "execute_result"
1389
1047
  },
1390
1048
  {
1391
1049
  "data": {
1392
1050
  "application/vnd.jupyter.widget-view+json": {
1393
- "model_id": "70c6a9ffd1d04b8e94eaa8df97c079db",
1051
+ "model_id": "84c674d2919c4a9f804a778cb667076f",
1394
1052
  "version_major": 2,
1395
1053
  "version_minor": 0
1396
1054
  },
1397
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAGQCAYAAABWJQQ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5MUlEQVR4nO3dd3wT5R8H8M9dVveggxYolD3L3qNQkKUIDhRREVBwIIriAvQnoCJuwb0FERAVJyJ7b2TvvaFld48k9/z+SJMmTdKmbZp0fN6+eNneXS5Pc8nlvvc8z/crCSEEiIiIiIiIPED2dgOIiIiIiKjyYABCREREREQewwCEiIiIiIg8hgEIERERERF5DAMQIiIiIiLyGAYgRERERETkMQxAiIiIiIjIYxiAEBERERGRxzAAISIiIiIij2EAQkREREREHsMAhIiIiIiIPIYBCBEREREReQwDECIiIiIi8hgGIERERERE5DEMQIiIiIiIyGMYgBARERERkccwACEiIiIiIo9hAEJERERERB7DAISIiIiIiDyGAQgREREREXkMAxAiIiIiIvIYBiBEREREROQxDECIiIiIiMhjGIAQEREREZHHMAAhIiIiIiKPYQBCREREREQewwCEiIiIiIg8hgEIERERERF5DAMQIiIiIiLyGAYgRERERETkMQxAiIiIiIjIYxiAEBERERGRxzAAISIiIiIij2EAQkREREREHsMAhIiIiIiIPIYBCBEREREReQwDECIiIiIi8hgGIERERERE5DEMQIiIiIiIyGMYgBARERERkccwACEiIiIiIo9hAEJERERERB7DAISIiIiIiDyGAQgREREREXkMAxAiIiIiIvIYBiBEREREROQxam83gPIoioKLFy8iMDAQkiR5uzlERERElI8QAqmpqahWrRpkmffyi4MBSBly8eJFxMTEeLsZRERERFSIc+fOoUaNGt5uRrnEAKQMCQwMBGB6QwcFBXm5NURERESUX0pKCmJiYizXbVR0DEDKEPOwq6CgIAYgRERERGUYh8sXHweuERERERGRxzAAISIiIiIij2EAQkREREREHsMAhIiIiIiIPIYBCBEREREReQwDECIiIiIi8hgGIERERERE5DEMQIiIiIiIyGMYgBARERERkccwACEAgKIIbzeBiIiIiCoBBiCEH7ecQavXl2Pf+WRvN4WIiIiIKjgGIIRX/tiP5Ew9nv15t7ebQkRERFSgyylZyDEo3m4GlQADELKQvN0AIiIiogIcTUpF+zdX4taP1nu7KVQCDECIiIiIqFxYtPcSAOD45TQvt4RKggEIERERERF5DAMQIiIiIioXOFy8YmAAQkREREREHsMAhIiIiIiIPIYBCBERERGVCxLHYFUIDECIiIiIiMhjGIAQERERUbkgcRp6hcAAhIiIiIiIPIYBCFlwXCURERERlTYGIGRxNCkNAz/ZgLVHrwAAEpOzsP7YFQghvNwyIiIiIqooGICQjb3nkzH8u20AgI7TV2LYt9uw+shlL7eKiIiIiKM1KgoGIFSoTcevebsJRERERFRBMAAhIiIionKBHSAVAwMQKhRngBARERGRuzAAISIiIqJygXNAKgYGIERERERE5DEMQIiIiIiIyGMYgBARERERkccwACEiIiKiMoeFkCsuBiBEREREVKb8veciWr2+HJtP2NYikzgLvUJgAEKF4g0IIiIi8qSn5u/CzQw9hn+/zdtNoVLAAKSEYmNjIUmSw389evTwdvOIiIiIyi/eBK2Q1N5uQEUQHByMZ555xm55bGysx9tSGr7beAqv3t7E280gIiIiogqAAYgbhISEYMqUKd5uBhEREVHFkm/KB6eAVAwcgkVERERERB7DHhA3yM7OxqxZs3Dx4kUEBQWhXbt26NChg7ebRURERERU5jAAcYPExESMHDnSZlm7du0wf/581K1b10utIiIiIirf8o+4SkzO8ko7yL04BKuERo4ciZUrVyIpKQnp6enYtWsXhg0bhu3bt6NXr15ITU11+tjs7GykpKTY/CMiIiIix37YfMbbTSA3YABSQpMnT0bPnj0RGRkJPz8/tGzZEj/88AOGDRuGM2fO4Ouvv3b62OnTpyM4ONjyLyYmxoMtJyIiIiLyPAYgpeSxxx4DAGzcuNHpNhMnTkRycrLl37lz5zzVPCIiIqIyr6CsVwcuJnuuIeRWDEBKSXh4OAAgPT3d6TY6nQ5BQUE2/4iIiIiocLd9tMHbTaBiYgBSSrZu3Qqg4hQjJCIiIiJyBwYgJXD48GFkZGQ4XP7SSy8BAO6//35PN4uIiIioQpDs8mBRRcA0vCXw008/4YMPPkB8fDxq1aoFf39/HD16FIsXL4Zer8fEiRMRHx/v7WYSEREREZUZDEBKICEhAYcOHcKuXbuwfv16ZGRkIDw8HLfeeivGjBmDPn36eLuJbnU1LRv3fbUFg9vUwOPdWd+EiIiIiIqOAUgJdO/eHd27d/d2Mzzm09XHcfxyGt769zADECIiIip1BWXBovKLc0DIZXqj4u0mEBEREVE5xwCEXLLqcBInghEREZFH8cqjYuIQLHLJw7P+Q6OoQG83g4iIiIjKOfaAkMsOJ6Z6uwlEREREVM4xACEiIiKiMkniLPQKiQEIEREREZV5p66me7sJ5CYMQIiIiIiozHt8zg5vN4HchAEIEREREZVJ1gOwLtzM9Fo7yL0YgBARERFRmcfZIBUHAxAiIiIiKjEhROnuv1T3Tp7EAIRK7Nz1DLy+6CDO38jA6sOXcT09x9tNIqpQrqRm47ed55GlN3q7KUREDp26mo5201bim/Unvd0UKgdYiJBKbOjXW3D+Ria+3XAKABAV5IMtk3p5uVVEFcc9X2zC6WsZ2H8hBa/e3sTbzSEisvPa3wdwNS0bb/xzCKO61SnRvhjEVHzsAaESO3/DdlJYYkqWl1pCVDGdvpYBAFh6INHLLSEickwp4vioZxfsxqjZ/zkctvXGP4fc1CoqqxiAUIlk5Bicrttx5gb+98d+JGfqPdgiIiIiKguSMxx//2fpjfh91wWsOJRkdxPTjtXM87Rs59ccVL4wAKES6fDmSqfr7v58E+ZsOYO3/uWdDCJ3KO0JnkRExZW/YPlna46jxWvLMH/bWbttDVbdJSqZua0qIwYgVCKpWYXfjThxhZVLidyB4QcRlVVrjlyx+f2dJUcAABN/22e3rcGoWH5WFxKAMDypmBiAUKnjyYPIPdgBQkTl0cpDSTh3PcPyO3tAiFmwyCHruxMllb9bloiIiDwvM8eIX3ecQ8/GVVE9xNdjz/vI7P8AAK8PaopTVzPwaHzJsmRR+ccAhBwa9OlGt+1LYh8IkVsIDsIiohJ4b9kRfLvhFN5degR7p/T1+PP/788DAIAWMcEuP0aSJEz56wB2nbtZSq0ib2AAQg4duJhS4Pq/91xEm1qhHmoNEQEcgkVEJbPh2FUAQIoL8zdL0w2rgsWFndaSM/WYtel0qbaHPI8BCBXLU/N3Qat2bQqRq0Ow3lh0ENfTc/D+vS0gcdwWkR3GH0RUFEIIfLzqOHIMCsb3blBmhkRbzwHhjZXKiQEIFVuOwX3zRADgm9xK6mMS6qFeZIBb901UEfCLmoiKYtOJa/hg+VEAQNVgnzJzcy/HjfNMqXxiFiwqda6c76zrGxiLWk6VqNLgZ4OoPBNCICXLc8V5z1zLyzy1eO8luDPh1PbT1/H6ooPIyDEUuUaRwWjVA8LzWqXEHhAqE6zPXWXkBg1RmcMeEKLybfzPe/D7rgv4fUxntKrp2XmUsgzIbvyCveeLzQAAH42M53o3LNJj9dY9IAJIzdJj+r+H0T62Cnw0Kre1kcou9oBQqXMlC5ZidWXF+IPIMcYfRJ5xLS0bZ616D9zl910XAABfrD1hWZacqUePd1fjf3/sd/vzWZMlya09IGanrqbbfIe7Qm+03f6D5Ucxb+tZPLNgNx7/cYc7m0dlFAMQ8qiz1zIwavZ/+O/0dZvlvLAiIqKyos0bKxD/7mpcSc0ulf1bdwDsPX8Tp69lYM6WM6U6PCsjx1hqc0CK+h1uHYAJAKevpru1PVT2MQChUpGckXcStT7fPTV/J1YcSsLg3K5bMw7BInLs+OU0y89FHWdNREVz4WYmluy/ZPn9SGJqqTyP9Wd599mblp/1bk7uYj2/YseZG6XSAwLArgfkzDXXAwohUGYmx5PncA4IlYoPVxx1uPzcjUyHy21PXjwREZklZ+bly2eCBqLS1eWtVTa/l9YEaWPud95vO8/j/eV535el/QnPf6G/YPtZLNx5AZ/e3xoRgTqbdeYgqbDgQIJkNz8tPdtYpHZds6oLQpUDe0CoVFy3OplYn7xcCS14I4Qoj5827z5RRk7RvtSJqGRKq9NxzZErAEyT0q0VdS5FYfLvLn8PyEsL92Hbqev4dcf5fI8TGPLlFtz31RaHPa82PRwl/M4WENjDKueVDntAqFSkZzuusuosuOAkdCLHNKq8T4SBPSBEHuWuT9z209fxy3/nCn++Uv6IO+vNSM60nXuSlJKNbblzNVMyDQj209is7/7uGpvfSxI47b+QUuzHUvnFHhAqFReTsyw/uxJQ2M4BYQhCRFRWrTqchO9yC8d6isGoeLR+hpm75l3d88Vm/Pzf+UK3c3cAsv7YFZvfrXtARs3+z/LzF2tPWIoLX0/PQaY+r7d19ZHLBT6HBPt2F+VrfPQP/xW+EVU4DECoTGAPCJFjnHdOZc3Ds/7Da4sOYufZGx57zoGfbETzKctwOSWr8I3dyNOfv4OXkgsMejJzjNh68prL88GWHkiy+d26DsiKQ7brGrzyL3acuYHWry/HrTPXW5Y/s2B3gc+xaO8lu56iaf8ccql9VHkxAKFSZ3snxDa8yNIb8caig9hy0jYtLxGZcNQVlVWXbro3GDh0KQXX0hynvT14yTRMZ+Xhgu/Gu9v6Y1cLXH81LRs7ztxwW0/Jw7P+w88FDNV67McdGPLVFny57oTTbQpSWCHCuz/fBAA2PSCuyD8Ea8Pxgl83IgYglVxpFFoCXO+2/mb9SXyz4ZRNFyxHYBHlcfekVCJ3MTp5b3659gQe+m4bsg2uX8QeTUpF/5nr0eaNFQVuZzC6lqb2ws1MrDqcVOLA4LuNBQ81e3r+Ltz9+SYsO5hkt+7QpRS8/Pu+IvfavLRwn027jYrAjdzELuuOmoZUzd50ukj7NHPH96uj15SnKSoqBiCV3OHE0p/8ZX2+y3/yO3XVPgBypXI6UWXhrS/2HIOCF3/dg7/2XPROA6woisCwb7fipV/3erspZEVx0j03/d/DWHf0Cv7cZXrvLDuQiG7vrCpwyNbWU3m94E/O3Yn3lx0BYAo4sqzuxruaiKHLW6vw8Kz/sPJQXo+Js2FLv/x3Dn+78D5PzzZg3tazuJyaF1BsOnENAPDvvkt22/efuR5zt55F+zdXOt2fM3vOJ1t+vv/rLWj1+nIcS8qrSVLclNyF9ei4YrmDYIvVhKmomAWrkvPEhO+C0vA6yrHOHhCiPN7qAfl1x3n8/J/p38AW1bzSBrO9F5ItF05vD27u1bZUBOuPXUF4gA6No4NKtJ/C3pvpOaYL7Efn7AAAPDxrO3a/2sfhtiqrE/8/uRfzz/VpiH4z19tUyTYqAjkGBVq1a/dPN5+8Bp1Ghq9GhVE//IchbWMwoX8jy/fS5dQsvJAb2PZrFuVwHyO/3wZ/nRqL9pra9e0Gf6x8rofNNn/svojX7miGIB+Ngz049tma407XpWXlBSfm4Mw6Va43M+L9tN1+iBh7aqmo2ANSyZXWtf5hq+qxpgwZAn/uvoDLqfnG9/KcRVQmXU93PBbfG1wddkOObTt1Hf/lplQ9cSUNw77dhv5Wk4yLy9FdeL3Vscp/TZqZr47NlL8OoPH/luDAxWSonFyNHL+cZnOxPWPFMTR5dYnLdSM2Hr+KYd9uw+AvNuNmhh5frjuJB77ZahlGtP3UDZttHVl95Iol+ACAE1fSsff8TXy62jaAeOX3/S61ySwpxfln7NClFCiKcNrL5Gx5acvSGy3Zsqxdz2AhQSoa9oBUcp7qbfhrz0WM+2l3qe0/S2+Ej0ZVavt3Rgjh9l4kg1GB2tm3MVU63rqzyNz85Zv5Ajs9x4h7v9wMADjyRj+cuJzmtufI/97MMSjo8vYqp+utbT99HbNy5zHc9tEGvHdPC5eeMy132NJriw5i4ROdAQDX0rIR4qeFSpaQpTdi4c68ngLrm2Fmm05cw/cbT+O1RQdtlp+77vqcyIGfbLRbtmR/osuPB2BX/M/atMWHkJSSZdPTY/16evqsoDcquHQzC/Hvrna4PjXL+XAyIkcYgFCpkyRg5xnHY3+LexJVFIFDiSloFBWEQ5dSMODjDejXNArtalfBfe1i4K8r+Vv7uw2nsP30dXw0tBU0DgKCxfsu4eXf9+HT+1ujc73wEj8fYLrrdfvHGzCmR12Mjq+DPeeS0aluGFT5y9dSpeGtkQ1LDhTtYqq0fLfhFBY4GPJB9gxGBfsvpqBRVCDu+mwTqoX44LVBzSzr9UZR4qxq1r0e+Tum/t1/CVeserkLqg2xI993gqN7LnO3nnHaDvM5cf+FZAz4eAMaRQUiMSULNzNcqxWSP/gAgP/9ecClxzqTY1Qwdt5OLNp7Cb2bVC3RvgDgm3y1Vr5en/d7apYBW05eQ/UQX6w4lISMHCOeTKhX4ud0pv7L/xa4/o5P7QMyooIwAKnkCkvJ5x6Sw14CRREO75CZF+mNCjafuIa2saHw09q+Vd9eehhfrj2JYR1r4cQV0x29JQcSseRAIjYcu4LvRrSzPGd6tgFrjlxB+9pVEBGoc7nV5i+of/Zewh2tqtutHzN3JwBg2HfbcOLNW13eb0Gm/3sYBkXgo1XHseboFew9n4xJtzbCo/F13bJ/Kn8q+9jq/BeKpdHrWJ7MWHEUV9Oy8fqgZnavw0crj+GjVcfRplYoDl5KwcFLKZh8u22NpaJkhdpx5gbu/nyTzTlotVUa3I0nruL+DjUtv+fv5f5g+VH46fJ6prP0eRGLKl/bt5ywT8X+cgFDmrL1Rkz6fZ9l2JSjng5vMA/VcjhR283u+2qLze93tqqOaiG+EEJg2cEk1IsMKPa+w5CMcCkZR0TNwjf2tuw0QKUx/d8/zNutIRcxAKnsPPQ97ijQueOzjdAbnX8Zvrv0CL5adxI9GkZg1sj2Nuu+XHsSADBni/0dstVHrmDCwn2Wyarjf95tKcb0zC318cwtDYrUdvNESmfclf89/7725mZBWbjjAgOQSqxyhx/2FAGoKmn8IYTAjBXHAABHE9Mw++H28NXmXeB/tMo0J8G6d8F6WJGA89S5jphrQry5+DAeja+LTSeuYpRVyvR/9l7Cp/c7f3ym3mgXRJgnkMv5enXPXE9HUew5n2yTKaq88EcmIqWbOCWi3b7v8zcyERGow9aT1/FY7sT/gtSQLuM+1Wo0kc6gg3wI/xg74mXDIwhEBhbpXka0dB2/GbvivAjHamMr7BL1UUtKRGPpLBJFFdyi2oEFxh44J+x7e/yQhSjpOsKQgsmaH9BAOodH9c/hnIjACVENgcjEINVGbFKaIln4IxsaBCMdGdBhoGoz9FAjB2r8pzTAq+o5aCMfhQIZJ0Q13BCBqCtdwA6lAWrJScB0U8Y0VI0Dntjg7peVSgkDECp1kuS4e32vky+Pi8mZqBnmhx82nwYArDlypcjPueC/c5YAxLoS7IwVx4ocgBSmsF6ky6lZCPPXuTSMytHd7qJcMFDZJITAX3suomm14CLflXRngFsRKEJAVYZSde8+dxNbT17DqG51Sn2opHUK1W2nr+PFhXvx8dBWlmUqWbKbGH7/N1stP/+07SzecKFCtbN5aPd/vdVumRACn6w6jkAf1y4nur2zClMHNsXr+Xq2sh1MbM6vhnQZl0QYjCh8vp8KRvSTt6OpfBqJIhSrlFY4LyILfExXeR/aSEfxqzEeI9RLESql4QvDAPggB53lA9DAiNbyMdyEPwKRCSNk/GqMx26lHq4h2GZf9aTzeFU9BxnwwSeGQegl70JT+TR6yTuhkgQ2G5vgT6UztisNcUKYs8zZvn8kKOgt70A6fLBRiSv0bzbP9XGks7wfw1XLcFME4DdjN1xFEH7Svo4IKW+u173qtbhXvdbmcXepTBf0T6r+xDKlLXrLO6CW8o7VWPWfyBA6+EnZSBZ+CEQmDJChlexrwMzSvgMAyBEqXEYoakhFTwncVjpq+bmOnG+YaHrRrxXIexiAVHKe+BpffjAJj8XXcXn7+77agg+HuDYhsSwwxx9GReDizUzEVPGzrNt19gbu/GwTutYLx4+jOhS6L8XBd7CjoOTn7edQv2oAWtUMLXa7yXOWHUyyDE85/dZtRXpsZYk/dp69gflbz+Kl/o0QHuB8qGRRh6QZFYF3lh5Gm5qh6NPUcZrVkjCPfQ/21eC+9qU3XGXJ/kQ8/qPtXe2/91y0CUAKqw3hKPhQFIHHftyBWlX88MqAJth04ioenrUdrw5o6lK7ak9c7NJ2Zkkp2Xj8x512y3edvWm3rApSoIcaqfDDFPUsjFAvwxklEjMNd+E3JR5VkAIB4Evth6guXcU1EYTtSiPkQI046SS6qvLmdPxP/IiZhrvQWD6DGtJVfGS4Ez7QI1hKt9yB/1wzAxrJiGc1Cy2PG6xaV+Df01+1HXqhwlKlHabqhyEF/hilWowXND9btumn2m73uE6qg+ikygvC0oUOZ0QUXjc8iGGq5QhFGkKlVDSSTfOf5hsSECKloYZ0BYeVmuikOohDSi18YRiAiyIcmdAiUMqw9EbUlJLQUjqOAaot6CgfQpCU1xM2RL3Grj0XRRVUk/KGwaUIPyQLf8TIV5AqfBEoZaK/g78DAPwk07yf4Nzn0MI2+LgkqiDaat9ayYgacB58pApfXBYhqCldhiY3kHlbfx82Kk3RUD6HAGTCB3o8pf4dV0Qwaj75B6TAaMAnxOk+qexhAFLJeWos9cXkolWCnbHiWLm58DIXTnxq/k4s3peIj4e2wu25dRPMQ8Q2OEnvmJ+ji6uTV2yHJmw8fhUvLjTlrS/qxSyVjvXHruB/f+zHW3c3R8c6pjHI1rUKXE0Z6khxJw0LITB/2zk0qRaEljEhxX5+AHhj0UE837chPlt9HC1rhqBno4In2H66+jhWHb6MOY+0t5u/ZS3HoCDHqCBAp8Zdn5mG+2Tojfj0/tZOH1PU88KS/YmWIZul+Xk55sbsUvklZ+rtgg8zRRGQZalYaVmFENh17qZlvsLLtzXGU/N2IUuvYNLv++y2LW0xUhIGq9Zhk7EZMqHFAu3r8JVs07vWki/jA+0XuE9ZjfbyEZt11aVraC7nTdTWCxX+VjqhpnQZbeWjeF7zi2Xdt9r3C2zLdRGAUyIabeRjlmWpwhfHRXXsVupCDSMCpEw0l06irnwJA1RbUAUpyIYGCao9lsfsUOrb7GOdMQ5BUgZayidsns9fykYT6Qzma6c5bM9QdV72qTj5NACghuoqeqt2QBES9FBDDQMG5kxDCnzxt/ZlS0Bg/XporHomcoQKfXPeQShSsVPUx1vqr9FLtQvfGvrjd2NXXEUw6koXcVTUwO3yZkzQzEeW0OLBnElQSwZcFqFoLR+DL7LxsOpfnBZRmGu8Ba3lY8iBGtuVhpAAy3CzcCSjqXwaE9TzsEuphy+NtyMMKUgUVZAJLfyQjTbyMaxXmuEGguCLLDykWo5DoibWKaabknuNecOR5xhvQTa0+DY5EvFVqxR4PKnsYQBSyXlqIIMrVWatSXA+9t3VL9rvN57CyC61C93OqAhcTctG1SAfAEBKlh5JRQiYzDHc4n2m7uBPVx+3BCBFneTvyne8edJ9SVxOycKPW89iy4lr+GJYG1Tx1zrdNktvxE/bzqJno6qoGebndDuzn7efw9GkVLx8W+NKM1l42LfbAJh6706/dRte/XM/ftxyBiuf64Ha4f4l2ndhd/wzcgw4dCkVrWJCbMbVrz5y2XIR6ejCW29UMOL7bWgZE4IX+jayWXc1zbY+wTcbTmH7mRuWQKqwC/l3l5ouDOdvO4dHujr/DHZ+axWupmXj4Gt9LcvyB9z5FfU6OP/fUlxCCJy9noGaVfwcvq9Lc/RV/voZ1upMWox729bAi/0aOd3Gmcup2fhz9wXL7y/8uhfX0h3XcyhqT4e1jvJBPKb6Gz8ZE7BUMc3nU8OAKOkGnlEvRLy8FzlQIxI3oJWMGKf+3eF+vjf0RYR0EwNUW22Cj1Thi2mGB9BQOocu8n5oYcAJUQ1fGgZgm2gMQOBx1d94Vv0r9FAjQDKd36+JQBxQYtFRPgitZMQ8QwLWKi3QTd6Hzw0DcQER6CAdQk05Cb8Zuzkd+tVKOoZftFPR2apHY49SB7MMffG70hX3q1ahjXwU0/QP4DqCoIYBgchAtHQdC7Sv45SIsgmczI4oNTA85yU0l09ionoeastJ2KPUQRa0CEcyakuJkCUBWRLQwZT9637VSrSVj9gEH8nCD7ONffCN4Tb4IhubdE9BJQmsVVrilIjGKZgChAmGR4F8Ux6PihgAwN9KZ/yd3TlvRe7ncLNi6ilbpeTdNDhkrOXwdbqKYKxVWmBtTt4IhzPI65W8AeCCEmH5PRM++NJ4u8N9AUAaTN9H1528Z6lsYwBCZZajYkcAsOXUNZceP/XvgwUGIN9tOAWNSsJHq47jSmo25o7qgC71wtHt7dVIzsxL5SgVEqZJEnA4MW8c7eHEVPy45Qwe7FirSHnlAdeGl7jjOqf9mystP7+/7Aim3Wk7vnj/hWRIEtC0WjBmrjyGz9ecwJS/D2LflD4ILKTSr7l3plfjquhUt3JmJPlhs6nnK+G9NZg/umOJ9lXYW2LoV1uw53wypt8Vh6FWQ4COJRUcqK44mISNx69h4/FrdgHI87/ssdveuhdn/4VkNKtuGvN+LS0bey8ko3v9CLuJxVl604Xz4cQUXE/LsaSrnrXxFFYevmwJDo5YZTA6dCkFRkXgWnq2w/lfrg7BEkJg59kblroRADDup10Ym1APBy+lYGCLakUKkD9aeRwfrjiKp3vVx/jeDaA3Kpi++LBlvbObDbvO3sDyg0l4uld9S62ivedv4n9/7MfUQc1seqdyDAqGfr0FcdWDMWVg3hCowppprlhfVB2szgNAwXUpACACN5ECP+ihRjXpGs6LiHxbCExSz0OslIjTIgp/GrughnQZX2pnAAC6y3sxw3A3cqDGBM1PhbbvvAjHTMNd0MKAHKjxm7Eb+jaJQKPjD6OefBH/KQ3wkzEBW5VGDidC55HwhXEgZhn7IgtaNJVOo5V8HL8YuyMbWkTiBqpKN7BPmIYKm4MkANgqGmOrsXGB7dwl6mO10gq9VaZeqlE5z2GF0sayfp6xF+YZe1l+N0CNGwjCDRGEuOxvAACfa2agv2o7fjXG4xX9SOigRyr8oEBGohKGFTltEIBMpCDvhkYUrkFAQl35IvrK2zFcvRwPqPOO6QT9KFwTQVihtIbIrTudAn88r38ct6q24Q3DA4UcgfKhsmcKLK8YgFRyZfUG9elrji/cv1l/EttO2adrdCZ/rnmz6+k5duk9v91wCl3qhdsEHwAgIHApORNpWQbUrxpot68svYKx83bZLHvlj/1IaBSJrVZtPXc9w2Z+iCPOTqQXbmZCLUv47/QNnLrqPKh5fdFBXE7Nxkf3tXR6cZV/KEVKvgJSGTkGDPjYNPHwyBv9sPlEXsDXb8Z6bJzQs8C/IW+/jvPxp2UbcOpKOppVD6oUPSRDv96CJxNcy2L22t8HsebIZfz1VFcE5NayKWzoizkT0AfLj9oEIIW9tBlWd9XPXEtHrTB/y/MVlvjh0R/+w6aJpguqfjPX40pqtl0ABJh6K7P0RvSbYaq6vfaFHogK9sGUv20/e/mLiNadtBi1wvxwxsF5QBECW05ew6XkTNzZqobTNq45cgUjZ9mOWf9z90X8udvUG6uWZdzW3DYT0bnrGUjO1KNJdJBdMPXhCtPk149WHsPCHeehNyq4bFXzIv+dgeOX06CWJdyZO7RMo5LxbG9TAgxzEbs7Pt2IWSPbITbMH28uPoSm1YKx48wN7DhzwyYAGW2VeQowXXjeotqJZOGPTUpTtJKPY4vSGEbIyIRP7lYCA+Qt0EKP35Ru9g20ISzrJSgQkFBPuoBx6t8QilQsUdqjtpSIEaolUEkCV0UQwqUU7FLq4ZASg6+MA3BaRKOtdASPqv+x7NX6ZwCQJYHxml9tll0UVfC8/nGEIQUZ0CFJhGKedhqSRQAe1E/EGWE7b0cPDe7JeRVt5GPYoDRDFlxPrW7e9oCojQPGvJtTlxGKy6Jk8+n+NnayBCArFOdDCO2ZXveX9I+ix6h38Pznl2zaaqZAtgk+ACARphs8SUoV7FdqY7h6uWXdAkMP/GR0fK7+XemG35VuRWhj2ealovBUQgxAKjnP1AEpufM3MiBJkksZXKyZ00jmZ74za81QwFms03RTdd9tk3ohMsjHbv1xB+O/8wc/3d5ZbZMGWAiBbaeuo3G1IATl9io4a0KXt1Y5XJ6WbbC5UP02t3DVUz3roYGDYAmwn4+SP+ixrmiblaPYDC25cDMTeqPisDAjYJvy01xzIH+QceenG3Hschq+eLA1+jVzfypKVx1LSkWNUD+bNKaOZBuM0KlVbqtQfz09x2bI23+nr2PwF5uhUUmWtNS/7TyPhzrFAnA9C5q5AFxatgETFu7FhZuZBW5vPWG5+7trcPqt2zBn82mbYmfO3MzUW94H5uddfjDJLgBZdjAJ7y/Py1pz+lqG5f1qTae2f10dBR+AaRKzuf5B4+ggNIoKwvbT17H+6BU81au+5b258nDBdRhWHkpCbLgfqof4IsRPi2yDEd3eyRtnf2r6rcgxKth26joup9gO43L02lqfS9OzDbjlA9tsQkeTTL08Hyyznbcw4vu8IGmZVe2I8zcyUCPUdMNi7/lkSFDQUT6Eh1VLkCDvsslEZGYUEn4w9kGolIoe8h6ESKbhbDq96WbAY6pFAAB/KRO+yMGvxnhoYcDdqnXYqjTGflEbQ1SrESbZ1tSwnswNAOG5mZNaycfRSj6Owap1eEL/DOIcDCMCgBsiALfnTMP9qpUYo/7L9Hoo1bFVaYzZxj44LmwDyTbZX8IIGQrs3xem+SpBNj0MC5/o7PRcDwB1I/xxopChfQUJ0KnxfJ8GdoGztb+UTvDTZ2GfUhuAhL/HdkXVYB3aT1vp9DHWusXVg2+t1gD+KXRbR1Lgj18M8bhbtR7P6x/Db0p8sfZTHjFTYPnEAKSSKx/hBzDtn0MYd0t9t+zrw+VHsdRBlWejoiApxX7uh/UQrCNJqQ4DEFdZpwH+dcd5vPDrXoQHaPHfK72hNyrYXcTJyoM+2YCvHmqLWRtPo4tVNfb8QUVyhh56RUF4gA6fr7Gd/Jj/5G0dLwgIuyD1jUUHMXVQM3yz/iQWbD+HeaM7Wgo89p2RlzHm6Z92QW8UmDeqAzrUyRuKZZ6s+9vOCw4DkCy9ESeupKFJdOn1kKw5chkjvt+OhlUDsfRZ51/UP28/hxcX7sXYhHr4fuMpPNGjLsb2LPr70Po91Pr15ZgxpKWluOXgL0ypM61r4hhyf842GO3eq//7Yz96NorE6iOXMbxzrMM2m4uhOZJjUPDU/J026akB0914V99/GTlG1H/5X+yd0seybNXhy+j45ko837ehZdm+C7aptp0dzaKkr/1+Y95F7sWbmWgUFYR7cl/DED8tHs6dc6KWCw4Wf9t1Ab/tMs1/mDeqAx741jbF7JwtZ7DzzA38sdu1+WsqSUKOQcHriw6iToT9vB/zx8xcq6MwXd9ejb1T+kCWJPghC59qZtpMbj6tVEWglGETLKgkgZHqpXb7mq751uFzjFAvs/wcr9qHeOxzuJ1lP/qhiJBu4qyIxBj1X4iSTDdZtJIRX2k+QGrumPybwh++yIFOMgU+8dkzkAo/vGMYAj3U0MCADw2DoXdyCeJsuTNtaoUizF/rdP7KR0NbQS3LNucnV7WMCcFPj3aERiVjwX/ncfpqOupE+KN1zdB8dagkmx6HuBrB9jsrwAtWn5uieP2OZnjn38NIzTbgJcOjeNcwBJfh3uyIz/dpgPeWHS18Qy9h+FE+MQChcuHf/YkIC3A+UbooZq485nD5xuPX8L8/7CvvWmeDKSzNpbWC7sooisALv5rmSlxNy8Fna47DWEBRRmdOXElHvxnroDcKmy9D6yrDQgi0eM10odG7SVVsOmE7h2bxvkQkZ+oR7KvBj1vO4ONVea+PIuyH8szefAZ9m0VZeqNmrDhqmUNiPazHXPX4kdn/Yf/Uvshv2cEkXEnNtqtOP/y7bdh66jo+uLcF7mpte2dUCIFfdpxHXPVgNI4OslvnasDy207TheeR3LvSRkU4vAg2z2f5ZLXpovG9ZUcxrFMsVhxMQp+mVR3Oh3nxV/v5E+a732bPLNiNO1pVd/oe2XHmBsICtNh97iZ+3HLWZt2cLWcsx/ovB8kd0rPtC2cev5yKsfN2YWzPeriZobcLPgAUOfgFgOZTltn8npiS5XD+iJkkOb5Y6P7uGpefc+7WvNfjaFKazTDH1xYdxMNdayNLb8SsTadd3qd1rQyzV/884GBL52ZvPg1FCIfFUQFgyYFEPOjgeWpLl3BRhCEbeec3NQxQw4jmU5bhy/ubY5b2bbSXjyBbaLBRaYpVSissMCYgEjfwkuYnpAkfGKBGuJSMdvIRREjJuCn8Mc3wACaq56GKZAr6Fxq7YqmxHbrLexEh3UQO1Kgq3cAepS46yQcRLKXjI8Od0MKAmtJlfGy4E+3kw3hH8xU+N9yOb415yQfWKC3RXd6D5cY2+F77LhrLZxECUy/DoJzXoYEBn2tm4gdjb0tgAkj40DC4SK+rtad61sPCHecdZlX8bUxnzNt21pLxzGzHK7cgrIC0ztbubFUdv++6YLNMq5ItQwT/eaorAECWJQgh0LNxJBpFBeLstQwMyVeVvKhcDcLH9aqPS8mZljk/wzrWwoUbmfhi7QkokIsUfEQE6tCvaZTT96xZkG/B8/68jT0g5RMDkMquvHSBAPilGJMsi8p6CIQjRTnPmS9y80tKybLL2vHOkiMOt3WFo2ry1uPXrdcvd/L3PfrDf3j/3hZ4JV8AdttH6xHiZx/4WRckm7v1LGqE+uGJHo7nOaRlGyCEQI5RsWtru2kr8Fh8HUy8NW+Sp/mCct7Ws3YByFPzd1nu7ltnYso2GDHw441oVj0YTybUxWuLDuLJhHpoWyu00KAkKSULfWesw52tqsNPq8LhS6lIzTagQ23HaR1v+2g9zt/IRL+DUfhiWBu74XyOJgM7el+98sc+p0PZ/tl3Cf/sc96LYXYzw36ejaNhYmPn7cLhRFMQMq6Xe3oSi2PryeuIKkEPYn5v/XvYblmW3ojJRQweikoFI7rJe7FXqYvrMAXCqVkGfJavdzE/6+GPgcjABPV8PKBeiSQRgrtzpuC8iEQ1XMXPutdQBakYpX8Oy/7aj/flI0gTPngwZxJ2i3qWfVxABJ7WP1Xgc0bipqUmxRT9CKTCD8uUdi7/rauU1mib/TmsvywaVg3EkSRgjtHUA/ak/mks074ItaRgt1LXMm+jd867Lj+Pmb9WhXQHWb8m9G+Ex7vXhY9GZcmyZq1WmD8m9m9sF4C4OmzyuxFtUT8y0C4Aedgqi5v1eVWSJCQ0NBU2jA72dek5ikKrkpFjNN3EeX1QU0QG+eD8jUw80KEmNCoZTasFo33uOeqZW+qjapAOVfy1aFMrFF3fXl3Qri0W5c41KywAKetz9TgHpHxiAFLJFZbhqSxxpVJuadMbFQghsNBJcGFt7VHHE3k7vLkSf43t4u6m2bDuAXElQ8jWU9cdfmldSs7CJRdSEr+95DCGdXKcehEoOIXnl+tOYuKtjbFk/yWbAnT/nbmBpJQsTFi4F/3jonFv2xi7oUVCCCjCVBvlSFIqjiSlYuFOUwCw5sgVBPmo8UK/RhjW0XnbzJmAvt942ma5s2QH52+Yxv8vOZCIb9afLPK8JLP8PRvuMtvBnf/DVlmmnPUAesInq49bepNKS6P/LSlkC1PKUuseBwCojivIhA7p8EGMdBkCElKFn90dZRkKZmg+xe2qLTgvwjEw+w00l0+ivXwYfxo744hwVIxQoCpuIAmmC8Yu8j58r3nHUi26qnQTn2lm4u6cqXhF86OlQvRL6p/wX1ZDQA38ZexsE3w4k9AwAqutkgh8Y7wVOikHm5RmVj0RRWX7PbH02XjETsibq3BSVMMT+mfQVj6CLw3O06a64odHOljmc9SJ8LekZR6RO9zwsfg6EEK4PCTI2bVzo6hAm89F29gqNr2Hv4/pjPAAXaGJQ9wlf9ID63bf36GWXQ+J9fBLH43KJuPjuhcScOpaOppWC0LbN1Y4fU61LLk0D1SWgKXPxGP6v4cKTVDhDewAKZ8YgBAVwaNzHBcDKypnKYbd5ZsNJzGxf2P469QeS1F4sZBJzwXZfOKaw+rIM1cew+ojV7D6yBUs2H7OZp2iCNSZVHBtgpQsA/73x34M61gLBqOCUT/8h2y9Ap2m5JPJAceVpb0t0cE8pspDoApSLb0SOuQgTjqJgyIWDaTzSIcPPtPMRH35Ai6KKjitRGGl0hq9VTvQUXZ8LN/QP4DFxg4Yo/4T0dJ1hEqpaC2bgqga0lVs0j0Fn9y5Dg+pluG+nFewX9SBD7LxonoBgqV0NJNOoaF8HvuUWGxRmuA+1WpL8DHb0BsDVZvRXD6FR1WLcKtqm+W5W8gnUVsyBd2blLysWI/F10G2QbEbZhZTxRffj2xvExxkQ4sPDPcW+so90rW2JYmFmbPeCEeWK22xXGnrcF29yAAMalENX68/aZd1z9pfY7ugfmRe8ozxvRtYMgyar5PVKhlje9Z3GoDMGtkOM1Ycw+5zN1ErzA8BBRTCtBbko7EJQNSy7LHgw/R8zgOQot4mrBnm51LNJlmSXMqEKUFCw6hAzBrZHs8u2G3XS+RtgrNAyiUGIG6wfft2TJ48GZs2bYJer0dcXBzGjx+Pe+8t/KTvbWW8Z7XC+l8pDxH5cctZZOsVvHtPiwKze7lTSQqxDf3a8fjptVZ32/JnFRv2nf14eme+XncSQb7qMnn3zrvsewNUMKK7vAfJwh+7RH2HmYgKU0e6iLbyESwxtkMKAhCFa6glXcZ1BOKYqAEVjKglJeGsiERN6TJShD+uIxAByEQGdHhe/TN00GOT0hQCEjYqTXG/aiUGqLYiU2hxQlTDXlEH641xllSkfsjC55oZ6K7ai18M8fhd6YrX1d+jrux4KFs16Tqqqa7bFI9z5BXNXLyimWu3/FPDQIxS/WsJPgAgQMrCHO1beDBnEh5QrcD9atvsdXHyaUsV65NKFAbkvIkM+CAZ/nha/YdlqNR6YzOooKCz6iCCJFNgv0VpAsB26GFSShb+3Z+XpGDRU8VLrVo9xBcv39oYA5pHW9IGA8CILrFQyzJmrjyGV25rjIEtqkGnKThrnCNqWcJTvepjbM96BfaGSpDyXXjn/eJqxsYeDSPRo2EkDLnDl/L3LFj2bbW/Q6/1s3s+T3835u/hsP57S6stklT0TJhl8ZKBQ7DKJwYgJbR69Wr07dsXPj4+uO+++xAYGIiFCxdiyJAhOHfuHJ577jlvN7FAZfFkUhkcupRS+EYl9MuO83hncHNkuXgHs6RKI9ApKJXsxuOuFaQEgGmLy15PhfsI1JCu4qoIsqlhU1e6gBThhytOJqU2lM7iG837iJGv4JASg2VKO9wU/rhXtRaNZdPwsNNKVZwSUfCVcpAqfJECP1wVwWgqnYaPpEeq8MU8Yy8kiiq4TbUF1aRrCEEaOsiHoZP0eFG9AJdEFctFNwAcUGohTEqxZFAqyEjYZ3QCgM4wBQ16tQp7RF2cEZEIQBa6q0xJA+5Rr8M9cJzx6JRSFc/pn0CkdBPt5CNoLx9CDjT4yjAAz6p/RbR0DRdFGPRQ21WnPqLUwJ/GLtiiNMZO0QAnlGp4R/MVriMId+VMwSeaj9FSPoF/dJMsj9mqNMJ5EY6VxtYIk1Jwm2orfJCNV/QPIyO3ZscqY2s8rf7D8pi/lM4IQZolODqqVMdVBGPlc91t2vPmnXGoHe6PLvXCER3sg+AiTBa2Tvu88rnukGUJrWravleeuaUB1LKEe9vFoFqwj8tzAZY9G48xc3fapScv7PH572SXpBfA0dyPdwY3x4u/7sWIzrE2yQvMqbjddaG/vIDMes7k7wGxDUBK55vaV6tyrQfEapv+cdGW7HFlBSehl08MQErAYDBg9OjRkGUZ69atQ8uWLQEAr776Ktq3b49JkyZh8ODBqFXL+fhzbyvrk8uoZHp9sNYyhrq0mYvNlVc65CAHakvFYOfMX3ZSvp8dC0UK4uRTuC4CkSSqoLl8AnqosUGJQwAy0UI+AT9kI0hKxzGlBnaLemgoncVT6t8RJd3AWmNz7BN1EIYU9FLtRDY0yBRaaGDEQiUeo1X/oJdqF66KIMyf9humqrPQWD6L9vIR6IUKa5QWqCUl4T+lAXYoDXGraitqS5dQR867c95YPofGct4Qt0yhhQIJsXISYlFwYgbr1LD5hUsplpoR10QgQpGGpnLBE17Nzotw+CHLksHpmgjEl4YBuCqC0Vw+ia7yftSTL6KtdBRtkTcc53tDX/SUd0EtGXFORGKRsSNipMtYpzRHLekylhjbmYZoCWCJVcVrAFia0xaSKfk0AGCIajW6yXsRjHScE5F41TACBquvzd+UeGzObopU+CINfhiWMxGztG+jjWyaZ/OPsT2e1D9j8xzmidsAMKRtDDYcv4q9N+vYtsPYFpHSTbyMeQCAjUozvDO4OepGBNhsF+qvxYv9bKvYA6a0wvd/sxW3NY9GjRBffLnOdmL2wdf6QhFAz/fWIL5BhE0hyHG96uPjVcfw55NdLUkSqofYT7KuFuxjk42qQdUAHE1Ky/05ECvGd7cZCuYKIWwvvK2vyd1Rs+retjHo0TACEQE63PrRhgK3LerTHZ/WH7vO3UTzGsHQqR33EtWPDLCkIc8vfw+IJ76ZdWqVS5kdrdtyS+PIUmtP1SAdkvLV3HEF44/yiQFICaxatQonTpzAyJEjLcEHAAQHB2PSpEkYMWIEZs+ejVdffdV7jSwE44+KrbSDj1pSItrJRxCGFDSRz0AFIzYrTbFOiUMVpCJauo5AKQOJogoOKzEIkjJQVbqBDOGDo6KG5Q6wO5kqOTsPIsJgqk2RAw26yXsRIqVjgLwZnVUHkSlMQ5GMkHFcVIeSOygjWfhDDxWqSKloJJ2FASpsVRqjq7wf1xGI8yICTaTTOCOq4j+lIapLVxEp3cAFEY5b5J3QSc7Hvee3W6mDhtJ5+EqmTGltZeeTba3v8odLKXhc/bfNeo1kRG+VaW5NA/kC7odtooF1xjjsFnVxUwSigXQOQVIGjotqWGBIgB5qDFBtQTp8oIEBNaQr0MCICOkmjivVoZNyMES1xhJgpAkfrFZa4pBSE8kIwB/GLugm70MVKRUrjK1xGaHoIB3Cp9qZSBO+mGAYjTrSJaw0tkJT+TR00GOXUg/N5NM4ImrgnKgKwDQ5vI18FGuUFkiB6QL8NyUeKhgxWLUOEbiJQapNqC9fwCeGQXjPMARTMdzh67Wx0FdfgrC63FpgTMACY0KBj7iEvBo3qfDDQzkT8JlmJmKlREzRO26H2Vt3xyFTb0STV5fiR0MvPKheiV8M8UhBAFJEABYYeqCLaj9+MPbBqjbOq77n17leOHa/2hvBvhpk6o02AUh4gA5+ufMitk7qZXcT6tneDfBkQj1oHRSHtPbXU10tE5wf7lIb1UN98fqi/BXuZWTpFXSqm/caffZAa3y25jj2X7DvBQ70yX9J4nwYknnOSv9mUSiKyECffHt29GxFT9CiVsloF+s4c57Z9yPb2ST7+G1MZ9yVO+Qtf92a0v5uDvEz9Za5MnTWpifKxYbVrOKHs9cdFxN15rcxXVA9xLfIgaun5jmSezEAKYE1a9YAAPr06WO3rm9fU92DtWvX2q0rSyp+/GEa466Hulhj2c37MKk4r5YPslFfugA/ZCMVvrhF3olq0lXsE3VwVQThlIiGBgYcF9VhhAwtDMiBGmoYEYo0GKBCD9VuvKn+FhrJdojXAJVrczNyhArblUY4ImIQI11BkJSOTcam2Jg72TZMSkFN6TJqSpcRKqVBBz0OiFrYoTTAASXWMtE4ABnop9qOzvIBNJNOoa50EZnQ4aoIxjFRHf8a2yMLWjyl/gN1pEuW4miOmC/6AaClVHBK1T4qU0ICP2RbshbFSadthhu1hOnC77RSFVHSdWhhQBJCEYkbUEmm99V5EY4kEYosoUVH+SBayqbHHFOq42djdwxSbYIKCq6JQFwSYYiVE+GHbAQgE7Xkyzig1ML/9CPxsPpfxEpJuCaCcFZE4ltjf3SV96ONfBTHlepIUO2GD3KwUWmKtUoLXBYhOC6qo6D39XfG/gW+Bh8Z7oIPcuCDHNxEgF1mqfw9DFtFY7TL/gwAICBjC0zzGpKUvAu3RCXM5jEXEIELSoTdcxuhsgQHXxhvRwSSbYIBZ16/o5nDej/ukg5fDNdPsPyuU8tOM/hJkgQ/rRrzR3fEsK8NWGiMxx6Rl876JcOjgAHo0TCiyL3V5vTZflo11r+YgE9WHUeOUcF797SweX5HCgs+ANhkrPPTqvBQp1rI0hvRrX5eQdRlz3THsoOJuL9DXmawW+OicWtcNFq+tsySRvqNO5rBYFRQJyIAitUdeXMq7EAftV1bJ/RvhF6NItG6lhuL7tlcaLtvt2bmyvZmgbq8S7D8dTNLe3SC+ZrdlefJH4y5kpzgx0c6IP5d19IBm6mK+Tcz/iifGICUwLFjpm72+vXt8+pHRUUhICDAso0j2dnZyM7O625MSSn9eQE21r6DmKRLmKhOggIZMhSocv/JNv8XUEkKhAAUyDBCyl0jQws9fKQc6KC3nKLMj1PDCBWMUEEgDT6QIRAgZcIHOUgW/siGBgaoEIQMREnXoZP0MAoZBqhghAwjVDBY/q+CGgaEIRWypECCQACyoIIRGdAhU+iQAR9kQgcd9AhEBgKlDAQgE2rJ9OWfLnRIgy/ShC8yoYMxNyAJRAZUUGCACqFSKuTcgCMTOuQIU6EuPdRIEqHQQg9fKQc3RAAuiTAYoIIEgUxoEYhMVJVuIBV+uCn8ISBBhkA2NLgigpEDDYKQAT8pCznQ5A71kFAFpgvtGtIVGHL/VvNxMEKGgAQ9VDBAjRyooQjT62+ACnqooc99xQORgTApBRIEUuGHdOGDVPjhhggAIMEfmfCVchAp3UB1yfH8ifuwxub3HKGCgFTgHfx9SixOiygcUmpBBSP6q7ajvnQeqfDFSVENWUKD2nIiqkvXkC3UOC8iECBloqp0E11UB9AFeRPyO8iH8SwWOn2u3jBd9BuFhN2iHkKQhlpSkuUYmwUgCwFSFmKRZOkBsKYICbIkcElUwVGlBvaKOvjF2D33XS0gQ0G8vA8Z0CFN+MJXyoYPcpAmfHFAxKKTfBAt5BNYaWyNJvJpNJHOYJ6xF6Kla2ghn8BhpSYkCNSRLmGJ0g5rlJbQwXSxlQ0tQpGC6tJVXBDhuIFAmK986koX0Fw6iZsIwAYlDnqo8bVxgJNXQyAY6UiGPwAJO/UN7LY4bYzGj8beAIBPjXc4fV2LKxtaZEOL5MI3tSh8iFvRGaB2KfgATIXbwv21iA33h1ER2H3uJvZfSMZPVlnWwgO0mNi/MbRqGU/NN2Vhqh7ia5mTlD+oeHVAE7y26KBdClzAlLrb7MV+DS01f94d3NyyvFPdMAhZg11K3nfJ/ql98fuuC2gQGWA3N6OoYqr44W2r53O3ZtWDoFHJeDLBNk1wzTA/jOpWx+FjrC8aH7RKky3LErZO6gWDIhDqr8Wh1/rZXZwDgEYlo3O9cPsVbuKJ0QHWo5/y94CUtiLNm8j3WvzxZBf0/rDgqvI1w/zwcJfa+G7jqQK3s1bcl+C1RQex48wNhAdoMXVQs+LthDyOAUgJJCebvnaDg4Mdrg8KCrJs48j06dMxderUUmmbS3bPRdUbp/FYWXoXFOOk749slx7nL2XDH9moKt10ab8hSLfs1wd6BEp5E6IjpGQ0gPsn4ungwlAdF/7WYGQUut11EYAbIhA1pKs4JGKwR6mLOtIlhEvJqC0lIhsaBEv2Xeg5whQgCUj42HAnZhrvsmnUx8a7HAyDErkBlcrye20pET3k3aghXcVZEQkDVOgu70Ez+RSyhBbJCMBZEYmzIhLXhKm3o5V8HHHSSdSRE9FGygvujyvV8I/SEbuVujiixEAn6RGBm+isOoB7VGtRBamYbeyD+caeuCqC4YMc1JEuYZ+ojSw4rpJ83Oh8yMtRYwyQewPwH6Wj7UonNwatewduIAg3RJDdNidEdZwQ1Z0+ry0JyQgofLNK5L52MTaBxMz7WuLklXS72if946ItPzerbjp/rzlyBYkpWfjfgCZ4xKr4XN+mUTh3IwP/7L2ED5abhsMdeaM/Vh1Owpi5O/H23c0xqGV13NY8GuEBOtS1Sg39ZEJd7D2fjPXHrqJ2uD8CffImid/TNsamTTq1jIzcu8o1q/ghQKcusH5NWfDbmM7YfyEZfZsWbRgUUPAFcFWrYpXmCeLu5ijAsMmC5YEe7+iQvL8z/1Co0g6AShB/oH7VQIfbFcVtcdF2xVaL2wMCmIq31nIh9TCVHWXp0rPSmThxIsaPH2/5PSUlBTExMQU8ws3ajcKlSxfw166zUEGx9GqYeh1kKCL3/7m/S7l3hlXmu8SSghyhQRY0yIYWSu42xtztDcLU/6FAQqCUAQNUSBc+pgtbpEMjGaGBAWnCF4mognThY+k1UUuK6f8w/V8DI4yQcV0EQp/7tk2HDwxQwQ/Z8EMWfKVs+OZOJE4VfkiBH9KELzLgAzUMCJAyEYhMBOT2BMgw3ZnMED7QQwWtZMA1EWT5W31huuudhFBoYUCElIxsoUEWtAiXklFVugE590LcF9nIhA6Jogr8kYUQKQ0CEhRI8EEOqknXIEEgRfgjE1poYYACyTS0BkG4JMJwWkRBggINjDDkvm6y1WuuhSG3z8jUA6SBERrJtEwNI1KEP64hEApkBCAT/lIWgpGOUCkVEpDb86PFdRGIkyIaN2B/AWxLoKZ0GRoYcFGE5bZZRip8oc19TmdzOOzvcktWwYfp91MiGqeM0TZbzTXeUmCLZuVe3NeRLqK1fAwXRRhOKtFIRBXYfE0K4BSisc3QGDMMd9tMLAZMw2SuCcc3Dqw917sB3l/uWsEzTzOPr3fVrXFRWLwvsfANy6iX+jXC20vsK59bG9uzHh7pWhtzt57FmIS6lvH+4QFa/O/PA3g03vHdeAD4+6mu2HHmht0kW61aRt2IAIzqVhtHElPRL3fOQc9GVbF/Sl9LtiXzRXNsmB9OXzMF7r2bRGFkl9qYu+Us7mlbAysOOZ/Qb51FbuETnQv8O8uK1jVD0bqEvTNlVWkFAObJ+jq1jCAfDVY+1x06tWw3FModk+4LUpRRS46GaX05rA0eK0FdrJn3tbQLQEryN782qKmDOURUlvFolYC558NZL0dKSgpCQ52fnHU6HXQ6x3dfPaLzU7h09gamb99U+LaeVpwxnYU8xuaOs6NtC3m8zZ3psjLmtKB2lLiNEs7mTgQGAOuEuDnQIAeup/x0F/MQl5OiGk4aq7n4KNuJxc5MurUR3lxse4E7pH0MDiem2n1ReloVfy2up+fYLNOqCg5ARnSOtRSqiw72QY8GkWUmAFnzfA98tOoYftvpWi/iv+O6oXF0EDL1RnxUQCV3jUpGjap+mDKwqc3yYZ1ikdAo0mE2J7OIQJ0luHDET6vGpw+0tlnmKNWrr1Xhu0ZRgfDRqDDuFtPQqqbVnAf91tmIIgK9+L1QiZUk7a+rvnmoHWasOIpHu5uC4fyZzcxaxoRg1eHLCA/QOlxfUo56oCICdbiS6loWquL0ellz9NlxVrOlMBqVhIc6xZaoPeR5nh10WMGY5344mueRmJiItLQ0h/NDiCqDRlGB+PqhtniiR12n29SJ8Hd5f13qheH7ke0L37CYHo2vi1dua2z5feZ9LREZ6INpd9qOKb6rlatDpNznzXxt6NEwAgNaFByAWV+Ej+5WBz0a2U/kdsacIcedhneqhRf6NsS80R0QG+6PD+5tabP+iR51sXFCT9QJN70nXrmtMTrUroLX72iGxtGmC/dnb3F+Pm0ZE4KIAOcX7jVC/TySdtzcfgA26W0BoE2tKvj6obZYMd6+ToQr6VArEm//tY6HYBW83h1qhvnhgyEt0Siq4B7oIB819k7pg40TepZKOxy93SY4SOkMeC79SnGL2XpiuBy5HwOQEuje3VQUatmyZXbrli5darMNUWUTVz0YvZtUtWSyyW9E51i8kW/C4PBOjse8P9e7AT4c0hIAipx20xXje5smcI/qVgebJvTEqem3YlBLU6AR4qfF6bduw8+PdcLobrXx5l1xeHVAkyLtv1GU62Om+zm4s2g9NOG+djGYNbI9XujTEC/0bVjgvkZ3q406Ef64t10MIgN9sGdyH3ye7y7+t8Pbol2sbU+tX74L59sLCXZcMWVgUzyZUA+d6zqeOHxrs2hUD/HFqud74Pi0/hjVrQ4WPNbJZh6EdQDR0GocevUQX/w+pnOx76C609RBTXFPmxpOh1H1blIV9SLt3w+zRraDj0bGh0NaOHhUBeTtCKQcCPLROK0pUlL5iz4CgE7j+JLQU+n6i3uDgOUEyicGICXQq1cv1KlTB/PmzcPu3bsty5OTk/Hmm29Cq9XioYce8l4DXcDPbdmkddA9XZZ0b1D43XTrCbfWfni4PY6+0R9TBjZFxzq2mYtyjPZfii1jQvBUr/qW8fyTbm1ss75THdeyHxXk6V55d9arhfg6/CJsX7sKXr6tCXw0KozoHIune9XH9yPa4Z+nuwIAmtcIRo1Q0xCfWxpH2vQi/PN0N9SLdG3C+Ot32GdxaRkTYvl58u2mno1Qf61d1iGzr4a1AQC8fFsTrHquBwJy030G+2rQPy4au/7X27Jt8xohWPBoJ+yf2hdtclOaDm2flzb16Z71MCM3+LP2dK/6+G2M63MVCru4sF7taHiG2fN9TMGi9evUMCqwzBRVDQ/Q4d17WlheS1f1aBiJ/VP64s5Wrtf7KM+8HX84umteVt5DgOfS8LrCYwFIMR9X2vNlqHRwDkgJqNVqfPPNN+jbty/i4+Nx3333ITAwEAsXLsSZM2fw3nvvITY21tvNpHIox+j65OKiuqt1dfRrGoVHcycQ9m1aFXe1rlGkCYXP92mI45fT0LRaEJYdNE2sbRwdhCr+Gpy8kg4/rQpje5oujrvmS5UZbxW8yLKE+AYRWHfUlLq0eY1gzN9m315r+e/SzX64PQ5eSsEdn9qWmWtVMwS7zt60pExtEROC5IwcywRhsybRhU3GtyfLkqXXBAB2vHIL/LRqSBJwIyMH0cG+GPfTLvy5+yIAU5VjtdXd+Z8e7Yj7vtoCwBRcnLqajuRMU5re/OP/t0zshcggHyx+uhuAgrMChQfo8GRCXfQpZHx2qL8Wj8bXQY5BsTxfgE6N70a0w84zN9Ctfrhl8n1UsK9NleZFT3VF4+ggy7K5ozog1E+LWz9aX+BzFsbVi4ixPetjVLc68NGo0LBqII4kpeKeIhTpK8sKCryo9Hm+Frn3OJwG6SQo8dQQJ50L9WccYfxRPjEAKaGEhARs2LABkydPxoIFC6DX6xEXF4e3334bQ4YM8XbzyI261Q/H+mNXS7SPtS/0QK0w/0IrvcqS4zG67vBcn4Y2k3ETGkYioWGk0+3fvDMOk37fZ7OsZhU/bHgpAZIkWf6WQJ0ac0d1tHu8WiXj0/tbY/zPu/Hx0FZ262cOaYlbPliLPk2r4t62MTAoAsG+GjydW3/hznxzLqxTNf73yi3QqmW0jAnB6bduw+rDl/HKH/vx/r0tLL0reqOC9ceuoG1sFRiNAmuOXsazC/YAMB3Tzx9sU+Dr5Yowq7kH0cGm17agC2rrIVkT+jfCrzvO49cd5y3HpUaoL87fME37jwo29fw0KWACs9n2l+0rWzuTvycJMPWQJDSyfS+Yqwx/PLQVLt7MtKStNetSLxwZOc7TR7eLDcVAF4ZwFWWYmnluxW9jOuPklXQ0q170IJK8q0h1KLygol/UOnr9FSEgSfaBiCdei/UvJjAAr2R4tN2gffv2+Pfff5GcnIyMjAxs3bqVwUc5lT8FpzXrsehv3x1XYEYbZ2qFmSaozryvJWKqOM/IM/vh0ptsnX+YfESgzq7ysVYlI9RPgy0Te9lUMTbz06ksF7oT+jdCgE5tl3nI2m3No3Fgal+Hd+ZD/bXY9vItmH5Xc6hkCcM61kLtMOcTeYN9NQ5/BoCERpHYOKGnzdAujUpGz0ZVEeSjQai/1mbdJ0NbW4YnuVuv3PeSef/P5vaY3NOmhk2QIME0P2Ly7U3w6xOdABRtSIG5JyIqyKdUhm2Yr0Vub1ENj3V3nlDArE+TvMxpOrWMXx7vjGGFZKh5rneDYs3f8NepEVcjuEwNnSHXeDv8cDgJvRSyYM0f3RE1q/hhziOld04vDue9Hd4RU6X4NTz46S+fGIBUcvzittWnSZTN5FZnFAGbSsjOTOyfl1XEOmAZ1LK6XRYga93qR2DF+O5FGh60Ynw8bo1zPPTm2VvyhguZL26/eLANnkyoi565d7yfTDBdXN7eohqOTuuPXa/2sdx9tzbnkfbQWN2perx7XeyZ3KfQO/QF3d1S5bv4tH5bavI9Tq2SsX9qX+yb0sdunSusKw6rVKX3/r8tLhpzHmmP1c/3AGBKW7nt5V54Z3BzmyBQliUE6NQY2aW2pfckyNf1oOjPJ7vglsaRpXaB48qdaus5SzPua4n2uYkHBrs4NCrUv3RSjRI546lvvk51w7DuxQR0q+96Fjqg9Nvn7FNdHq8JOAekfOIQLCIrIvc/R6yH2ShCIMdJABJXPRjnbmTggQ418Vj3upj+r6m2RGEZi/KrFxmAxeO6FTpcCwAe614H9SID8dkDbfD3not4av4u+GtVSM+trNyzUST+3nsRBqOC8Ny/o1+zKJu6B8/e0gA9G0XaDbGxFlPF1+EXaf4AoqSaRAehd5OqTus2lKTXIiJQh9HdakOjkkut9wMwfZHnf63ME+nz94Dk9+G9LfHkvJ0Y16uBg7W2mlUPxjfD25WorQVxZaSMWiVj44SeMBoF/LRqfDO8LTYcu2oJbp15754WWH/sCu5t68ECrEROVMR0rmMT6uGT1cftlju6sSCE4/ORK0HJ3FEd8MA3W4vTRKqkGIBQuTb9rjgMaB6NuCn2qZALsndKHzR38BghHM+9eKFvQ7SpFYoQPw1uZujRtV6404Jo80Z3cJgBKv9FeosaIZafb2sejX/2ulbszroo3fJn46GSJdS2qj1we4tqlqxJ3d5ZDcA0cXvpM/EO22GmVsloU8txylwzT91pkmUJXz/UttT2//JtRUuj627Wh8DRS1q/aiCWPVs2Uni7OlbfOlgM8tHg1rjoArY2Gdymhsu9JFSxtKgRgs0nr8G/gKQKpaqQQiDlsSfAkef6NHAYgDj6njPPAcnPlVeiSz3H6bU94Q4v1GaikuMQLCoT8hery1/8zZn2tasg0EeDHg2dd29HBdkPIwry0ThcXrOKn2XSrVl0sI8l3emmCT2xcUJP1ArzRwMnQ7WcpZ+tkm+Yic28CwEsfKITgn01eO+egusADG1vulvcvnYV1K8aiDoRAXZfljFV/Gz2r1HJUMlSiXsqfEopJ31lYx3IlfULnUpWH488ZOZ9LTGySyz+HNvVK8//QG6q6faxBd908RZ31bQpyvmlWfVgfHK/qU7Qa4Py5vSV9imqqCmr83s0vo6bWkKexB6QSq6sXPq81K8RPl9zwvJ71UD74MARc/u/GtYWf+25iOd/2WO3TfMawUg8mGW33PpifMGjHXE0KRWd6obZDY61jkf8tGr4aU0fm3cHt8DMlUcxf9u5Atv46f2tceFmBppWcz60KTrYB21qVcHuV3sX+oXxzC0N0Da2CtoWctK2Hpdf0ruMHw5pgfeXHcWM+1qWaD9kr6x8Bp3JH5ATuUNkkI+lpo033NO2BppUC7Kpz1OW7gWoPNiYdS8kICk1Cw2qBqJB1UAceaMfdGoVXv3zAIDSH5oW4uv4pp2r1KU4l49KD3tAqEzq1TgS43s3wPcjCx7bbr5Y16plp0M58t9d+Xa4aWjPJ/e3QhV/Ld4d3Bwd6oRhWKdYSJLkcg2OqGAfTL+ruc2yt++Os9vutubReDTecfagWSPb4a7W1THulvo2f09BNCoZCQ0jnfa0mIX6a/HsLQ3wUr9GiHTQ21MUd7aqgQ0v9UTjYtTMIHvlqQeEqCKSJAnNqgfbZNmz/iR6+1Mpe/DqrGaYH9pZ9QTlr77ujlPUOKtiryWhVZfu3D3yHB5FKpMkSbKpTl0cK5/rjk3Hr2JIu5o4kpSK33ZewFfD2qBXY1Oa0FY1Q7HjlVvsLgDzZ7dy9eT7Ur9GGNLOPmVtQXo0jESPAmpw5Pfnk12KtH9zYENli/V7ys3z992OPSBEnleWMjsVtyXWf8KzvRtAJUv4ILfAaXHtm9IH3d9Zg7Rs57WHqHxgDwh5nbkeRt0If4frJ93ayOFyoOATY92IAAzrFAutWsZ7g1tg66RednUoHN19tq4TAdingXWmtIqhNahqGiLwwb0t0CJ3cjmVbzY9IF6/11qwqiXsPSMqL8pSb6S7MwuWBU5rjxThT9WpVWVqqBwVH3tAyGu2v3wL5m49gwdzC/zd1ryaw8xSvZtE4c3Fhx3uI3+ROmdkWXL5QuqNQc3QKCoQkgTM2XwGn+ZOynPmtzGdcTwprch53l3125guOJqUilYMPiqMwrJglQXfDm+L/87cwO3NC69iTlTRePtzWaZ6QJw0JTxAh6tp2S5v77b22P1edl4rch0DEHKLzx9ojSfm7izSYyICdXjGqkDeI11qY+n+RAxobpu+09FkvAn9GyEjx+iwUF5JBftpLFmvxvSoV+j2rWuGonXNkmXxKEiATl2q+yfPs6kDUka/O3s1rmoZrkhUGZSlj2JZCEDqRQbg+OU0dKrjOMXuDw+3x5S/D+BFF2tcOauxVVT5e6rctV/yLAYglZw7znFVg3RuCQSC/TRY+my83XJHbXy8u+NJ3UTlRY1QX1xPz7HJwkNE3lMGrvktXBz5W6qWjOuGbIMCfyeTvptUC8LPj3Vy+/NGBfkgMcU+cyVVLAxAyC2KOna2fW3Xc69XxLGwRGue7wGjEHYZZ4jI+7w9rCcq2LfwjYpIkpzPw3BErZKhdmMk5OpzLx8fjxHfb8eOMzdc2t7bx4qKpwzE2ORN7khwc3vzakX6+EsS8NPoji5vX5QAxJwmtnkN5zU3iMoCtUpm8EFURnmrN+SrYW1wf4eaGJY7N9Id4huY5icObV+0LI3FVdKXLtBHg0ZRjgv9UsXBHhAqkc8eaI1ejSNx+FKqzfIBzaOxaO8lh4/x06iKVOU1/xfBiM6xTrf9fkQ7/LT9LO730ImWiIgqhrKQcbpP0yi7bI0l9dkDrbHp+FXEN4jAvK1n3brvoiitl5dzQMonBiBUIrfGRTtc3r9ZXgBy+q3bkJSShQ5vrizWc1hPQl/7Qg/UCnOcrhcwFQe0nthORERUmQXo1G4PaopDUZwFCvY3JK23DPJRIyUrr+5HWZqrQ8XHIVhUbIue6mr5Of8JIX/xMusUuEW9V2E9BKssZAYhIqKKh/fRS1eOUSl8o1zWlxDWVdod4RyQ8okBSCVXkhNus+rO51kUVD05I8dYpOexPrmoVTzREBFR6eK9LvfLMRQlAHF+DZH/2Mi8ki2XeNjILaLyFflzFICYJ5V1qRdmt64gRqt9OaoJQkREVFJqq952XxeL3JI9Z1kxs4sQgFjLfzVhfVOyeogvIgPdXw+MSh/ngJBbRAb5oFejSKw8fBkAoDg4z8x+uD1++e8chrQr2gTxIJ+8t2mov7ZE7SQiInLER6PCe/e0QI5BQViAztvNqXDubl0d87edRbPqQYVua30PM39viHV8887g5u5qHnkYA5BKrqBuzqLqUi/cEoA42mvVIB+M7Vm/yPtVq2Tsm9IHAKApC9WZiIioQhrcpoa3m1BhtY2tgvUvJiAyqPDgjpmtKj4GIFQqnGe7KJ5AH41b90dERETuV9BA6ZgqfvbbO3hAQfdGORC7YuDtZHIb6/NFm9hQr7WDiIiI7JnnYjasWrYL/QknP+fHYKT8Yg8IlYq6EQFY9mw8wjhng4iIqEz4fmQ7/LjlDB50Y6X10lBgD4hVl4mqCEWNqWxhAFLJleYoywZl/A4LERFRZRId7IsX+jbydjMKZT0HpKBghAFI+cUhWOQ27pzQTkRERJWUcPgjANthVzIDkHKLAQgRERERuYV5hJTRxWQ0jkKIAh9p9QDWBiu/GIBUcuy0ICIiInfL0huL/VjrERUFja6QGYCUWwxAiIiIiMitMksSgBSwzjrk4ByQ8osBCBERERG51f3tawIAOtUJK/JjmQWr4mMWLHIbDuciIiIiAOhQJwybJ/ZEREDhlc/z89G4dn+c8Uf5xR6QSo9RAxEREbmHZDVIKjrYF2pV0S81n+/TEI2iAvH6oKZ2NzetY46qwT7FbCV5G3tAiIiIiMgrHM0jjwzywZJn4gEASw8kOd0+yEdTmk2jUsQeEHIbwd4UIiIiciNeW1RMDECoWHo1irRbxjkgRERElVwpz8uQSvsJyCM4BKuSK2rQ0LNRJB7uUhvtaoeWToOIiIiIcvHmZsXEAISK5M5W1dG1fri3m0FERESVAAOQiolDsMhld7Wujlvjop2u5zmCiIiIiArDHpBKztWgoUu9MHxwb8vSbAoRERFRgRxlzaLyhz0g5BJ2gRIREVFhihofFDapPH8WLF6PVAwMQMhteFIgIiIiosIwACEiIiKiMok3NysmBiCVHD/YRERE5C7unqOR/zKFc0AqBgYg5BJXAhVWKyUiIqKiYEBROTEAISIiIqKyifc2KyQGIJWccHEMliu9GxzORUREVLkVltWqqDi6omJiAEJEREREJXJHy2oAgCd61PVyS6g8YCFCIiIiIiqRd+9pgVHd6qBJdJC3m0LlAAMQIiIiIioRjUpGs+rBbt8vh3dXTByCVcm5+rkO0BUeq7o6n4SIiIiIKi8GIOSSqYOaebsJREREVMEUloaXtzYrJgYgVKjZD7dH9RBfbzeDiIiIKhmOrqiYGIBQoVxO1ctzBBEREREVggFIMU2ZMgWSJDn9d/r0aW830SUMGoiIiKisyn+ZIrF0eoXALFglNHz4cMTGxtotDwkJ8XhbSgs/7ERERFQa3F24kMoHBiAlNGLECPTo0cPbzShVrldLJyIiIiIqGIdgVXKCYQMRERGVURwqXjGxB6SE1q1bh61bt0KWZdSvXx+33HILAgICvN0st3L1s9+1fjg+WH600JR6RERERFR5MQApocmTJ9v8HhISgpkzZ+Khhx4q9LHZ2dnIzs62/J6SkuL29hXVh0Na4NkFe4r12NY1Q/HX2C5M2UtERESuYR2QSolDsIqpRYsW+O6773Dy5ElkZmbi1KlT+PjjjyFJEkaMGIG//vqr0H1Mnz4dwcHBln8xMTEeaHnB7mxVw25ZUTo0mtcIQViAzn0NIiIiooqrsAiDY7AqpErdA/Lcc8/Z9EAUZty4cahfvz4A4M4777RZFxsbi7Fjx6Jx48bo3bs3XnnlFQwcOLDA/U2cOBHjx4+3/J6SkuL5IMSFzzU/+kRERETkLpU6APnyyy+Rnp7u8vaDBw+2BCDO9OrVC3Xr1sW+ffuQkpKCoKAgp9vqdDrodOwtICIiokqqiEOwOM20YqjUAUhaWlqp7Dc8PBzHjx9HRkZGgQFIucEuECIiIvICjsCqmDgHxM3S09Nx4MAB+Pv7Izw83NvNKRQ/10RERETkSQxAiiE1NRVHjx61W56ZmYnRo0cjNTUV9957L9TqCtLBxP5OIiIiInKTCnKF7FnXrl1Do0aN0K5dOzRu3BhRUVFISkrCihUrcP78ecTFxeHdd9/1djPdh90kREREVAoKu8eZv2Aya41VDOwBKYYqVapgzJgxEEJg8eLFeP/997Fw4UJUq1YN77zzDrZu3YqwsDBvN7PY5o7q4O0mEBEREeG2uGoAgFphfgA4J6SiYA9IMQQFBeGTTz7xdjPcwtEHuUs927kr+e8+EBEREXnC6G61UT8yAG1qhXq7KeRGDECIiIiIqExSq2Tc0qSqt5tBbsYhWERERETkFVIRJ3VwDkjFwACEiIiIiLxCcFJHpcQApJLj/A4iIiIi8iQGIFQo3pwgIiKi0lDUIVhUMTAAISIiIqJygfFKxcAApJJj7wYREREReRIDECIiIiIqF3jjtGJgAEJEREREXsERVZUTAxAqFO82EBERUVnAOSAVAyuhV1JGReDbDSex8tBlbzeFiIiIiCoRBiCVlEqWMHvTGVy4mentphARERFRJcIApBIb2SUWRkXg9LUMzN921ul2HeuGebBVRERERFSRcQ5IJTaqWx081r0u2tQKdbrNrXFRCNAxTiUiIiLvkzhtvUJgAEIFfpS1Kr5FiIiIqHRwUnnlxKtLIiIiIiLyGAYgRERERETkMQxAqEAS+0aJiIiIyI0YgBDHXxIRERGRxzAAISIiIiKv4D3QyokBCBEREREReQwDECoQ70wQERFRWcFh4xUDAxDih5mIiIiIPIYBCBEREREReQwDEILEgVZERERUDvCKpWJQe7sB5H0JDSMhSUCbmqH2K/lJJyIiolJS1HpjopTaQZ7FAIQQ7KfBodf6QatihxgRERERlS4GIAQA8NGovN0EIiIiIqoEeMubiIiIiMoFjgyvGBiAEBERERGRxzAAoQIxQxYRERERuRMDECIiIiIi8hgGIERERETkFUUeZ1HEtL1UNjEAoQLxc05ERERE7sQAhIiIiIjKB8FShBUBAxAiIiIiIvIYBiBERERE5B1FHerNseEVAgMQIiIiIvIKmQFFpcQAhArE0wIRERG52wt9GyI62AfjezfwdlPIC9TebgARERERVS5PJtTDmB51IbEHpFJiDwgREREReVxxgg+GKxUDAxAiIiIiIvIYBiBEREREROQxDECoQByaSURERETuxACEiIiIiIg8hgEIERERERF5DNPwUoEk5psgchu9Xg+j0ejtZpCHqFQqaDQabzeDiKjMYQBCRFTKUlJScPXqVWRnZ3u7KeRhOp0O4eHhCAoK8nZTiIjKDAYgRESlKCUlBRcuXEBAQADCw8Oh0WhYeKsSEEJAr9cjOTkZFy5cAAAGIURuwNNnxcAAhIioFF29ehUBAQGoUaMGA49KxtfXF4GBgTh//jyuXr3KAISIKBcnoRMRlRK9Xo/s7GwEBwcz+KikJElCcHAwsrOzodfrvd0cIqIygQEIFYjXTETFZ55wzonIlZv5+DMBARGRCQOQXLt378akSZPQt29fREREQJIk9OjRo9DHzZ07F+3bt4e/vz9CQ0MxYMAA7Ny5s/QbTETlBns/KjcefyIiWwxAcv3xxx+YPn061qxZg6ioKJceM23aNDz44IO4fPkyHn/8cdxzzz1Yt24dOnfujI0bN5Zyi4mIiIiIyh9OQs91zz33YODAgYiLi8O1a9cQHR1d4PbHjh3DlClT0KBBA2zbtg3BwcEAgDFjxqBjx44YPXo09u/fD1lmjEdEREREZMar41xNmzZF69atXR6r/f3338NgMODll1+2BB8A0LJlSwwdOhSHDh3Chg0bSqu5RETlgl6vx5QpU1C/fn3odDpIkoQZM2ZAkiSMGDHC280jIiIvYABSTGvWrAEA9OnTx25d3759AQBr1671ZJNKBYcuE1FJvP/++5g6dSqqVauG559/HpMnT0a/fv283SwiKqd4WVIxcAhWMR07dgwBAQEO54vUr1/fsk1BsrOzbSojp6SkuLeRRERetmjRIgQEBGD58uXQarUAgNOnT3u3UURE5FXsASmm5ORkm6FX1szFppKTkwvcx/Tp0xEcHGz5FxMT4/Z2EhF508WLFxEWFmYJPoiIiCpUD8hzzz1n06NQmHHjxll6K7xh4sSJGD9+vOX3lJQUBiFEVCFMmTIFU6dOtfxuTkVbq1YtyxDW/GJjYwE47iHp0aMH1q5dCyEEAODatWto0aIFkpOTsWvXLtSrV8+ybUHriIjI+ypUAPLll18iPT3d5e0HDx5c7AAkODjYaQ+HeSiVsx4SM51OB51OV6znL21P9ayH+dvO4ule3gvQiKj8MtdRmjFjBgDgmWeeAQCEhIS4Zf9hYWH44Ycf0Lt3b9x///3YuHGjJYnII488ggsXLmDWrFkMPogqGNbVqRgqVACSlpbmseeqX78+Nm/ejMTERLt5IOa5H97sXSmp5/o0xPjeDfhBJyoFQghk6st+VWxfjarY54AePXqgR48emDVrFgBTj4iZu+aA9OzZEy+++CLeeustvPLKK3j77bfx2Wef4c8//8TQoUMxfPhwtzwPEZUd5l5QKt8qVADiSd27d8fmzZuxbNkyPPTQQzbrli5datmmPGPwQVQ6MvVGNHl1qbebUaiDr/WFn7Zsf0289tprWLlyJd577z3UqFEDL730EmJjY/HFF194u2lEROQEJ6EX08iRI6FWqzFt2jSboVi7d+/G/Pnz0bhxY3Tt2tWLLSQiqvg0Gg3mz58PPz8/PP3008jJycHcuXMtyUCIiKjsKdu3tjzo8OHDeOuttwAAmZmZlmXWhbLMQwkAoEGDBpgyZQpeeeUVtGjRAnfffTdSU1Px008/AQC+/vprVkEnIod8NSocfK2vt5tRKF+NyttNcEmdOnXQokULbNy4EW3atEHnzp293SQiKiUcnVExMADJlZiYiNmzZ9ssS0pKsllmHYAAwMsvv4zY2FjMmDEDn3/+ObRaLbp164bXX38drVu39kSziagckiSpzA9t8gZZlpGTk+NwXUFpzT/44ANs3LgRYWFh2LZtGz777DOMGTOmtJpJREQlxFv0uXr06AEhRIH/HHnggQewfft2ZGRk4ObNm/jnn38YfBARFUNoaCguX74Mg8Fgszw9Pd1pYdddu3Zh0qRJaNiwIfbt24fatWvj+eefx4EDBzzRZCIiKgYGIEREVCa0a9cOer0ec+fOtSwTQmDixIkOU6ynp6dj6NChAID58+cjOjoa8+bNg16vx9ChQ5GVleWxthORZ3AAVsXAAISIiMqEsWPHQqvVYtSoUXjwwQfx7LPPol27dli8eDFatGhht/24ceNw5MgRvPnmm2jVqhUAoGPHjpg8eTL27duHF154wdN/AhERuYABCBERlQnNmjXDkiVL0KZNG/z666+YM2cOmjRpgk2bNtkVMFy4cCG+/fZb9O7dG+PHj7dZN2nSJMTHx+OTTz7BokWLPPgXEBGRKzgLkoiISo2jooOxsbFO59UlJCRgy5YtdsvXrFlj8/vdd9/tdB+yLGPt2rVFbisREXkGe0CIiIiIiMhjGIAQEREREZHHMAAhIiIiIiKPYQBCREREREQewwCEiIiIiMoFiYVAKgQGIERERERE5DEMQIiIiIiIyGMYgBARERERkccwACEiIiIiIo9hAEJERERERB7DAISIiIiIiDyGAQgREREREXkMAxAiIqpU1qxZA0mSMGXKlBLtJzY2FrGxsW5pExG5RgILgVQEDECIiIiIiMhjGIAQEREREZHHMAAhIiIiIiKPYQBCRESlxnq+xaZNm5CQkIDAwEBERERgzJgxyMzMBAD8888/6NSpE/z9/VG1alW8+OKLMBgMNvsyGAz44IMP0KJFC/j6+iI4OBgJCQn4+++/HT53ZmYmJkyYgJiYGPj4+KBZs2b4+uuvC2zvqVOnMGrUKNSsWRM6nQ7R0dEYMWIEzpw5454XhIhKhlNAKgQGIEREVOq2bt2KXr16ITg4GI899hhq1qyJzz//HKNHj8aCBQswePBg1KpVC4899hhCQkLw7rvv4s0337Q8XgiBwYMH47nnnkNWVhaefPJJ3H///dizZw8GDhyIDz/80Ob5FEXBwIED8fbbbyM0NBTjxo1Dx44d8eyzz+L999932sZWrVph9uzZaNOmDcaNG4du3bph7ty5aN++PU6ePFmqrxERuUB4uwHkDmpvN4CIiCq+JUuW4I8//sCgQYMAAHq9Hm3btsW8efOwdOlSrFu3Du3atQMATJ06FfXq1cPMmTMxceJEaDQazJkzB3/++Se6d++OZcuWQavVAgAmTpyINm3a4MUXX8SgQYNQp04dAMAPP/yAFStWoF+/fli0aBFUKhUAYNy4cWjbtq1d+/R6Pe677z4oioJt27ahVatWlnUbNmxAjx49MG7cOKe9LURE5Dr2gBAReZoQQE562f8n3HerMSEhwRJ8AIBGo8HgwYMhhMDtt99uCT4AIDAwEAMGDMD169dx/vx5AMDs2bMBAO+8844l+ACAmjVr4tlnn4XBYMDcuXMty3/44QcAwLRp0yzBBwDExcVh2LBhdu1btGgRTp8+jRdeeMEm+ACArl27YtCgQVi8eDFSUlJK8jIQERHYA0JE5Hn6DODNat5uReEmXQS0/m7ZVcuWLe2WRUdHF7ru4sWLqF27Nnbt2gU/Pz+0b9/ebtuEhAQAwO7duy3L9uzZA39/f7Ru3dpu+27duuHbb7+1WbZlyxYAwJEjRxzWB0lMTISiKDh69KjDHhQi8hDOAakQGIAQEVGpCwoKslumVqsLXafX6wEAKSkpiImJcbhvc7Bi3TuRnJzsdPuqVavaLbt+/ToA2PSiOJKenl7geiIiKhwDECIiT9P4mXoXyjqNn7dbYBEUFITLly87XJeYmGjZxiw4OBhXrlxxuH1SUpLD/QPA33//jQEDBpS0uUREVADOASEi8jRJMg1tKuv/pLIz1qFVq1bIyMjAtm3b7NatWbMGgO1QrhYtWiA9PR07d+602379+vV2yzp06AAA2Lx5s3saTERETjEAISKiMm/48OEATFmvzMOyAODcuXP44IMPoFar8cADD1iWmyeav/zyyzAajZbl+/btw5w5c+z2P2jQINSsWRMffPAB1q1bZ7der9djw4YNbvt7iKh4ys5tESoJDsEiIqIyb9iwYfjtt9/w559/onnz5hgwYADS09OxYMECXL9+He+//74lBS9gCljmzZuHJUuWoFWrVujfvz+uX7+O+fPno0+fPli0aJHN/nU6HX799Vf0798f3bt3R8+ePREXFwdJknDmzBmsX78eYWFhOHz4sKf/dCKiCocBCBERlXmSJOHXX3/FzJkzMXv2bHz88cfQarVo3bo1xo8fj4EDB9psL8sy/vzzT0ydOhVz587FzJkzUbduXXz44YeoX7++XQACAO3atcOePXvw7rvvYvHixdi4cSN0Oh2qV6+OO+64A0OHDvXUn0tETrAOYcUgCeHGRO9UIikpKQgODkZycrLDrDBEVL5kZWXh1KlTqF27Nnx8fLzdHPISvg+I3OfeLzdj2ylT1rrTb93mlTbweq3kOAeEiIiIiMoFzgGpGBiAEBERERGRxzAAISIiIiIij2EAQkREREREHsMAhIiIiIjKhTJUH5VKgAEIERERERF5DAMQIiIiIiLyGAYgRESljOWWKjcefyL3eX1QM4T4afDyrY293RQqAVZCJyIqJSqVCgCg1+vh6+vr5daQt+j1egB57wciKr76VQOx85XekGVOBinP2ANCRFRKNBoNdDodkpOTeRe8khJCIDk5GTqdDhqNxtvNIaoQGHyUf+wBISIqReHh4bhw4QLOnz+P4OBgaDQaSEzjUuEJIaDX65GcnIy0tDRUr17d200iIiozGIAQEZWioKAgAMDVq1dx4cIFL7eGPE2n06F69eqW9wERETEAISIqdUFBQQgKCoJer4fRaPR2c8hDVCoVh10RETnAAISIyEM0Gg0vSImIqNLjJHQiIiIiIvIYBiBEREREROQxDECIiIiIiMhjGIAQEREREZHHMAAhIiIiIiKPYQBCREREREQewzS8ZYgQAgCQkpLi5ZYQERERkSPm6zTzdRsVHQOQMiQ1NRUAEBMT4+WWEBEREVFBUlNTERwc7O1mlEuSYPhWZiiKgosXLyIwMBCSJJX686WkpCAmJgbnzp1DUFBQqT8feQePc+XA41w58DhXDjzOZZsQAqmpqahWrRpkmbMZioM9IGWILMuoUaOGx583KCiIJ7hKgMe5cuBxrhx4nCsHHueyiz0fJcOwjYiIiIiIPIYBCBEREREReQwDkEpMp9Nh8uTJ0Ol03m4KlSIe58qBx7ly4HGuHHicqaLjJHQiIiIiIvIY9oAQEREREZHHMAAhIiIiIiKPYQBCREREREQewwCEiIiIiIg8hgFIJbR9+3bceuutCAkJgb+/Pzp27Iiff/7Z280iAD/++CMee+wxtG3bFjqdDpIkYdasWU63T0lJwfjx41GrVi3odDrExsbihRdeQFpamsPtFUXBxx9/jLi4OPj6+iIiIgJDhw7FyZMnnT7H0qVL0b17dwQGBiIoKAgJCQlYuXJlSf/USuvChQuYMWMG+vTpg5o1a0Kr1SIqKgp33303tm7d6vAxPM7lT1ZWFsaPH4/4+HhUq1YNPj4+iIqKQpcuXfD9999Dr9fbPYbHueJ4++23IUkSJEnCli1b7NbzWFOlJ6hSWbVqldBoNCIwMFCMHj1ajB8/XtSqVUsAEO+99563m1fpmY9FeHi45efvv//e4bZpaWmiZcuWAoDo06ePeOmll0SfPn0EANGuXTuRmZlp95hRo0YJAKJp06bixRdfFA8++KDQarWiSpUq4ujRo3bbz5kzRwAQERERYuzYsWLs2LEiIiJCSJIkfvnlF3f/+ZXCSy+9JACIunXrikceeURMmDBB3H333UKlUglZlsVPP/1ksz2Pc/l05coV4ePjI+Lj48WoUaPExIkTxeOPP275XPfp00cYjUbL9jzOFce+ffuETqcT/v7+AoDYvHmzzXoeayIhGIBUInq9XtStW1fodDqxa9cuy/KbN2+KBg0aCK1WK06fPu29BpJYvny55RhMnz69wADk1VdfFQDESy+9ZLPcfIH75ptv2ixftWqVACDi4+NFdna2ZfnixYstX4TWrl+/LkJCQkR4eLg4d+6cZfm5c+dEeHi4CA8PFykpKSX5cyulhQsXijVr1tgtX7dundBoNCI0NFRkZWVZlvM4l09Go9Hm9TfT6/WiR48eAoBYtGiRZTmPc8WQk5MjWrduLTp06CAefPBBhwEIjzURA5BKZenSpQKAGDlypN26WbNmCQBi6tSpXmgZOVJQAKIoiqhWrZoICAgQaWlpNuvS0tJEQECAqFOnjs3yoUOHCgBi7dq1dvszXxCdOXPGsuzLL790+p6YMmWKACBmz55dzL+OHDHfBd2+fbsQgse5opo5c6YAIGbMmCGE4HGuSCZPnix0Op04cOCAGD58uF0AwmNNZMI5IJXImjVrAAB9+vSxW9e3b18AwNq1az3ZJCqmY8eO4eLFi+jSpQv8/f1t1vn7+6NLly44efIkzp07Z1m+Zs0ay7r8HB1/vl88T6PRAADUajUAHueKSFEULFmyBADQrFkzADzOFcXOnTsxbdo0TJ48GU2aNHG4DY81kQkDkErk2LFjAID69evbrYuKikJAQIBlGyrbCjqW1svN26Wnp+PSpUuoXbs2VCpVodsX9hyOtqeSOXv2LFasWIHo6GjExcUB4HGuCHJycjBlyhRMnjwZY8eORdOmTfHvv/9i5MiR6NWrFwAe54ogOzsbDz30EFq2bIkXX3zR6XY81kQmam83gDwnOTkZABAcHOxwfVBQkGUbKttcOZbW2xV1+8Ie42h7Kj69Xo9hw4YhOzsbb7/9tuVCg8e5/MvJycHUqVMtv0uShOeffx7Tp0+3LONxLv9effVVHDt2DDt27HAYKJjxWBOZsAeEiMiLFEXBiBEjsG7dOowePRrDhg3zdpPIjQICAiCEgNFoxLlz5/Dpp5/im2++QY8ePZCSkuLt5pEbbN68Ge+99x5eeeUVy7A6IioYA5BKxHw3xNmdj5SUFKd3WahsceVYWm9X1O0Le4yj7anoFEXBww8/jHnz5uHBBx/EF198YbOex7nikGUZNWrUwBNPPIGvvvoKGzduxLRp0wDwOJdnBoMBw4cPR/PmzTFhwoRCt+exJjJhAFKJFDT2MzExEWlpaU7HpVLZUtg43vxjgP39/REdHY1Tp07BaDQWun1hz1HYOGYqnKIoGDlyJGbPno2hQ4di1qxZkGXbUzKPc8VknhxsnizM41x+paWl4dixY9i9eze0Wq2l+KAkSZg9ezYAoFOnTpAkCX/88QePNVEuBiCVSPfu3QEAy5Yts1u3dOlSm22obKtfvz6qVauGjRs3Ij093WZdeno6Nm7ciNq1ayMmJsayvHv37pZ1+ZmPf3x8vM32AN8vpcEcfPzwww8YMmQI5syZ43SCKY9zxXPx4kUAeVnPeJzLL51Oh0ceecThP/NF/sCBA/HII48gNjaWx5rIzNt5gMlz9Hq9qFOnToGFCE+dOuW19pGtslCIMDg4mMWs3MxoNFrqA9xzzz1Cr9cXuD2Pc/l04MABkZ6ebrc8PT1d9OvXTwAQ06ZNsyznca54HNUBEYLHmkgIFiKsdFatWiU0Go0IDAwUo0ePFuPHjxe1atUSAMR7773n7eZVel9//bUYPny4GD58uGjdurUAILp06WJZ9vXXX1u2TUtLEy1atLB8AU2YMMFSyK5du3YiIyPDbv+jRo0SAETTpk3Fiy++KIYNGya0Wq2oUqWKOHLkiN32c+bMEQBERESEGDt2rBg7dqyIiIgQkiSJn3/+uVRfi4pq8uTJAoAICAgQL7/8spg8ebLdP+sbBDzO5dPkyZNFYGCg6N+/v3jiiSfESy+9JB588EERFhYmAIhu3brZHDse54rHWQDCY03EAKRS2rp1q+jXr58ICgoSvr6+on379uKnn37ydrNI5H1hOfs3fPhwm+1v3rwpnnnmGRETEyM0Go2oWbOmeO6555ze3TIajWLmzJmiadOmQqfTibCwMDFkyBBx/Phxp236999/Rbdu3YS/v78ICAgQ3bt3F8uXL3fnn12pFHaMHfV68TiXP9u3bxejR48WTZs2FSEhIUKtVouwsDCRkJAgvvzyS4c9XzzOFYuzAEQIHmsiSQgh3Daei4iIiIiIqACchE5ERERERB7DAISIiIiIiDyGAQgREREREXkMAxAiIiIiIvIYBiBEREREROQxDECIiIiIiMhjGIAQEREREZHHMAAhIiIiIiKPYQBCREREREQewwCEiIiIiIg8hgEIERERERF5DAMQIiIiIiLyGAYgRERERETkMQxAiIiIiIjIYxiAEBERERGRxzAAISIiIiIij2EAQkREREREHsMAhIiIiIiIPOb/f2L+vAN957EAAAAASUVORK5CYII=",
1055
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAGQCAYAAABWJQQ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFfklEQVR4nO3dd3gUVdsG8Hu2JqQCCRAgDQhI70gvUlUUFURREVB4bXwWVBAEaQKiKGIvqCCCDRQUUHoNvQSQGiDUAKEmJKRsOd8fyW62l2Szu0nu33VxkcycnTk7mZ2dZ845z5GEEAJEREREREReIPN1BYiIiIiIqPxgAEJERERERF7DAISIiIiIiLyGAQgREREREXkNAxAiIiIiIvIaBiBEREREROQ1DECIiIiIiMhrGIAQEREREZHXMAAhIiIiIiKvYQBCRERERERewwCEiIiIiIi8hgEIERERERF5DQMQIiIiIiLyGgYgRERERETkNQxAiIiIiIjIaxiAEBERERGR1zAAISIiIiIir2EAQkREREREXsMAhIiIiIiIvIYBCBEREREReQ0DECIiIiIi8hoGIERERERE5DUMQIiIiIiIyGsYgBARERERkdcwACEiIiIiIq9hAEJERERERF7DAISIiIiIiLyGAQgREREREXkNAxAiIiIiIvIaBiBEREREROQ1DECIiIiIiMhrGIAQEREREZHXMAAhIiIiIiKvYQBCRERERERewwCEiIiIiIi8hgEIERERERF5DQMQIiIiIiLyGgYgRERERETkNQxAiIiIiIjIaxiAEBERERGR1zAAISIiIiIir2EAQkREREREXsMAhIiIiIiIvIYBCBEREREReQ0DECIiIiIi8hoGIERERERE5DUKX1eACun1eqSmpiIkJASSJPm6OkRERERkQQiB27dvo3r16pDJ+Cy/KBiA+JHU1FRER0f7uhpERERE5MT58+dRs2ZNX1ejVGIA4kdCQkIA5J/QoaGhPq4NEREREVnKyMhAdHS08b6N3McAxI8Yul2FhoYyACEiIiLyY+wuX3TsuEZERERERF7DAISIiIiIiLyGAQgREREREXkNAxAiIiIiIvIaBiBEREREROQ1DECIiIiIiMhrmIaXiIiIqIBOp4NGo/F1NciL5HI5lEqlr6tRrjAAISIionJPCIHLly8jPT0dQghfV4e8TK1WIyIigvOweQkDECIiIir30tPTcevWLURGRiIoKIiTzJUTQghoNBqkp6fj4sWLAMAgxAsYgBARlRF6vYBMxpsmIncJIZCWlobQ0FBERET4ujrkZYGBgQgJCcGFCxdw7do1BiBewEHoRERlQI5Gh66zNuLVX/b7uipEpY5Op4NOp+ONZzkmSRLCwsKQm5vLMUBewACEiKgMWHPkCs7duIOlSam+rgpRqaPVagEACgU7hpRnhoHoOp3OxzUp+xiAEBEREQEc91HO8e/vPQxAiIiIiIjIaxiAEBGVAUwaSkTFodFoMGnSJCQkJECtVkOSJHz88ceQJAlDhw71dfWojGFnRyIiIqJy7sMPP8TkyZPRuXNnDBw4EEqlEn369MFrr73m66pRGcQAhIioDGDPZSIqjuXLlyM4OBhr1qyBSqUCAJw5c8a3laIyi12wiIiIiMq51NRUVK5c2Rh8EJUkBiBERGUAx4AQUVFMmjQJkiQhJSUFZ8+ehSRJkCQJcXFxdl8TFxdnd33Xrl3Nskldv34dNWvWREhICE6ePGlW1tE6KtvYBYuIiIionOratSsA4OOPPwYAvPrqqwCA8PBwj2y/cuXK+PHHH9GzZ0888cQTSExMNM638eyzz+LixYuYN28e6tSp45H9UenAAISIiIionOratSu6du2KefPmAchvETHw1BiQe+65B6NHj8Z7772H8ePHY+bMmfjiiy+wbNkyDBo0CEOGDPHIfqj0YABCRFQGcBA6kecJIZCt8f9ZsQOVcr+fRG/KlClYt24dZs2ahZo1a2LMmDGIi4vDV1995euqkQ8wACEiKgM4BoTI87I1OjR4Z5Wvq+HUkSm9UUHl37d0SqUSP//8M5o1a4aXX34ZcrkcCxcuRGhoqK+rRj7AQehEREREVOJq1aqFpk2bAgBatmyJ9u3b+7hG5Cv+HS4TERER+UigUo4jU3r7uhpOBSrlXt2fTCZDXl6ezXXp6el2X/fRRx8hMTERlStXxq5du/DFF1/gxRdfLKlqkh9jAEJERERkgyRJft+1yRcqVqyIQ4cOQavVQqEoPD5ZWVlITk62+Zr9+/dj3LhxqFevHjZs2IAOHTrgjTfeQJcuXdCwYUNvVZ38BLtgEREREZHLWrduDY1Gg4ULFxqXCSEwduxYZGVlWZXPysrCoEGDAAA///wzoqKisGjRImg0GgwaNAg5OTleqzv5BwYgREREROSykSNHQqVSYfjw4Xjqqafw2muvoXXr1li5cqVxjIepV155BcePH8f06dPRvHlzAEDbtm0xceJEHDp0CG+++aa33wL5GAMQExcvXsTHH3+MXr16ISYmBiqVCtWqVUP//v2xc+dOm6/JyMjAqFGjEBsbC7Vajbi4OLz55pvIzMz0cu2JiIiISl6jRo3w77//omXLlli8eDEWLFiABg0aYNu2bVYTGC5ZsgTfffcdevbsiVGjRpmtGzduHDp37ozPPvsMy5cv9+I7IF+ThBDM3ljgrbfewsyZM1G7dm107doVkZGRSE5OxtKlSyGEwKJFi/DYY48Zy2dlZaFjx45ISkpCr1690Lx5c+zfvx+rV69G69atsXnzZgQEBLi8/4yMDISFhSE9PZ1p6YjILX8dSMXLP+8HAJx5734f14aodMnJyUFKSgri4+Pd+t6mssXV84D3a8XHkVUm2rRpg40bN6JLly5my7ds2YLu3bvjhRdewEMPPQS1Wg0AeP/995GUlIQxY8bgvffeM5Y3BDKzZ8/G2LFjvfoeiIiIiIj8GbtgmXjkkUesgg8A6NSpE7p164abN2/i0KFDAPIHW82dOxfBwcGYMGGCWfkJEyYgODgYc+fO9Uq9iYiIiIhKCwYgLlIqlQBgTDeXnJyM1NRUdOjQAUFBQWZlg4KC0KFDB5w+fRrnz5/3el2JiIiIiPwVAxAXnDt3DmvXrkVUVBQaN24MAMY81wkJCTZfY1huLx82EREREVF5xDEgTmg0GgwePBi5ubmYOXMm5PL82UYNM32GhYXZfJ1hUJKjGUFzc3ORm5tr/D0jI8NT1SYiIiIi8ktsAXFAr9dj6NCh2Lx5M0aMGIHBgwd7dPszZsxAWFiY8V90dLRHt09ERERE5G8YgNih1+vxzDPPYNGiRXjqqafw1Vdfma03tHzYa+EwtGbYayEBgLFjxyI9Pd34j+NFiIiIiKisYxcsG/R6PYYNG4Yff/wRgwYNwrx58yCTmcdqzsZ4OBsjAgBqtdqY0peIqDg4pRMREZUWbAGxYBp8PPbYY1iwYIFx3IephIQEVK9eHYmJicjKyjJbl5WVhcTERMTHx7NbFRERERGRCQYgJgzdrn788Uc8+uij+Omnn2wGHwAgSRKGDx+OzMxMTJ061Wzd1KlTkZmZiREjRnij2kREkCTJ11UgIiJyCbtgmZgyZQrmz5+P4OBg1K1bF++++65VmYceegjNmjUDAIwePRrLli3DzJkzsX//frRo0QL79u3D6tWr0bp1a7z66qvefQNEVG6xCxYREZUWDEBMnDlzBgCQmZmJadOm2SwTFxdnDECCgoKwadMmTJo0CUuWLMGGDRsQFRWF119/HRMnTkRgYKCXak5EREREVDowADExb948zJs3z63XhIWFYfbs2Zg9e3bJVIqIiIiIqAzhGBAiojKAY0CIqKzZuHEjJEnCpEmTirWduLg4xMXFeaRO5BkMQIiIygCOASEiotKCAQgREREREXkNAxAiIiIiIvIaBiBERERE5ZzpeItt27ahW7duCAkJQWRkJF588UVkZ2cDAFasWIF27dohKCgIVatWxejRo6HVas22pdVq8dFHH6Fp06YIDAxEWFgYunXrhr///tvmvrOzs/HWW28hOjoaAQEBaNSoEb799luH9U1JScHw4cMRExMDtVqNqKgoDB06FGfPnvXMAaESxQCEiIiIiAAAO3fuRPfu3REWFobnnnsOMTEx+PLLLzFixAj8+uuvGDBgAGJjY/Hcc88hPDwcH3zwAaZPn258vRACAwYMwOuvv46cnBy89NJLeOKJJ3DgwAE8+OCDVllD9Xo9HnzwQcycORMVK1bEK6+8grZt2+K1117Dhx9+aLeOzZs3x/z589GyZUu88sor6NSpExYuXIg2bdrg9OnTJXqMqPiYhpeIiIjIFiEAzR1f18I5ZQXAQ5nw/v33XyxduhT9+vUDAGg0GrRq1QqLFi3CqlWrsHnzZrRu3RoAMHnyZNSpUwdz5szB2LFjoVQqsWDBAixbtgxdunTB6tWroVKpAABjx45Fy5YtMXr0aPTr1w+1atUCAPz4449Yu3Yt+vTpg+XLl0MulwMAXnnlFbRq1cqqfhqNBo8//jj0ej127dqF5s2bG9dt3boVXbt2xSuvvGK3tYX8AwMQIiIiIls0d4Dp1X1dC+fGpQKqII9sqlu3bsbgAwCUSiUGDBiAgwcP4oEHHjAGHwAQEhKCvn374vvvv8eFCxcQHx+P+fPnAwDef/99Y/ABADExMXjttdfw9ttvY+HChZgwYQKA/AAEAKZNm2YMPgCgcePGGDx4ML777juz+i1fvhxnzpzBlClTzIIPAOjYsSP69euHpUuXIiMjA6GhoR45JuR5DECIiIiICADQrFkzq2VRUVFO16WmpiI+Ph779+9HhQoV0KZNG6uy3bp1AwAkJSUZlx04cABBQUFo0aKFVflOnTpZBSA7duwAABw/ftzm/CCXL1+GXq/HiRMnbLagkH9gAEJERERki7JCfuuCv1NW8NimbLUaKBQKp+s0Gg0AICMjA9HR0Ta3bQhWMjIyjMvS09Ptlq9atarVshs3bgAAFi5caPc9AEBWVpbD9eRbDECIiIiIbJEkj3VtKi9CQ0ORlpZmc93ly5eNZQzCwsJw9epVm+WvXLlic/sA8Pfff6Nv377FrS75CLNgEREREZFHNG/eHHfu3MGuXbus1m3cuBGAeVeupk2bIisrC/v27bMqv2XLFqtld999NwBg+/btnqkw+QQDECIiIiLyiCFDhgDIz3pl6JYFAOfPn8dHH30EhUKBJ5980rh88ODBAIC3334bOp3OuPzQoUNYsGCB1fb79euHmJgYfPTRR9i8ebPVeo1Gg61bt3rs/VDJYBcsIiIiIvKIwYMH448//sCyZcvQpEkT9O3bF1lZWfj1119x48YNfPjhh8YUvEB+wLJo0SL8+++/aN68Oe69917cuHEDP//8M3r16oXly5ebbV+tVmPx4sW499570aVLF9xzzz1o3LgxJEnC2bNnsWXLFlSuXBnHjh3z9lsnNzAAISIiIiKPkCQJixcvxpw5czB//nx8+umnUKlUaNGiBUaNGoUHH3zQrLxMJsOyZcswefJkLFy4EHPmzEHt2rUxe/ZsJCQkWAUgANC6dWscOHAAH3zwAVauXInExESo1WrUqFEDDz30EAYNGuStt0tFJAkhhK8rQfkyMjIQFhaG9PR05q4mIrcsS7qIV35JAgCcee9+31aGqJTJyclBSkoK4uPjERAQ4OvqkI+4eh7wfq34OAaEiIiIiIi8hgEIERERERF5DQMQIiIiIiLyGgYgRERERETkNQxAiIiIiIjIaxiAEBERERGR1zAAISIiIiIir2EAQkRERASAU6OVb/z7ew8DECIiIirXFAoFAECr1fq4JuRLGo0GACCXy31ck7KPAQgRERGVa3K5HHK5HBkZGb6uCvmIEALp6elQq9VQKpW+rk6Zp/B1BYiIiIh8SZIkVKlSBZcuXYJarUZQUBAkSfJ1tcgLhBDQaDRIT09HZmYmatSo4esqlQsMQIiIiKjcCwsLQ3Z2Nq5du4arV6/6ujrkZWq1GjVq1EBoaKivq1IuMAAhIiKick+SJERFRaFKlSrGsQBUPsjlcna78jIGIEREREQFDONBiKjkcBA6ERERERF5DQMQIiIiIiLyGgYgRERERETkNQxAiIiIiIjIaxiAEBERERGR1zAAISIiIiIir2EAQkREREREXsMAhIiIiIiIvIYBCBFRGSCEr2tARETkGgYgRERERETkNQxAiIiIiIjIaxiAEBGVAZLk6xoQERG5hgEIEVEZwDEgRERUWjAAISIiIiIir2EAQkREREREXsMAhIioDOAYECIiKi0YgBARlQEcA0JERKUFAxAiIiIiIvIaBiBEREREROQ1DECIiIiIiMhrGIAQEREREZHXMAAhIiIiIiKvYQBCRERERERewwCEiIiIiIi8hgEIERERERF5DQMQIiIiIiLyGgYgRERERETkNQxAiIjKAAHh6yoQERG5hAEIERERERF5DQMQIqIyQILk6yoQERG5hAEIERERERF5DQMQIqIygGNAiIiotGAAQkREREREXsMAhIioDOAYECIiKi0YgBARERERkdcwACEiKgM4BoSIiEoLBiBEREREROQ1DECIiIiIiMhrGIAQEREREZHXMACx8NNPP+G5555Dq1atoFarIUkS5s2bZ7d8RkYGRo0ahdjYWKjVasTFxeHNN99EZmam9ypNRERERFRKKHxdAX8zfvx4nD17FhEREYiKisLZs2ftls3KykKXLl2QlJSEXr16YdCgQdi/fz9mzZqFTZs2YfPmzQgICPBi7YmIiIiI/BtbQCzMnTsXZ86cwdWrV/H88887LPv+++8jKSkJY8aMwapVq/Dee+9h1apVGDNmDHbv3o3Zs2d7qdZERIWEYEYsIiLyXwxALPTo0QOxsbFOywkhMHfuXAQHB2PChAlm6yZMmIDg4GDMnTu3pKpJRERERFQqMQApouTkZKSmpqJDhw4ICgoyWxcUFIQOHTrg9OnTOH/+vI9qSERERETkfxiAFFFycjIAICEhweZ6w3JDOSIiIiIi4iD0IktPTwcAhIWF2VwfGhpqVs6W3Nxc5ObmGn/PyMjwYA2JiIiIiPwPW0B8aMaMGQgLCzP+i46O9nWViKgM4Bh0IvJ3By/cwpu/H0BaRo6vq0I+wACkiAwtH/ZaOAytGfZaSABg7NixSE9PN/7jeBEiIiIqDx78LBG/772A138/4OuqkA+wC1YRORvj4WyMCACo1Wqo1WrPV46IiIioFDh9NcvXVSAfYAtIESUkJKB69epITExEVpb5hycrKwuJiYmIj49ntyoiIiIiOzhvUfnEAKSIJEnC8OHDkZmZialTp5qtmzp1KjIzMzFixAgf1Y6IyjN+nRMRkT9jFywLc+fOxdatWwEAhw4dMi7buHEjAKBjx44YPnw4AGD06NFYtmwZZs6cif3796NFixbYt28fVq9ejdatW+PVV1/1xVsgIvK5HI0OuVo9wgKVvq4KEfkRnV5ALpPsrtfrBS7eykZ0pQperBV5GwMQC1u3bsX8+fPNliUmJiIxMdH4uyEACQoKwqZNmzBp0iQsWbIEGzZsQFRUFF5//XVMnDgRgYGBXq07EZG/aDdjHW7e0eDAO70QVoFBCBEBSedv4fFvtuPN3nfZLfPG7wfwx/6LeH9AEwxsxW7sZRW7YFmYN28ehBB2/82bN8+sfFhYGGbPno1z584hLy8PZ8+exaxZsxASEuKbN0BE5ZK/daO+eUcDAEi6cMu3FSEiv/Hm7weQo9Fj6vIjdsv8sf8iAOCz9Se9VS3yAQYgRERUYjjAlIgMbHW94hWifGIAQkRUxvCmn4j8kUyyP/aDyhcGIEREZQC/14nI3ynkvFBRPgYgRERlABs9iMjfOcp+ReULAxAiIioxjIuIyEDOploqwACEiKiM4U0/Efkjma1B6LxglUsMQIiIygB/fbDop9UiIh9QsAsWFWAAQkRUBvjrU0Q/rRYR+QDHgJABAxAiIiIqMR+sOoZRvyYxPTTZJPiYolxiAEJEREQl5vMNp/DH/os4nJrh66oQkZ9gAEJEVMb4+kEzn3STLXk6va+rQD5m69IguTlS7HpmLh75IhG/7DrnoVqRLzAAISIilwghsPvMDdy6k+eknOkvJVsnIirdBPKvK/2/3Ib/LqY7Lf/x2mTsO3cLb/1xyAu1o5Ki8HUFiIiodPj3v8t4YeE+VA1VY+e4HnbLMeYgIlvsjfd49KvtAIAn5+40Ly8Ebt3RoGKQyrgsK1dbchUkr2ELCBERuWT5oUsAgCsZuQ7L6dkFi2zgaVF+XLh5B6evZrr9uvRsjdnvr/yShOZT12D7qeueqhr5CQYgVKqcu34H87edwdFLGVi6/yL7mhPZUFJZZVYcvOTa/vmxJJt4YpQXHWduwD0fbkJGjsZpWXvXi3M37uCvA6kAgC83nSpcwUy+ZQK7YBH2nLmBnSk38HyX2n6fo/ueDzdCqy+8WkkS0K9ZDR/WiIgsmQZAV2/bbi2ZsfIoJEnCW/fe5a1qkY8xMC1/Lt3KQWg1pfH3op4Dpg8b3R20Tv6JLSCEAV9txwerjmPJ3gu+ropTpsEHAOw9e9NHNSEqH3R64XZLo2nx0UsOWq2/kZWHrzefxlebTuG2C09IiUqT5QdTceiC88HUZZXp9eLX3ect1hV1m8WpEfkjBiBkdOqa+/01fY0XJaKSk6fVo+usDRj83S63Xufsc5mnLUzHqmdm1nKjPFyu9527iZGL9uOBz7b6uio+Y/r5/z4xxXxdEc8CTlZY9jAAoVKNg12prMvV6vDqL/uxLOmiw3KWH4W9Z29g1eHLTl4jMH3lUfy257zN9fvP3cT5G9nYevIaJv992OU6+8PNwoLtZ/DQ54m4meU4ZTCRJ528Uvoe5HlaSXz6E09ex7qjVwDkd72m0o8BCBmVxn6Vvr/NISpZi3aew9KkVLzyS5LLrxEC6P/ldjy3YC/i3lphN7f+9lPX8c3m0xi92LqbFADITMaE/ZB4xu7+tDo9hs/fjc83nAQA7D5TvK6RG4+n4cSV28XaxoRlh5F0/hY+XX+yWNshzykPz4v8IfguCWkZOfjrQCo0Lkwm6XaXTRfLPTt/j1vbJf/GAIRKtfLwhUbl27VMxylvDRw9FXxp0T7b23bSOuBqTorVR65g7dE0fLDqOLafuo4h35t32UrP1ph1uzK9SRMQ+GXXOfzvxz3I0ehwODUdQ3/YjV6zN7u2cyfu5HHOAPIef/lOupOnxQ+JKbhw845HtnffJ1vx8s/78dXGU84L27D/3E18uPo4crXF73NZ+h6Vki0MQKiU85OrPVEJ0XvgFL91R4Mpfx/B4O924uz1rMJtW2w8/Y7GOHhW52TH6Xc0mPTXYRy8cMtsYrDNyVetyjadvBrdZm00/m56k6bTC7z1xyGsPnIFC3eeK3bLhyV20/QfTJvuPe/9cwyT/z6C+z/xzFgUw4OQtcfSnJa19Vd++Itt+HT9Sew/d6vYdWEXrLKBaXipVOP3GfmjPK0eKoVnnu+4egPtqFh6tsY4GHToD7uxbGQH7DlzA7lanVm5bh9uxI2sPDzSogb+PpAKjc7+RqeuOILFey9g3rYzeH9AE6f1uHgr2/iz6XsyjXPSszWobDLjsSd4IoCjoitvQYfpu9XrhVk3Rm/aknwNgPXEfsVl693kaHRYuPMc7rmrCuIjgrz6vZxyLQvxEUHe2yF5DFtAyKg0PlUoZ99tVAqcv3EH9Sb8gzd/P2C2PM+Nrgfrj13BqF+T8lsWinCO9/3U/lPPlGtZGPr9Ljwzbw8+Xptstu5GQZesP/ZddBh8AMDxy4UtFaY3ma7ccGZkF7aYmJbPztPi1V+TnL7eHbxG+FZZOP538rQY9WuS06QOgPn7Xe9Ca0FJcfTgQgiBpPO3kKPR2S3jjjnrkjF1+RFjK6e742DszRVkj+l41cST19x6LfkPBiBUqpXVAX9Uen23NQVCAL+bzKvz7vIjqDv+H5e7Fz0zbw/+2H8Rn6xPdngjkZmrNd7Amz5AOJnmOBPPvoJuEJfSc1yqjzNjlhwy/uzoE2mo632fbDEuM22hWJaUalZ+04mr6DhzPbYV3GTo9QJDvt+FxpNWIS3Dtbp74gn8H/su4MPVx8vd03xPK61H75vNp/HH/ot4bsFep2VNv5O2nbqOF37ai5Npnu1W6Apbp+rve87jtz3n8dOOs3jo80Q8/b176bXt2XPmhke244r9526aXetkpfHJKQFgAEKlHLtXUGkwd2t+96fZa05gzZErmLjsP5eyyVy4kW33HF+WdBGNJq7Co19tB1D8J82pJl2kXGE6lsSU5bgSU8sPXrJapjOpeJrFk9Ah3+/ChZvZeLkgA9iOlOvYdOIqbufkt5RcvZ3rtIuJJy4Ro347gE/Xn8QeTnzqNneO//XMXExbcQTJHh4HVFxXMlx/Qm85B8Y//13Gk3N3lkCtnNTD4shn5mrx5uKDGL34IL7adBoAsCvF/cDB1v2+ZQbNkozTH/5im9nvct7Fllr801Gp5uxCl53nmSZmync9MxefbziJyw6enN/O0WDEj3vw14FUu2XKKyGAET/uwfztZ+3OvWFKo9ObtYDkaHRYcfAS0rM1xrS8e87e9MgTSFee7prKyLGdXcrRQ4H/+3k/5lh0+3IUsBjkFnQVydUUBm3bTl1H62lr0XTyaoev9eQgdM4pUjzO/hRjlhzEt1tS0GfOFscFSxl3AhhPsTzWpl1A3el6df7GHTwzb7fDMt5uhPjFZHZ1iS0gpRYDEDLz38V0fLIu2WN9Q0uaoy5Y45ceQv13/sWB87e8V6EybuSi/fhg1XE8/b39J3qfbziFNUeu4OWf93uxZqWD6c2wKzclWr0wu5F4d8URvLRoH4bPN78hGPDVduRoi/eZPWRnrhB3Wc58bGn22hNmv+e50BJ0O1eLlYcu2U3h6SiIsbdq28lrSLlmuxXHHk8P6AXyu4itOnzZ7bqUBjq9MBsr5Iyha6CzDGz+zJc1n7/tDH4veLDhqbj7lV/2m41lsXW7b9oNasLS/7w67oddsEovBiBkJCF/8OpHa07g64ImWr/n4EL3045zAIBP1iXbL0Ru2X76OgDghIPZfm9kef9pn7+yHDNgel9lSI6z/dR1jP3jEG7nWN/canR6s20s2Zs/G7qtif7e/vO/YtXVV9/j3T/c5FK5Fxfuw/M/2W6l6ThzPdYeuWJzna1xG0cvZeCJuTvNUgO74s3FB3Hwwi0AMEs9XBybTlzFcwv2ul0XwLXWI1+a+Nd/ZuN9nI3Z83TgIYTApL8O4/utjoNiD+/Ue/sycTk9BxP/Oow3Fx+0eRxNP97u1DD1lvOxVjKTO8kFO8569QGmj5KMkQcwACGbjlzyzNPQkubKhZQPSLzLsj9weWP65Xv39HUWEwkWnrEySYIQAoO+3YGfd53Dh6vNWwYAQxeswt+zS/CLXV6KPyip6TkY/mPhLMn7zhUGaLbGnRxOzTD7PUejM0sTvGjnOfT8aJPNSdy+2nQK7/97DA0nrsK2U9ew+vBlrD9mO/hxxd4ijitZsOMsmkxebfZe/Y3hIZCrPB1QHbiQjnnbzmDK8iMe3a4j3gg/hBDYd+6m2UOLcX8eMltvGXibfrzdSabgymXB8prvzbl32AJSejEAoVLNtQspL1DkHROW/mfWPzntdi6+M3n6atkCYvr0/7SNLjh64b1Mb2XhizwzV4tP1yVj1qrjZsvT75i3Llm+0/s+2YIO763H4dT8By/j/jyE5LRMTF951GofuRo9viiYDfq1X5PwvwV78cy8PdAWdCXL0egw5Ptd+MFGVzQhBF7/7QAm/XXYuKyoN2sTlv6HzFwtXi0YC2SQp9U7vC5+sfEk4t5agXlOusqVhO2nrjt8Oq71cADiSivVjH+OYvj83XaDn7TbObAVVmh1euw4fd1qLh1v3HsvP3gJj3yxDQ+YpNs27SaVf90wZxokOKviybTb+HD1caRna6wy5dkac2H5N/Vmw5yv5lmh4uNEhGRTack26c/VnLvlNBJPXsNXg1tCrZD7ujpeY+8+Nkejw/pjaehQOwJhFZQubWv80kPQ6QVmPNLEeWE/sGDHWYfrTW8MZ1m0eOj0eqsygPe+zF0Zi+HvGk1cZXN5q2lrsP71roiuVAHnb9yxGi9z+mp+8Lfy0CU0rB5mXJ6j0WNrsvk8A6bjUEzH8Wh0AhqdDot2ncOmE1ex6cRV9GtWA0FqufHzf/FWNpbsy0/PPPa+u6BWyJ3+faevPIoTV27juyGtIbdxsyWQP87ilV/248m7YzBl+RHc2ygKnwxqbnN77/+bH5xN+vsIBrSKRrDa+jbgemYuKgWpIIRnb/A+XX8SKdey8NkTLWyu19n54tlwLA01KgaibtUQj9UFyA9MDd2Nd525gba1KgPI/zv9uO0MFHIJn284ZfO1z8zfg80nrgIAzrx3f3799cIrT/8NCT7OXLduoQPyzwlH1XBWxR4fbQbgeppuy+xw3m0B8dquyMMYgJBNppePG1l5qOTh2Yk9xZWbM1892H13Rf7T0z/3XcTjbWJslkk8eQ1xEUGoER5YYvW4kpGDk2mZaF+7colnDLmcnmPWAmDqg1XH8d3WFDSNDseylzo43dbtHI2xC8eonvUQGaL2aF2LIiNHg9s5Wrf+XkcvFXb3cXS6anUCy5Iu4u8D5l2GFu10rxtLWaWEFhrIUZQWTY1O4L1/j+HV7gnoOXuzy6+TkN9iYGqrnYnPnv5+p9XYnBZT1yC2cgVserMbAPMbv+2nrqN5dEWnN4PfbM6/Qd6SfBVt4iuhgsr8a9uQWe3cjTuYsCy/ZeWvA6k4fS0TE+5vgLsLbqptydXorAKQfw5dwgsL96FtrUo4nJqBV7onoHPdSMzfdgaPtY5Gk5rhjivsxPKDl/DZE7bXmbZCaHR6KOUyHLqQjmEFWZgMN/r2aHR6aHUCgSrXHvg89s124897z940BiDP/LAbx52kAjYEHwZanR69Zm+22ZLpac7OGWGj5dT0d9NkCsuSLqJfsxo2t2MrgYvlp2+DjckWOQidXMEuWGRk3kc0v/m6zbS1aDF1jUcGcpfEwDRXumB58/KUlpFj1ZR/x04q4O2nruPJuTvR4b31JVqnu6evw5Nzd2Lj8avOC9tw9XYu3v7zEP5zIUvSq7/az3y1dH/+AGrTLzWtg6fupkdRq/ePp/NNJq1Gh/fW40rBJHhanR4p17Jw4eYduymfTY+7o4B5Z8oNvPJLEtYeLRxPUJQ8/WVRU+kk/lM/i8+Un5gt7ybbj7nKDxCF6063seLgJZvjbPabjKHQ6ITZmIx1x9Kw7ZTzbQO2EwMAwFmTp9SmXYyG/rAb987ZbHZjqNcLrDt6BXvP3sCMlUfN0l0P/WE3Wk5di0vp5vO1XLiZjXM3rJ+E/3cxA499swPHL9/G238ewpHUDON5a9Bm+jqcumqeUGLGP8cAADtO38DtHC3eXXEU93+yBQt3nsODnyV6fObpU1czsSzpIoQQZi0gk//OD6aOXs6w91IrPT/ahPrv/OtygoBjJhm6Pijotpd85bbT4MOWE1cy3Q4+fkhMwdTlR4owwWVh+euZ1kk/9EJYZdmzt4tXLLrwmUp2MqEpAGNwaGpnimufGU9g+FF6MQAhu2atPm6cGOyjNdZf3O74c/8F3DXhX/yyy7NPc73xoGXH6et4/JvtTmez3Xg8DW2mr8P/uZh+1psXaQDYkly0G4e3lhzEwp3n0Nekv7E9Ry/ZP0aWD6q+3XwaCeP/sXuTbfqFaXrjnnItC8/O213kwbt7ztzA6MUHbM7pcDLtNmavOWE2uPNyeg7+9+Me42zcQH5QN/i7nXj+p/zsRR1nbsDQH5zPKmz51LS0CUWmSzf7phTQ4nvl+zgT8ASWq8ZBBfdT2Y5W/Aq1pEFf+U5UK9h/vHQJP6g+QA/5foxVLnJpO/8evmy1zHRis282n0b/L7dZlfGEFQcvWWW6Sk3PwcHzhYH90qSLeHb+HvT/cju+3nwaY/84aFY+W6Nzu0Xs4S8SsXDnOdz3yRbcPX2d2TqdXmDK30eQlas1Xt+UcutbOo2u8AM4b9sZZOVqizVgfO/Zws989w834ZVfkrDy0GWzz7y9AezbTl7DR6uP28z0ZOiSdKAgU5m7tiRfdauFzFRRHsRP/vsIvtuagoMXrB/upN/R4PutKQVjUOxr+e5aq2W2/jQl8V1p7xxwFNQQGTAAIbsO2bgoFtVrvx4AALz1xyEnJd3khS5Yj3+zAztO38CIHx1P1PZlwcDUFYfMu9DY27+3M2gWtV/uMTfy+CssOuReNZvZ2nzdtJVHIUR+gGOL6VNB0y+65xbswbpjaUW+URzw1Xb8tucCptrIjNPjo82Ysy7ZbPDx09/vxOojV/CExWzGW5KvYe3Rwu4HO8toa0UoMnEm4AmcCXgCm9SjsF79OmKkKwAEgnEHph/CR+UbMUf5GWpKaVBCiwHyTTgZ8DTukScBABrJzmCW8iu8pliMLapX0E52GC2kE/hE+SnOBDyB7eqRUMM8MKwtXUQ7WeHf6mfVuwCA+2U7jMvul+1AJG6V0BEovlytDi8t2mdznSG1NZA/47qpDTZaLfN0eqt5YByx1wJrWre+n25Fj482Y1fKDSidTC2deisbDSeuMnvy/fmGk3ji2x0ut3L3/3I7Rvy4B3dPL7x53nPWtc/PE3N34pP1J1F73EqcupqJ9GwNBn2zw+zh1q07GsxecwLnTVqGztkZL2Fq8HfOHyLY4873TFpGjtn17eYd64chbyw+gCnLj+BpG3Vydim3da13pZXl1p089JrtOC226fu0N2bHm/yhDlQ0HANCRlKRM4X7jisZgjyVFtay+4J1XdzjfrN78TjbX65Wh9WHr6B97cqoHFy08RYKi6enWbla49gNe4MFT1/Lwq07eQivYD7OyPQJp+kXqq3uJkVx5rr97hL7CyZEE0I4nPOktKuMdNwtO4qLIgIHRG1IEBij+AVZIgBnRDWMUy7CaX2UsXxFKf9YbFa/ZlyWpK+Nx/PGY736dVSX8m8i+8m34ay+CmJl1v3DH5QX9rv/WTXNbF2UdAPHA4YCAEbkjcJufT2sU79pViZedgXvKH7EvfLCGzO5JDBYsRofaQcW8UiUrHrj/3WpXCRuop7sAhL1DSHsPB+8k6szC3yLKz1ba5wEce4W5/M/GVIYbzJpzTN0X/p9z3kMbhfn0n7XWMzbYm8OEEdX76E/7ML5G/ld0kwDuTGLD+K2RTeszh9swFv33oXnu9R2qX6OHHOjW5ilP/dfwGu/HsDT7WKNy2xNsGnoimnrAZCzh0mWXdBm/HPUpbES329Ncet65w8TRvpBFaiIGICQ0Zbkwi8UIdxvOTh++TZWHEzFc11qI8hGZhUDvV44zKxy4PwtxFUOcilTkjfv4Z3uy826FLVFIk+rxy+7z6FjnQjUigx2+XVXMnIx5e8jeOLuaNSpYp1NZvaaZHy16RTqVAnG2lFdXN7u5fQcJJ68hgeaVodCZv/pqaPzaewfh/DlUy3Nlpk+2TLtO+8soDx7PQtj/ziEF7rWRqeESAf1cX6C++OXW1PpJNIRhBgpDT+qZmKtrjme17wGOfToLDuIU6I6akjXkCKi0FO2BxOVC8xe/4+uNSQAh/TxeFP5m9P9RckdP5luJjuFYwHDrJabBh+fax/EB9rHMVExH8MUtjNVWfpW9ZHZ70Pz3sQ81QcAgGcU+Tf0OiHhDc3zmK36Ei8rluJbbV/cRgWXtm9PfeksYqQ0rNc3h6aYX5HNpJOoKzuPJbrO0MHxwOhPlZ/gAXl+q84c7cOYrX3UZjlnD0LcZZokYbWdyRxdNWHZYeRo9BjaIc44eN5Vpt28DIQQxuDGFkPwYcky+DB4759jeL5LbexKuYH3/rFOseyK/y6mW3VHFUK4/KDrvYIxNj9uL8yYl2cjAJFJks2n+1qd3mmr1pS/zVt3XZ1YOM/G38CS6fv0ZrYre/x9Mk6yjwEIGR0w6XIl4FrLQZ5Wj60nr6JNfGX0+3wrcjR6pN3OxXv97adNXXbgIh5uXtPmuk0nrmLI97sQEazCnvE9ne7fcP3T6vSYsy4Z7WpVRvs6EWZlHNwTe4W9o1jUrKffbD5lTOGaMuM+lzNbGfq/L9p1Ft3rV0V85SC80buecf3fBakdT7ow8NDUfZ9swY2sPJy/eQeZDgZ/OnoCt+fsTcz89xg2HEvD4hfaI1itgOm4c63JF6OzVq9Xf03C/nO3sO3UdYdZc1w5av7whA/IzwDVS7YHn6s+sVrXQ74fC6XpuFt2zKVt3SvP7zrTR+56Nx4A+E57Lw7oa+F95TcIkGyP49itr4vFui6YqfwWAJApAnBP7odIQ0UAwGTt0/hV1w3XRBhqSlexVP0OrohwvJD3KvaJuhit+AUvKv6y2u5aXXNs1DdDvZx5xhYSAPha9wCW6TtglH4xomVXcShgOABgja4l/tPHYYGuJ24gFI/KN2KM4hekiGq4KUJwVlRFT9leKCUtbooQREq38IW2H/KgwAzld8btL9D2gBZyJEgXkIaKeEReeOM5QzMIQxSrjK0+O/T1URkZqCDlYGTeyzgqYvCt6kNESuloKSVjnPZZxEhpkEGPTBGIX1RTES+7gv/lvYYPlF8jTCps2XtOvhyrda1xVlRBpkVAZeiuE4pMDJRvwnJdW1yG/UxX3jZt5VFk5moxx83EJbYSUiSevG4chwjAas6Nohr49XbnheywNRbOneuErev+uRt3MPaPQxjSPhZ3VQsFkD8xqK7gWnc9M9fYKt3r483GtNH2mCaycIe7Dx1tBY3e5g9BEBUNAxAqllmrj+ObzafRtlYl5Gjyr6zOLn57z960G4CsLrhJvpZp3SfWFsPFZ/HeC/h0/Ul8uv6k1U1ncbpgmXYzcHbja2+95VKtTg+FXFbkLlgfry38Yk88eR0dEyJsljt7PQs/JJ6xWp6j0WNFwezQpgGIrQt52u0cm90DTN0oGMz9/dYUZOSYByAaO1HWSotxMkII4xiaX3efx7Md482e/ml0+ZOr/XUg1XieAcCJK7dRt2oIMnO1xnSiVyxy1x+9lIGTaZmQSRI+21CYUtVZl4QLN+/4JP10O9lhdJUl4aSogYP6Wugn32bzptyUq8GHPRmiAkIlx13bvtXeh8uojA25+fNL5Lc0CBxQjzDePD+Z9zbyoESivhGEAC4iAuahnoRjIj8l9TURhrgc88Hj72sfx/vax6FGHraqX0aklIGJmiGYr+sNAMiFCrVzFmCofBWS9LWxV+SfvzO1j+Mz1afG7fSU70VP+V68plxitv0IybrrTA0pv+vOZOV8q3WDFdYDfA3GKn82+72trPCJ+p/qiWbrHlNsxGOKjTa3841qttnvN0UwKkqZWKEeh6siDO9ohuJZxT/YpGuC9frmyMjOb70cpViMoYrVGKpYhe65sxAppSNNhCMPrs2x4wkand5mqlZ3gw8gf4C9pae+Mx935WpXNkeWJV0s9jYsad2Y/0NnI6OfoZXn193ncHpG/veXTAag4JCMWXIQc4e0hk4vnAYfhvq463aOxiwjnCseczGQs7zee9If+y7ikRa27yfIvzEAIftcuG//uWDg347Thd00TG8QbbF3bSzKDbnhFWc9NC7AVPodDYZ87/qgRHvV/2RdMoZ1iAeQ30d6/NL/8M3TrVz6wrqTp8W5G3eMT8V2n7lh9uVyPcs6BaPBE9/uxMVbtrso2GL6FG/p/otoHV/JYYrg9GwNwgILb3Ysgw8A6Dl7M96+rz6OX7ltNqnViwvNB+SaBpyGoMW0aV2rF9icfM0qu0qv2ZvRtV4kNh6/igXPtkGnhEirgO/eOVtsvwGT8ztHozNO7gXk97vuOHMDBrYquS+2BtIZVJVuYoe+PqpL1/GUfC36yRNRSXK9BeozbT90lh1EE1mKcdl7msfRSJaCvvKd+E57L6Zqn4ISOmggR33pHO6R7cchEY92siP4VdcVZ0T+GI8wZEIFDa4WtFYAAv+oxqK+LP8zfhmVAMCii5OEprnf4l7ZLuzR1zXe/F4Q9ru+uSIXKrTO/crmOh3k+E53n9my5fp2yMtTWN3MO5Koa4hWshNIEdVwl6xw7pqj+hi8qnkRq9RvFa3yRbRc1xbvap7E/xQrjF3MIqV0fKmaAwBoJTuB17EYv2bej5aq/agjyz9fa0rXjK1CF0VlDMsbjQgpHSposUdfF5kIxO+qyWgtO4HOubNxTlR1UAsBCcLu+BNLPT7aZJZmuDiWHyy5m1RTJZGhSacXLrWC5Gn1uHnHfhY4003ITR6Q7CsYk3bexe+5ojzb6vd5okvBTdL5W/i/n/fj7fvqu5ygxPJ670lbT17DphNX0aVu8a455H0MQMim/D6t5rLzdNYTPNm40Dmbs8FWn80/91/AtBXHUC3MvcHPhgutw1ipiA0gppM1me7Lbl1Mfj6SWvik1fQL583F+Rmfhny/C892jDcuP3Y5AwlVQqxmOu73WSKS0zLxw7DW6FavCvZYzDXwyi9JiAxWG7udbTiWhtjKFZCt0bkcfNzO0WDC0v/Mujq8+msS3n2okcPXNZ28Gien3et0+9NWutfX2nCcTQM0rU5vNxg0zLMxfeUxrPi/CJdn7zU90rNWHcfcrSlWZX7bc8G1SpsIQjZ6yvYiWdTESVEdAhKGy1cgSdTBN8qPECzlYJrmCbztYupYUzdEMLrnzsJNhBbWHQPxkCwRPeV78I5mGK4jDNABI01OX8NYhqMiFkd1+YNfN+ubmm07HZbjiSS8pnkRD8m3Yq72fhiO2B8vtscjX2wzK/eP/m6334unrda3NraoqKBBS9kJzFF+jirSLYzKex6nRHW8qliCWdqBSBFRuIMA42uDkI0PlV9hn74OftDdCw0UBdsSCEY2MlEBEUiHAPKPLwTayY7gtD4KVwoCM8MVoCpuood8H0JxB3Vl5/Gp9mE8Kt+EFxR/AwC+1t6PnrK9CJTyMFd7LxrLUvCp9mGcEvmTwa3Vt8AzsP+k/zHdCrv5K2tI17FaPcbuazerX8PA3Ak4JqIhg4ASOlxFGPL/tgKfKD/Dg/LtGK8Zhp90zrvAeir4KO20OtcCkPnbzri8TdNxkoaHc/aubb/uLl56+1t38lwKPoD8LGx/H0jF6av+k5xjyPe7UDlIhZqVKrg0yS35BwYgZJOtS2mbaWtxaHJvp+WcXYhtPfk3pOm9ZmNSJcfyt+WoN01RO2AVJ33vfZ+YP3UXQiDPojuS6XHo8/EWPNYqGjMHmI+dMUwEtXT/RXSrV8VmJqkn5u7Emffux96zN2xOCuVIVq4Wc9YmY2lSqtW6sw6yRBW+vgQmlyz4m5rOKeJKX2MhBKbYSK1rz86UG2gzbS02vtm1yH2mLcVJl/Cx8gs0k51yWM6V4ONXbVdjt51JmqexUNfDzqBoCUv1HbFU37EINXbsmIjBe9r8aatPTrsXCicpWt0hl0klNsYmD0ps1zdEm9wvzJYP09i+Oc9CIJ7XvGZjjWQcg3ENYWbLt+sbWpUFgCuohIW6HvmLCj4eM7WD8KH2UQhI0EGOGXiy8GUWH6Ht+gb4UvsALohIyKFDrJSGOdqH0VB2Fu8pvkWsLA0XRWVM0zyJdfoWaCU7jtnKLyGHDpUl50+kf1NPNfv9X11rTNQMwRr1aGM3vHeVP+Atxc84oK+Nd7RDcUFEoop0E91l+5ELJSKRjnX6Fjgs4sy2VVNKQzvZEWzSNcXdsqO4X74TH2gHGoOrRtJpNJalYLGuS7EH+PuTw6np+GX3eYdlcrU6tx7GmHYRNXxK7LWaj1lSvPT27Wa4Pxnu4dSiZwIrCdez8hAcUHbOqfKAfy2yy/IG3FZmEVvdppzdLBZ18LUthS0gnp8P1fL9O02C5aCJ5FJ6DrpaTEJmWfzXPeetAhDLso6CogMmE5q56oNVxy3m6ij07RbrFgFLJTEA0LDJ538qnHfFMniz97p5Fk8YnXXrS7udiwbvrELtyCC36wnkp7GdqfwGW/WNsVtfDyvUbxdpOwbjNcOwQne3sYVjjHYEQnEHGSha/YoqNECBR1tF4zuTViFXg49eDaq6lE0pMliNy25mdAoNUJh19Xule0KRxhv4gtbFr1sBGWZqB1kt365viPvyZmCQfD3+1bcxdnNL1DcuCLQEWkjJCJRycV5UQbZQY47yM7SXH8Efuo74SPsoNqhGQSmZRzx95LttJiQIlnLQQX4Y6+RvWq0DgFFYjF36evhK+wC0kGOs4mdjdz3TYSh95LuRLVRYp2+OvvL8MR0zlN/hodwpGK5YgSP6OMzV3Yc8KHCPbD8ek2/Ee9pBSBHVCrbg+NoegFy8rPgTg+Vr0D13FnKgLPi85L8uEDnQQV6iY2Ms5wjKJ/Ch8ku0kJIxTjsc/ybd5dY25WYtIPn/F2Vshytsjb8pTeYNa42osECbk2iS/2IAQna5clOf5SAd4PkbdzB1+RGM6FzLbLnpTatOL5DqxjgFS65cjp1licrR6JCr0Vul/XU1u9Qn65KRo9E5rMsvu89bpVp05+bdUNbe36SozeE7Tl9HrSLefANw+wbSFUIIq2w3rozFOX7F+umvswH0Bo7SB9sm8H/yP/G6cjGA/ExUrrouQnBeVMEP2t5Ypu+AIOQgDFkIknKQLCzHnEheDz4AoHp4ICb0bYBtp66bpWm1JJOAMX3uwox/CgfBP9k2tsjpXKf2a4gJyw7bXR9eQWUWgLzWsy52plw3G4NWlmUhEHN1+YOUH2ha3Zi5Lp+EfaKu2UXxCc14mE483zz3a0xXfgc1NEgR1dBTthe1ZYVjL26KYDyUNwW9ZbsRLmVhkHy9ce4XW9rIjqONyn6aXINAKc8YfBgsVb8DAOgr34nRyl/N1vWW7zH+nCfk2KBvjjayY3hR8wqGy1eihSwZaSIcQVIOakrXjGV3BbwEID9r2gjN66iCW1ihHocroiIG5Y2HHDqz7ouByMF4xULs1SfgD31nSNBjlGIx6ktnMVLzMlrJTiBKuo7fdV2dvkdLLaRk9C/ImvazahqurFkICe+6PL7GrAVECCSevIaLN4v+XVmWNa0Zjoo+SBhCxcMAhGzyxIPt1387gF1nbljdjJh2u3hp4T5jetiiMDzhNu2a9OhX2zCmT+HTJmdhRLsZ63Dzjgb7J/Q0u4hZdXeycUwW7TyHj9bkp8StEmJ//IqtzCfuBCCGkvZioinLjxRpEN6xy7fdmunc0hcbHXc1KgohgPf/dX5T44q7JriWNcfRvDQAIIMe1aVrGCJfjRGKlU631z93IvaKuoiTLuOsqAoBGZTQIgjZuIVgmJ6VWQhEFgI9Pvdn3arBRZ5E8dNB+ZmunOXYH3dffQzvVMssAFE4OZYGllnjpvZriMHt4hwGIF882cKYBrVqaP7nzTQRgilDX/B+nye6VB9/9uWTLTDqtwNmT6rf6FXXIgBxLhMV8LLm/4y/z8YATFX8AKWkxRua541zlXyjeyD/f+39GKb4F5G4hQBJg4+0j+KyqAgdZBgpX2oMwAEgVygwUzsIq3St8JnqU2SICvhX3xr3ynZBBj2uoBLW6lpACS1mKOciSHKtu61K0hkDEtOJKx0FRj3k+5Eif8r4e4SUgYMBIwAAA3MnoK3sKMKlTHSUHUJd2UU8iXX4CF/hH11rY5rqY/LCuW0mKn5El9zZ6CQ7hI9VXyBHKDFROxTx0mVcEBFI0tfGOMUi5EGJCCkdjWRnkCvMb6+q5p5BZ9khNJJSsF/UwTa99Ri7CsgBcjKAgFCYNjhm5GjxpM1WFgIApcLHufapSBiAkE0Ctm9295+7iWVJqXitZ127X/wG9gZBm6ZXLU7wAZhkDTGp7O4zNzHgK/vpAW9m5WHYvN3o36IGBreLMw4STzp/C0cuZSA7T4c3etezam0w3DDdydNi3dE0dK0XiXF/Fva9TbPTlQmwHdDZurfbduoaEqqEGGcPL3x9fmFbaXUB4HZO4WzG3uTuDZArdp+9ic0m6Y+9wdZTfjXy8Lrid2SJAKt0rqZS9FWhhwx3oEYYsvCM5k2cLGjJMGSYAvIHgt+C9QSQJaVtrcpmAciGN7qim0k3wL9GdsCDn9m+Oa9TJX9Aeo8GVXD8ym1UCw2wWc6gVmSQcRCrqwFItkXrqWEG7d+fb4ez1+9gx+nruJ2jQcq1LOP7aFQjDGfeux9HUjNQs1IgAPsPSxpWD4VCLsOsR5vijd8PuFQnT3qqbQx+2lG8wcEGDaqHYupDjczeR0ylCogIVhdh3FyhXKgwWvuczXUVVHLcyguxOyHip7pH8IOuDx6Wb8VSXUez7GgP500x/vyzrrvVa0/lVcezin/wp64jrokwfKD8Go1kZzBH+wiW6DrhOfly1JalmqU2dmaJriMU0KON7BiiJPstYpZjYEzda2dunGApB3sDXjD+HiBpjHPd2KOWrLssz1fNNP78f3kjESGl40ddL+ggR0VkYKf6JeA9HTDsH7MsWOQYu16VTgxAyC5bs7M+XJD9Jk+nx/SHGzt8vcrOU4mizn9hc1sulLmdo8HG42nolBAJuSx/Loik87eQdP6W8aYHyG+RMORjf7JtjNU8EYZqf7j6BL7bmoIOdVyf/OvbLdYz0S7aaX1z8sS3OxGolGP72HsQXqGwNcawb3tB3d6zN7H3rHs53P2Vt4MPW2pJqVivfsNhmWR9DQzKG28xONm7qoSo7Qa+A1tFm822HB9h3pUrSG3/8m/ofvhy9wTUighGJztzzRgsePZuY8pmy0xucpmELaO7ocPM9WbBgr3um63jKqF1XCUMaJkfxH2x8aRVi1iD6oXdaO5vEmXVyvpSt9rGMSu+ytbzao+6TgOQR1vWxDMd4/Hvf5cxvFM8/th3ERP/OoxqoQFm3RsrBqnMbrI61omAJEnYM74HNDo9mkxajWyNDqN61jW2yDrTo35Vh8kX2taqjPXH0uyuB/JbVBboerm0P1OHRTxGaV40/t43b7rZ+re1zxp/lkMHHWSoiNu4V74b/+haG7tRqaDBr6qpaC47iQXaXkgSdRCGTCxQzUAt6RImaYdALyT8T7HCLNWyQZoIxyLdPXhV8YfZ8jnaR/BKwbJ0UcFskkh3ZIhAdMydAzW0+FP9jll3sU9VnwEAmshO46C+Fl5TLIaqYHyOJvELSNIzZtuKly6hiXQKf+vbQ+9iN67yQunr2YapSBiAkE07Tl+3GYAYnHIyW/bJtNt2n4R6MvONMI6NsG/D8avYcPwq3r6vPkZ0roUsO7N1m8YbeVo91ArzlMNavcBjX2/HzpT8p2uJJ6+7XE93ZozN1ujQbMoaTOjbwLiMs716xwvyvzBG+YvDMlt1DfGbrhtW6O82dlnxBls3lzvGdketcba7hEUEqzHxgQaY/PcRmw8D7D1hXfVqZ+PPaoUc/VvanwvFcFqGmGSfsQxAosICUD080KqlwtXrQKDS8TF+sGl1RIUFIixQid4fby6oQ+H7zbTzebc0sFVNtK8dgaVJF3HPXVXwjklXsB+faYPRiw8ag4Kp/RpCAOhQJwLdP9zk0vYtmU6YWj8q/4Z6SPs4DGkfh0/WJRv/1tMfbozQAKXZ8fv48WbGn5VyGfa/0xN6IVBBpbAZgJx5735sTb6GrDwtnluQn9zhw4FN0XTyarNyP49oi0Hf7rBZ3+Pv9nE4EeBzXWrh603WD1qKy/AZu4lQLLJoTcmDEo/kTUJFZOJGQVCSjmA8mDfNrNwfefnn9MOyLRipWIrbqIDpmiewS9QHAHysHYA+sl34SvUxtEKGz7X9MFs7wPj6BOkChsn/xS+6bjgoaqMiMtBXvgPrdC0QJOXgK+VsfKh9FFv0TaCHhGyo8ZBsK46LGGQUpLd+RzMU36tmWb2/h+WJeFhu3hKpPPE3ZupOQ1ICe0RdzNH2x3zle4iRXUVjbQo+1D6K7II00uG4bWxZVUGDptIpJIk6ZSrLmDPOutCSfyo/Zyi5xVHwATifRTotIxdKO1lznG3bnv8u2s7ypNMLlzLh/H0wFc1jws1aCkxbY+x1uTJlCD68YapJSlnGH8UXgXRkoAJCcQf95ZtxQUTiCfk6dJDbH3NgMFXzJL7T3e+0nD0rX+5klZrZXQ80rW52c7nq1c6QySSM7FbHbIZ3A7lMwtPt4hARrEbL2IpW6+19hutVc7+bmOmWLAf0F7cnyeOtY/DPocvodlcV2/uWJLSJr2S2zDS4chTATH6wISb+Vfj3f6h5DTzUPD9lrGkA0rluJLaPvQdnrt/B+Rt30NlkvNWkBxpg0t/W6Z/DnXRRdeSZjvHYd+4m7msUhYGtowGYH8eKFcwH3AY4CdIAoGNBK9akBxpApZBbdaGtWTEQzWPCjb9btlSbPpCpFKTCjaw8s/UhDlrUSpKAzBh8OPOnvhP+zOtkc92/+jbGeWQsJYuaGKcdbvz9JkILW34E0D3vQ6vX/KHvbPb7en0L9Ml9D5dEJfSW74YKWnSRHUBPeeEkfbdEENJFEGJlaehYcF3qgMN4RfGnscxwxT8YrvgHe/UJyBEqdJAfxo/annhascZYJklfCy/kvYbe8t24ICKRCyXOi0icFVXRTZaEqyIch4R5chh/p0YeZNAbAy8q/RiAUJE4u6nQCYEcO6n9Nhy/iqnLj5g94Xdk79kbGPfHfzazHAkB7ExxrSUiM1drNTbE9CGsZcDhTzf9JZR9scypiAxoCtJ5RkgZeEi+1WyWcHc9kjsJ1xDmZPZooEf9Klh71H53lUpBKnRKiMCW5Gt2yzhjelP976udjIHCG73r4Y3e9ZDw9kqzlrZAlRxymYQHmlY3LqsfFWoc7+LJXgump6dlC8gnjze3+Zqm0eFIqBKMxXsv4P/uqWN324EqOX57vp1b9TF99uGo9TBA6fpBkCQJ8RFBVl3ZhnaIx+NtYjBl+RGsPXLF2CVOIZfhv8m90WjiKqtt2eueahCsVmDesDZW+zewPMbuGNoh3mrZMx3iMe6+u8xSLdetGoINx213hxzRqRZm/luYeECtkGFg62jMWm3d+jLn8WYlMvs4ALzYtXaJJMIoKcdEDADgN103AMBPup5opD2NK6IiZBDQQ4YMVMCvqqlO5xJqKSt86GYafABAM9lpbA/4P8uXmLktAiGDHkFSLs7qq2CJrjN2i3om89vkf24qIBdPyNdht74eDgj7n9OSpIQWK1VjUVW6iX55U43zylDpxgCEisRZC8j1zDycdjAo+rutKS4HIP2/tD+gXEC43L3pdo51Vwx73UC2JF/D+KX/ubRdb1h79Aq2nSz6zWtpJEEPFbQIxR1cRyjuks5hiHw1Kkq3UQE5aCY7hWDJs2mAk/U10DdvGgQkyKFz+Wlb+9oRDgMQmczx4Owfn2mDp52kGjYNGCoHWWdcUyvk0OgKz/EglfVT8Xf6NjB2sZFJEoa2jzObO+WnZ12b0bx97crYduq6MbgRJo2aljfHzWOsW1/euvcuPNK8BioGqfB0u1g0rO7ZcTSmra+OgndXU207E6CUY/rDjZGj0eGPfReNy4PVCiS90xPNppjfID7f2f2nz64OSl75cifsO3cTM1YedZgm3VSQWm4MPv58sT3++e8yXu6egL8OpOJSeo5VRkDTAE8uk7D/nZ6ooFJgxcsd8fmGk1h5KD+5yOrXOuP8Dc/Mlv5+/ya4k6c1a20a1iG+VAUgtvxnoyXiobwp6CHbh2yo8Lz8b3SS/4dVulZ4SfMyoqTr2KK2NWkmsEXXCBv1TTFBudDpfkOkwvGEsbI0jJLlZzQ7qo/BCVETTaRTiJeZjxHaqmuIwyIOAhL26OuhuSwZ63Qt0FR2Cpv1TcwCAxU0CMEdXPfAGLm7pHPGdNEvKv7C65oXnLyCSgMGIFQkKdeyHA4m98TM0lqdHqsOO96OO60UtsqaBiCmXbD8KfgwsD3ZVemkRh7qSKloKzuMh+WJuCbC0FXuvUxFO/V3YYe+PjJEEHbr6+E2KuBMQbrcQq53oXF2b+jo5nHL6G6IrlQB0ZUCcf6G/Tz/pjfLrmSasnVzHW4y141cJmHSgw2x4/R1Yyrmjk4Gmxv89OzdyNXqEVgQ5Egmh83Z030AeL5LbePPTWqGu7RPVwzvGI+1R69g0N0xxmWOxpp4uue4rWtMaID5efTFky3Qq4HjFjVbWsfnB3LOsg82qB6KBtVDsebIFWw6cdVh1yjDxI496hfWp3lMRWPQOP+ZNnjvn2N4rUddAEDlIBWuZ+WhW70qmJd4BqnpObi/cRQqqPL30bB6GO6Or2wMQOpWDfFIANIytqIxKcGMf44Z5/dxNeOaLfc1robJDzZC62lri10/z5OwVt8SQP5Ek9AIGM7W86IqWud8gRcVy3BcRONXXVfESVdwW1QwJsS4JsIQI6Vhp74+/k/xJ3boG2CDvhkelW/Cn7qOqCc7j8HyNYiR0hAumT8orC87h/qwnTyho/wwOsLQNXE5AOAlxV/G9VdFKNbrWuAO1Ogj340o6QZezHsZK/VtrbYlgx7x0iWcFlE250ZpFVsRe8/dhBBAPZMEAp1lB1CQp9OVA0l+jAEIFcnFW9l43UFqS08Mmv52S4pZM39x92MrXaXWdH4OXs88LgyZeFq+Gk8o1jtMjVlU5/SRiJHldxM5ra+GCCkdoVI2ftT2xDe6vsbZooOQDTU0LvcVd1evhtUw2cY4AANHEx1GV8pPXxqsVgKwH4CYBvxyJ2kn/3yxvc3lpi2XxXn4L5NJxuADyL/JHt4xHjohUDnYdxOCje/bAOMtWlYtH5R89kRzjFzk+sSR7rD1UEYmkxColBvn8LivcZRVGVdUCQnArnHdHWYvM/XhwKaYuyUFA1vZTyKweXQ3pN7KMcsqZqpu1RB8P7S18fdNo7vhemYuYisH4ef/tcXfB1LxdPs4s9fEVK5g9ru98+yjgU2RrdHh6KUMm9nCUmbch+UHL2HV4cuY2b+JcaBxi5iK2H46v9uts8+BI188mX+DP+3hRnj7T/974GTO/H1eRTgma4cYf08R5ufUMn1H48+DNfWNP0/WxgEADupqm02uWEtKhQx6hCMTD8sTcZfsHPbpE5AHBZ6Qr8dvui7Yp6+Lj5RfIEjKxTURigjJOnV5pJSBxxQbzZZ9ofoEm3UbcFLUQADy0EZ2DL/puqCnfC9ay05gj74uBuRNstrWA02rY/GIVogbvxoNpMJsfpFSBupKF3BCRNs9WlQ6MAChIjPtamDJlQw3pnNo2OIs+ACKP07DNE0puUYGPYKQgwDkoYp0E5WlDLSTHUFD6Qw6yx3/TV2VK5S4ijCc01fBKVEd98p34ag+BlO1g6GHBDn0OC5inG+ogHGyvxJSPSwAByb2wuHUdDzxbX5L1f2No7DiUH63AZkMVlnVLNnJ2WBkeq47645jq9sTYH4zaNiGpzKsGW78b+donJT0Lp3F++vbpLoxAPFUFywDe5e93eN7YO2RK8Zgs6iqOJmPxVREsBpv3XuXwzLhFVRm6b6dCVYrEFwQAMVWDsLIexKsynStG4l3+jawGdSYjpV6qFkNyGQSvthonUAByP/bPNC0utkYJsD8u8UTc2U8eXdsKQhAStZpUXiM92jNz5kPtI8bf26b+zmCkY1LqIwY6Qqui1C0kR3DIX0tfKL8FHVkqZCgR6SUgYP6eOP4u87yQ+iMwu+GcbKfjT+3kp3AmYAnsEnXBFv0jXFSVIcaGnRO+h5YvRaH1WqrSSu/Vn6Et7XPYpf+LmghB/Q6QOa9jITkGQxAqES4Mmja1jwY7irurZNh3g/KVwkZCJKycY8sCTlQ4WH5VrcmA3PFTv1dqCFdwxl9VSzTd8AqXWvkQoloKQ0SgGRjP+LCm4sJ2mdsbssWQ7cSb5IkCWGBSjSsHgZJyp+fo3/LGsYARC6TcH+TKKuJN38YVvh0ecL9DfDYN7ZToFpyNgbLHtN7cZkxACnSpuwqat1Kis5B0j3TmnoiDrMXzAWrFcbsWmWdJEl4pmPhQHfL7IIGhhYNy4xezpgGlJbjjepWDcaJK5lQK2SY0LeBX3al9Rc/DG2NYfNsT7xoz21UME44aUjMsUGfn2TiCc14Yzk18pALFepJ5/C2YiE6yw/hmD4agchFrKxwrFyKvqpxnEkX+UF0kR8s3FlBMUPwkSkC8KX2Qbyp/A3xsitYpJqOPCHPnzvFMO9lv8+BxgMBhe9aYcl1DECoRHhyrg+HPLgbnRtzdZQmQchGDlTQQY5est14VvEPYqUrUEGDSlLJTdJ2UwRjma49/ta1w3ERDQ0UyIX9LwbD7OHF5e3gw1RYoBJ7x/dEBZUciSZJA2SShL5NovB/P5t3/WlXq3Ayy7trVcb4++vj3RXWAV/dqsGoHh6I2pFBCFDK3creZMo005vhBtDTc8zYiz+CVHJk5ekQ4eUuWo5mcfd0rORPmfP8hmT3FwBA/xY1MfYP11tOp/ZrhMe+3o6XuyeYpR+uWTEQq1/rgqu3c1E5SIVrWbleCUAClDLkaIqWWt6XoisFol7VEGRrdDjnoUQBBobr/HERg6c1YwGzRlGB5tJJnBQ1cBsV0EA6g8flG1BFugU18lBVuoVcKFEpMgqxLfvgzqop0EKGCZphWK5vh0jpFu6WHUW0dNU6CcnaSUDjRz36XqjkMAChEqH1UgCy56znxhVYdtUoHQSCkY22sqOIla4gHUEIQxbule9CK5lrMyK7a7muLU6J6jilr45jIhrXRSg0kCMPSuggt5oAq0Z4IDLtzOBeFlUKyv/yNc3EpJBJNrv7qC0GbD/TIR51q4bg/37ej/Tswm/t74a0hlwmYfVrXSCh6F2HzFtADAuLtCm77LWA/PZ8O8xek4zRfep5dodO/K9zLcxe6/yz4IlghBOGOmbrGJsmLaigkuOOk8xdDaqHImliL2Prx8z+jTF/21l8N7QVACAyJD9DnKOWuLpVg92tul1fD26FISYZ7N7sXa9UtKzXrFgB/7zSCZczctD+vfVF3s72sfeg3Qx3Xi9hvyjsundExOEd7TCrUmMa34UX2tdGg7/iYTrofJJ2aEEJgRq4htay4/i43R1AmwdUbwYorDMEkn9iAEIlQu+lAMSTu/l0vfPJDL1LoK50Aa8pFiNKuoEIKR2ZIhB3mWQE8aRkfQ1kQ4WvtA8gWrqKSOkWPtM+ZJxlt6j6NKqG77YWfS4OT5nxSGO3nrS66u376ttcHmxjdvAPBjRB4slrqBSkRtVQtVUgIZNJ6Fw3EkEquVkAYhg74Gj+B1fun83GkZRQC4ip303m72hYPQxzh7QqsX3ZE6iS49mO8TbPQUc3qSq5DHk6PSoHud5iwwDEmukRNgQH9vRrVgNta1VC82jbY5gMTD8Hj7WOwWOtrceD2fvbHpzUCxUsJm5cO6oL9py5geYxFdH7480O9+1M/xY1jQHIhje6otusjcXaXkkxtB4VtctkVFgA/v6/jogILpkbfvPPkq06SriISLzYrxtwd2yJ1IFKFgMQKhFe64LlQf9dtM7q4Q3BuIMIKR0dZf/haflq1JXZH9xflExd6aIC1ulbYKOuKTbqmyEXSuggQwju4GYJZYUyVdybsl//19blsRGODGoT4/EApFZkEJ416e9uqm7VwsDNEGg82ioaj7Zynr1FU4TPjyuvMOuCVVCn4kxqZ4vpDY2/jAfpVq8KvtuaYjUruqPqLXmhPWatPo6x9zkeyG2qNF73vOnNXvWQlpGLR+1k5pJJ+UGIJ9g7rS3TIgNAnSrBqFMlv1Xkjxfb4/XfDiDFwTxWBrvGdcfRy+YT5JqeU4FKOWpFBFnNiXXi3Xvx4sK9DucOckfTmmE4cCG9SK8t6sf/7fvrl1jwAdjOKAcA3w1phWfn7zH+/iSDj1KLAQiViOS0khtb4P8EZBBQQQM59KgsZeBZ+Up0kB3GOVEFgchDO7n9lK2uWqFrAxkEJABLdR2wR18P1xCKIOTgDtQ2c6ub8kbwAbjWL/7l7gnYdvIa9py9aba8btVg3G0yTqKoahXMXr34+XYY8JX9iS2d6d+iJpbsuwAgv7vI+te72i0brFZgz/geZl2xXKU1GTn9wYAmbr/eHluD0Oc83hzPzNuN0X1cv9F2xE9iDjMdEyKw5IV2iKsc5LxwgcY1wzD/mTbOC5qwNdlpeWfaylcxSOW1VjB7g9+daRFTEXMeb4YHP0u0W6ZGeCC2jO4GmUyyCkDM6iDlz6XS6f0NZstVChnmDmmNlYcu4cWF+4zLq4aqcSXDOl28MwNaRRc5ALFshW0VW9HqOmzzdSWct95wCVz2Ugf0+7zwb9G9vvtz6JB/YgBCJcLWnBtliWGW7jjpMprITuNu2THcL9uBQCnP4evqINXlfSTqGmKm9nEcFLXgTtOHs3SznRIisCW5ZGZVf6RFDav0zK48FR7Vsy4ebVnT6ot6zuPNPVIvw9wUreIqmaXHddW2t+7BjtP5M38bApB+zao7eRWK/ISwZWwlrD16BeEVlC61mLjK1hiQRjXCsHNcd4+lpPWXVg9LLWMrOVzvid5TCVWDsTPF8/PdkPukouVpAADEVnIcqC54to0xiYPVfi1+j65UAbGVK+Ds9fyB3l8PbmlcZzknzB8vdkCHYozHKArLj+tDzWsgPiIIv++94PB1Hm44tWIYk1mvmnUX4Dd61cWs1Sc8+nCGvI8BCJV6Gq1nM5AEIgcqaKGADgPkmxEjpaG/fDMCJA0yRQAqIBcyyXNdLb7R3o8Fuh64IUJLdK4Kg0FtYkosAPloYDMsP3gJeSZ/E1cH99uaI6F+lGdaaWY92tT4s62Zuh0FJWtHdUH18EA80iK/28iUfg2xaOc54+zQJeH9AU0wLzEF/Vu6nhnMpTEgJl2wTLteeXI+DPMbE//ukuTpeUDe7H0XglQKPOhCcFpe+CoctRUIr3mts0uvDaugxJ8vtsfl9By8YNJC0TquIjolRKJWZOEg9hrh9q/Zhhq81K0ORi/OTzHbu2E1szIDW9XEb3su2NzWxje6oqsLY0gebl4DE4qY8cvyOPVuWA37XGkBKeE/rKELlq2/40vd6mBQmxhULsEuYFTyGIBQqTf8xz3OC1lQQIswZOEB+XY0lp1Gf/lWl15nlfbPge+1fbBXXxc6yJAqKiNZ1DBmivKlkh4n+/tz7XD2xh28XJBy1rQvb8qM+xA/dqXd19aPCsXRS0Ubi1MjPBAXC7Jt9ahfFWuPXjGuizXpeqOy0SXq/ib2AxDLQchPt4vD0+3iilRHV1UKUmFUL/eyRbk0BsSkkKdvvkt6u6VBWKASY+0kJSivfHU6mO42WK3AwYm97LZa2GI5mackAb8/396qXJ0qwQgJUBR2v7OxC3vjGQDHD1niIoLQNDocB87fslvm3kbVjJNDFoXlIYkMUSPX0eQ5RiXdBSv/mNk6fyRJYvBRBjAAKcc+XZeMW9n+NWuxpwTjDqpKN9FTthfR0lU8qVgHnZCghRxqyf1+2ldEOKpKt/CfPg5nRDXs19dGuJSFzbom2CvqQu9kvIU/0QuBwW1jsWBH0WeB71CnMhJPXre5rml0OJpGhxsDkMiQwnkYJEnCXdVCcMxOv+l+zaobA5CWsYU3AK5MmtWgeqgxAPn26ZZ4d8VRm5mPTFtAWsSE47+LGehQJwItYytirwtP/koz/26P8D7Te5tyHDeVqJIeK2CP6ZPzYLXCreDDFkc3+Ylv3YOvN53Cg00tBtAX7NLRQ5+G1cPMfh/QsiYWm3R/qhURZAxAZj3aFE1qhqHX7MJMXYa3aWuwuyts/X3yXOhVYPp5+e25dhj4deHYuiUvtEP/L4s21q5trUrYcfqGsfWXH8uyiwFIOfb73gsen4DIW1TQIEq6jhrSNUThBqpKN1BNuoko6QZqSmmobyNVrVwSkMM8+LghgnFKVEecdAWRUjrmau/Fal0rZCIQYVIWjupjkI4gpwO6/dWucd3RZvo6q+WmKWIN9k/oieZT17i0XbXCuhUnPsK83/SXT7ZAerYGDzWvgd0pN9AxIQKA4y/j4R3jUamCCqnp2RjctjC7Sbe7qjit09v31cfeszfxTIc4SJJkd7I+0wBk8fPtkavVI1AlR92qITYDEFvHyh+58kVdNZRPDU0x6Ci7TP+2nvg7O0rHHBqgxJu985M4XL1dOP7RcHPvKPBvE18JXzzZwpggwbIbVue6Efhzf/64ugEOumQWNcAyzVI4slsdAOYByIGJvdB08mqr15nuzXJyUWfjrRxZNLwtbudoEVYhP1uZaSDZqIZ3EqeQd5SOb1YqEYPbxiLx1DVsPH7V11WxEogc1JCuoaZ0reD/q6hR8HMN6Rqq4JbL4zCuiVBESPlP1RfrOuOoPhpVpFv4UdsLFxEBu7dupfxx8Q9DWxsnxQOAxjXCkKfVo2eDqja7OQW50YxvmU1o7tOtzFosAOBekwGWP/+vrfHnPo2q4fgV2y0gCrkMA1u7P+j648eaIS4iCHvH9zB2AbL35NV08j+ZTEKgKj+YsrxJ2TO+BwAUKYuVL7hyukaFBeL7oa1spiItCf46LcYjzWtg37mb6GGSUcdXT+rLOp91wfLQfhc82waz15zAe/2LPuDZ2efAdDC6ZXeth5rVQKBSjsY1w43LglRyZFlM2KgwCUDcac01DUCGdogDAPRsUBWbTlxFVFgAwgJtXytMAwOPjiGTScbgI3/bhes+fLSZx/ZDvscApBwb0bkWwgKVPghABEKRZTe4qCldRSXJeRrfbKHCRRGBS6ISLotKuIxKuCIq4qoIhxw67NA3wE0El9rWi+LqdlcVsy+zSQ82tAoSDB5oWt3m4Gx7XumRgO8T87s3RYao0aOB66kRX+pWByqFrFizBRu6cfVsUBXfPl2Y1tOVL8Ih7eMwb9sZqyxWlq8syRz3vnTPXUxj+dFjzSCEMDtfaldxPUUv+T/TgLI4t8edEiLRKSHS9f3aaHkpzlxIkiShTyPzbFkrXu5kNTjdNKlEp4QItIgJx7dbnE8Aa/rgydDNbFCbGFQPD0BTk6DHkun3hafCj/a1rVOum35GRWl/KkhmGICUcyXzdEogHJmIlq4iWkozCzAMQUeIlO10KxmiAi6KCFwQEbggInFRRBj/XRCRuIEQsIeoY6YXb3vpcP94sT1axNgOTOwJUSvwy//aYtaq45jSr5Fbr1UpZHipWx18tv4ksjU6Y7O/O+YNa4O/D6Q6bC2x1yOhamgADkzsZdWy4a/pY13lj7X35+5rhs/Ge480xpbkaxjSPs63FSKPMv38K914uFIS3LltvrtWZWD9SYdl4iKsg2XTFpD/da6F2WtOuLS/AKUcy/+vIySpcHZ0uUxy+qCiQ50Il7bvqj3je6BiBdvd3JrWDMP1rDzUNsk+RqWf/347lCK7d+/GxIkTsW3bNmg0GjRu3BijRo3CwIEDfV01p4p606VGHmoWBBjR0lXEmPxfU0pDqAsBxjURagwwLpoEGIZg4zas07L6u37NqmNZkutzfXhTaGDhx930z24r+OjZoCrWHMnPIvX5Ey3w0qJ9ZutlMglta1XG4hess8K46ujUPriUno1qoQHOC1uoFhaAEZ1rOS7k4Ny21a3K9IZlSTHeFwFTH2qEy+nZuKua//fZfrxNDB5vE+PrapRZvgqMFSafcUepcr3CjRaQDnUi8NOzd7vcImdo6TF9vxVU7t3aNaoR5ryQiWEd4izSeLv1cpsctTj/+WIHCJi38lDpxwCkmDZs2IDevXsjICAAjz/+OEJCQrBkyRI89thjOH/+PF5//XVfV9Ehex9oCXpUxc3C4EKWZhZsVJOc9y+9IsJxXlQpCDDyg4wLJq0YOSh7XVxmD2yG6Q83RsOJq0p0PzGVKhgTCPw9siMe+Cw/jfA9d1VBZLAazWLCjWXnPN4MqbdyzG4GnfV3b1wjzBiAWN6rV1B5Lo1wVFjJ3Ri4+1Vl2lpkr6saucY0gQCVc7xnhAtzsZoxJOxwR0KVYLvjPpb/X0fsOH0d+8/dcnsSVlvkFhFHSY+fKm4GM/JPDECKQavVYsSIEZDJZNi8eTOaNWsGAHjnnXfQpk0bjBs3DgMGDEBsrJ9+GeekIzz9CHrLdpm1YOR3m7oGteQ4RW+mCMB5UQXnRBWcF5EF/+f/fkFEIhf2s4aUVTKZ5NJg7pfvqYNPnDSzO6I1ydPeuGYYBrWJwYWbdzD36VZWF+t+zWpYvtwp0000iy68GW8QFYo/XiwdrQP3N4nCnHXJqGWju4ItpbwHFpFf4uB+x/OAeMrY++pDkoCHm1tnympUIwyNaoQZU6MXl2XXSl47qSgYgBTD+vXrcerUKQwbNswYfABAWFgYxo0bh6FDh2L+/Pl45513fFdJR+Y0Rdfsm+hqJ07QChkuighjcHGhILgwBBw3OQajyEbek4A6VUPwV1KqccK8r55qied/2uvS6+tWC0FqeuGkiDMeaezR+lVQKXBwUi/cztGiWlhhF6ngAIWxn7C3PXl3DBbuPIeHm7sWUNWtGoIdY7ujYpBrGZ9K+xgQotKuZsWS6Xbr6492iYYfBe8tLFCJGY8UZuqyFfN46jg82zHeMxuico0BSDFs3LgRANCrVy+rdb179wYAbNq0yZtVck/FOOTqJRzJrmTVgnFeVMElUcnns3aXVSqFDA82rY4Hm1ZH3FsrANj+coitXAFnr99BiFqB2lWCMbxTPDolRGLaiiPF2r9l3naDt++rj/XH0jCoTQwCVXKvpWt1xcQHGuL+xlFo4Ub3KNPgyRmGH0Se58pN74Jn22Dd0TQMK0gD62m25i0qKbZu/P01HXVRhVh8L/g6wKPSiQFIMSQnJwMAEhISrNZVq1YNwcHBxjJ+6ZnV2HDsOp7/aZ/zslRiGtcIw+HUdLSzkYJw05vdcPZ6FqLCAs3SHr7Rqx6OXMrAE22K1r1v0N0xOHgxHV3rmU/wN6JzLZuDu4PVCmTmatGlruvpKD1NpZChvYczr5hiP2Mi33A31a2rpj/cGN9uOY2JDzTw+Lbd4YsbdFv75BWO/AkDkGJIT08HkN/lypbQ0FBjGVtyc3ORm1s4a2pGhvXkcCVKoWK3Ex+wnH9i6UsdoNHpEaCUY96w1kg8eQ1hgUpj7vfYytZjGKqEBmD5/3Uqch3UCjk+GtjM5fKrX+uM7aeu44Gm1Z0XLqX4USDyPF9+rJ64OwZP3O3dDGe2riMDWtbE/G1n0O2uKtYri7s/d8qW0EWuqNvtWCcCW09e83BtqLRgAOJDM2bMwOTJk31aBwYgRVM1VI0rGbkIUsnx1eCWGPzdLkzo6/wp25N3x+Ddh8znzZDLJMhl+V0EutarYtUq4Q+qhweif0vrwY1lCQfLEpEnGa4oIQFKbHija4kEAP7Qu4tXTiqK8jlFtIcYWj7stXJkZGTYbR0BgLFjxyI9Pd347/z58yVST0eYV9u+bvXsdwlY+lIHPNU2BstGdkCnhEicee9+lwbmBasVJfYUioqHHwUiz2saHY5gtQJ3VQvxdVV8ytvXfZuD0EtoX0V9a5zZvHxjAFIMhrEftsZ5XL58GZmZmTbHhxio1WqEhoaa/fO28n4vXDnIfqrgVnGV7K6LCgvEuw81Rp0q7n2p8nLrvwxdNfo0rObjmhCVHQFKOfZN6IkVLxe9y2hp4u0B5259hZfQ931RW4/L2uB8cg8DkGLo0qULAGD16tVW61atWmVWxl+V9y5YHz/ezO664Z08n2rQG/ngqWhqVqyAo1P64MunWvi6KkRlikohK5et7f52tWc3U/InDECKoXv37qhVqxYWLVqEpKQk4/L09HRMnz4dKpUKTz/9tO8q6ILy+KVgylE8YJm68aOBTQEAjWoUvaXK3RlxybsCVXJ2kSOiMqlamLpIr2tcw35XcoA9KahoOAi9GBQKBebOnYvevXujc+fOePzxxxESEoIlS5bg7NmzmDVrFuLi4nxdTYd43bBWKyIIo/vcBSB/voxrmXkAgEda1MQDTatDXoyrLRtAiIjIU+pHuf5A7MWudXDxZjbuaxzl1j5+e64d6r/zr931WidP1iY90ACT/i7e3FVU9rAFpJi6deuGrVu3okOHDvj111/x5ZdfomrVqvjll1/w+uuv+7p6zpXzCMSyC9r3Q1th/Rtd0adR/jiArwe3QkylCvhmcEsAgFIuK9Z8ERx0R0RExfXXyA4Y1bOuW12Fg9QKfPx4c/Ryc5xboErucJJIrU7v8PVPt7P92goqTnRcnrEFxAPatGmDf/75x9fVKJKy3Cf07vhK2Jlyw2GZQFV+32RdwRMcy8mwWsZWxObR3TxWJ7aAEBGVDyX57dqkZjia1AwvwT2YqxoaYHddTKUKDl9rr9PAuPvq41J6DobYCVCobGMLCJVZHz3WDNUcXDSB/Awtm0d3Q5e6kfh6cEso5Z7/SLx9X32Pb5PIStl9lkBEPja4bSzaxFXC+Putv88kSXI4D5a9cXVRYYFY8XInDGwd7bF6UunBAKScK8uDx2qEB+ILJxmNIkPUqBEeiPnPtEHvEki/2qdhNYzoXMv4e71yngufShBb14iohASpFfjt+XYY3qmW88JELmAXrHKuDMcfAMy7PLWrVRnbT18HAMx9uhWyNTpUCXHcQlJUr/Woi7lbT2N0n3oAgL9HdsSO09cxsBWf9BARUdlS1u8lyPMYgJBX1Y4MwqmrWV7cY2EEolIUNvj1aFC1RPf6So8EjLynjjHNceOaYWhc03EqQ6Ji4R0Akc+FBSqNP4cEKB2UpLLcA4OcYxescs6bcx60iq3o9dlwTbMDvvNAA4QFKvFGr7pe2Xd5n2OFiKi8USlk2DO+B/aM72H20IuIzPHTUc558wmEQP6g7/iIIJfKz36safH3aRKA1I4Mxv4JPTHynoRib5fI73AMCJFfiAhWIyK4aJP+EZUXDEDKOW8+ozdkz9A4yRluUCnI/gV885uupcYVFnlvizOHBxERUWng6+cRNcIDfVwD8ncMQMjjdoztjmc6xGNMwWziAHDi3XvRPKYiAECrK96lsX3tyoipbDvveJDFxEbNYsJRIzwQbWtVKtY+ifweY2si8hMfP97M11UgP8cApJwriS5Y1cIC8M4DDcy6Wpn2ha0a5lrmKWdVe39AEzzbMR4hAYW5FAJV5nkV1Ao5Nr3ZFT+PaOvSPomIiKh4mkeHo3GNMPRtEgUA+GBAEwQq5Xi5e2EXaA5CL98YgJR77l8B5g1rXaw9fvJ4M3SrF+m0nMJJd6mBraIxoW8Dp+UUcplXB9sTERGVZwq5DH+N7IDPnsifi+vRVtH4b3JvdKwT4eOakb9gAEJuq+pkdnGDKDstHbGVg/DDsDaYN6y1w36i9sZrWMYSptmmHmxaHTIJ6H5XFZfqSERERMVj6xmf5YM/ZoYkU5wHpJwrSsOAo9e0iSsca9E0OhxT+zVEdCXb4zW61quCxLfuwSNfJGLfuVtW+3DWslFYtrBc5WAVjk7tA5WcsTUREZG/kjhwrVxjAEJuc3TRmPZwI7PfB7eLc749OxGN3RYQi/3LTV5fOzIYaoXc8iVERERE5Cf4mLicaxAV6lb5HvWrOGwBCVB65uZfgv0WkJe61TH73bRZt3fDkp3hnIiIiIqPQzPLNwYg5Zy7AcNHjzUrmYrYYKu/aK2IILSrXdlsmWm2LQ42JyIi8k+Wc3NR+cUAhNwSGqCEp68f9kIGhcz69KwYpLJa9sGjTXB/4yj8/nw7z1aMiIiIiDyOY0DIZfc3jnJaxpOD2quGWs+ELrdROCosEJ8/2cL9HRMREZFPsL9C+cYAhFyyf0JPhFdQAgAE7DeBeKoL1OzHmiG8ggpLXmgPtUKGvp9uBQDYaBQhIiIiolKEAQi5JLyC0qXgwlNPNPo1qwEAaBlb0Wy5rW5ZRERE5DsRwdY9FpzhmM3yjQEIucTVC0VJX0/speYlKu/4ySAiA2+P9b6vcRR2n7lh9dCQyB4GIGTlnruqoGbFQEx8oCFmrT6OigVdrwwcXdiKMrGQO6+R8y6LyCbmliEiX5HLJEzp18h5QaICDEDIygNNo/Bw85oAgDF97ir5HboRVMjZBYuIiKjU4/PE8o13c+Q2hy0gJXRF6VovEgAwrENcyeyAiIiIiLyCLSBkpSjdqApfWzK+G9IaV2/nolpYQAntgah049NEIjLg+G7ydwxAyG2maXj/eLE9ZJKEhz5PzF9QlHlATH5e/3oXVKxgPdmgXCYx+CBygGNAiMigNEw4ziCpfGMXLCqWxjXCEKyWG38v0iB0k5fUigy2Ods5EREREZUNDEDIbaZPVmSSBHb+IPI9fgqJqDThPCDlGwMQKhYJ+d2jjL/zekLkE6WgxwURlXO8TpEBAxCy4k4QIUlASEDhUCJ9ETqeFmfQOxERERGVLgxAyG2mMYYkSQgNUNovTERewTCeiIhKC2bBItSPCsXRSxlFfr1KIcOUfg1xO0eLKiHuZ6pity0iIiKi8oMBCOGX/7XF7pQbGP7jHpfK16kSDACooCrMfvV0u7iSqBoRERERlTEMQAhhgUr0aFDV+LuzzBSBKjn+m9wbCplnmi7YAkJEROQ5aiV72JN/YwBCRRKs5qlDRETkj57vXBubT1xFv2bVfV0VIpt4F0lWvN0gEW5j5nMiIiIqmrAKSqx4uZOvq0FkFwMQsuKprlWumti3Aa5n5mJw2ziv7peIiIi8pwiZ+qmMYgBCRiM6xSPp/C10r1/VeWEPqhIagF/+186r+yQiIiIi32AAQkZv39/A11UgIiKiMopJZ8iAaRKIiIiIqMSxCxYZMAAhIiIiIiKvYQBCRERERCWOXbDIgAEIEREREZU4dsEiAwYgRERERETkNQxAiIiIiIjIaxiAEBERERGR1zAAISIqAySO7iQiolKCAQgRURkgOLqTiPycAK9TlI8BCBEREREReQ0DECKiMoBdsIjI30ngdYryMQAhIiIiohLHLlhkwACEiKgM4BgQIiIqLRiAEBEREVGJYxcsMmAAQkRUBnAMCBH5O3bBIgMGIEREZQC7YBERUWnBAISIiIiIiLyGAQgRURnALlhERFRaMAAhIiIiIiKvYQBCRERERCWuUpDK11UgP6HwdQWIiIiIqOy7q1oo3r6vPqqFBfi6KuRjDECIiIiIyCtGdK7l6yqQH2AXLCIiIiIi8hoGIERERERE5DUMQIiIiIiIyGsYgBARERERkdcwACEiKgM4DyEREZUWDECIiMoAIXxdAyIiItcwACEiIiIiIq9hAEJERERERF7DAISIiIiIiLyGAUiBpKQkjBs3Dr1790ZkZCQkSULXrl2dvm7hwoVo06YNgoKCULFiRfTt2xf79u0r+QoTEREREZVCDEAKLF26FDNmzMDGjRtRrVo1l14zbdo0PPXUU0hLS8Pzzz+PRx99FJs3b0b79u2RmJhYwjUmIiIiIip9FL6ugL949NFH8eCDD6Jx48a4fv06oqKiHJZPTk7GpEmTULduXezatQthYWEAgBdffBFt27bFiBEj8N9//0EmY4xHRCWPaXiJiKi04N1xgYYNG6JFixZQKpUulf/hhx+g1Wrx9ttvG4MPAGjWrBkGDRqEo0ePYuvWrSVVXSIiM0zDS0REpQUDkCLauHEjAKBXr15W63r37g0A2LRpkzerRERERETk9xiAFFFycjKCg4NtjhdJSEgwliEi8gZ2wSIiotKCY0CKKD09HVWqVLG5LjQ01FjGkdzcXOTm5hp/z8jI8FwFiYiIiIj8UJkKQF5//XWzG3pnXnnlFWNrhS/MmDEDkydP9tn+iYiIiIi8rUwFIF9//TWysrJcLj9gwIAiByBhYWF2WzgMLRmmg9NtGTt2LEaNGmX2uujo6CLVh4iIiIioNChTAUhmZqbX9pWQkIDt27fj8uXLVuNADGM/nAU3arUaarW6xOpIRERERORvOAi9iLp06QIAWL16tdW6VatWmZUhIiIiIqJ8DECKaNiwYVAoFJg2bZpZV6ykpCT8/PPPqF+/Pjp27OjDGhJRefLt060QGqDAh4829XVViIiIHCpTXbCK49ixY3jvvfcAANnZ2cZlQ4cONZaZN2+e8ee6deti0qRJGD9+PJo2bYr+/fvj9u3b+OWXXwAA3377LWdBJyKvaR1XCUnv9IJMxny8RETk3yQhOH8ukD+xYLdu3RyWsXWoFi5ciI8//hiHDx+GSqVChw4dMHXqVLRo0cLtOmRkZBgHtxtS+RIRERGR/+D9WvExAPEjPKGJiIiI/Bvv14qPfYSIiIiIiMhrGIAQEREREZHXMAAhIiIiIiKvYQBCRERERERewwCEiIiIiIi8hgEIERERERF5DQMQIiIiIiLyGgYgRERERETkNQxAiIiIiIjIaxS+rgAVMkxKn5GR4eOaEBEREZEthvs0w30buY8BiB+5ffs2ACA6OtrHNSEiIiIiR27fvo2wsDBfV6NUkgTDN7+h1+uRmpqKkJAQSJJU4vvLyMhAdHQ0zp8/j9DQ0BLfX2nEY+Qcj5FzPEau4XFyjsfIOR4j53iMnHN0jIQQuH37NqpXrw6ZjKMZioItIH5EJpOhZs2aXt9vaGgoL0BO8Bg5x2PkHI+Ra3icnOMxco7HyDkeI+fsHSO2fBQPwzYiIiIiIvIaBiBEREREROQ1DEDKMbVajYkTJ0KtVvu6Kn6Lx8g5HiPneIxcw+PkHI+RczxGzvEYOcdjVLI4CJ2IiIiIiLyGLSBEREREROQ1DECIiIiIiMhrGIAQEREREZHXMAAhIiIiIiKvYQBSDu3evRv33XcfwsPDERQUhLZt2+K3337zdbVKTFxcHCRJsvmva9euVuVzc3MxZcoUJCQkICAgANWrV8f//vc/pKWl2d3HwoUL0aZNGwQFBaFixYro27cv9u3bV4Lvqmh++uknPPfcc2jVqhXUajUkScK8efPsls/IyMCoUaMQGxsLtVqNuLg4vPnmm8jMzLRZXq/X49NPP0Xjxo0RGBiIyMhIDBo0CKdPn7a7j1WrVqFLly4ICQlBaGgounXrhnXr1hX3rRaZO8do0qRJds8tSZJw5swZm69z9z2fOHECAwcOREREBAIDA9G0aVN8+eWX8EUOkYsXL+Ljjz9Gr169EBMTA5VKhWrVqqF///7YuXOnzdeUt/PI3WNUHs8jAMjJycGoUaPQuXNnVK9eHQEBAahWrRo6dOiAH374ARqNxuo15e1ccvcYlddzydLMmTON73nHjh1W68vbeeSXBJUr69evF0qlUoSEhIgRI0aIUaNGidjYWAFAzJo1y9fVKxGxsbEiLCxMTJw40erfDz/8YFZWp9OJ3r17CwCibdu2YsyYMeKRRx4RkiSJWrVqibS0NKvtv/vuuwKAiI2NFaNGjRIjRowQISEhQq1Wi61bt3rpXbrG8LeOiIgw/mx5DAwyMzNFs2bNBADRq1cvMWbMGNGrVy8BQLRu3VpkZ2dbvWb48OECgGjYsKEYPXq0eOqpp4RKpRKVKlUSJ06csCq/YMECAUBERkaKkSNHipEjR4rIyEghSZL4/fffPf32XeLOMZo4caIAIIYMGWLz/Lp586bVa9x9z4cPHxZhYWFCpVKJp556SowePVo0bNhQABAjR4708Lt3bsyYMQKAqF27tnj22WfFW2+9Jfr37y/kcrmQyWTil19+MStfHs8jd49ReTyPhBDi6tWrIiAgQHTu3FkMHz5cjB07Vjz//PPGz12vXr2ETqczli+P55K7x6i8nkumDh06JNRqtQgKChIAxPbt283Wl8fzyB8xAClHNBqNqF27tlCr1WL//v3G5bdu3RJ169YVKpVKnDlzxncVLCGxsbEiNjbWpbLff/+9ACAGDRok9Hq9cfmXX34pAIj//e9/ZuVPnDghFAqFqFu3rrh165Zx+f79+4VarRb169c3+3LwtTVr1hj/xjNmzHB4c/3OO+8IAGLMmDFmyw03V9OnTzdbvn79egFAdO7cWeTm5hqXr1y50nihN3Xjxg0RHh4uIiIixPnz543Lz58/LyIiIkRERITIyMgoztstEneOkeHLfsOGDS5tuyjvuXPnzgKAWLlypXFZbm6u6NSpkwAgtm3b5t4bLKYlS5aIjRs3Wi3fvHmzUCqVomLFiiInJ8e4vDyeR+4eo/J4HgmR/8DH9G9soNFoRNeuXQUAsXz5cuPy8nguuXuMyuu5ZJCXlydatGgh7r77bvHUU0/ZDEDK43nkjxiAlCOrVq0SAMSwYcOs1s2bN08AEJMnT/ZBzUqWOwFIu3btBACrQEyv14tatWqJoKAgcefOHePysWPHCgBi/vz5VtsaOnSoACA2bdpUrPqXFEc313q9XlSvXl0EBweLzMxMs3WZmZkiODhY1KpVy2z5oEGD7L5fwxfl2bNnjcu+/vpru+fcpEmT7B5Xb/J0AOLuez5+/LgAILp162ZVfuPGjXY/z75ieIq4e/duIQTPI1ssj5EQPI9smTNnjgAgPv74YyEEzyVbLI+REDyXJk6cKNRqtTh8+LAYMmSIVQDC88h/cAxIObJx40YAQK9evazW9e7dGwCwadMmb1bJa3JzczFv3jxMnz4dn332mc1+2Dk5Odi5cyfq1auH2NhYs3WSJKFnz57IysrCnj17jMvL6jFNTk5GamoqOnTogKCgILN1QUFB6NChA06fPo3z588bl2/cuNG4zpKtY1GWjt3mzZsxc+ZMfPDBB1i6dKndfsTuvmdH5Tt27IigoCC/OkZKpRIAoFAoAPA8ssXyGJnieZRPr9fj33//BQA0atQIAM8lS7aOkanyeC7t27cP06ZNw8SJE9GgQQObZXge+Q/rKyCVWcnJyQCAhIQEq3XVqlVDcHCwsUxZc/nyZQwbNsxsWevWrfHzzz+jdu3aAIBTp05Br9fbPD5A4XFLTk5Gp06djD8HBwejWrVqDsuXNo7OFcPyVatWITk5GdHR0cjKysKlS5fQqFEjyOVym+VNt+tsH6Xt2E2cONHs9/DwcMyZMwdPP/202XJ337Oj8nK5HPHx8Thy5Ai0Wq3NG1pvOnfuHNauXYuoqCg0btwYAM8jS7aOkanyeh7l5eVh+vTpEELg+vXrWLduHY4dO4Zhw4ahe/fuAHguuXKMTJW3cyk3NxdPP/00mjVrhtGjR9stV97PI3/CFpByJD09HQAQFhZmc31oaKixTFkybNgwrFu3DleuXEFWVhb279+PwYMHY/fu3ejevTtu374NwLXjY1rO8LM75UsLd49FUY+dvdeUlmPXtGlTfP/99zh9+jSys7ORkpKCTz/9FJIkYejQofjrr7/Myrv7nl05rnq93ngO+4pGo8HgwYORm5uLmTNnGr+oeR4VsneMAJ5HeXl5mDx5MqZMmYLPP/8cx48fxxtvvIFvvvnGWKa8n0uuHCOg/J5L77zzDpKTk/HDDz/YDBQMyvt55E/YAkJlnuWToGbNmuHHH38EACxYsADffvstRo0a5YuqUSn38MMPm/0eFxeHkSNHon79+ujZsyfGjx+PBx980Ee18w69Xo+hQ4di8+bNGDFiBAYPHuzrKvkdZ8eovJ9HwcHBEEJAr9cjNTUVf//9N8aNG4ft27dj5cqVxpu28szVY1Qez6Xt27dj1qxZmDRpks3uaOSf2AJSjhiicXuRd0ZGht0ovyx67rnnAACJiYkAXDs+puUMP7tTvrRw91gU9djZe01pPnYA0L17d9SuXRuHDh0yvhfA/ffsynGVJAkhISEeq7s79Ho9nnnmGSxatAhPPfUUvvrqK7P1PI+cHyNHyst5ZCCTyVCzZk288MIL+Oabb5CYmIhp06YB4Llk4OgYOVJWzyWtVoshQ4agSZMmeOutt5yW53nkPxiAlCOO+h5evnwZmZmZdvtFlkUREREAgKysLABArVq1IJPJ7PbNtNWvMyEhAZmZmbh8+bJL5UsLZ/1ULd9bUFAQoqKikJKSAp1O57S8s32U5mNnYDi/7ty5Y1zm7nt2VF6n0yElJQXx8fE+6bev1+sxbNgwzJ8/H4MGDcK8efMgk5l/pZT388iVY+RMWT+P7DEM4DUM6C3v55ItlsfImbJ4LmVmZiI5ORlJSUlQqVRmky7Onz8fANCuXTtIkoSlS5fyPPIjDEDKkS5dugAAVq9ebbVu1apVZmXKA0MmrLi4OABAYGAg2rRpg+PHj+Ps2bNmZYUQWLNmDYKCgtCqVSvj8rJ6TBMSElC9enUkJiYaAzSDrKwsJCYmIj4+HtHR0cblXbp0Ma6zZDgWnTt3NisPlL1jB+Qfo8OHDyMoKMj4pQ+4/54dld+6dSuysrJ8cowMN9Y//vgjHnvsMSxYsMDuAM3yeh65eowcKevnkSOpqakACrOGledzyR7LY+RIWT2X1Go1nn32WZv/DDf5Dz74IJ599lnExcXxPPInPk0CTF6l0WhErVq1HE5EmJKS4rP6lYSjR4+KrKwsm8urVatmldvb3YkIjx8/XqomIjTlDxMRhoWF+fVkTY6OUUZGhjh+/LjV8jt37hjzxlvmwy/Ke3Y26VdiYmIx36V7dDqdMb/+o48+KjQajcPy5fE8cucYldfzSIj8GbVtXZ+zsrJEnz59BAAxbdo04/LyeC65c4zK87lki615QIQon+eRP2IAUs6sX79eKJVKERISIkaMGCFGjRolYmNjBQAxa9YsX1fP4yZOnChCQkLE/fffL1588UXx5ptvin79+gmlUikAiLFjx5qV1+l0onfv3gKAaNu2rRgzZozo37+/kCRJxMfHi7S0NKt9vPvuuwKAiI2NFaNGjRIjRowQISEhQq1Wi61bt3rrrbrk22+/FUOGDBFDhgwRLVq0EABEhw4djMu+/fZbY9nMzEzRtGlT4wX2rbfeMk6i1rp1a7MJGQ2GDx8uAIiGDRuK0aNHi8GDBwuVSiUqVapk84txwYIFAoCIjIwUI0eOFCNHjhSRkZFCkiTx22+/leixsMfVY5SSkiIkSRJt2rQRQ4YMEWPGjBFDhw4VNWvWFABE48aNxbVr16y27+57/u+//0RYWJhQqVRi8ODBYvTo0aJhw4YCgBg5cmSJHw9LhonOgoODxdtvvy0mTpxo9c/0AUd5PI/cOUbl9TwSovD6fO+994oXXnhBjBkzRjz11FOicuXKAoDo1KmT2flRXs8lV49ReT6XbLEXgJTH88gfMQAph3bu3Cn69OkjQkNDRWBgoGjTpo345ZdffF2tErFx40YxcOBAkZCQIEJDQ4VCoRDVqlUT/fr1E6tWrbL5mpycHDFp0iRRu3ZtoVKpRLVq1cTw4cPF5cuX7e7np59+Eq1atRKBgYEiLCxM3HfffWLv3r0l9baKzHBBtvdvyJAhZuVv3bolXn31VREdHS2USqWIiYkRr7/+ut2nNzqdTsyZM0c0bNhQqNVqUblyZfHYY4+JkydP2q3TP//8Izp16iSCgoJEcHCw6NKli1izZo0n37ZbXD1G6enp4qWXXhKtW7cWkZGRQqFQiJCQENGmTRvx/vvv2/wSM3D3PR87dkwMGDBAVKpUSajVatG4cWPx+eefm7XSeYuz42Orxai8nUfuHKPyeh4JIcTu3bvFiBEjRMOGDUV4eLhQKBSicuXKolu3buLrr7+22XJU3s4ld45ReT6XbLEXgAhR/s4jfyQJIYSjLlpERERERESewkHoRERERETkNQxAiIiIiIjIaxiAEBERERGR1zAAISIiIiIir2EAQkREREREXsMAhIiIiIiIvIYBCBEREREReQ0DECIiIiIi8hoGIERERERE5DUMQIiIiIiIyGsYgBARERERkdcwACEiIiIiIq9hAEJERERERF7DAISIiIiIiLyGAQgREREREXkNAxAiIiIiIvIaBiBEREREROQ1DECIiIiIiMhr/h/IDoeNzfYrXQAAAABJRU5ErkJggg==",
1398
1056
  "text/html": [
1399
1057
  "\n",
1400
1058
  " <div style=\"display: inline-block;\">\n",
1401
1059
  " <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
1402
1060
  " Figure\n",
1403
1061
  " </div>\n",
1404
- " <img src='' width=800.0/>\n",
1062
+ " <img src='' width=800.0/>\n",
1405
1063
  " </div>\n",
1406
1064
  " "
1407
1065
  ],
@@ -1415,83 +1073,957 @@
1415
1073
  ],
1416
1074
  "source": [
1417
1075
  "recs = results.records\n",
1076
+ "idx = 0\n",
1418
1077
  "fig=plt.figure(1, figsize=(8,4), dpi= 100, facecolor='w', edgecolor='k')\n",
1419
- "fline, = plt.plot(recs[1].flux, label=f'flux')\n",
1420
- "mline, = plt.plot(recs[1].model, label=f'model')\n",
1078
+ "fline, = plt.plot(recs[idx].flux, label=f'flux')\n",
1079
+ "mline, = plt.plot(recs[idx].model, label=f'model')\n",
1421
1080
  "plt.legend(handles=[fline,mline])"
1422
1081
  ]
1423
1082
  },
1083
+ {
1084
+ "cell_type": "markdown",
1085
+ "metadata": {
1086
+ "toc-hr-collapsed": true
1087
+ },
1088
+ "source": [
1089
+ "## Plot FLUX for all records"
1090
+ ]
1091
+ },
1424
1092
  {
1425
1093
  "cell_type": "code",
1426
- "execution_count": 21,
1427
- "metadata": {},
1094
+ "execution_count": 22,
1095
+ "metadata": {
1096
+ "tags": []
1097
+ },
1098
+ "outputs": [
1099
+ {
1100
+ "name": "stdout",
1101
+ "output_type": "stream",
1102
+ "text": [
1103
+ "Ignoring unsupported feature: align_records\n"
1104
+ ]
1105
+ }
1106
+ ],
1107
+ "source": [
1108
+ "print('Ignoring unsupported feature: align_records')"
1109
+ ]
1110
+ },
1111
+ {
1112
+ "cell_type": "code",
1113
+ "execution_count": 23,
1114
+ "metadata": {
1115
+ "tags": []
1116
+ },
1428
1117
  "outputs": [],
1429
1118
  "source": [
1430
- "import sparcl.gather_2d\n",
1431
- "ar_dict, grid = sparcl.gather_2d.align_records(results.records)"
1119
+ "#import sparcl.gather_2d\n",
1120
+ "#ar_dict, grid = sparcl.gather_2d.align_records(results.records)\n",
1121
+ "#modeldf = pd.DataFrame(data=ar_dict['flux'],columns=grid)\n",
1122
+ "#modeldf.transpose().plot(xlabel='Wavelength', ylabel='Flux', legend=False)"
1123
+ ]
1124
+ },
1125
+ {
1126
+ "cell_type": "markdown",
1127
+ "metadata": {},
1128
+ "source": [
1129
+ "# Authorization\n",
1130
+ "Your access to data is affected by how you login (or don't). Both `client.find` and `client.retrieve` allow you to request data (possibly implictly) from specific Datasets. Its possible for your combination of LOGIN and FIND (or RETIEVE) to work now, but fail later without you changing anything. For instance, if you don't login and ask for data from ALL Datasets at a time when all Datasets are public, your FIND will succeed. But if NOIRLab adds a new Dataset that is private, your same find will fail. To avoid the failure, you would have to explicitly request only the public Datasets, or to login as a user that is authorized to access the private Dataset.\n",
1131
+ "\n",
1132
+ "So summarize, there are three cases in which your FIND or RETRIEVE will be authorized:\n",
1133
+ "1. All Datasets are Public (does not matter what you login status is)\n",
1134
+ "2. You have explicitly requested only Public Datasets (does not matter what you login status is)\n",
1135
+ "3. You are logged in and are authorized to access all the Private Datasets you have (explicitly or implicitly) requested.\n",
1136
+ "\n",
1137
+ "You might be authorized to access one Dataset, but not another. So, you must be careful in case #3 above to explictly request the correct Private Dataset(s)."
1432
1138
  ]
1433
1139
  },
1434
1140
  {
1435
1141
  "cell_type": "markdown",
1142
+ "metadata": {},
1143
+ "source": [
1144
+ "## Logging in and logging out"
1145
+ ]
1146
+ },
1147
+ {
1148
+ "cell_type": "code",
1149
+ "execution_count": 24,
1436
1150
  "metadata": {
1437
- "toc-hr-collapsed": true
1151
+ "tags": []
1438
1152
  },
1153
+ "outputs": [],
1439
1154
  "source": [
1440
- "## Plot full FLUX for all records"
1155
+ "if show_help:\n",
1156
+ " client.login?\n",
1157
+ " client.logout?"
1441
1158
  ]
1442
1159
  },
1443
1160
  {
1444
1161
  "cell_type": "code",
1445
- "execution_count": 22,
1446
- "metadata": {},
1162
+ "execution_count": 25,
1163
+ "metadata": {
1164
+ "tags": []
1165
+ },
1447
1166
  "outputs": [
1448
1167
  {
1449
- "data": {
1450
- "text/plain": [
1451
- "<Axes: xlabel='Wavelength', ylabel='Flux'>"
1452
- ]
1453
- },
1454
- "execution_count": 22,
1455
- "metadata": {},
1456
- "output_type": "execute_result"
1457
- },
1168
+ "name": "stdout",
1169
+ "output_type": "stream",
1170
+ "text": [
1171
+ "Logged in successfully with email='test_user_1@noirlab.edu'\n"
1172
+ ]
1173
+ }
1174
+ ],
1175
+ "source": [
1176
+ "client.login(auth_user, usrpw)"
1177
+ ]
1178
+ },
1179
+ {
1180
+ "cell_type": "code",
1181
+ "execution_count": 26,
1182
+ "metadata": {
1183
+ "scrolled": true,
1184
+ "tags": []
1185
+ },
1186
+ "outputs": [
1458
1187
  {
1459
1188
  "data": {
1460
- "application/vnd.jupyter.widget-view+json": {
1461
- "model_id": "6592541c8b3a46c0be243727160a71b5",
1462
- "version_major": 2,
1463
- "version_minor": 0
1464
- },
1465
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACgQ0lEQVR4nOzddXzTd+LH8dc3qbsBBVpa3H3IcDYGE+bKzV1uN73Zzd3ld9vdbnIbc7ebMgHGcBjuDoVS2lLqlibf3x+BJqGp0jYteT8fjz3WfPXT0CTvfNQwTdNERERERPyGxdcFEBEREZHmpQAoIiIi4mcUAEVERET8jAKgiIiIiJ9RABQRERHxMwqAIiIiIn5GAVBERETEzygAioiIiPgZBUARERERP6MAKCIiIuJnFABFRERE/IwCoIiIiIifUQAUERER8TMKgCIiIiJ+RgFQRERExM8oAIqIiIj4GQVAERERET+jACgiIiLiZxQARURERPyMAqCIiIiIn1EAFBEREfEzCoAiIiIifkYBUERERMTPKACKiIiI+BkFQBERERE/owAoIiIi4mcUAEVERET8jAKgiIiIiJ9RABQRERHxMwqAIiIiIn5GAVBERETEzygAioiIiPgZBUARERERP6MAKCIiIuJnFABFRERE/IwCoIiIiIifUQAUERER8TMKgCIiIiJ+RgFQRERExM8oAIqIiIj4GQVAERERET+jACgiIiLiZxQARURERPyMAqCIiIiIn1EAFBEREfEzCoAiIiIifkYBUERERMTPKACKiIiI+BkFQBERERE/owAoIiIi4mcUAEVERET8jAKgiIiIiJ9RABQRERHxMwqAIiIiIn5GAVBERETEzygAioiIiPiZAF8XoDVzOBykp6cTGRmJYRi+Lo6IiIjUgWmaFBQU0KFDBywW/6wLUwA8Aunp6SQnJ/u6GCIiItIAaWlpJCUl+boYPqEAeAQiIyMB5x9QVFSUj0sjIiIidZGfn09ycnLl57g/UgA8AoeafaOiohQARUREWhl/7r7lnw3fIiIiIn5MAVBERETEzygAioiIiPgZBUARERERP6MAKCIiIuJnFABFRERE/IwCoIiIiIifUQAUERER8TMKgCIiIiJ+RgFQRERExM8oAIqIiIj4GQVAERERET+jACgiIiI+lf/TT+S8846vi+FXAnxdABEREfFve265FYDwUaMI7t7dx6XxD6oBFBERkRbBnpvr6yL4DQVAERERaRksiiXNRc+0iIiItAyG4esS+A0FQBEREWkhFACbiwKgiIiItAzKf81GAVBERERaBENNwM1GAVBERER8xjRN1wMNAmk2eqZFRETEdxwO18+qAWw2CoAiIiLiO+41gIZiSXPRMy0iIiK+41ED6Lti+BsFQBEREfEZ9z6AGgTSfBQARURExHc0CMQn9EyLiIiI72gQiE8oAIqIiIjvuNcAqhNgs1EAFBEREZ/x6ANoUQBsLgqAIiIi4jtqAvYJBUARERHxHY95ABUAm4sCoIiIiPiMqRpAn1AAFBERkRZCAbC5KACKiIiI72glEJ9QABQRERHfcQ+A0mwUAEVERMRn3KeBwaz+OGlcCoAiIiLiO6ZSny8oAIqIiIjvKAD6hAKgiIiI+I76APqEAqCIiIi0EKoNbC4KgCIiIiJ+RgFQRERExM8oAIqIiEjLoAEhzUYBUERERHxHoc8nFABFRERE/IwCoIiIiLQMqg1sNgqAIiIiIn5GAVBERETEzygAioiIiM94tPqqCbjZKACKiIiI+BkFQBERERE/owAoIiIiLYKpJuBmowAoIiIi4mcUAEVERET8jAKgiIiI+JCafX1BAVBERERaBmXBZtOqA+CePXt46aWXmDx5Mp06dSIoKIjExETOPvtsFi1a5PWc/Px8brvtNlJSUggODiY1NZU77riDwsLCZi69iIiIiG+06gD48ssvc+utt7Jt2zYmT57M7bffzpgxY/jmm28YNWoUn3zyicfxRUVFjB8/nhdffJFevXpx66230rNnT5577jmOO+44SktLffSbiIiIiDSfAF8X4EgMHz6c2bNnM378eI/tf/zxB8cffzzXX389Z5xxBsHBwQA888wzrFixgrvuuounnnqq8vi7776bp59+mhdffJF77rmnWX8HEREROURtwM3FMI/SSXemTJnCzz//zJIlSzjmmGMwTZOkpCTy8/PJyMggPDy88tiioiISExNp27YtW7durfM98vPziY6OJi8vj6ioqKb4NURERI5q5WlpbD1hMgCdv/makJ49m/ye+vxu5U3ANQkMDAQgIMBZybl582bS09MZPXq0R/gDCA8PZ/To0Wzbto20tLRmL6uIiIhIczoqA+CuXbv49ddfad++Pf379wecARCge/fuXs85tP3QcSIiItLMjs5GyRapVfcB9MZms3HxxRdTVlbG008/jdVqBSAvLw+A6Ohor+cdqgI+dJw3ZWVllJWVVT7Oz89vrGKLiIiINJujqgbQ4XBw2WWXMWfOHK6++mouvvjiRr3+k08+SXR0dOV/ycnJjXp9ERERkeZw1ARAh8PBFVdcwYcffshFF13Ef/7zH4/9h2r+qqvhO1SbV10NIcA999xDXl5e5X/qLygiInKE3Jt91QTcbI6KJmCHw8Hll1/Ou+++y7Rp05g+fToWi2e2ra2PX219BAGCg4Mrp5QRERERaa1afQ2ge/g7//zzee+99yr7/bnr3r07HTp0YN68eRQVFXnsKyoqYt68eXTu3FnNuiIiInLUa9UB8FCz77vvvsu5557L+++/7zX8ARiGwVVXXUVhYSGPPvqox75HH32UwsJCrr766uYotoiIiHijJuBm06qbgB955BHeeecdIiIi6NGjB4899liVY8444wwGDRoEwJ133sk333zD008/zfLlyxkyZAjLli3j559/ZtiwYdxyyy3N+wuIiIiI+ECrDoA7duwAoLCwkMcff9zrMampqZUBMDw8nN9//52HHnqIL774glmzZtG+fXtuv/12HnzwQUJDQ5up5CIiIiK+c9QuBdcctJSMiIjIkSnfuZOtU04EoPOXXxDSp0+T31Of3628D6CIiIgcPVQn1XwUAEVERET8jAJgC1bhMNlaXOrrYoiIiMhRRgGwBbt09XZGL9rA5xk5vi6KiIhI01MLcLNRAGzBfstxLk/3xu4sH5dERESkiajfn08oAIqIiIj4GQVAERERaRlUG9hsFABFRERE/IwCoIiIiIifUQAUERERn/Gc/FlNwM1FAVBERETEzygAioiIiPgZBUARERFpGTQKuNkoAIqIiIj4GQVAERER8R1V+vmEAqCIiIiIn1EAbAUMDF8XQUREpOmpD2CzUQAUERER8TMKgCIiIiJ+RgGwFTDVQ1ZERPyBmoCbjQKgiIiI+JBCny8oAIqIiIj4GQVAERERaRFsezJ8XQS/oQAoIiIiLUPuDl+XwG8oAIqIiIjPmHa3PoAWxZLmomdaREREfMa02yt/NrTuQbNRABQRERHfsbv9rADYbBQARURExGdMu8P1wKIE2FwUAFsBrQUsIiJHLfc+gJoIutkoAIqIiIgPKfT5ggKgiIiI+IyWO/UNBUARERHxHY/8py5PzUUBUERERFqEMnu5r4vgNxQARUREpEXYXpbp6yL4DQXAVkD9I0RE5KiljzifUABsoXbuL8KaVgQOvTJERMRP6DOv2QT4ugDi3fhnZxMIYHPAwDBfF0dERKRpuGc+jQFpNqoBbOEsB8p8XQQRERE5yigAioiIiE9VLganFuBmoyZgERER8Zmigjx+7deZ9rkFpCoBNhvVALYCWgtYRESOVmuWz6fCaiEtPhojfyekLfF1kfyCAqCIiIj4TEBAYOXPlh2/wn8ngb3ChyXyDwqAIiIi4jPuAbCSaW/+gvgZBUARERHxmYAA13AEVw9AdX1qagqAIiIi4jOGxep6oDEgzUYBsJXILChl/pZsTFOvDhEROYroc80nFABbAXtFASOe+I2/vLmImRu0ULaIiBxFFAB9QgGwBQsDYh1QVLyt8vXxx+Zsn5ZJRESkqZhefpKmoQDYgv1MFD/kBBNuU2dYERERaTwKgK1ApwIvQ+RFRESawdwDBVy6ehvppeXNd1M1Czc5LQUnIiIi1TpnxVYAyh1pfDSwaxPcQWHPF1QDKCIiIrVKL7M10ZUVAH1BAbCFsscF80C/EPIDQC8OERFpidYVlrCzpOzILuL1I06fe01NTcAtlG1YAj8AYXa9CERExPcO75aXWWbjuCUbAciYOKj5CyRHRDWALdzeUP0TiYhIy7OtgTV/24rLWF1QXPnYY4EDs3LjEZRM6kI1gK2AoTURRUTEx8zDmmUb+sk0atF6AFaP7kubIM1y4Sutvnrp/fff59prr+WYY44hODgYwzCYPn16tcfn5+dz2223kZKSQnBwMKmpqdxxxx0UFhY2X6FFRET83K6SQ9PKOAAoDQrRRNDNqNUHwPvuu4/XX3+dnTt30r59+xqPLSoqYvz48bz44ov06tWLW2+9lZ49e/Lcc89x3HHHUVpa2kylrjvTYmPE4hXct2g6FtPh6+KIiIifOjySNVrblAl723bk5Svu48nh9zbWVaUWrT4Avvnmm+zYsYOsrCyuu+66Go995plnWLFiBXfddRczZszgqaeeYsaMGdx1110sWbKEF198sZlKXXfl4XsZP28Zo/euYVjGel8XR0REpFHY9u4FnE3LSwaMAWBBx9HOneoD2ORafQCcNGkSKSkptR5nmiZvvvkmERER3H///R777r//fiIiInjzzTebqpgNZhoVlT8H25tqDiYREZGaNXYmcxS5ul4ZavJtdq0+ANbV5s2bSU9PZ/To0YSHh3vsCw8PZ/To0Wzbto20tDQfldA7UwNARESkBTKMI/x8Mg/7v9ed0lT8KgACdO/e3ev+Q9sPHSciIiIujR3JTDXz+pTfTAOTl5cHQHR0tNf9UVFRHsd5U1ZWRlmZa96j/Pz8RixhDVQJKCIiLcyRfjQdyn8lhfkQE+l9pzQZv6kBbAxPPvkk0dHRlf8lJyc3w131IhAREd87fB5Aj31HENh2r1vd4HOl4fwmAB6q+auuhu9QbV51NYQA99xzD3l5eZX/NVt/QWVAERFpYdxrAI/kY8pht3sZBKIPvqbmN03AtfXxq62PIEBwcDDBwcGNX7gaqPVXRERaAtMEW3o6Ae3bYxjGEQfAmmoUpen5TQ1g9+7d6dChA/PmzaOoqMhjX1FREfPmzaNz587N1KzbMKbSoIiI+Ig9P48txx1P9r//3eBr1LmpWH0Am5zfBEDDMLjqqqsoLCzk0Ucf9dj36KOPUlhYyNVXX+2j0lXP/SVg6PUgIiI+Ys9zdpXKfvkV5wa3Sok657pGLpM0XKtvAn7zzTeZO3cuAKtXr67cNnv2bADGjBnDVVddBcCdd97JN998w9NPP83y5csZMmQIy5Yt4+eff2bYsGHccsstvvgVREREWryaWqEOBbsSu4OZOfmMi40kMsBa8/XMmiYCVFRsaq0+AM6dO5d33nnHY9u8efOYN29e5eNDATA8PJzff/+dhx56iC+++IJZs2bRvn17br/9dh588EFCQ0Obtex1YqCOgCIi0qI5+/MZ3L1pN59k5DAxLpKPBnatcpzDvaqw8md9yPlCqw+A06dPZ/r06XU+Pjo6mhdffLFFrvsrIiLSUtW0MtWhKPdJRg4As3IKvB+nPoAtht/0AWztvpwwhWUnHINd1eIiItICuI8DPrK8ZrK++8AjLo/UT6uvAfQLhpWXz78MgI2lDt+WRURE/JJ52Nq/DZkGxnSoEqOlUA1gKxA2+tbKn8t9WA4RERFv6hwATVVitBQKgC2cPbDQ10UQERGpoqjMVvlzQyZ1PtQf0NAYEJ9QABQREZF627w2y/WgzmM7NAikpVAAFBER8WOZmTNIS3un1uMO7wNozyyp9708AqAynk8pAIqIiLQgFRUV7NmzB4ejefrLvb/mde7bvJuc/A31Om9fcXblz3XvA+j+c01nKR02NQXAVkbrAYuIHN0++eQT3njjDRYuXNgs93vGuJ8Zxim8l5Ff43GHzwNYUFbgtq9uvB+nsOcLCoCtTGm53ddFEBGRJrR582YAFi1aBIDdXsKmzY9xIHdJk953b3nNkeDwCgiPeQBrufaqnDz+On8le0vd57Ko4Sz1AWxyCoCtzNq9NX9DExGRo8uOnf8hLe1tli27oEnvU+tI3hqG6zpqmd/vzKUb+aLM5LKFq93u5/l/aV4KgC2cXhgCsD+9kNWzd+Owaw4tEX9TXLzN10WohusTylFLjV1RYBAAW0LCq+yzeX1f06dfU9NKICKtwMePLAacX8D7jU/ycWlE5GhkqWGtX6jaB7Cw3NUH0FuEe3dPNm/szuKDAV28Xs/hsB+6sPiAagBbgWKr62czxFr9gXLU27fT+wLrInL0KAoKYUGXvhwICmnye+VnZTb43CKba6GCyhpAt5U+7ty0m83FZTywZY/X8zOKMg6dXHWn+gA2OdUAtgIVgUVAJADhVi0GJyJyNPu5zzD2RcezpbwTjzTxvQoP5NT52MMHgbhHtJq6AJZp/d8WSTWArUBOyo+VPw+I2kXeAQ0EERE5Wu2LjgegKCjYxyWpmeEWAe0NqLE7NOjE8HqqQmNTUwBs4QxgQ8o612PDwca1W31XIPEtNYuISBMpLSurcf/hfQDrqrq3LYejwrlf89v6hAJgK3Cf8azH4wMHDvioJOJrtsyG99cREanKrRavoqLh5zagmTc9/VMAAi1e+jrqy26TUwBshTZu+JqiItUC+iPb7t2+LoKI+FCR3c7KguJallFroNpC3GHzAFpspZU/11Sc6naZB2sAwwKi61I6aWQKgC3c4S8cEzi5eCw7/vuJL4ojIiI+dNqfG5mydBNfZ+Y2yvXcg1tBfv36l0fu21H5s71y9G/VuFdW4X0FK/NgoLQfNonMquAgr9eRxqUA2MpYDQgpSSQ6fWzTfAMUEZEWa22RcyaID3enNfq1Kxw1NwEf3lfPYncd74pwVT+XtmYVeb2e9WAFYvlhs5td3L5djeWQxqEA2AJV1LGPX16JrYlLIiIiLZHNltso1zEd7rVvNVcqHD4IxDBdEcJRwyJF1fUP7PSzBUdZGXbD82SHYagPYDNQAGyB8r//odp97i9A0wTT1NJg/sTUcDkRaVSml5/qxuFxbgOmgTEM9qVnYx7WBGzofa5ZKAC2QBX7syt/XmUMqfa4Azm/8PucwWRnz2yOYomPFJS6anobMtJORFq3kpLSKtsa653AsxLBddUDpWW8tWkH+TZXM6952CAQ063mzt7AAtmKiqoEvpE7T0d9AJtenQPgZ599Vusxdrudu+6664gKJND25pvrdNz2zTdhtxeyctXVTVwi8SW9DYo0rQOffEre99/7uhjVys7OqrKtsd4XKmzeuxKd/dtC/rEnl0sWrancVhYUxLwBQykNDKpyvKPyy2nVklVXO2iYJsVPPIppeEaRgXsn1rH0ciTqHADPP/98rrrqKoqLi73u37JlC8ceeyzPPfdcoxVOqtoW1MHXRZBmpq4wIk3HtncvGQ8+SPrtf/d1UarXhO8BdrtrhK77bdaFOadmWeiWD8uCgrnv+r/z7MXXHNxieD33cNVOA2MYmMuWUhpUNVBK06tzAJwyZQpvvfUWQ4cOZcWKFR77pk+fzpAhQ1i2bBn/+Mc/GruM4mZ3YDu2h6vl3q+4vXuW29XnU6Qx2fMLKn9uTTMrNHRVjsPZHa4AWNcrzhw2mpVZKz22OWp47hy1tA87LF4+01rRv0VrVeck8eOPP/L888+zfft2Ro4cyfPPP09ubi7Tpk3jyiuvJDY2llmzZvHoo482ZXkFWBmlEOCvMgtqXqpJROrJPfW00NBRYa86PUtjldTuce26X/XrLV97PK6pe7KtvJZ5AL0FQGly9XrWb731VhYuXEiXLl2488476dixI59++ilnnXUWK1euZOzYsU1VTr/iXiXvTYX3lbPFD1g16luk6RwWAL/77js+/vjjZqkZNMvLq71PeXl5k923osKtjdeoX61iXJBrvj5HDQkwyFF1EAu44mZReFgNe6Wp1Dt2Dxw4kKlTp2KaJiUlJcTHx/Pwww8TExPTBMXzT+vXr6/lCL0w/FWYUeLrIogcVQz30HPYZHZLly5lw4YNZGRkNGkZ9mz5gPmv9mPXrddXc0TVYOYoa5zWAEcDu5VEpufTL3JY5eOXVz1b7bFtinK87zj43MfkFnhstlkhc8e2BpVL6q5eATAtLY1x48bx/PPPM2jQIO655x5yc3MZNmwY//nPf5qqjH5ny5YtNe5X/PMvJiamacd0FOAwVAMo0qjcA2A1NXCOmmY5bgQbdj1AaX87u0P+qPM5FXl5jXJvh8O9xcn1XFjMmluiBr37p8fxi/fNc/7g5TncktrZ6zX+fvO9bEpOrbL9x4kl5Gdn1nh/OXL1mgZm4MCBzJ8/n5tvvpmFCxfy+OOP88cff5CYmMhf//pXzjzzTHJyqkn6Umennnqqr4sgLUxp6ZcUml9Qil5fIo3KMNiYGMfyTm2bPOjVZnu/ZApK6tjca0JGYRmLDzhrz4psRazNXlvv5uoKtwBocatesFJzAKTQ5lkxeTBIG/Wsorjzb/dUqeBcGd+xkYa4SE3qNQ1MUFAQP/zwAy+88AJBB4dtjxgxgpUrV/KXv/yFb775hoEDBzZZYf2Fde+KGvfP6BjKH208F0/cdc01LXoeKzkyloEGiaNzKY6o2zKBIlJ3W9vFsjc2kvRNGyq3uQepZhsdbJi88fvWqttN2Et7CohwbTIMhixax2krtrIwt5DzvzufC76/gFlps+p1S9Otz7ln/K3ld3aAe3ILKXV+Jlkd9YtueZFREOAteKutq6nVOQCedNJJrFq1iilTplTZFxERwXvvvce7775LQUGBl7OlXjb9WOPuFXFB3DrEs9Ns0Zw/SL/975gOE3tB03UYluZnmjBw0AySO60lvm/jLwDfHJbP+I4P7/87pYWFvi6KiCe3JmC722ALX0wJYwAHCqv27dtnRvJ34xWuM96p3GbHisPiLPvcA4XszN8JwE/bf6rXPd2ngSlzG8hRW4yzhNo9jhq7KsH5Qz2fNsPhwAjwVtuoOsCmVucA+P3339O2bdsaj7nooouqzBEoDZA8osGnZr+5mr2PL6JsV34jFkh8yf39NCSidQaomW+9SuaOtSz6+lNfF0WkWmUV1UxX0ow1gN4S1PaAqn3oDFytQCGWhoclRzWzTtTWlGs/27MPYkRJ4MHz6se0WDCsVbcb9RyRLPXX6JPvpKamNvYl/U/3Exp0miUmhbJteWy1ZDD3h9mUbcvFnq/awNauNU1OW53kCXvpe/Fmyh0a2SctjSto/Lp2b+XPvnrdGV7ua+ClidQtIIVYXR/lxeVV5wx09+v+fEYuXMfiXOeXSc9px8xqfvYioQLvca8hz1vV62yvZ1Oy1F9AXQ+cM2dOnS86bty4BhVGnKr7FlqdN7iehCvbcvd+57fEWUFrIQPavhFIrBlB0lOan7E1M4GVDGIL3RnDYl8Xp0HiezprC4rCFvq4JCLVK6luwuJmCoMGpveRyF62uUfCILcwuG5vza0/F61yfgk7b+VWdowf6DkKuLzug2BeCL2DK6weo0DqfG5dpCsANrk6B8AJEybUuUq2tomMpWYfLdpV52OzSWC2MQmOgRN+W8vQik6V+8rwvsi3tC6mCc8Y9wMQEVbOXxrpuk/+sJ7lu3J5/6oRBAU0z0z8R0NtprR+OR9+iD03lzY33IDpVmNluE207pO/VeNQGby0iR7GffUMW1a250XqoPRgfz9bhavG0FGPPoB/Bg4nuUNR5WPTgLT8hvVRDo5sX7V8G60UhO4GICgliuCUqAZdW6pX5wD4wAMPeA2AeXl5LFu2jDlz5nDKKadwzDHHNGoB/dGO/cUQWftx73EZk3ENGFkauNUjAKoT7dHB/QNqX2C7Go6sn9fmOGsCfl2/j5P7V30Dbgp2H0+zIQ2XWWYjOtBK8FGwbNe+R5xLlkZPnYqj1G2VCtPENE22r8wmtkNo5Wabzc7/tv6PXnG96BHbo8nK1a7dNjZlemkC9hJG7W7bKgqKK3+ub3DdsDcP4g5e5+CqIPkVdkqN0BrOciry+OJocNan50Kn/6vX/QGCgqOrbNueXkFe+nYAoiZ1UgBsAnUOgA899FCN+z///HMuu+wyHn744SMtk9+72bKD/9Cx1uN+Mk5lsukKgIde9sc6BrHAWNE0hZPm5/Z+XmHU+SVbZ7YGrgTQEBWqAWyVdpaUMWLhepJCAll6bF9fF6fROIqK2PLlz64NpsmWPzP5+c21mNgh0bl57qqZPJf/EgCrL13dqGWoEtgcFUBQ5cPF23M4fIIW8PxiuDUr3W17/eQVufqJx0TtodzhoMcfdfsdTbc6hgVDJ3D2qqn8K7l+929TaqfcS2tVOSZhg50DTwMTw+t3UamTRvsqd8455zBx4kTuueeexrqk37Jt3Njgcz9MCeTSians6Nh8b9IOh5qam5L7G7rF23C5VqS+k8RKy/DLfme/st2lrf+17jG/n8PBtux0TMBusWKxO9i1eIf70VgsFewu3Nlk5dl94PDlHT1fI1dMX1JrW05+uWv6tfp+xwo0XfcPCirhgK3uXbjcy7W++0Aiy2Prd3Ng3L4ydgZkV9luBEDc+T2JO78nof0S6n1dqV2j1uX37t2bBQsWNOYl/VL06ac16DwDeKFXCAA/de/eiCWqXmbmDGbN7kX63s+b5X7+yHOR9dbf/CZyuMLCrZQU726em7l3QzCdzas/TTiL/7viPsIKHZRv2eTcZ0CfvrMZPeYjgixNtwZ30WFz59rshYc9dnj94uQevmwV7n0Xq7/Xuv3rqmxrW+w5Mr8+M8qYXqJpQ77k6WuhbzTqp8ny5cuxHAX9Q3wtuFu3Bp13+IsosBmWDVu95gYA1q+/q8bjPPrZSL2Y7h3TW32/Tr3VtwSOoqLaD2om5eU5fPjQlbx1+2VV5qSzldsxHY38N+NwuP4KTRNMWNNrCPaAQOa1d9Y02Yp/o6JsNfHxzlAaHbDB4xJl5dker8sjUVbgHCG/gd58yjTmFz3rsd8wvIcq9y2OOpTFVlrK+d+dX2W71eH5nFvrMf+eeVi5drYJoDwopM7nA1QEVve3qPeKplbntLZr1y6v/23bto0//viDK6+8kpkzZ3L88cc3ZXnlMDUFAjPyTzaNuY1dv38GQNrjd7LjmssxD+uIX7ZtG6at6Zp2ct7/gI2DBpP/Y80rnIh37h+Arf4tsbXn1xbGnpdH7hdfYq/HCkzZr7/BxqHHkD/j59oPPqgp/9mKS7ZTkBZBaU4I+7ZvqdxedKCE12/6na+ebtypgzIzM/nf6acx79jzWfNnPu7966ymSYktE3vZSipKZrOB3rzBdRQ5AiuP2Z8zl7lzR7Bm7S2NU6AM59yDjxqP8Y1xDrkxYzx2t7MZXp9/h+H6+HYPYt762aatW80/Lz2HKNu0KvsqLJ7dSurThGwL86xkePe4+g/UKI3dStduS6pst5uaTaSp1blHeWpqao3TwJimSdeuXXnxxRcbpWBSN7cb/3I9OOyfJ98+l1XFHagI+QdxRYMofO9bAIoXLyZ85EgA8r79lvQ77iR8zBg6vflGk5Rx32OPAbDn9r8TddJJTXKPo5lHJ/FWPzt+q4+wPuMos1O6fj8hveKwhDjfuvfceitF8xdQ8OuvJL/67zpdJ+uFFwDYe999RE2Z7PUY0zQ93u+b8q/uwPqN9I8dR6m9COc0eCbp6ens/HAxEM3enY3b/Prdjz9SGhrK7hQoW1hKR1e2w+JwYDddX4YfNZzvXblhEVC+GYAdO5zPc2bm98A/j7g8ebt3gdvkDeWBbTz2n5cbxF5vNXxuwc1ilHFyWjiB2yP5ZZgDu70UwwjAYnH+ncx+900AtnY92eMSezaux+E25YyNIBz1eI2WBBz5ykQzQkcyIaTqCkH1KYc0TJ0D4CWXXOI1AFosFmJjYxk2bBinn346ISH1q/6VxnN4bWDk5yHMHTKBPWPa07/vKtdxNte8TznvvAtA0dy5AJSsWsXum2+h3V13EXVi1XWfj6yAekE3hHuNbWM2AR9jbCDUKAcGNdo1a9Pa4+uR+OnfL5G5YyvTHnuKzVseJj5+HO3aTa3z+Qe+2ETJqmxCesaScHk/AIrmO/tcF86aVf8CVdNdJ+f9D8h+5RU6vTOdkJ49nfcuy63/9WuRUWbDxCR/2T76xBwLOJsy1/3+Fcx+gs35F1AcNJQQmwmfXAS9pmIOOJ+vMnMZFBlGl7DgBt3X4Tbq3QqYZa4lzSxuwdfiVvN+ICiBO0PimV9oxeGoeaWN+srdt5twtwDovb7Py3un24Cwdh2WMalDFozKYtvCaH6fM4iQkA6MOnam82zDwlenVJ1B9OMH7iCip2vY7k/GVJ6uR5N7iaVxnotvOKvKtnC7upM1tToHwOnTpzdhMaQp7E08lkcX/JfpvceQlT2TAMyDby6uF7jDYiE7OpaEvAM4iotJu/4G7Pv3s+eWW4jasN53hZdKps1tgfpGu6jJ58GP4Kgw+PPFreRfcHaDa2dte/dSviuN8BHD63DfBt3iqLD2918BWLP0eXJKv2Bvxhf1CoAlq5wjJUs3HqjzOenpn5O9/zd6xNxB9gsvE3/55ZX7jGoC4KEa+4wHHiT1k48BmJv2BzCkzvetjc1hMmj+WgC+tVsoTFhBZs+PSSy+jbaz72N9/kmUhtp5flIsPXcVkvrLZmwz/glPTOaG9c6J8jMmDmrQvc0KVw3f+MgANh5wbwI2MLCyctINbIhw/bEGBdvp0CaNc9rAgYwgrGGu620qKsVqQNewhlV+GHaTLFy1ftlxo7wc5G0lEO9fp0ak7sY0beSU7KPE7iDUaiEjKo4tyX28Hm83PP8Ols/cArVPAejUSK9nb7/JeGIa5+JSLUXso0hutOerdmuXU7AFhDL5mJlkZf1EeXeT0gAru66+hozHHmPLL/dz/6RTOPepf7Og32A2DhmKff/+yvMdDgeOw/oLmuXl7LntNnK/+KL+BWziGkB7QQGZzz1H6YYNtR98JPcpLKJ8Z9NNC3E4w+4eABupDu1gLUbOxnAiFs1jz623NfhSWyYex65LL6X4zz+97nfvw2jVIDEqHI03OOv7URM498l/sbVjJ6/712+4i6ysn9nwzhUU/PgTO85zGwRgsZBVnMW+zz5lztSTKFrnHCGaHxnJut69KXKb5G1flmuk6IEF8ynZ65p3riHSZ8+u/LnAsPDKkDTuDf8bWw88xfIDp7NsfzTfxzv7k23sFMGmgjZsL4rj9/R9R3RfALO0jLyQcD455jje6RWM6TYIIsheToZtCD9368CuRNdcrHa3upLyEtfrschuZ9ziDYxetAFbAwerxJTE8wJ3V7vfEVRAbGzVaVJ2Bce5PXL9W5kOk3KCuMr4gP7z1jg3VvOyi0op4PA6vOWz6v7eFhpW976nNfG21vHPXe28uTuLN9KyWJbXcgYtHU30bnwU2drVc66kpV2DmD/ossrHue0Cmdk3laWdEznw/gfY/vY5M7sPAOCjKa6pZ2wBzkk333n3Yz695jqWLFpTORXJvg8/omDWQvbeex+/vf2lx/0qGnlCYVtGBoV//FHnme0zn3mG/W/+l+1nnNmo5Tjc1smT2TrlREqPYL7Gw1UcOEDe//7ndbT04YN2GoXdxj6rlfX2xuuyUbxsmdftDrd/v8rmLYcDcrZ5Pf5oZ8vOarRrPXfxtWTHxPH0JdfXeFx5UdUAUVBRyHGfHcdHn77JknArsx78BwA/T5nM6oEDmB8Xh82Wz4KFF9DOcPXDe+ulJ3jtb1c1uMz5pTbu/tC1pnVecT6fG39hs9GLz82pvDZ0MhnJDuyBVT+eKirq1uRYVFbBz2szKPUyp529xM5HI07gQHgU07sEU2Jz9WP7tHcXjo2vGjbsbh+VpuF6PW7Lcz0v5Q4HlBeDvX7NohUVFewyUqvd33bi814DUvUM9uFcMajQ7qC4tAKbdY3XI3NPTMR2WNcuS2DdX5dLjJH1KFf15hvjqmx7v1tH7tu8h/u37OGrPU0/o4U/qrYJuEuXLg26oGEYbN26tcEFkiNwWOXQnjZFlFW4+gbti46kKK4X5fn7GbY9w+PYtHbOpcAy2g5jXZ/LSNn5E5Fff0LfDZvIXbyMN+5/m3NKrWyet4POU57GtnMeHZ6+l/SD/c6Nchh9xye89NfJHNs1vtoiLt6ew2/rM7i6ZAPhPXsS0rdPtYOLtkyYCEDHF54Hi4XwkSOxREdXe3zJ2rU1Pj0AWS+/gqOwgHZHMGG5Pcf5ZlQ4a3ZlHynTbse2N4OgpNpXcPFm1xVXUrZ+PTHLl9P+wQc99plNUgNoY1Knjly+wc5JjdWOU81lPKfxOPjzt3+D5e/D1JfgmMu9nXZUsNkd/LB6LyO7uF4TebvSCernOubQgIu8778n89nnSPrn//FBXgTto0M5ZUDdluiriKn5784ss5ET24eo/O0E2MsAKHGUAQEYYRbiUnLZsTaCJRv2YITYaRu/k/zyeFYvf5ri4iX0jIvj0Ayv+eHRBNnK6v4kmCbYSiDI2W76yDvL6RXWhUPvTDOikioP/d44HZJhedsT6Zbpmhdw0LXrydkcxaLcfAisYVWI4hyY93/cvHUMv+4oZ9rwTtx3Sm/Cgw9+1DnsOA4rumn17Ev4l+OrXn+n0aXyT3d/QDBvcSvj+Y0XXp4L45zLhVSUFcI/+0NcKlw7B9N0sHXbC8REDyUhYSKmaXLasi0syS9iwYjedD7Yh3GPbX+V+7l7P3oa/VlZ4zEA8xjDB1zG+XxMHK7uO+8/8ytGvPcX5/PGPbTvn+mxzUrLGH0baSujKNtZlix7EHhvwZYjUG0NoMPhwDy4LmJ9/ju8yVDqb8+GqpN11kWpxbM2pyKwhDNTb6l8XBwbhyMsgrLElCrn5kZGUxoYxKYe5wGwM+VEuuTtB8NCTHkRH/25m5K1+0mMdPYDCkwZDUD4r84/obb3BTL9h0d45M3faqyxO++1Bfz52Q9k3Xsv2849j08eX8z/Xlxc4zl7brudPbfcyqaRx5J29TWV2+25ueT/8otrCptqmmAO1aCZpkn2v/5Fzjvvsv+/b9VpbsK8b7+jaPFir/uyXnqJrFeco7DT77qbrZMmkfn8C2w79TRsGRlez6lO2XrnG3bBjz9V2Wdf5/73UI85ukwT00uNSfGyZaxes5pBm6Ix7Z5h3VFWRvHSpdgLj3x0n23PHtLvvsd7Teny9wGwz3rqiO/Tkv33t7X8+OVHXPaCq7a81C2B/JlXRL95a/l4117Sb/87FRkZ7Pjr33js+/X89UPvNaoA9sIysqe7/i4rwg7w+Z+e06XYbHkcIIZFHMv+2B6sGPg31vR11dyZBpyUM5pep++l04S9RA3MY+Gd19Ou/yq+6zmW4n4l7Njo7Lfo/lf32sV38PIV94HdDraDryHTrL6Lx2eX4ni2G468dHDYabtoJTnWOZW7v+45sMopxcGhREa5ai1NIKx7OQv2ucLJlKd/4cO7vyZj6Qrnc2B38I//fMO/P99J9roNhNhL+HTTLga8v4B+f6zml+w8zO//XuV7yo5unmv75hpxeFOMM8A+H3UrC4wxPGU8SGC062rzl57DlvY22LsSHA7Wpv2PO3aG8MEq50jhYoeDJfnO2sVjF63n1fnb2JJZiM1R82t6iXEsbxnX1XhMLjH827iVPCOWb9udzp2Ga3Ty7IR8Mnp77yIAsDeurcfjfW0DqzmyeV25czXHby/n+G3lHOsIqv0EqbdqawB37NjRjMUQdztXr4CE+n/d2RDSy+OxJbaYpRFbCceKFTsl0TFQw5fNgvAI7JYKTMNOjMVK2xFPUpG9mZK5zxKVs52fN81kUr9p7stUEv1lAEWTyrEWOt/EemXNZMp7L/P8R8G0mzyVtrfe4nGP6TMeo11JLuWBgSw4djz52WmE7olj+803k/LEE1gjIgBwlJfjTdHcuex78ina3XM3Oy++mLLNW0j461+J/cs0yrz0/ct88SX2v/Yaya/9h/Axrvm1Mp99lrKtW+nwxOOV2xzFxdgLCwls63xDLN20ifQ77gCg66+/eq3dy37lFdrc+Ffyv/sOgP1vOKfS2TJhIp3efouQ3r2xxsRUOc9RWkr+9z8QMW4sAW1cHcDtublVji2740549SPneXWcBsaWkVFZgxrcoweJDz5A2NChFC9dys6LLsYKDBrYFYDioFzCyisoWbmSHedfUHmN3ocNArLt2UP5zp2EjxqFaZoUzppNcI+qK86UbduOLW0XWf/6N6WrVpH33XeVs2UcKn5GSQSz93VhcPv99KzldylevpzihQuJv/pqjIDGWwt5ZVouczZmckWbUgp/+J6EG2/EGhlZ5/OLFi6ifMcOYi+oOrkuQEm5nc3LZzIgcSVJOa4XXqlRwWzOpCfreXP1Nvbb7NyydR/fj7RT1tsk6ltX+F6yfT8hgQH0T4rGBBYkWOlW4MB49nvSLG0hxflitFvL2LzjFnKSPiOunXNUpy1zFX/jDUzDQuqQDMaXmOSH9mXQwQkBIpJ7cUlAEvtiCtlPPHeOfRXGQhdzM9uM7ixrP5wXtl9HNLCEqgN8HP8ZQ1lGGPaxz1L0zjWEJEcT/eSvlf/I9gobaZvW0GntN1gM+O7dpxm972cCy07k6xOrjkg9XESEq9nvTa5jtnECCdHFHIqFGw+UszggD8eSfzHUOIvpGzczs0MKaYNvAWDC/B+YPcI57UlRhZ2LV28ntvRsDhwX4XGfl0efUWtZAIoIJ4xisox2rm0DXTW0efYCdnYKI6O4A2tem8FnqXbWhoxhAWO4bME2NrTxnCPv4bJ8nvnXOm4IPvJuGF8Z51X+vDegg8e+mb17AD2oq/cGHnvE5WkMAaaVkWnOL++9B7XuJTBbqhrfTfPz8wkJCSEoSOm7ObVN7QJHXgHDupA+WEc9zV95kyTSONfimvh1bZ8r6LbFc/m21244h6Xx8YzdtJq/pDkDaECC8wP+6TkvOw8a4L3SeH7/Ibx96rn0W/cqZ/1vPwHbTfa/9hptEv7wOK5dSS4Aa/r3Y3dSG6aPSiW2ECbd/Qubfv6lTr9Xzjvv0Oa2WynbloYlJoX8H34g/yfPmrPdv82kbNmflP/3LQDSrr2O/JPOxP0tOO/LLz0C4OZx43EUFtJt9iwCExPJ/s9rlfu2TppE7w3rqfAyYXbpxk1ey7nr8isoj0vgty7Hcqo1m3bTziPqxBMByHz+BQ689x7B3bvR5dtvPc4rmDmTvG+/JfHee7Ht2VOn5wSckwKXp+0mKDWlMvwBlG3axM4LL6L3hvXkH6xhNIEhJwRhDbZh22DwxGU3EPflV1xbOVIc8n/5Bex2IidPJvu1d8n6v6fYldiRDY89zYVFOWTffDMOw6hsRthV9hFbF/+PiKs2Yyl3C6oVFaxiECWE0hdnB/NfMk5iYNxkFu75tTIA2vZlsuemm4i54AKiTjoRy8EppXZOc4YFS1QUcRdeWOX3dpTbse0uJCg1CqMe61jd9/B7PJmzlz0Zq7DnbMVRVkbZ5e2xWILolOxslnY4TCzVXHPXZZcBENijM+VJBUTHDMMa5PoLO/mff3BJh5/o1HET+XltCE07HYCFCTl8Yhz8Pdz6qOVe4vy5orAMa0UFdjOAc15fSMXgaC7tUUqPjg7u7teWQIfJRevDebuvK8iYWOhlLeCc93/l9d77+GmznYi8VZhjnV0ddoQlsuME57HG2KH8UTKVq9o/TRSrWEs/njAerrzWNsMV6ncF9gYsrDEGVfn9d2TFsCPkPiI3zqS8SwBxn6VT0ekkwgafi7H4Q/67Px8zJYFPh77C3Vum0734Z742phI9YjVlQbUPM3Vf/WK24Sx8dqRr+G3HUQZDI/5Le/Ywf3sk77S/xOP82aM857wDOJAQUWVbXd1i/KfW/Y+ad3J/72eIsheTb3WFw8ElewneuRMsnmvllkxI4nmSDr+U4FyiLyHZ+e8VFqUM0hQMs4a2N6vVykMPPcT9999fuW3RokUsWrSIm266qVkK2JLl5+cTHR1NXl4eUVH1nwG9JomzVjTq9Q65YPGvRJUUcZHtOFZmHeBv07w3DRy7p5yX1zibqgq+vgbTEgimg6jTXz0467xJ4dfOZon0f5dzoeEcFZySvpvpj96BI8TEUmpg7TMVa7mN8i0znGHh4J/bvNGjWNJ3IN8Mdnb+nXXDRVDNzO+mxcQMAkup5wdx2MQHsUZ3pGTJ61TsWVqv58EESgMDGLJ6NeAMT5tGODs0x11xBdFnnM720073OCfy0kuZN/MHBqQ1vBN/j8WL2P/WW+x3C5cRxx9P4W+/1XjexIM1gGMKF/Pp5EspMi1kbNpO1PdfEHPuuaT/415KV62q8RrhE06jeP4szPICzKh27HpqLw4slH57Gjec5lwh4NnMmxnyxD4sZa7n2hIdzYbTDdb278Y/I24H4IrFcxj0+2/cc+NdXP/F+5wybxbp/3bW2kZ/YiX8d89v7IfK/1TOfZyX8hBpvy4js897tFl3Eb3uvhaA9b16Ow82LBAQTMbrb9G/9ABZ1zuXG4w8/3zeO/EixjsCGdreTsYjjxEy7EKWmem0y4ii83G9cdhWUvLTfNo/+ih7HnuC0KSOtLnxrx5lWbsriydW/855Py5haIRzGpbyHX9QYV3OV1da6cROenb5gsunrySALKLCk3noxN6M6NWGt17+jIXlYZzUK4Re2z8iZE4JtmsDyQqaT9jeJHp0OY31eV9TvCSVwh8yCX48jWDKMADbktfZMexZHjK8N3sPMxcSTClzjQmMLJ/L8S8t5PmzLqe0m7OZvoe5nk1G7xr/jd0FOsqxWWr+4LzUfJN3jIYP6AAIMG28wwV8tfZaVka1Z9CapWw8ZgBlbULZaHi2ZNxtPswCxvC7UfuKUSeZ/+NHo/Z10a81X+Y1428NLr+0TLdtXsqd1xzZ32ZNmvLzu7WoMQBaLBYeeughHnjggcptDz/8MI888gh2e8voKOpLrTEAuvti/QzO7l39ZM9LZxRgYlL0+1OEjbsbi2GQZsmmbMir2OO2Yt8UQvgPUSwf047Hhj0EQERJMW/OvQP7pAyiPwomMf41KrAzPWQ2AFN+/ImYvDx+O24qq7t34ptBYwGY+fKrFHSeSdhiKwFZzvBhAukdO2C9eheOtg7a3RlY2dQMEHnG6wDYMlZRuvCVev3u6zrEs6NNDIPPvZSfdzs4/f3nia2wYo3tTMXeFbiPaDCCIrBEdcSeXfOo342durCma3dOnTuL0rBw1vTpRZ9164jJc000G3XGGeR//XWVc63xPQjqeTKlKz/ELMqsst89AD5y5wvcfur93DzrDVIK6jYthiWqI+HHPUihFSq+vJaMf5Vx0cHQ/tiaHdzXLxWAVHMrj3Mn4OzXGZBjeNz/kKHrV7OzfUeyY5z9pU6d8yvnj30VA4j4MoDCdR1J3JuBxXR+XTju4PlPmLcx8q/ppP/LWZNqAL0XvUfceb3Zfopz/rOA025kfWIK1wxOYlBhNo/kv03ADxs54+J/Ux7sDDS/PfokwYGR5I+4hK1BuTzb/lGu7pBEenAMQ18uIbbcRuzWdTx92V/pNPV4Hvr1PGxdb6a03zmcvmYeGyOczfmfzS2iXamDUEcFn4z/gOeCbwTgL3NX07vLAjq3n0HEyhNZuT+Jn7uFcP73M3GU5vLLrZOIJJ/RzGElg5nPWHqygeCyMiYG/0IEhVR8nMKl05yrblxkvsX7xhV1+rdqjcLMQoqNhteueZNqbmOH0bDBiNL63bB9No5euQBMSJ7AhOQJjXp9BcB6TAQtzWf58uU0x5oJNYU/gILgYjKH309Iz4Fs3bKTTo42zAxfyMg45yhva49SSrqXUvqzW02ZxcQ+KQMTyJtWRuTSdWzNc42qWzZ0CMMWbaYwMsVj/cpLrj2LpwN/Jf8EeDrtUeLz8pj2+28sG9qH3m1/pi37KOljIWdvKls6/5V+RhkYJXwftIyUtm3pHhRNcHkeZUFRhCQOIDi+K7a0Bdiznc2z63r3JqN9IuN+n0OA3c6ONjEAfLRsGd+ecD4f9X6FebPKMDFJ3/QxIZvnEnSwuXf5BU9QFB5B6vx3CduxnNi8PGwWg91xUWzp1o99sW248Mevue4eZ3NybI8zKM6ZR0BcGn+kHMupH/9U+bsW/PArwYMuwrZjLo7cHc5+XaOOpd0xYaQ4Mlja9jTSg9M49YsZBFYzm0TWXRXcGv4EQStiKOnqIGSNQUFQBNs7JPPhiacTUWJyz3Rnp7uchAF0bNsZa1AEGSEGU8dH0Kf7s9zNLZXXOxT+AIpx/VvlXlZB5CsJ7O44tmohErpRGuQa8PXtuEkMMWfSg42s69eHPYm9MAwH5+3oRsFCV4f0eYxnwPAPeJyHySOGp7mVe4bNYdhv+xl42n2U9PsWI+kl3uA2IIkVEQlsD9/Cz1eeSrnhqs06/v57uGzBbKYfGwVEcc3yAdzfxVkLZL3Rzm1vPc2Cx25mbvxIyCpjrdmfB3Zv483wJ9gY4ep/du4Y5+97dvZWvjgY/gA+HNMf6M/VZgUTBv7EXPMa5lkmMu+GiSSbO0kznAOpPubiynPW0R9C4GMu4gLzPT6e5tp3NIc/oNHDH6Dw5+dslgq+3uz8ktourF2jB0BRAGyRDhw4ANWMRGtOz41fyF/YT2HKTGZk9SIhbiWju3wFQCERmBgcMGLJiHadUxgcziJzJP80nIMn2h2zlxMX/Ulomcna9p1J6zuc0WFW2gdtZnewa76t3UHtwIRdQSms6eYczBLXIYvfYiaQb5zBX80XGTFtBdt3xlKwYxspgV35Ov4LCnMTWRu2C9uAq+i48yMOTD6VNn1+pP2akwhLGU1ZRRFbHdtZHeWsKfvfuVMZucjZVGoC357g7MBfFhTE3IQKEvIzmTugLQw4i/M//YKSfuXceqxzkMa0ks6sOvUEBmzJ4KtjhzKidD6/Rzn72gW4jbbdGhNKz7A1dOu+GLvdyr6Z7bBfnktwYDhJ8/6GI7oDFb0HsnfJp8T3P591cSt5t1cqE/iN2alT2Bh+PJsGdeDOB9+i7OzuhKxyBZ+08ARs4SZ/MJo37rmBJHMnD+x5iPtiXiEzwtWZ/JStT9I3PJQIoDx5IQGlcfxfJ+e0E+tSOvK66dksesihaWZM4EC3UDY92o93A6rO0fVnm6p9uGZyAr8zkc49tvN2z/OJNfdztrGXEourGed743ROOmUz6w3nPCj/MJ8jzZrCjO5wQ8U75CR14GPDc1Lcm43X8Gb6sRMqf359sKsJ0G6x8uxV//A4dv6gOznR61Wcvkjo6nX7G8YNrDH7s8DiCsGHwl9NPjYurvUYEamBaXDj4BsxDIMhbRtvFRpx8csm4CVLlvDggw8yf/58bDYb/fv357bbbuO8886r/WQ3TVWFnJ2dTb/Vu2s/sIn1N1dwN49SgZVLDedi3SnmNuecWG4iyoooDK5hbq7DjMqysSk2j3HWX/nScI06/cA8m+105j7juSrndDJ38CTO/md/zLkYy7H7SQuM5VvjLNoVZRFcZiemNJ9z27/JF5xPLrEEFyfQL+wHem7eS0VRGFFRWXTustzZ/++r81geHcC/jj/b4z7xhXkcv34JccWFnGhLIf/4J7jE+KzOvxvA+KLFXBP2NA4MLJgsmH8ux476jM10p4gI4tPKuLvTowBcnj2XtxPGeL3Od2kvkZW0iOe5mzVG1akyDulrrmKtMcBjW/f8feyISKBLYSEXRz5GDAe40XizTuW/2HyL9xqxxurx5R9z7+ALaj9Q5Ch1p/kozxj3V9keYpZQThAOQ6NcD3f19lk8esWtTXZ9NQH7YQ3grFmzmDJlCiEhIVxwwQVERkbyxRdfcP7555OWlsbtt9/u6yKSkJAA+D4ArjYG8bj5EKfydeW2w8MfUK/wBzC/TSCQwJd4hoLvOdVjySV3u4xUvjHPopAIfhjvOThjX3gbCIddJLKKZ1w7wmEjF0APeM68kSza8QtT+JS/MOnk+aSVVp1kd39ENJ8Om8Rd5iPcUDKB9HqGP4Dfw4fT05zI+1zONN5l8ZC+bCCGX42DdVBu426qC38ALyX1Io3JVTrSH+7w8AewOco5VcXGqGju49l6lb8xwx+g8OdHLKbdJ2EmxCxhIr/yo3Gq1/09yjeyKai2CYca7hLzTX7PmUpsUT47EtuRG+RsFrlvwwu0S9xCeEg+d218laSO64mIz+RJHqQnG+izKoNf4iewLKnug3sa6hzzQz43ap5+Z6Q5l2jymGGc0uTlqU25Py8c3kxqrQHs1q0b3bp1q9y2ZcsWtm7dypQp3vuPGYbB999/3/glbQQVFRX06tWL3bt3s3DhQgYNGgRAXl4ew4cPZ8eOHWzatImUlNqbeKD1DwIRkZbvRfN6bjVerdOxHc009hjJlY//YT7oMcVLfQ0xl7DMGOZ13/PmX3mZ2z366t3651usDe3Nz32OJcZxgIeMeyqnTxlevJiokBzOMD5jNpP43HCOPI8y88g3or3ew91FK7+luCKSosggsqOi+DPR2Y3gevP/GMMcVq+axBt9zmN/YNWViK77/Wv2RcYS4LDz2THH1ft5cPfI9sfokrqcHOKZzXFMYgbkhbBqpfMz0QTKAwLAhOBqloVr124L4RE5bNs6jF1t2/BDb9cXwRvMl/i3cUuDy3f9gVdJ292P7/qPpXf6DvqxkhPaf0E4RSxnCM8Z9wJwlvkJXxqec1j+27ycXzmxynZfuGT7TJ65ouFrlNdGNYB1qAHcsmULW7ZsqbL9p5+qrlgAVLtMV0swc+ZMtm7dyuWXX14Z/gCio6P5xz/+wWWXXcY777zj0eTtC/nZJbUfJCKt2s3ms0STy0/2U7HvD+fPdv0BOMH8kb/wLktzx7Bt9xAS+mTzvOVGPuZCdjtSOHvzDIoKYnl72BlVrnnV1vf5vcswZlsmAdCHNdxiPs3K8mOYFeyaeuUB8x88YjxR5fyh5mL+NJyTPg/ZuZHTbb9yW9eneC3vNg4UtWdzuw60te5javZPJCZk8Dh38EXuhfwcOoWTVy1gcPYwokKy6Zj7PwIq7AyIPotrOs1mSU4cg3enY5h2IkYVc2bg53yOMwBO3LmY3BRLjVPDnL1sJhEFdiLIhULovDeTYzZuwWKpICkpjzW7LyfXUUFkQSn7q+k+fc53q9jToT2fHeO5PdReTInVNb/gQ1kP81zCrRQarlAQV5JLTmgMyXl7MewWDCCe/ST9WEROeCIZAYOIsEVzpn0gafkrCZ0/naWjRpPV1nOVjUP27esGBwfwn7A+nB/cKgDb7CoGtzqIZHMnPVnHr8ZJ1T4/Htfe252knP1cPvc7guwVGJiEt3f2tx6Ma3WZMIp4fNuj/FJ+CrN7OfvYGUCsmdMcYxBrZdhN9m5xzrwQERdPZFxCLWdIfdUYALdv395c5WgWs2fPBmDy5MlV9h2q0fz999+bs0hebViYAfVrVRWRZnTxls85UJRI+7wcDkSG07PDYt5ocwWZlna0Kcph9KY1bGyXzPoOnYkqKeS09Blsap/M4jDXihrd2UAsuWTOc9aw9diRQV5bC4O2LGVXyiDIbEOKfR8Oh5VEy15u4Tn+mHsxFcQSDEzIXMjstiM9yrVvT2/67rDTIzSdhJJC1sWcjq00hDN6fMdVbZwLd/+59FR6HlN1SqP25h5u42keLnya3YEdGbxrE3sdvdmflcLVRbHMD1zF6C2rMACTdnBwbNDUJb8zbst28qNiMdZ8QnFKO9oFhTE56SqiSkKZ9vsP9C9dSve0dQQ4yph9YAq9z3BNfh5gT8BBbuXjqLIC8oNdK7KcZ35AXEEYYNDF3pYio4xQM4iItTNZM6A/oT8HM2rFB5hAcWAwwV0q6JO+HWtFBfO7D+TSH77g2BV/EllYSGKGBTjH4/f+W9rrPOO2ZGZMcRb/4XIu4ovKbaM3raMgOITO2Xsh0TX6vduyleyNb0fHwFSGrHyDct6lXUUZhy+Mfc6nn2G3WikPDsJhWAgrLubXSZNom5VJ181fEnXmy5W1oIZpcqw5lwWGs1bwKW7DgUGJGcY8Y3yVf7fDBRY4m+BdtY/Vp7msrFRwq3w1MBmYt5a+MVX7FR/uPPN9vuZcyo3gGo9rqEA7fHivs0vWsef8hVHn1r56jNRPjQGwrk2hrcXmzZsB6N696vJViYmJREREVB7jS6ERgYe/f4iIF5ebr7M+bzALY6o2U4aYxZQaYVxh/gdzXjK/9jmGtDhn38gOZhrDWEQUeQxliccqD9cW/Zu5YWO4vug/xITvq5wvESA+N4vz5uRgNYoJP7hWbUJ+AQU7EjnH/jn5HbsQUV5GyO4tJObnMGbLKqymCVjpvWIpi892BsAeGbspKEtiR/axHGPrSkdHHMsL1pO/JRCL9QZSFn+Fo/NwbIFB7JobS8rwt9i95FjCdqzDcNhxtJvMqN+TKTxnEUuNEQCctnsGALH7h9Bn/fus730pMftH0s1SQHbKysrfIWzLRDZsj4bDxrz13buenKJkjtu7Coe5FgsmF5SO5kD+PtJyl9PRnsf+4DJMwyCk2E75toGQmkHKV/uwmM65K00gpMJOVEkZlnWPUdq2L+ycSz+Hqyl07G+/kH2G674ddy1nTJclrDP7MWbjJv7oNNSjXEPSNrAD57YBFakkmM5wuOnA55z7yaeVk8sbwIB1awizldFr/Xr6r1rNdYaB1W19eovpuVb9WebHdMhL53bzCV7jb4xdswYigqpEppCKCjrm7gIgOGsPHBw03n9PFv32ZGGwhsP12LSJrLZtSdy7F6vDgdXhqJxaCuDEGc5/r6LIAC7jDf7J3wGwmnb6sooFOAPgru396NR5De1Jrzy3jbmvckm6q81/84Zxg+t3tJVy4g8/smrgAILLyui1fgO2TaGUXeXZsrRr5wBO/Po11k1zfR7m5rYjwizk7zzJ5XjO/Xm4nml7MJKb7oPKBMIM5zpD5tatTXYff+ZXg0DyDk7IGx3tvb9JVFRU5THelJWVUVbmWsg9Pz+/cQt4UP8JSTAru/YDRY5yp5hfcwHv81vFifQJWMUr3MYuI5Wu6Vu5N20OJbG7KNgSDCc7A+DQNYsoiojghKAZpKRtIj8tHFtJECVGIeevXUT/Niewo5ODrkP/6fEhf595P0+aDzJ68a9ErtzDqcEfsrM0jp3EcWbKe3x1knNal0emL6Zt9gqWDDmHfNYTWBJCREE/LPZgynP/j9ADWRjhfRixYhM7Mg+wdYgrmLbNSue6954mLuRqrI4wirmZUKAkwCCweDvd277HvoQxJM75nficdcTnrGN751PovOgHwj8tY9O4k7GWvg5GOFO/e4mZE/7FZbzBJrMnI5lPj33p2IsGceyiRwkrycLqsLGm71XkOhIo3DiawKBSCjb1IeHALvbHu2qSeu3dSdes3aTsTKPDHxbWnmLBgkmbfaXMqcimuHgx9optAASWQpv8IvrsyaZwqoV2n5bjXsNkAAmFzqBhFmVh2z4bgPn9OzBqtTPABNk9Q1jnjG30fTyHd5P+SuDSUP548t8e+zNXnwkRzvAVULnwIKzr04f2ezM8jh28bDmdt20nJjfXGQyr7+IOwNl8RqatB0P4k/9wGZnpt2JvX3UQS4Q9kMCcfVhs5dDRMx5WV7+WtHsPJ3//PeGFRdUccZDDpALXPa0WO6OZwzxzHG33FbBre386dV6De63AMSziR5yrpEzgN97AFQAjCwqJzs9n7B9zK7eVr7Sw6IeR9Jy4Fg62dldUBNExtxCrWz9FwzRpuyWHkmG1z/LRftvp0IQB0GGBCSucFTIJSWG1HC0N4X1hV/HqySefJDo6uvK/5OTk2k8SOYrFm/VfFq+XubbKtvvM+0kyd1Y+7r4vjfiKbM7kM5YtOZWQ+QnsXTKUScuXMWbxr5w042M2r8gnY/ltdLC51ny95JsPeOD1/3LqK0vZtzyBkuxQrNZrGbNyM93aBxK0cjHj/vsfSj/vy9rfXHP79WYdt3/8FWO2JBAUdir20iAsQX0Ijr6Gbjs3cvJvn3HRl6/SbevHnPvYvbw3vgtxmcOJzhtGgCMMi2HFGjyEAGs3TljwEwmFBRyzaRuj3T6EASKLCpg086+MmXcXYcXO8BK25Xus859lpy2BzRaIz1kHQGhwAP3XvklEUToGBoYlguDoawmOdo7SDinJIpYDvMqVXMp/KSx0Dn4IK3H+m7TNWl5535iMvmT+cRu29DMJqPAMJGEFuXTKSmfEkqXEFewlLiuO8JJ2mOYJWGwlGEGuORIDQscybHsG4eUV/GGZyt7ExCr/lsF9qo5oveTjqn3GHzDv5RrzFfqkbSZwj4WwRVYC7eUEVJRWHnP2vALCClMIKo0nsCyGkM3zK/dd99yzGC88S+S5riZdi2kSd+BAZa3gIRETJlS5P0DO/o5EFDkDqQH0nvEO+zc61+a903y08rhupbGE7EsjKGcf+9fHUJwVQsbS2vukRRYUepSlzT/+UeUYEyjDNa9mgMNOEDbu40GG7NqEeTBh1tQt75IZrtkKUnbsqLI/yO5g1G9rWbrkjMpth65nuD1VlgobcZ+ZBK+vvRNgqFm1prQxBRoBtJnQizYTehHaq+aZEKRh/CoAHqr5q66W79CooOrcc8895OXlVf6XlpbWJOUUaU5Rpuv1MLpsLhFm7TXbJ5vf8Kh5J89xE1ea/+EYc1Gd7tXZ3ML9PECMmeOxPeunW7jkO9fjCRuXcc68P5j7ywCKcpxrDJeURBNUYOGvX33HiM07mLxiIQW8xOnLbuetuc/x6carGWnbzYCkjWzoF0dWQgIRjmTGLHqS0F4HiDx1BWEjFgLQdeZm3u3s6hCfuepMtiePwhrYBWtQD5IqxjJy4xoMSwRBEecxaNNapq5YQubfnJ+We+MDsRe8Qqb9k8prBHQ8njPK0wiqKIEn/sLGDrEUnet6bnvs3c/gHRkYwIcnRjFy8aOMnXsHXXY4Z004/qLHaD9wMjPHv8zDl45jSxfPWpjumz/FsIRxbEQwD/wlkHa7XnI9f5kpgIG1whkk2k3/L2veuIku2/5HRMEuUnf+TIDduS817RtiD2yoPDfhgJXQ/DzCA53vfZH58YTl9cTA4LjbjqHfhq9dv2PIMPY9Wk7GU+UM6tmLBaOOrfJvnPree1W2BVoDaf/Uk8Re7KxJjft3AD3ZwHhmwWGVTXaL62Opz24bBgbRuX2JOTAAi+HaZw0JpdfJU4k744wq93MX0K4dWL1PTbNly3Aq4l3zMoWUFBJQ7ow1PXA9R+2LTBIKiknen0dwkZ1NX3Ym4882BL/2L/ZfdNg0R1Yrnb/+ip5/eq5PnnDDDSRccjHdfp9Nm1tuqdwebLOTgqu/vdV0sHPBOaxZfRwlJdEeAe2QU/gfEWY+J5rOvpRJWXsr9wWV26qeAMSUlHHuJ59W2Z6Q7f4lzsRaaBD/78DKLR2KMqqcA1BYvJem7KsUZA2mNOY2SmNuY2fUObWfIPXmVwHwUN8/b/38MjIyKCws9No/8JDg4GCioqI8/pOWp4NZ/2B+lvmJ1+0DzWWcZH7rdZ+3mqxJ5k98YJ7N6MJ5HtsN04HVbfL098xzeca8qfLxiD0rOX7LQoLs5Vyz9Qf+aV5Ngll1TWCAQLPM670BTto70+v2Q4Zmr6yybSyzK3++7M94xpV4DoSKMPN5yLyH0HJXzcw5fEwXthJEOcfxC7fyDFeb/6rx3gBdzC1s/OJfXP7m/9F3p7OGqm/FShJtOViLI7nmpzyu/TEPq2liYLAi+QDf9lpAVLrrQ+pfx0wk6UAhALc9+wGRz99Ad9tGNq8eStQTj8F5F2P9+y20vWIA42+dSunQeDJPiCEh+gIiz72XBy62cO2NVsoCXR9e/Sd3Yl7vWD4dHcGbJ0Txz0s6Exy1j86JS4jrtZneV6/H8nAMx1+9gnfjYFrJbNKiyojOT6d952207xbNX246htQPPqDH0iX0Put+Tv35dzr0GcWAgT8x9JivibeZtM9z1r499rSzRiyworiyDG1SenLZ+afz19cm8dptz3D8zZ6jdLvFBnNqdCDtAq1sSDG557JCkmbfTHTaBLquu5qwglSiDwSx5sQexI0cxbljryd11wyG//k0SXvmEBeRRt/IUiItDgavfLnyuiE2B2ZIXyoinZON9974PgG2InpteJ+U1FQ6HMigy/5AgiKdo3bt8eCIglMvvpjbH3iA5DdeJ3ycszY1+bX/YAn3HMFmhDmb72LOOIPEe/+BY+hQgja76o4sJZ71SCHl1YeKiixXKDs040TY0KG0f+pJUj/52OPYr28cSNjIkST930sYFtc97v/fV0SWFHHKqvlERBwgJ+QiygvakrPxBAAiSp0ByoKrqTo7LpOk23bSrU0mx2zfS5v8IkZt2k2X8ccx5r4HK4/r+MLz9Fq9ipBevbCEh5Py3rtuT4SzDIHt2hF7oWtAQ4DDpCtbuMd8mBfNG8jelER+bjAHDjjXqz5Ug2jF1VR7qOb3YqY79zlc7y12a/Uf6x41owd/bJfhWk/cOLjRcDsurizX67U2Z/xWeXxTKDdtLKOCZVSwqdR7qJUj41d9AMePH8+TTz7Jzz//zAUXeH5rm3GwQ+748bWPspKqBpjLWWUM9nUxeMW8iq85m3SczfPe5rpyd/z2BbTNzWPqoE/pbm7iR05hleGcEmGsOYvreIUCIllr9mOX0bnyvLP/nEX/iKW82LkzeUFhtMvfz9WRL9GdTXybHkaXTIN5B5+Ov7/+MPawMH4Ycw4bUw9eY+XlRA10fRtP2ltCm6IMuu35gbLU2WxZOJErQr8iYuu5LOi9jh/7ODuEDzUXczmvEUkBb5rXE5XmoKwsnF+7O0eDHr8+jB8Pzm/d3p5Oz/KNzNs+EFsf59wYY+Jm8Ceeq4oYhQkEh5mUWQ0ebPscd34aS8ilRZWrtBimwZBZu3g04hX+PsLZUb33nNvZnPo6eWGBfFZ6Htsju3NJ1oecVTST9PgUFiZ7X1otJycJ0x5EkLUHJ//4BeMTg0ge/CV50cmMnbUSq6Oce+67ncFlO0jLtLMnbA+J4Yn87dWXOLD/AIGBgTiKbWT+6vywDwwPp9Ow62DYdbi+uv0Fj/VdRnlOart5wwvYD37AZfyZQGRyIb3HX8WV1lweTc+kg7mbR7iLttMfYUjSheTnr2JXWiHdut6BxRLA5IGDGNOnB9917cC4DmNJjPScUNwa4VwX1xoQyOBjH6bgD+cABoe1M+CsEQy0BJKb2I6YjH1URMbR5eUXCIhzzV8SHRwNw0eQ+uMPWNq0IdBiIX/2Pgrn7MYSHsC/jv8Xr618DePteSSW30jB9rkEdOvCp4Nf49VL/sPhLGYFYwOc8/UVHVy28PgVxaxPDmLS0k1ktT+OtI4xdOtUBL/8wth5dzpH+x780tJz9wZCjUVEFqZR6jZ4JCQkBMaOJWLsWMyKCowA50dK/DXXUPDzz8RffRXhYzwnO3dMGE/An38SusgCFuj0xBOkX+2cm27OiEiPWomwogw6pf3Khl4XYbGXY89YSfH8/8ORvweeWlB5XIyXWsD0Pm1IufFg0HWrOZzYdh/Fc76kJDSU7iPns2fXDWz78fGDe3/Hcdwp2GxLMdy+IFiC9oIFDlxZQYcbLQzb7lkr1vl/31CyciWRJ56I4VaDGTbM1Qc0sL2rudwaGUnkSSdS8KOrabwfziUq9+X1ozS0EHBWMDiCA9m0aSShPVxfwMAzoLoHNrvFVds5a0xnJs6teTYP91BomFXDo/WwgTOV2x3WJm0CzrVlsmiEs5n9uF7ep9ORI+NXAfD444+nS5cufPjhh9x0000eE0E/8cQTBAUFcckll/i2kK3UuXxED3N9rTPNAww2l7LccE7GdY/5MAYOignnJePOymMM04FpeL4ZxdiLSN6XzeoOKYw2f+c6XiGD9txh/BOAy/e+T6kjgT45GeR3W8SkkB/otCOAr1McOCwWnjNvJHbFaWwLHMzgokJ2FmbxSadQVnbuTs/V2xjQ/zdS2M4NvAXA1tJuFARHsMeezJ6AJCxmBam5GSTlVbAtMoPOG07m8g1lbO63ncsKXueWfndwTeGPTGz3E9sSPmFgiZWdOcv4eAJEG8cxstMvbDUv5xj7An4IWUS3tPaVq4KEFzlruAygU0kylLehbO9ITou6k8Ssrvx4cETgmXxK7MEpMy63vc7i7eezK87Vf2iCrS8jVi1k0YAR3BTRnsjNWVyWZuHNhJ0MiP6FyFWDYBgEVZRRHuCcvqF9yRounNmFu+KuZkxKLF1W7yYqv5gvo50B0LSFsyVgKBa3GojvSn+iZMcErEZH5oxzfmlKjl5NYto+cjf0dQZA0wTDYIi5mGUH55YzHRastuWUXJzB/MwrmBjzJeP7vEjgcQHkzr+G3PIgXjn5VLpGnMenGz+FrfDK8a8QaA2k7aE51WIh5K3/YoSEenzY1pXVCMRuOpuV56T0pEeHvlitYVzXI5Qe8eF0t1gwCu6iQwfnF4eoqAH06/uixzXCAsM4r2ftS0cGBsbQtes9lJSUsaBrAgOKXyX51usBSBxyJ/n7ltB2yAmEjxzh9fzQzq4vHdEndCIgPoSQnnF0iAlmXNI4Nj9/PAXf3QQVpUx7/GuuT/2W0ICq6zS7Mw+Oih21sZRRG0sJO9RkaA0g6eV/sr5X78oPduvB2jwDSEn7BYDOo+ZitVadp+pQ+ANoe9uttL3N+zJewZ07Ywdi33EeHzWtY+X41vG9xvC227Ejlzj74SV1G4uRn07oxEkUzvq12t8t6dV/s/rvN/DKqRYSLa5mzMjJkyn4+WcC2rTBNvYcin6dS/v2G2i35XT2BnvGmF6DR/Lzt2dhBFVA5T/LwW4RFpgx5izGbdrK5m5nc6i3Y0iPHoT06FFtmYoXLiL6sJDa8YUXKD7/fDIevhPYU7ndOKz/4tgx45gzBzLLEsBtZpbdm7qR1GMLdrtnEHNvQr/0iTfJfeZF8r9z619xUOyBqq+dQ83Nhkco9F7L1zk3giZtAg6pYHL8pQCkhF0LXNtk9/JXfhUAAwICePPNN5kyZQrjxo3zWApu586dPPfcc6Smpvq6mC1agplJtuH5bayfuYJUtrGdqsvEAYzeu5TIxAwu4m1WrzwBy8AMluMMgIe+9QJcZf6bN40bCDWLuJ5/8gL3ABBSns+g/SH8ZYODBdGzOTN+H52DlmHBQVtc38SL0xKJPDCJ9oFbmZB9gJMCLqSb42rGpi/h4th/8vneWwmuCOepqIUE5k/A2mkTf+v2JnsrOlDePwiAaFx9ttJDkxnV40dWbxzLXTyGff4F5FU4509LHdiX46ZM5d6Zm/g1pQ/fW/6P237JoPzcXthsHRhQ+BYDsr8hLPJW3jMOcO6QfTj2zmAyMzh+0hZy+40lsm1/xu/6iC3bn+P7oPMIK7eDYSdzXxdiYrZQFJCDrW0abUpDKstkYmH4sG/Zt+9bQo04csreYmF+ITG5BdyycyR0CeaLSy7FHhRMsMUCIwdTtDOH/ivTCew+noUvP8snX93KtxclM7T3FnbRiWQ2sWNYNovjwrh+1bkYjo/Y/tMjcLDiNAjIcwxmX2kexy1bQOruNE564CkCcq0ktkmkZO9+fl37PmuLY/jHJT9jGAaD84pYUVBM6KazaEMGl+DspN7GjKT7hc41UUd0mE9FRQRdujj/bpJ+dPaFMw721zqv53nVhqzwUaO8bq+LXvG9WJW1Cqth5bXzXE10VsPghIRoYADE1TwHWn2kplxFSUE5M0Pnsmj4A/Q53Rnmwzq1IzDoOCKG1226LSPQSsSIw5cvNMFt0MTh4S908GBKli8nYuIULOGBRE/tQuH3zlq9pN2zyWh3DEl7ZrMzZQre5vA3goLoNud3yjZsIO2aawnq1pWQkKpLKNZHt+OOw30WQsPti15EUDgBXsrR9pQxOMrslC6teT3ryIkTufZvVjAMkiyuj7eoU04mICGe4J492bw3G5jL3vRehAS3x9o50OMagUGBOByBOEqDXOUqaE/IgW5EZg0hI74jC/pUP2m1tzJFTpxYZbthGISPHElAm464B0AwMUxXk+6ECRN4Z8sOUtN3MWL3KkZ0dLZW7dueSlZhD0pLI4h3O9/u1t8xJDicDk8+4TUAhhZb6f7WfSzY5+qGYLE6v+S5hz73mkZ33dKWN2kTsDXQRkWF8/14+7a1pB5ds9K1CH4VAAEmTpzI3LlzefDBB/nkk0+w2Wz079+fp59+mvPP9/3yNy1BiFlCqeG9FuGZ9T8xv3chbx6cd+oD09XY5t5p+trfP+G18c7nc3DWWo5N/B8AFfZABrGGseYsEisyPP4CxzOTpN0DSOj4NrHkcl/hS3wfPI61CzpwQkYFWUBFQiInLhpDXsc2rA9bQ0FhAgkdDlBqDSaqtIgVWLnC5lxRwSg3MEIgviKPu09rx8e/LWBg9PeU9RmFaayiePfrWIAJ3T/gl7e/ggkvAXBxyV18VTaZEwMO0LbjY7AR+rKGEX87ka++gtzCHC469S8EBATw4AX92ffVao5dWczwQZ2ZMNi53q+j9C6MQCuG1eBYwG4vZU9EBAnxE8EwiGnvbB/u1/lips15hrPKynH2erMybNgwlixZwoABA9gU8ymFOa4PSBOIjOxDZKRzVFyP/d9yZUgW3+ROZ8g5E+jYcTiGYXi8sMNT4ghPcTYvnvLBHThKSpizcjnx9ltoa93HyqwURvRxDoi44ryb2PXTn/Tc9AljVp/J3P4duKdrB87scQnZlgLidu0iYMJwwmK7Qazz+vd1T+K+7ncDd1fe85jocI6JDqck/gOysn6Dg9N4RZghuAsNdf2dGdV01G9sz49/nn+t+BcX9b6oWe4HnrORHApaba4dSHlaAcHdYhp8XcPq9i/t5bM46d//onDWbKKmTMYIC8MwDIJSUynbvJkeWz6j+5bP2dDzQufBkd6b2QLbtiWwbVu6fPctAQlHvhqD5fBa23hXd4Hg0HY80zaMSwsKufT7zyu3x57pbODfvcD70moeDj7BwxOHu21yhi0AS3aOx7GWjmF03/wZkQXOqWYO1Sobbk2fEaERpCy5D4DBw0rI/hVCo1wB8YgEeU5xEmKroDzU9XtaLBYKo6Iw0mHE7tWM6OgcyGQaRuXIb3cbB8Uw4eD4JiMgACMwkO4L5rN5/AQoL688LtAoJ2DUpQTO+bRyIE5JZiTgOQVZdTWAFhxN2gQc1d7VN9E0a5+WRurP7wIgwPDhw/nxxx99XYwW6w0u4WrzXa8hcEDamWT3vrfy8fYfHiGmtD0fJb/BsDALf+n4Nn8GjmFQmw2cvaucbEs+YXbX3ImhIflYMLmOV1i+c0DlhKqd5z6FaakgKXwv6R1zARhT9hu9w+bwxIgHmLmxPbFbCrn1L9cT/O/FWDKPZchZl/LnkhVcu3wJWfYSVlcksoZyzuy1m3aFg4g6MZmstTcTNXAq45KHM+6yY6mouBqrNYK8vD/Zvtt5706dkyjN7EtpbhIhMbvZWZBGaOl0Jh77EADjx63CNG0EBsZw8WXTME2zsgN6t7AQPj+xH9sTs+k92lUzYgnxfGlZrSF0Sr7c6/P97knv8v5/XyWyrANd2MmUKffRu3dvkpOTmfPHHVgCXB2gzcPHbRkQF2ByeUI5w5O8NyN6lCMmBmtMDCfnwLefXUBAQDn7IzdW9goM6RxD5w9eJey5F3hnQhL5PXvRPtj5QRdBPNSzhjw0tBNJSRfD1jUHi2sQHT2EvDznJ5Qvlo5MDE/k0dGP1n5gIwoIdBu9evBnS2gAIT1ij+i6HV94no3TprGhfRwnhFadKy0gNpaYs8702Jb0ystkvvAi8ddcTVByMrPudI5WDY+LrHK+u2C3NeGPVLt77mbfk08Re9FFEObq+2hYAhk1fiQrVqygtPB7Mg/7iKrLl4Tvz/ye5ZnLObXrqV73d+qUTLg9gChHKI7wcrAYJO+ZXbnfeugebn+bAaGuLy7nnnUCO7plk9il9vWL68IZTF33D4kLIf+wSrfKvx7TVabgCjuVUzu7vYzCOOB6cLBZPiA2lnaffcrus86q3JUc7RwsZ7FaKwPg/o1JhFw9lvMjPqg8rrpavuqCYWNxTuPoLH8I7Zr0Xv7KLwOgvzvF/JrvjTM8tj1j3sSdxj/pbG5h4bxzsY8MrPavo11JMbeFPsmmwgJSwxOYE9yFUV2L+TLqQoYFLOJ6nmdvwlSuLlpOek66W70gxGWMJjf7GOKnBjP2lIH0jgwn858rCCp2dpAuD3NNZ7A/LohvcgPZV/A8+2INrjrjc/omRGHedzwdD47q63VwDUubzcafafnkl9gY0NfV2Tq02yMeZQ8IcH7IRUcPJSXlOsLDnM2P4//Sk8Xf3s8J18Tz/LAEVmSu4OTOJx8857BRjYeFlqj4UAYe3/A5IQe3HUyvsq9ZTzd6s4WAgIDKZtFxY/8kOzMdNjm/uR/+ltu715MsX3EpXTrfUq97hpoW/kxYTnR5NDvbJDLVrSk+sEMHkl54DmicFQkNw+1Du9TGMUM/47eZ3geJHK2CQgOYeHEvDAOCQhrvbTe0f38sLz1LSl4u8Ul1+xsMSkkh6f9eqnw89caBLP9lF8dd3KvRylWbuEsvJe7SS6vuOFj7Fj5oELaQqgEj7rJLyf/hB8LHjq2y75BOUZ3oFNWp2v3BgYGc/PlHGBhw5bXYHPC3Cbdw4o5FtLv0RAYFBHBa2TE4MHnt4DkBVleoslgMugxqU7dftA7iL70M/niq8nFSXCmZ2REex4RRAIDpFgBDbfbKBfSM9qG8+tS9pCe0xdHdrT+hW2C2xETzWx9XO+qx+YfemV3HVJgWQq+7nJLPP3Rdo5qgZ5gmxmHNw/22bGBNN+ffkcW04zAaXqu/Z+0gNq5zfmkeNrVzLUdLQygAHuVuMZ/xGFwBcAHv8z1nVD5+zzwXCw7+Y15GGEUsNM+rcdbR77KiyAlbxVLLcXw34WpGmPO4iTVc0iaRVVlfA9CjKJ1BV9zHQNPky09fZCDOfivJKckMP2EUwamub8/5Ba431+KKNgSXJVMWtBsMk6v7X0nUvjwu6nMRveKcnazdp3Q4JDAwkJFdqjaHVMcwDLp1vaPycb9xHek7tkNluEuObN5JvkMpZwhVp3YJDIwhKjII2ARUrQGMjOzL2DFL6l+TZrGwI3IHAJ3jziY0NIWQkA4NKXqt3Mvm2L0RcC1qb7SEVeebSZ/RTfP8Dph0Uu0H1SClXzwp/VyvnQoLBDigOKx5muTdeby2veSO0AED6DZrJgHxdX+tH85iMSqXhAsLtlLhcLAlJolXBiXxRKTz9dXWdL4/he8uoiTYSn/jd4yAbQRb1gHzq7t0gxiBnn0Q4wLKAM8A2CFoPtARjzdmA0J3bsQeHkVkfDG9dm6j185t/NLfbTDKYTWmDouFz++6nqzYOHqe4uyHjVtfSQOTYKvn2r7V1wBW/Zh4+fmHmfiqcwm5dmVZ7A2pOlF4XTkMgzNuc3aViYwLqeVoaQi/mgfQHw3DNUFvb3MNN5vPYsHkXPNDOphpvGVOIzuzE8XFkURSgBUHpmn1+pIPLi9g0/HXMDlpJwND7by0dxLvZP4fN/EC3breSZv+4yqPDenpbNYxDIP5bVwd6kdfOcUj/B0uf+AzjD5xFgGBzjfA1MRTeGzMY/SKa/raCV80R1a64ido1x8ur9o1wWr17AN4uIaU2xHt6r8UFxLEsSN/YfCgqhP4Nra2Wc7xnoGBzr+P2NiqEwmLb91/sZUVnQ0++1v/Zrtn5AmTwGIh6rTTXBuraWEMbN8eI6hx+t+FhwRS4XDdKDIiAgJcrzdjbS5By/Zjj2hPVMBnBFu8z7/ZmAIDOlX51QMtB1sA3GoATcMgoLiA4Kw9nh/kwa56e2/vDZFF+fTauY3wM650HuMWAAMqTGJDYvnb4L9VbuuUv9trOWsbAFLd/kDT1SXIqGaKGYBiI5wvZ7zPlzPeZ/3WVdUeJw2nGkA/8IF5Nln7k2gT73oh37AikTMG3QLAxg3O5pQ2sXuJsWeyuyLGY32ghIJcsiNjuML2OmZYOWHA0HA7486fQt7MXgT1uJvIjp5TIMR0ds01l2Mk8Lj5EDcE/a9qB3Ag5oxuZGz4gb2x7+AILMYwDEaP+oOyskzCw/2kqbDTSLh+rtdd7gHQYQ/0ekx9uX8uDIgM82ymbQJPv/wUC/oP5qzffwKeYdgxX7Jv3/ckJV3YpPeV+rt+2vO83f9tnh3/TLPds+M//4lZXo4l2FX7ZDZxHzNwBiT3UcjlFSaG1WAS+RhQOfFRxsj7iQsLgCFNO02Y3W4lOHAApmWhx/YAwMFhAdC9ttTtfTW7U819E2f1TuGaF14lqJOzmdx9KqVDcwJeM+Aannzge9qFl5BjrWZdetOkIdPAuEfStvkH2BftvTbXNCzsz94PQMmGX2FE7X2cpX4UAP3A+nXjsGT1oc141wSxoUEfVDmu44A7eGn+T4zrvogLLft4h2lc0j6W8+PWsiXvPRLCPJs+AtuGkXCB57qfw475igO5i2jf3tXZ+BXzSgqJpGtEqtfyRYxsT2K/Mexc7Fr5ICAgsrK/nr+zBLjCmdlITaYJEa4P2uZoBhi+biXD163EtDrLHxqaTGrqdc1wZ6mvKalTmJI6pVnvaRgGRrBn0yPNEQCDQ7hgeDJP/eTsD2d3BFBud1B62HHJyZ2ge81T0DSG4PejMEZUfUVaLI4qk7HYQt3eF6wRvDzVgmlAaHwoXX/5GUuY56CgQ1/67FYLge5rOEd3gkLnb+z+7mKWQ0Z5KCltq2kCruV3qbbvoFtoPGH9Ula1jSezcwcyDM8uEsfmLWEqzi/F0e0uruVu0hAKgEehwydRzs5O4cqyEWy2v4VpdTYlbO11ALuZQHmpc1qHLp1SOX1CV7r1uJjEsHFEhadwgz2ETiFBGMaFBK1eQGaW19t5iIoaQFSU5xxqseQenLw4tdrzIiJ6MnDAmwQf4RxjRyOLWw1gxf7GmRG/XZSP+tT4spldWpfACKBplgBrc+utFM6ZQ8w5Z2MJDeIYrKTj4MTUnqy1uaLWygcnU17hIDKkcWreaxNVUACGUSX75lniCcezBrAoIZKgg6uaxrcZwB/JcwCYjEFQctU+zOExrtHWVrdJuw1rMByKvN5CWzU5PKSGZVOh9oAIEFFWwpSfv2bOVaeTEeAZAAMpJ+WWgyulBGvZ1aagAHgUiiebbFxBwcCkIDKd/WunEjfgSwCWLZ/K1Vc/RGRkNBPGlxBxcPmqfh0PToQLuM+76d5PJCpqMF273t7o5U5IqDpZqnj24wleEA0X1HBwA/RL6Ne4F6yB0YgjYOUod8zlMOf1Jrl0wrXXkHDtNZWPXyQMOxCeGMnwiEBO6NOOvh2iiA5tnuDnLiIupOpMA6Hx2LFjui3VVmHEcagnZI/hQzk0kL+6PsEBQUFc/8YHWCxWLG7Lxbm/t3urtXOY3ruHdP3ma4xZs6v/RaqtwPXcMW7DLuaaVcucHxDOXfuc2yfFG5xQ8wI30gB6Nz4K3cHjfGBexll8AsDosR+w1zDZMO8CRuH8kldUFEdISBhWq7Uy/NWkW9c7yctbQXLSxXTqdGUT/wZSLVsjTT4LfHP6N6zLWcfxneq+qkFD5VxjI+qLAALvqn76DhF31k69az+okbS/eziOEjvWg5M7v3HJMc1278OFRYcSXJxPSYSrxu7Sfpfy1h9vYZpWtmwZhtVSQZk9kpte/i/ZaTtJHeQWAGuoewuLqto/0OIWAMPKXBNFtwnNIKskkV5xm/nD28W8BM3Ajh0rf66o5r3q8LMiyrzX8qYFt+eTdGcfwDZBgQdX6ZHGpADYyrmvs3rI0HXHk5LyX+zhzjn1jIMDOuz2QBbMPw+Hw8Kll17qXMi9jkJCOjB61OwGlTEiog+Fheton3hm7QdLjeyOstoPqqMuMV3oEuN9+b7GFjS2P5mDVjHsmGtqP1gEiDzhBGKmXUDY4MFNfq+AmBCIafLb1M4ADIOo7DRKTCvWQudSaLFhrgnD96YfnGcvNoDotu2Ibus5SXLf+L71u6XbIJChK12jbbv3+BeXBrQl39xe5ZxJa5bDxEFVwlzkJPcvk669p66cy7cDxxx85KoBDC9IdW7xttKHtZy/pzr7Kh4b0xgzksrhFABbuXHMZhnOANi2vIRx+yBm90QCihLZM+zpKsdXVDg7Wnd2W2S+qR0z9BOKirYQGdl800ocrbIiWufMTUOHforNlkNwsGb0l7oxrFbaP/igr4vR/CwGYBKU41oKLSIiguSD/fp+zSinp20fqT2Hepz25WlfsiB9AdN6T6vf/dz6i4cNcdU6ri63keFIo6A4AA6b97rA8N4nL3TgQLdHrqDXc8fvbgHQJazo4Ehku2ct4KWZ0zkhbwGTOj9S5RxpPAqArdwQljDMXEA3NnPlxgRi0p1NbBbTMyiEhHT0dnqzsFrDqgwMkfrpkrWHnLAodvduvBUImpPFEqjwJ1Ibw1kjZ+sA7HXbbBhcccUVADx6z/f8SQcejfecZLl7bHe6x9Y8MMPrLQ3vPwNkVVgIrnGqF899kSedBLNXOq/ltivUVuS6h5frud/2n+bVtM89QElhOO/dfTOGYTBg0okMOP7E2n4VqScFwFbOioNbcC7bZXAl8YEPUVBxNtv6vVt5TLt2p9Gl8020SbDxxRdfcMYZZ/iotNJQk9ctwQS29mz4Cggi0vIFtEskdkwe9lkWEvrlVG53De4wKCeg8WbJcUt9ppcGBtOAZ//vCXIjInn8SucE0W1z8qq5lPf+h8HlXpp43c9zC4Xx5AAG2B1k7twKQGFOTjVnypFQADyK2POi2Bu3hdKYJ7GFuTrg9uv7IgA9esBdd93ldTJmafkMwAzQS1bkaBUz7QJC+/XFustBz7Or9r1z11j5z+PzoJrxI8dsWA1A751b2dWuA21HHFf7hd1W+XCvDfR6Cy9p1pIQyVnTHsI0TWISm2YZRX+nT5MW6L+r/wsMrfU4d7E7ppC5cSZZV3j+k8bEeM6ervDXOm1u05H4onwKo8NqP1hEWqWI8c7lNB11mEWvsWoAw9zmGTW6VJ0Rwv02HbP20TFrH4kXnO08voYYai0rcV030X2qqToU3ABCA+k82Hejsf2BAmALZDbgu13bTdMwg+8m123biOE/EBaW2ljFEh/6rc8wME2GO1b7uigi0kQiI5xT35je2mIP05DPCW/C3Vca6h9T9QBvWdTLGr73pcZ6PG7bIYndBw8zAt2mhDEtVa7pLUgWlOXz/NLnMTAY2WEkozqMqu5XkAZSAGyBTu1yKvdl7639wMPYurn6WQwZ8jERET0bs1jia1pFQ+SoNGbMIipseYSEOJs667LkY2PVAHYKcQtnlqoX9Xobe9UAeE1SnMfjwKBgKK04eFnX72O3B1RZf9Lbb1tYUcT0tdMBCA0IVQBsAgqALVC78HZ4DAGro7L+zpdqTMxwYmOGNXKpRESkKQQHJRAclFD52PSyMsbhGqsPYKfQYG4xnyaMYsDVBNwpshO7CnaREpUKbPW8t+NQZYOrnIbhuWKIx4CQen53tRRCu7B2XNb3DEzTZGCbgbWfJPWmANgCVTga+NJWBdFRr415wNdFEJEmVpc+gI03DBiGsdh5SVx9xl874TXeW/ceF3W/gML7T/Y84WANoMMRAAdzn8XwrNYLs7h+B/e+5177DbptKtzdlnafHCD62g5MPqbxlxwVF40IaIH+sXl3g84zGu/9QFqY+8z7OcX8mnH2Zb4uiog0sbr1AWyC+7p9iCRFJnHPiHtIikyqeuDBGkCP0b2H1QD2DAkkKX0HHTJ2EuKoeRoYd5m/XY81T7UZzUE1gC3QoKgwFuyZx2ajVz3P1IvmaNWbdfRmHRlUnU1fRI4ujjo0AafGN/7yaIEOL9f00vfYrOwDaLod5hlaLcC0/72JCXQ87Ry3k73cwm2jxQgFoE3bKXUttjSQagBboLPbxda43/C2bqL4BVMvWZGjXk2DQL64fhRPnNmfsd0Tqj2mvmJfDyB0gYXklIur7vQ2+Mxrjd7h700G49fvot/uLIZOPqXG+7sHwEO/e1hY8y1X6q9UA9gCBdcyV9/YrSuZ020IF+yfB3E1HipHHQVAkaNdTYNAhqbEMjSl5kqC+upz/ZPYM/cQ0m981Z1eAmBAYnsvh3keZxoQXm4jfL8Na60T2LsCoNVeXmWbNA0FwFaoz55d3L67C7HtfiJNAdCvlDmifV0EEWlijjr0AWxMIePPqtNxCTfeCA47USefBNQ8EXR1vK4F7Lap37r/On9wVJ1qRhqXAmAr1bbMxGHJ8HUxpJm8tupSRrRfyoHAc31dFBHxJ241e+GjRxE2eHCdTmto/V1EUbrz/EYc5SzeqT2plbIE/JflDs8+EoGBzurAhIQ6rNMorcrijKG8vPxa7DR+x28RaVnqNA1MMzm8abc2E2IjAZgWV/f3KsPbFBYKgE1ONYCtRJhZSLHhmqSzpOJKBpd9xA63YwYMeJMi6yoSEiY1e/mkeeg9UeToV5dpYFoCi5c6pA8HdqHI7iA0L5fNhza6vXEF2Cu8XKnmuQGlaSgAtkDFtmKPx8PN+axhgMe2QCA6qxNx26YSmtcVgJDwBMKjTmyuYoqISBOoyzQwLUGotWqEsBgGkQFWKtxrDt0CYLCjgoKDPw9KTKv+4vq22+Rax9cMP/PSspc8Hp/AT1WOsWBgdD+RNlvOISLL2SfDGhVU5TgREWldggNbR91MTa3DlpAQ13HBIW57XCd1v/nsas83bbYjKZrUQev4K/MzPWJ78GORq5rcStU5lwyAoHCgBIDA9uobJiJyNOjZLpqiQl+X4shYwsLo+NJLYDqwRrg+n9wnjD7Uv9BbjnQUF3vZKo1JAbAFOqv7Wby0+7PKx93Z5P1At1dN2xvrNjJLRERatkCrtfaDWgKTGhegijrR22oerhNcAbBqc+/+118n73//wzAMos86i5izzjzCwsrhFABbIPdFtW81n8JC7fMhGdbW0WdERERqYbSO3lkN+9RxWz6uhkUPbHv2YNuzB4CwY0c26E5SMwVAERGRFuTwdXVbrgYM1PDSBOztOkmvvIzpcIDDJLhb1waWT2qiACjSimhgnMjRz2ih4zODkpI8HjekBjCxuJisUGefQIvFoPsfczCXvF3luMhJms6sqSkAtlIJV/anbEmmr4shIiKNrYXVAHb54QccRUUEtGlzxNc6Y+cWuq1axsg1y2HEu85rqgeTTygAtlLBqVEKgCIiR6G2bU4kJ+cPgoPb+7ooAAR36ex1e0NyW6DDzk2fTj94fvVNwNL0FABboP3pVcf/j2QeM5lCfGGeD0okIiLNpUOH8wgJ6UhUVD9fF6XRJRcWuB6o5s+nFABboA3z90Kc57aLmE4vcz3FK7v7plDSIpj6pixy1DMMC/HxY31djEb1+/BeZJXbiP7BVcFxaAyIt2lgpOm1rI4GAkCHgm+rbAumnNH8QUiFZkcXERHfq09w6xkewpjYSI/lQw795NA0Zj6hANgC2YI1A7qIiBx9zPCIyp8PTQNjGq1k4uujjAJgC5RtdMRU5wjxoldilK+LICICNKwLX8V5F7GsTXdeGnSu23XUBOwL6gPYAnUZNhp2rQD0whCn7/42hrlbsrn42BRfF0VEpOHCw7l39LUAvODjovg71QC2QIndevi6CNLC9OsYzXXjuxJo1UtWRFqGfzr+JNhRxmNb/lnnc9wnszfU0OVTqgFspSw1rKEoIiLS1I7hANv+OBErDuCtep9/aB5AtXT5hlJEK1JREUBIUTE33XQTVqs6zYqIiA+Z5sHwV6+TKn/SNDC+pQDYiixfdgo9Agzi4uJqP1hERKQVsuozrlmoCbgVKS2NYuBfTvR1MURERI5YdTWA3X79xQel8T+qAWxlPDrNqgetiIj4TCM13bp9lJmGgSUsrHGuKzVSAGxlQmLiXQ9M9ZsQEZHWw2MU8MHkZ2pQo0/oWW9lYuOTfF0EERGRBnGvtjjUiJVr0eeaLygAtkAF8/ZUfjOqkZqARUTEV46wFerQJ5jdCD7yski9KQC2RHYTw+79BaH5/0REpLXynAj60DyAqszwBaWJFih8ZHtMhx2outaioVo/ERFpCY7w8+jQ2b1ierk2qpKj2eiZboEsQVY4GACr7HN7cURPScUSHkjUCVofVkREmtmxf4OojjDmtiO6TFKI26jfcI0Abi6aB7CVcQ+AAXEhtL9vhGoFRUSk+UW0gVvXNrgm8NBpF7WJYvlX3zFq1Z+gVa6ajQJgK3N42FP4ExERn6nnZ5Bpui8F5zw32Grh3un/cu6PjWm0oknN1ATcyijwiYjI0cR9EIhmt20+rTYArlixgn/84x9MmTKFNm3aYBgGEyZMqPW8Dz74gOHDhxMeHk5sbCxTp05l2bJlTV9gERERP+c94LkCoOo4mk+rDYBff/01Tz75JLNnzyYxMbFO5zz++ONcdNFFZGZmct1113HuuecyZ84cRo0axbx585q4xEemoiLQ10UQERFpfAp9PtFqA+C5557Ln3/+SWFhIb/8UvvC0Zs3b+ahhx6iR48erFy5kueff57XX3+dOXPmAHD11VfjcDiautj1lr6nB7t29SPklVhO+/obXxdHRESkcXkucu+zYvibVhsA+/bty5AhQwgMrFvN2Ntvv01FRQX33nsv0dHRldsHDRrEtGnTWL9+PXPnzm2q4jZYhT2InTsG03ZTLqGlpb4ujoiISCNzhT5HuzY+LId/abUBsL5mz54NwOTJk6vsmzJlCgC///57cxapWlnlNraEdPN1MURERBqVt9XjDANSJ2UR1akY29UXN3+h/JTfTAOzefNmIiIivPYX7N69e+UxLcEjW9Mrfw6xl+FH/0wiInIUM70NAzEMQhNsdEzIJSs2uup+aRJ+kyzy8vJo27at131RUVGVx9SkrKyMsrKyysf5+fmNV0A30xLjWbFjMccH/0hcMeTQqUnuIyIi4mtaC9g3fBoAb7/9do9AVZubb765srbOF5588kkefvjhJr/PqNgIntj7IOWpZaxjPAD5kZF0OvnkJr+3iIhIk9FEfy2GTwPga6+9RlFRUZ2PP+eccxocAKOjo6ut4TtUk+c+OMSbe+65h9tuc615mJ+fT3JycoPKU1/fnXIyjz70ULPcS0REpLkYFr8ZjtCi+DQAFhYWNtu9unfvzoIFC8jIyKjSD/BQ37/awmVwcDDBwcFNVsYaaXZMERE5yumTrvn4TeweP97ZlPrzzz9X2TdjxgyPY0RERKR5qA+gb/hNALz88ssJCAjg8ccf92gKXrFiBR999BG9e/dmzJgxPixhzS65WEPjRUSkdfPaBVAtXD7RakcBb9iwgaeeegqAkpKSym2XXXZZ5THTp0+v/LlHjx489NBD3HfffQwcOJCzzz6bgoICPv74YwDeeOMNLC24H0JqamdfF0FEROSIxIRVXbzBI/95myhQmkSrDYAZGRm88847Htv27dvnsc09AALce++9pKam8tJLL/Hqq68SFBTE2LFjefTRRxkyZEhzFFtERMRv9e0QzR1TetIhJsRtq2oAfaHVBsAJEyZgNuCbwoUXXsiFF17YBCVqWnp5iIjI0eCvE7XSVUvQcts8RURE5KhnGO5RRE3AzUUBUERERMTPKAC2VIe1+WqQlIiIHI30+eYbCoAiIiLSMmgUcLNRABQRERHxMwqArYRqyEVE5Gin5uDmowDYSlj0qhARkaOQPt58QwGwBSopt+NQnZ+IiIg0EQXAFuj2z1aQHh7v62KIiIg0K0PzADYbBcAW6JZJPbAHWn1dDBERkSZnqMXLJxQAW6Ae7SLpGJbj62KIiIjIUUoBUERERHxGg0B8QwFQREREWgZNBN1sFABFRETEZ1QB6BsKgCIiItIiKAw2HwVAERER8RnDoxOgmoCbiwKgiIiItAimoSnQmkuArwsgIiIi/ssAPqg4nlQjAyNhsK+L4zcUAFs4Uz0iRETkKHdvxZUAfGhRDWBzUROwiIiIiJ9RABQRERGf0UTQvqEAKCIiIuJnFABFRETEZwxVAfqEAqCIiIiIn1EAFBEREfEzCoAiIiLSMqg1uNkoAIqIiIj4GQVAERERET+jACgiIiLiZxQARURERPyMAqCIiIiIn1EAbLHMyp86d+7sw3KIiIjI0SbA1wWQqopXZFbmv+4ViYw762zfFkhERESOKqoBbIFs+4orf051tCUsNMyHpREREZGjjQJgCxQwFkxrOQCGZsUUERE/oc+85qMA2AJt3fqsr4sgIiIiRzEFwBaoT++nCAiM9nUxRERE5CilANgCBQREEhLcwdfFEBERkaOUAqCIiIiIn1EAFBEREfEzCoAiIiIifkYBsKXSSHgRERFpIgqAIiIiIn5GAVBERERaBEOtX81GAbClMqr5WUREROQIKQC2UIbV+U8TMa5j5c8iIiJHs5BAq6+L4DcCfF0AqVlwqlYEERGRo9vfJ/dgV04xA5P0mddcFABFRETEp248rruvi+B31LYoIiIi4mcUAFss09cFEBERkaOUAmBLpzHxIiIi0sgUAEVERET8jAKgiIiIiJ9RABQRERHxMwqAIiIiIn5GAVBERETEz7TKAGiz2fjiiy+49NJL6d27NxEREURGRjJixAheffVV7HZ7ted+8MEHDB8+nPDwcGJjY5k6dSrLli1rxtKLiIiI+FarDIBbt27lnHPO4csvv6Rnz5789a9/5cILL2T37t3ccMMNnHHGGZhm1Xn0Hn/8cS666CIyMzO57rrrOPfcc5kzZw6jRo1i3rx5PvhNRERERJqfYXpLSi3cnj17+Oabb7j00ksJDw+v3F5UVMSECRNYunQpn376Keeee27lvs2bN9OnTx+6dOnC4sWLiY52rje4YsUKRo4cSZcuXVizZg0WS90zcX5+PtHR0eTl5REVFdV4vyCwZOlZ5OevZMCA12mTcHyjXltERMSfNeXnd2vRKmsAO3bsyA033OAR/gDCw8O57bbbAPj999899r399ttUVFRw7733VoY/gEGDBjFt2jTWr1/P3Llzm77wIiIiIj7WKgNgTQIDAwEICAjw2D579mwAJk+eXOWcKVOmAFVDo4iIiMjR6KgLgG+99RZQNeht3ryZiIgIEhMTq5zTvXv3ymNEREREjnYBtR/Serz++uv8+OOPHHfccZx88ske+/Ly8mjbtq3X8w61/+fl5dV4/bKyMsrKyiof5+fnH2GJRURERJqfTwPg7bff7hGoanPzzTdX1tYd7rvvvuPGG28kJSWF999/v7GK6OHJJ5/k4YcfbpJrV9H6xuaIiIhIK+HTAPjaa69RVFRU5+PPOeccrwHwhx9+4JxzzqFdu3bMnDmT9u3bVznm0Ggfbw7V5LkPDvHmnnvuqRxkcui85OTkOpe/roqLt5NfsBoAw7A2+vVFRETEv/k0ABYWFh7xNb7//nvOPvtsEhISmDVrFl26dPF6XPfu3VmwYAEZGRlV+gEe6vtXXe3iIcHBwQQHBx9xmWuzddsLgElYWGdiY0Y0+f1ERETEv7TqQSCHwl9cXByzZs2iW7du1R47fvx4AH7++ecq+2bMmOFxjK/17vUE7RPPZuiQj7FaQ31dHBERETnKtMqJoAF+/PFHzjzzTGJjY5k9ezY9e/as8fhNmzbRt2/fVjMRtIiIiDQNfX630lHAGzZs4Mwzz6SsrIwJEybw0UcfVTkmNTWVyy67rPJxjx49eOihh7jvvvsYOHAgZ599NgUFBXz88ccAvPHGG/UKfyIiIiKtVausAZw9ezYTJ06s8Zjx48dXTv7s7oMPPuCll15i7dq1BAUFMXr0aB599FGGDBlS73LoG4SIiEjro8/vVhoAWwr9AYmIiLQ++vxu5YNARERERKT+FABFRERE/IwCoIiIiIifUQAUERER8TMKgCIiIiJ+RgFQRERExM8oAIqIiIj4GQVAERERET+jACgiIiLiZxQARURERPxMgK8L0JodWkUvPz/fxyURERGRujr0ue3Pq+EqAB6BgoICAJKTk31cEhEREamvgoICoqOjfV0MnzBMf46/R8jhcJCenk5kZCSGYfi6OA2Wn59PcnIyaWlpfrso9iF6Lpz0PLjouXDS8+Ck58GlNT8XpmlSUFBAhw4dsFj8szecagCPgMViISkpydfFaDRRUVGt7kXcVPRcOOl5cNFz4aTnwUnPg0trfS78tebvEP+MvSIiIiJ+TAFQRERExM8oAArBwcE8+OCDBAcH+7ooPqfnwknPg4ueCyc9D056Hlz0XLRuGgQiIiIi4mdUAygiIiLiZxQARURERPyMAqCIiIiIn1EAFBEREfEzCoBHgaeffhrDMDAMg4ULF1bZn5+fz2233UZKSgrBwcGkpqZyxx13UFhY6PV6DoeDl19+mf79+xMaGkqbNm2YNm0a27Ztq7YMM2bMYPz48URGRhIVFcXEiRP57bffGu139CY1NbXy9z78vwkTJlQ5vqysjEceeYTu3bsTEhJChw4duOaaa8jMzKz2Hh988AHDhw8nPDyc2NhYpk6dyrJly6o9fsmSJZx88snExMQQHh7OyJEj+fTTTxvj163VV199xQknnEB8fDwhISF07tz5/9u786iozvMP4N87LAPMABGR4EImYFyBYHEBRVYXiMa61iqF4kY0FD2uoC0K2qiYI9RUGzX2BBKxGjUeNXFfQBEQ04hWrUGxLjQVRBB1UFCY5/eHv7nhMsMmKjA8n3PmMOd9n3vv+z7nMvPMnXvvYPLkycjPz5fEGer+kJycXOv+oH0MGTJEsoyh5oKIsGfPHvj7+6Njx46wsLBAjx49MHPmTL1jNdQ8aDQabNiwAe7u7rCwsICVlRV8fHywf/9+vfGtPQ8pKSmYOXMm+vXrB7lcDkEQkJycXGt8S5zvtWvXMHHiRNja2sLc3Bxubm7YuHFjm/7N3teGWKt26dIlksvlpFAoCABlZWVJ+tVqNfXp04cA0PDhwyk6OpqGDx9OAKh///709OlTnXXOmDGDAJCzszNFRUVRSEgImZqako2NDV27dk0nfuvWrQSAOnToQJGRkRQZGUkdOnQgQRBo165dr23uKpWKrK2tKTY2VueRlJQkia2qqqLAwEACQJ6enhQdHU3jxo0jQRDIycmJ7t27p7P+Tz75hACQSqWi+fPnU3h4OFlaWpJcLqczZ87oxJ88eZJMTEzI0tKSwsPDaf78+aRSqQgArV279nWlgTQaDX300UcEgLp27UoREREUHR1NoaGh9M4771B6eroYa8j7Q05Ojt59ITY2lpydnQkArVmzpk3kYv78+QSAOnbsSLNmzaKoqCgKDAwkQRDI0tKSLl26ZPB50Gg0NH78ePH/IjIyksLDw8nOzo4A0Pr16yXxhpAH7euNra2t+Lzma2FLnu+VK1fI2tqaTE1NKSQkhKKiosT/3cjIyCbnh0lxAdiKPXv2jNzd3cnDw4NCQkL0FoDLli0jABQdHS1pj46OJgC0atUqSfvJkycJAPn4+FBFRYXYfvDgQfGForqSkhJ66623yNbWlvLz88X2/Px8srW1JVtbW3r06NGrmrKESqUilUrVoNgvv/ySANDkyZNJo9GI7Rs3biQA9NFHH0nir127RsbGxtS9e3cqLS0V23Nyckgul1OvXr2oqqpKbH/+/Dl17dqV5HI55eTkiO2lpaXUvXt3MjU1pVu3br3cROuxbt06AkARERFUWVmp0//8+XPxuSHvD7WpqKig9u3bk7GxMRUUFIjthpqLu3fvkkwmI5VKJdl3iYgSExMJAE2dOlVsM9Q87Nq1iwCQl5cXPXnyRGwvKioilUpFcrmcbt68KbYbQh6OHTsmvs6sXr26zgKwJc7Xx8eHANDBgwfFtoqKCvL29iYAlJmZ2fBksHpxAdiKxcbGklwupytXrlBYWJhOAajRaKhTp06kVCpJrVZLllWr1aRUKsnJyUnSPnnyZAJAp06d0tmen58fAaDbt2+LbZs3byYAtHz5cp34uLg4AkBfffVVU6eqV2MKwIEDBxIAnSJMo9GQk5MTKRQKyZvEkiVLah37lClTdHJ05MgRnTdWreTk5Fpz1FRPnjyhdu3akZOTk6TQ08fQ94fafPPNNwSAxowZI7YZci6ysrIIAAUHB+v0Xbt2jQDQhx9+SESGnQfth+IDBw7o9Gk/NC1btoyIDDMPdRWALXG+ubm5BID8/f114tPS0mp9fWUvj88BbKXOnz+PlStXIjY2Fr1799Ybc/36dfzvf/+Dl5cXFAqFpE+hUMDLywv/+c9/JOeIpaWliX01BQYGAgBOnToliQeA4cOHNyj+VauoqEBycjJWrVqFDRs2IDs7WyemvLwc2dnZ6NGjB1QqlaRPEAQMGzYMZWVl+Oc//ym2N3ZezZWHo0eP4sGDBxgzZgyqqqqwZ88exMfHY9OmTcjLy5PEtoX9QZ+///3vAIAZM2aIbYaci27dusHU1BQZGRl49OiRpO/7778HAPFcSEPOQ0FBAQDA0dFRp0/bdvLkSQCGnQd9WuJ864ofPHgwFArFG3/tMHRcALZCFRUV+P3vf48+ffogKiqq1rjr168DePGGoI+2XRtXVlaGu3fvwtHREUZGRvXG17cNffGvWkFBAaZOnYo//elPmD17Njw9PTFgwADcuHFDjLlx4wY0Gk2D86B9rlQqYW9v3+D46n3V2dvbQ6lUvpY8/PjjjwAAIyMjvP/++xg/fjyWLFmCjz/+GD169MDChQsbNMbq7a15f6jp9u3bOHHiBLp06YKgoCCx3ZBz0b59e8THx+POnTvo2bMnPv74Y0RHRyMoKAjR0dGIiIhAZGRkvWPUN87WlAdbW1sAwM2bN3X6tG3Xrl2rd4z6xtma8qBPS5xvXfFGRkZwdHTErVu3UFlZWc/sWENxAdgKLVu2DNevX0dSUpLef0athw8fAgCsra319ltZWUniGhtf3zL64l+lqVOn4sSJEygsLERZWRlycnIQGhqKH374AUOGDMHjx4/rHWNt43z48OEry4N2mdeRB+0VzImJibC2tsa5c+fw+PFjnD59Gt27d0dCQgI2btzY4DFWj2tt+4M+SUlJ0Gg0mDJliuR/xdBzMW/ePOzYsQNqtRqbNm3Cp59+iiNHjsDDwwPBwcEwNjaud4z6xtma8vDBBx8AAOLj41FeXi62FxcXY926dQCA0tLSeseob5ytKQ/6tMT5NmQbGo1GfF1nTccFYCuTlZWFtWvXIiYmBi4uLs09nGYVGxuLgIAA2NnZwcLCAn369MHXX3+N0NBQ3L59G1u2bGnuIb52Go0GAGBqaoq9e/eif//+UCqV8Pb2xq5duyCTyZCQkNDMo2weGo0GSUlJEAQB06ZNa+7hvFErVqxASEgI/vjHPyI/Px+PHz9Geno6ysvL4efnV+ttUAxJcHAw/P39kZ6eDldXV8yePRuzZs2Cs7OzWIDIZPwWyNou3vtbkcrKSoSFheH999/H4sWL643XfpKq7VOl9vwgbVxj4+tbRl/8mzBz5kwAQEZGhmT7jZ3Xq8qDdpnXkQftOvv164dOnTpJ+lxcXODk5IQbN26gtLS0ze0Px48fx507dxAQEKBzHpgh5+L48eOIjY1FZGQkFi9ejC5dukCpVGLw4MH47rvvYGJiggULFtQ7Rn3jbE15MDY2xqFDhxAXFweZTIYvvvgCe/bswejRo7F7924AgJ2dXb1j1DfO1pQHfVrifBuyDUEQYGlpqbefNR4XgK2IWq3G9evXceHCBZiamkpucPvVV18BAAYOHAhBELB37956zyupec6FQqFAx44dcfPmTVRVVdUbX/25vm3Ud57J66I996esrAwA4OTkBJlM1uA8aJ+r1WrxRPKGxFfvq66goABqtfq15KFHjx4AgLfeektvv7b96dOnbW5/0Hfxh5Yh5+LQoUMAAH9/f50+e3t79OzZE3l5eZJ90hDzAAByuRyxsbHIzc1FRUUF7t27h82bN+Pnn38G8OKDU31j1DfO1paHmlrifOuKr6qqws2bN+Ho6CievsCajgvAVkQul2P69Ol6H9p/nl//+teYPn063n33XXTr1g2dOnVCRkaGWAxplZWVISMjA46OjnBwcBDbfX19xb6ajhw5AgDw8fGRxAMvrkatLV4b86ZorwR+9913AQDm5uYYMGAAcnNzcfv2bUksEeHYsWNQKBTimwHQ+Hk1Vx60b/JXr17V6Xv+/Dny8vKgUCjQoUOHNrU/FBcXY9++fbCxscHYsWN1+g05F8+ePQMAFBUV6e0vKiqCTCaDiYmJQeehLtu2bQMATJo0CYBh7w/6tMT51hV/5swZlJWVvfH9xOA1931o2Kuh7z6ARG/mZp/W1tZv/CavV69epbKyMr3t9vb2OverauyNoHNzcxt9I2gnJ6c6bwRd/aazr5L27v1btmyRtK9YsYIAUEhIiNhmqPtDTX/5y18IAM2ZM6fWGEPNxfbt2wn//2sNNW8Erd3fvby8xDZDzQMR0cOHD3Xadu3aRTKZjPr37y+5cbqh5aEl3Ai6sfOt70bQGRkZjcoBqxsXgAaitgJQrVaTm5ub+A+6ePFiyc/9VL/5sVbNn/sJDQ0Vf+4nNzdXJ76un/vZuXPna5lvbGwsWVpa0siRIykiIoIWLVpEo0ePJhMTEwJAS5YskcTr+ym48ePHkyAI5Ojo2Kp/Ci4vL0/8eauRI0fSggULKCAgQBz73bt3xVhD3R9qcnFxIQD0r3/9q9YYQ81FZWWl+EZqZ2dHM2bMoIULF4r7hLm5OWVnZxt8HoiIevbsScOGDaM5c+ZQVFSUeMNiJycnnZvCG0IetmzZQmFhYRQWFkbu7u5isa9tq/4hsSXO9/Lly+JPwYWGhvJPwb1mXAAaiNoKQKIXR6Hmzp1LDg4OZGJiQu+88w4tWLCg1k+bVVVV9Nlnn5GzszPJ5XJq3749/fa3v6W8vLxat3/o0CHy9vYmhUJBSqWSfH196dixY69sfjWlpaXRxIkTqVu3bmRlZUXGxsZkb29Po0ePpiNHjuhdpry8nOLi4qhr165kampK9vb2NGPGDMnPg9WUkpJC/fr1I3Nzc7K2tqYRI0bQjz/+WGt8dnY2BQUFkZWVFZmbm9OAAQNox44dTZ5vfe7cuUNTpkwhe3t7MjExIQcHB/rDH/5AhYWFOrGGuD9Ul52dTQBowIAB9cYaai7Ky8tp9erV9Ktf/YosLCzI2NiYOnfuTCEhIfTvf/9bJ95Q8xAbG0uurq5kaWlJZmZm1KtXL4qJidF7ZJCo9edB+z5Q2yMsLKzFz/enn36iCRMmkI2NDcnlcnJ1daW//e1vkm9u2KshEBE19mtjxhhjjDHWevFFIIwxxhhjbQwXgIwxxhhjbQwXgIwxxhhjbQwXgIwxxhhjbQwXgIwxxhhjbQwXgIwxxhhjbQwXgIwxxhhjbQwXgIwxxhhjbQwXgIwxVo2fnx8EQWjuYTTJrVu3IAgCpkyZ0txDYYy1UFwAMsZeytmzZyEIAoKCgvT2z507F4IgoGfPnnr7161bB0EQsHTp0tc5TINlCIUqY6z5cAHIGHsp/fr1g1KpREZGBiorK3X6U1NTIQgCcnNzUVBQoLcfAAICAl77WBljjElxAcgYeynGxsbw9vaGWq3GDz/8IOkrLi7GpUuXMHbsWAC/FHtaGo0G6enpkMvlGDhw4BsbM2OMsRe4AGSMvTR/f38AQFpamqT91KlTICLMmTMHNjY2OgXgxYsX8eDBAwwcOBAymQzr169HYGAgHBwcIJfLYWdnh3HjxiEnJ0ey3NatWyEIAlasWKF3POfPn4cgCPjd734nab937x7mzZuH9957D3K5HLa2thg/fjwuX77cqPnu27cPQ4YMQbt27WBmZgYXFxesXbsWVVVVkrjk5GQIgoDk5GQcPXoUgwYNgoWFBdq3b4+wsDAUFxfrXf/mzZvh7OwMMzMzODg4ICoqCuXl5RAEAX5+fmKcIAg4deqU+Fz70HfOX15eHsaOHYt27dpBoVBg6NChuHjxYqPmzRgzPFwAMsZemrYArFngpaamwtzcHJ6envD29tbbr12+pKQEc+fORUVFBUaMGIF58+bBz88PBw8exKBBgyRHF8eNGweFQoFt27bpHc/WrVsBAKGhoWLbjRs30LdvX6xbtw5du3bF7NmzMWLECBw+fBienp7Izs5u0FyXLFmCMWPGIDc3F+PGjUNERATMzc2xaNEiTJo0Se8y+/fvx6hRo9CpUydERESga9eu+PrrrzF69Gid2GXLlmHWrFkoLi5GeHg4fvOb32Dnzp2YOHGiTmxsbCxUKpX4XPsYM2aMJO7WrVvw9PRESUkJpk2bhmHDhuHEiRPw9/dHYWFhg+bNGDNQxBhjL6myspKsra1JoVDQs2fPxHYXFxfy9/cnIqLExEQCQPn5+WL/qFGjCACdPn2aysvL6b///a/Oui9fvkxKpZKGDh0qaQ8JCSEAlJ2drTOWt99+m+zt7amyslJsHzRoEBkZGdHhw4cl8bm5uWRpaUmurq6Sdl9fX6r50nj06FECQIGBgaRWq8V2jUZDs2bNIgC0e/dusT0pKYkAkLGxMZ05c0YyRj8/PwJAWVlZkrEYGRlR586dqbCwUGx/9OgR9e7dmwCQr69vvePUunnzJgEgABQfHy/pi4mJIQC0evVqvcsyxtoGPgLIGHtpRkZG8PHxQVlZGc6dOwcAKCoqwpUrV8SvLH19fQH8ctRPe/6fubk5PDw8IJfL0blzZ511Ozs7w9/fH6dPn8bz58/Fdu3RvZSUFEn80aNHUVhYiEmTJsHIyAgAkJOTg8zMTISFhSEwMFAS3717d4SHh+PSpUv1fhW8YcMGAMAXX3wBhUIhtguCgPj4eAiCgO3bt+ssFxwcDC8vL0m+wsLCAEByZHP79u2oqqrCggULYGdnJ7ZbWloiJiamzrHVxdHREYsWLZK0TZ8+XWf7jLG2x7i5B8AYa938/Pzw3XffITU1FV5eXkhLSwMRiQVgnz59YG1tjdTUVISGhuLChQsoLS3F0KFDYWpqCgC4cOECPv30U5w5cwYFBQWSgg8A7t+/j44dOwIAhgwZgo4dO2LHjh1ITEyEsfGLlzFtQVj969+zZ88CAAoLCxEXF6cz9p9++kn86+LiUuscz549C4VCgS+//FJvv7m5ubiu6vr27avT1qVLFwBAaWmp2KY9J2/w4ME68dULyMbq06cPZDLp53x922eMtT1cADLGmqT6hSAxMTFIS0uDmZkZPDw8AAAymQyDBw8WjwDWvP1LZmam+Hz48OHo1q0blEolBEHA3r17cfHiRVRUVIjbMzIyQnBwMBISEnDkyBGMHDkSarUae/fuRe/eveHu7i7GlpSUAAAOHDiAAwcO1DqHsrKyOudYUlKCyspKLF++vFHrsLKy0mnTFqzVLxx59OgRAEiO/mm9/fbbdY6tLg3dPmOs7eECkDHWJG5ubmjXrh0yMzPx7NkzpKamwtPTE3K5XIzx8/PDgQMHcOvWLfGKYW3huHLlSlRUVCA9PV3nCNjZs2f1XrEaGhqKhIQEpKSkYOTIkfj222/x5MkTydE/4JcCaP369YiMjHzpOVpZWUEQBNy/f/+l11Hf+oEXVytrL+7Q4os1GGOvA58DyBhrEplMBl9fXzx9+hT79+/H1atXJbcsAX45D/D48eNIT0+HUqlEv379ALy4StfGxkan+Hvy5AnOnz+vd5tubm5wdXXFvn378PjxY6SkpOi9/Yv2KGRWVlaT5ujh4YHi4mJcv369SeupjZubGwAgIyNDpy8zM1PvMtrzHPlIHmPsZXAByBhrMu3RPO1XpDULQHd3d1haWuKzzz7Dw4cP4e3tLX4VqVKp8ODBA1y5ckWMr6qqwsKFC1FUVFTrNkNDQ/H06VP89a9/xcmTJ+Hr6wsHBwdJzIABA+Dh4YHt27fjm2++0VmHRqMR76dXlzlz5gAApk2bpvcefgUFBbh69Wq966nNpEmTIJPJkJCQIDnKWFZWhpUrV+pdxsbGBgCQn5//0ttljLVd/BUwY6zJtAXg5cuXYWZmBk9PT0m/kZERvLy8cPjwYUk8AMyePRtHjx7F4MGDMXHiRJiZmSEtLQ0///wz/Pz8dG4yrRUcHIzFixdj+fLl0Gg0Ol//am3fvh3+/v6YNGkS1q1bB3d3d5ibm+POnTvIyspCUVERysvL65xfUFAQli5dij//+c947733EBQUBJVKheLiYuTl5SE9PR2ffPIJevXq1dCUSfTo0QOLFy/GqlWr4OrqiokTJ8LY2Bh79uyBq6srLl++rHMxR0BAAHbv3o3x48fjgw8+gJmZGdzc3DBq1KiXGgNjrG3hI4CMsSZzcXGBra0tAOic/6el/RoYkBaAH374IXbv3g0nJyekpKTgH//4B3r27Ilz587pnA9XXefOnREQEIDnz5/DzMwMEyZM0Bvn6OiInJwcxMTEQK1WIykpCZs3b8aFCxfg4+Oj9/Yt+qxYsQLHjh2Dt7c3Tpw4gcTERHz//feoqKhAXFycztfPjbVy5Up8/vnnaNeuHTZt2oSdO3diwoQJ+PzzzwHoXtARHh6OqKgo3L9/H2vWrMHSpUvx7bffNmkMjLG2QyAiau5BMMYY0+/48eMYNmwYoqKisGbNmuYeDmPMQPARQMYYawGKiop0LugoLS3FkiVLAEDnZ94YY6wp+BxAxhhrAbZt24a1a9ciICAAnTp1wt27d3H48GHcu3cPU6ZMwcCBA5t7iIwxA8IFIGOMtQCDBg1C3759cfz4cZSUlMDIyAi9evXC0qVLERER0dzDY4wZmP8D3ajz76gKc9EAAAAASUVORK5CYII=",
1466
- "text/html": [
1467
- "\n",
1468
- " <div style=\"display: inline-block;\">\n",
1469
- " <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
1470
- " Figure\n",
1471
- " </div>\n",
1472
- " <img src='' width=640.0/>\n",
1473
- " </div>\n",
1474
- " "
1475
- ],
1476
1189
  "text/plain": [
1477
- "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
1190
+ "{'Loggedin_As': 'test_user_1@noirlab.edu',\n",
1191
+ " 'Authorized_Datasets': {'BOSS-DR16',\n",
1192
+ " 'DESI-EDR',\n",
1193
+ " 'SDSS-DR16',\n",
1194
+ " 'SDSS-DR17-test'}}"
1478
1195
  ]
1479
1196
  },
1197
+ "execution_count": 26,
1480
1198
  "metadata": {},
1481
- "output_type": "display_data"
1199
+ "output_type": "execute_result"
1482
1200
  }
1483
1201
  ],
1484
1202
  "source": [
1485
- "modeldf = pd.DataFrame(data=ar_dict['flux'],columns=grid)\n",
1486
- "modeldf.transpose().plot(xlabel='Wavelength', ylabel='Flux', legend=False)"
1203
+ "client.authorized"
1487
1204
  ]
1488
1205
  },
1489
1206
  {
1490
1207
  "cell_type": "code",
1491
- "execution_count": null,
1492
- "metadata": {},
1493
- "outputs": [],
1494
- "source": []
1208
+ "execution_count": 27,
1209
+ "metadata": {
1210
+ "tags": []
1211
+ },
1212
+ "outputs": [
1213
+ {
1214
+ "name": "stdout",
1215
+ "output_type": "stream",
1216
+ "text": [
1217
+ "Logged-out successfully. Previously logged-in with email test_user_1@noirlab.edu.\n"
1218
+ ]
1219
+ }
1220
+ ],
1221
+ "source": [
1222
+ "client.logout() # can also be done with client.login(None)"
1223
+ ]
1224
+ },
1225
+ {
1226
+ "cell_type": "code",
1227
+ "execution_count": 28,
1228
+ "metadata": {
1229
+ "tags": []
1230
+ },
1231
+ "outputs": [
1232
+ {
1233
+ "data": {
1234
+ "text/plain": [
1235
+ "{'Loggedin_As': 'Anonymous',\n",
1236
+ " 'Authorized_Datasets': {'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'}}"
1237
+ ]
1238
+ },
1239
+ "execution_count": 28,
1240
+ "metadata": {},
1241
+ "output_type": "execute_result"
1242
+ }
1243
+ ],
1244
+ "source": [
1245
+ "client.authorized"
1246
+ ]
1247
+ },
1248
+ {
1249
+ "cell_type": "markdown",
1250
+ "metadata": {},
1251
+ "source": [
1252
+ "## FIND"
1253
+ ]
1254
+ },
1255
+ {
1256
+ "cell_type": "code",
1257
+ "execution_count": 29,
1258
+ "metadata": {},
1259
+ "outputs": [],
1260
+ "source": [
1261
+ "out = ['sparcl_id', 'data_release']\n",
1262
+ "\n",
1263
+ "def pass_find(user, drs):\n",
1264
+ " client.login(user, usrpw)\n",
1265
+ " print(f'{client.authorized=}')\n",
1266
+ " try:\n",
1267
+ " if drs is None:\n",
1268
+ " found = client.find(outfields=out, limit=2)\n",
1269
+ " else:\n",
1270
+ " found = client.find(outfields=out, constraints=dict(data_release=drs), limit=2)\n",
1271
+ " print(f'\\nSUCCESS: {found.count=} records from FIND: {user=}; {drs=}')\n",
1272
+ " except Exception as err:\n",
1273
+ " raise Exception(f'\\nFAILED to get records from FIND: {user=}; {drs=}')\n",
1274
+ "\n",
1275
+ "def fail_find(user, drs):\n",
1276
+ " client.login(user, usrpw)\n",
1277
+ " print(f'{client.authorized=}')\n",
1278
+ "\n",
1279
+ " try:\n",
1280
+ " found = client.find(outfields=out, constraints=dict(data_release=drs), limit=2)\n",
1281
+ " raise Exception(f'\\nFAILED: Auth wrongly got {found.count} records in FIND: {user=}; {drs=}')\n",
1282
+ " except Exception as err:\n",
1283
+ " print(f'\\nSUCCESS: Find did not get records. \\n{err}')"
1284
+ ]
1285
+ },
1286
+ {
1287
+ "cell_type": "markdown",
1288
+ "metadata": {},
1289
+ "source": [
1290
+ "### Pass FIND as Authorized with Default DRs"
1291
+ ]
1292
+ },
1293
+ {
1294
+ "cell_type": "code",
1295
+ "execution_count": 30,
1296
+ "metadata": {
1297
+ "tags": []
1298
+ },
1299
+ "outputs": [
1300
+ {
1301
+ "name": "stdout",
1302
+ "output_type": "stream",
1303
+ "text": [
1304
+ "Logged in successfully with email='test_user_1@noirlab.edu'\n",
1305
+ "client.authorized={'Loggedin_As': 'test_user_1@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16', 'SDSS-DR17-test'}}\n",
1306
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': []}\n",
1307
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": []}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1308
+ "Record key counts: {'data_release': 2, 'sparcl_id': 2, '_dr': 2}\n",
1309
+ "\n",
1310
+ "SUCCESS: found.count=2 records from FIND: user='test_user_1@noirlab.edu'; drs=None\n"
1311
+ ]
1312
+ }
1313
+ ],
1314
+ "source": [
1315
+ "pass_find(auth_user, None)"
1316
+ ]
1317
+ },
1318
+ {
1319
+ "cell_type": "markdown",
1320
+ "metadata": {},
1321
+ "source": [
1322
+ "### Pass FIND as Authorized with Priv&Pub DRs"
1323
+ ]
1324
+ },
1325
+ {
1326
+ "cell_type": "code",
1327
+ "execution_count": 31,
1328
+ "metadata": {
1329
+ "scrolled": true,
1330
+ "tags": []
1331
+ },
1332
+ "outputs": [
1333
+ {
1334
+ "name": "stdout",
1335
+ "output_type": "stream",
1336
+ "text": [
1337
+ "Logged in successfully with email='test_user_1@noirlab.edu'\n",
1338
+ "client.authorized={'Loggedin_As': 'test_user_1@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16', 'SDSS-DR17-test'}}\n",
1339
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': [['data_release', 'BOSS-DR16', 'SDSS-DR17-test']]}\n",
1340
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": [[\"data_release\", \"BOSS-DR16\", \"SDSS-DR17-test\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1341
+ "Record key counts: {'data_release': 2, 'sparcl_id': 2, '_dr': 2}\n",
1342
+ "\n",
1343
+ "SUCCESS: found.count=2 records from FIND: user='test_user_1@noirlab.edu'; drs=['BOSS-DR16', 'SDSS-DR17-test']\n"
1344
+ ]
1345
+ }
1346
+ ],
1347
+ "source": [
1348
+ "pass_find(auth_user, [pub_dr,priv_dr])"
1349
+ ]
1350
+ },
1351
+ {
1352
+ "cell_type": "markdown",
1353
+ "metadata": {},
1354
+ "source": [
1355
+ "### Pass FIND as Unauthorized with Default DRs\n",
1356
+ "DRs default to only what are authorized for authenticated user."
1357
+ ]
1358
+ },
1359
+ {
1360
+ "cell_type": "code",
1361
+ "execution_count": 32,
1362
+ "metadata": {
1363
+ "tags": []
1364
+ },
1365
+ "outputs": [
1366
+ {
1367
+ "name": "stdout",
1368
+ "output_type": "stream",
1369
+ "text": [
1370
+ "Logged in successfully with email='test_user_2@noirlab.edu'\n",
1371
+ "client.authorized={'Loggedin_As': 'test_user_2@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1372
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': []}\n",
1373
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": []}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1374
+ "Record key counts: {'data_release': 2, 'sparcl_id': 2, '_dr': 2}\n",
1375
+ "\n",
1376
+ "SUCCESS: found.count=2 records from FIND: user='test_user_2@noirlab.edu'; drs=None\n"
1377
+ ]
1378
+ }
1379
+ ],
1380
+ "source": [
1381
+ "pass_find(unauth_user, None)"
1382
+ ]
1383
+ },
1384
+ {
1385
+ "cell_type": "markdown",
1386
+ "metadata": {},
1387
+ "source": [
1388
+ "### Fail FIND as Unauthorized with Priv&Pub DRs"
1389
+ ]
1390
+ },
1391
+ {
1392
+ "cell_type": "code",
1393
+ "execution_count": 33,
1394
+ "metadata": {
1395
+ "tags": []
1396
+ },
1397
+ "outputs": [
1398
+ {
1399
+ "name": "stdout",
1400
+ "output_type": "stream",
1401
+ "text": [
1402
+ "Logged in successfully with email='test_user_2@noirlab.edu'\n",
1403
+ "client.authorized={'Loggedin_As': 'test_user_2@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1404
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': [['data_release', 'BOSS-DR16', 'SDSS-DR17-test']]}\n",
1405
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": [[\"data_release\", \"BOSS-DR16\", \"SDSS-DR17-test\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1406
+ "Exception: response content=b'{\"errorMessage\": \"test_user_2@noirlab.edu is declined access to datasets [\\'SDSS-DR17-test\\']; drs_requested=[\\'BOSS-DR16\\', \\'SDSS-DR17-test\\'] my_auth=[\\'BOSS-DR16\\', \\'DESI-EDR\\', \\'SDSS-DR16\\']\", \"errorCode\": \"NODRACCESS\", \"statusCode\": 400, \"saved_tb\": \"NoneType: None\\\\n\"}'\n",
1407
+ "\n",
1408
+ "SUCCESS: Find did not get records. \n",
1409
+ "[UNKNOWN] test_user_2@noirlab.edu is declined access to datasets ['SDSS-DR17-test']; drs_requested=['BOSS-DR16', 'SDSS-DR17-test'] my_auth=['BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'] [NODRACCESS] None\n"
1410
+ ]
1411
+ }
1412
+ ],
1413
+ "source": [
1414
+ "fail_find(unauth_user, [pub_dr,priv_dr])"
1415
+ ]
1416
+ },
1417
+ {
1418
+ "cell_type": "markdown",
1419
+ "metadata": {},
1420
+ "source": [
1421
+ "### Pass FIND as Unknown with Default DRs\n",
1422
+ "DRs default to only what are authorized for authenticated user."
1423
+ ]
1424
+ },
1425
+ {
1426
+ "cell_type": "code",
1427
+ "execution_count": 34,
1428
+ "metadata": {
1429
+ "tags": []
1430
+ },
1431
+ "outputs": [
1432
+ {
1433
+ "name": "stdout",
1434
+ "output_type": "stream",
1435
+ "text": [
1436
+ "Logged in successfully with email='test_user_3@noirlab.edu'\n",
1437
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1438
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': []}\n",
1439
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": []}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1440
+ "Record key counts: {'data_release': 2, 'sparcl_id': 2, '_dr': 2}\n",
1441
+ "\n",
1442
+ "SUCCESS: found.count=2 records from FIND: user='test_user_3@noirlab.edu'; drs=None\n"
1443
+ ]
1444
+ }
1445
+ ],
1446
+ "source": [
1447
+ "pass_find(non_user, None)"
1448
+ ]
1449
+ },
1450
+ {
1451
+ "cell_type": "markdown",
1452
+ "metadata": {},
1453
+ "source": [
1454
+ "### Fail FIND as Unknown with Priv&Pub DRs"
1455
+ ]
1456
+ },
1457
+ {
1458
+ "cell_type": "code",
1459
+ "execution_count": 35,
1460
+ "metadata": {
1461
+ "tags": []
1462
+ },
1463
+ "outputs": [
1464
+ {
1465
+ "name": "stdout",
1466
+ "output_type": "stream",
1467
+ "text": [
1468
+ "Logged in successfully with email='test_user_3@noirlab.edu'\n",
1469
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1470
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': [['data_release', 'BOSS-DR16', 'SDSS-DR17-test']]}\n",
1471
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": [[\"data_release\", \"BOSS-DR16\", \"SDSS-DR17-test\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1472
+ "Exception: response content=b'{\"errorMessage\": \"ANONYMOUS is declined access to datasets [\\'SDSS-DR17-test\\']; drs_requested=[\\'BOSS-DR16\\', \\'SDSS-DR17-test\\'] my_auth=[\\'BOSS-DR16\\', \\'DESI-EDR\\', \\'SDSS-DR16\\']\", \"errorCode\": \"NODRACCESS\", \"statusCode\": 400, \"saved_tb\": \"NoneType: None\\\\n\"}'\n",
1473
+ "\n",
1474
+ "SUCCESS: Find did not get records. \n",
1475
+ "[UNKNOWN] ANONYMOUS is declined access to datasets ['SDSS-DR17-test']; drs_requested=['BOSS-DR16', 'SDSS-DR17-test'] my_auth=['BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'] [NODRACCESS] None\n"
1476
+ ]
1477
+ }
1478
+ ],
1479
+ "source": [
1480
+ "fail_find(non_user, [pub_dr,priv_dr])"
1481
+ ]
1482
+ },
1483
+ {
1484
+ "cell_type": "markdown",
1485
+ "metadata": {},
1486
+ "source": [
1487
+ "### Pass FIND as Anonymous with Default DR list \n",
1488
+ "DRs default to only what are authorized for authenticated user."
1489
+ ]
1490
+ },
1491
+ {
1492
+ "cell_type": "code",
1493
+ "execution_count": 36,
1494
+ "metadata": {
1495
+ "tags": []
1496
+ },
1497
+ "outputs": [
1498
+ {
1499
+ "name": "stdout",
1500
+ "output_type": "stream",
1501
+ "text": [
1502
+ "Logged-out successfully. Previously logged-in with email test_user_3@noirlab.edu.\n",
1503
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1504
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': []}\n",
1505
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": []}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1506
+ "Record key counts: {'data_release': 2, 'sparcl_id': 2, '_dr': 2}\n",
1507
+ "\n",
1508
+ "SUCCESS: found.count=2 records from FIND: user=None; drs=None\n"
1509
+ ]
1510
+ }
1511
+ ],
1512
+ "source": [
1513
+ "pass_find(None, None)"
1514
+ ]
1515
+ },
1516
+ {
1517
+ "cell_type": "markdown",
1518
+ "metadata": {},
1519
+ "source": [
1520
+ "### Pass FIND as Anonymous with Public DR"
1521
+ ]
1522
+ },
1523
+ {
1524
+ "cell_type": "code",
1525
+ "execution_count": 37,
1526
+ "metadata": {
1527
+ "tags": []
1528
+ },
1529
+ "outputs": [
1530
+ {
1531
+ "name": "stdout",
1532
+ "output_type": "stream",
1533
+ "text": [
1534
+ "Logged-out successfully. Previously logged-in with email None.\n",
1535
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1536
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': [['data_release', 'BOSS-DR16']]}\n",
1537
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": [[\"data_release\", \"BOSS-DR16\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1538
+ "Record key counts: {'data_release': 2, 'sparcl_id': 2, '_dr': 2}\n",
1539
+ "\n",
1540
+ "SUCCESS: found.count=2 records from FIND: user=None; drs=['BOSS-DR16']\n"
1541
+ ]
1542
+ }
1543
+ ],
1544
+ "source": [
1545
+ "pass_find(None, [pub_dr])"
1546
+ ]
1547
+ },
1548
+ {
1549
+ "cell_type": "markdown",
1550
+ "metadata": {},
1551
+ "source": [
1552
+ "### Fail FIND as Anonymous with Priv&Pub DRs"
1553
+ ]
1554
+ },
1555
+ {
1556
+ "cell_type": "code",
1557
+ "execution_count": 38,
1558
+ "metadata": {
1559
+ "scrolled": true,
1560
+ "tags": []
1561
+ },
1562
+ "outputs": [
1563
+ {
1564
+ "name": "stdout",
1565
+ "output_type": "stream",
1566
+ "text": [
1567
+ "Logged-out successfully. Previously logged-in with email None.\n",
1568
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1569
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': [['data_release', 'BOSS-DR16', 'SDSS-DR17-test']]}\n",
1570
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": [[\"data_release\", \"BOSS-DR16\", \"SDSS-DR17-test\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1571
+ "Exception: response content=b'{\"errorMessage\": \"ANONYMOUS is declined access to datasets [\\'SDSS-DR17-test\\']; drs_requested=[\\'BOSS-DR16\\', \\'SDSS-DR17-test\\'] my_auth=[\\'BOSS-DR16\\', \\'DESI-EDR\\', \\'SDSS-DR16\\']\", \"errorCode\": \"NODRACCESS\", \"statusCode\": 400, \"saved_tb\": \"NoneType: None\\\\n\"}'\n",
1572
+ "\n",
1573
+ "SUCCESS: Find did not get records. \n",
1574
+ "[UNKNOWN] ANONYMOUS is declined access to datasets ['SDSS-DR17-test']; drs_requested=['BOSS-DR16', 'SDSS-DR17-test'] my_auth=['BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'] [NODRACCESS] None\n"
1575
+ ]
1576
+ }
1577
+ ],
1578
+ "source": [
1579
+ "fail_find(None, [pub_dr, priv_dr])"
1580
+ ]
1581
+ },
1582
+ {
1583
+ "cell_type": "markdown",
1584
+ "metadata": {},
1585
+ "source": [
1586
+ "## RETRIEVE"
1587
+ ]
1588
+ },
1589
+ {
1590
+ "cell_type": "code",
1591
+ "execution_count": 39,
1592
+ "metadata": {
1593
+ "scrolled": true
1594
+ },
1595
+ "outputs": [
1596
+ {
1597
+ "name": "stdout",
1598
+ "output_type": "stream",
1599
+ "text": [
1600
+ "client=(sparclclient:1.2.2b8, api:11.0, http://localhost:8050/sparc, client_hash=f7bd410278bee26a425387c598dd47e80a8fcdcb, verbose=True, connect_timeout=1.1, read_timeout=5400.0)\n"
1601
+ ]
1602
+ }
1603
+ ],
1604
+ "source": [
1605
+ "print(f'{client=}')\n",
1606
+ "inc = ['sparcl_id', 'data_release']\n",
1607
+ "\n",
1608
+ "#pub_ids = client.find(constraints=dict(data_release=[pub_dr]),limit=2).ids\n",
1609
+ "#print(f'{pub_ids=}')\n",
1610
+ "#priv_ids = client.find(constraints=dict(data_release=[priv_dr]),limit=2).ids\n",
1611
+ "#print(f'{priv_ids=}')\n",
1612
+ "\n",
1613
+ "def pass_retrieve(user, drs):\n",
1614
+ " client.login(user, usrpw)\n",
1615
+ " print(f'{client.authorized=}')\n",
1616
+ "\n",
1617
+ " if drs is None:\n",
1618
+ " ids = client.find(outfields=['sparcl_id'], limit=2).ids\n",
1619
+ " else:\n",
1620
+ " ids = client.find(outfields=['sparcl_id'], constraints=dict(data_release=drs), limit=2).ids\n",
1621
+ " try:\n",
1622
+ " if drs is None:\n",
1623
+ " got = client.retrieve(uuid_list=ids, include=inc, limit=2)\n",
1624
+ " else:\n",
1625
+ " got = client.retrieve(uuid_list=ids, include=inc, dataset_list=drs, limit=2)\n",
1626
+ " print(f'\\nSUCCESS: {got.count=} records from RETRIEVE: {user=}; {drs=}')\n",
1627
+ " except Exception as err:\n",
1628
+ " raise Exception(f'Auth wrongly refused records from RETRIEVE: {user=}; {drs=}')\n",
1629
+ "\n",
1630
+ "def fail_retrieve(user, drs):\n",
1631
+ " client.login(user, usrpw)\n",
1632
+ " print(f'{client.authorized=}')\n",
1633
+ "\n",
1634
+ " try:\n",
1635
+ " found = client.find(outfields=out, constraints=dict(data_release=drs), limit=2)\n",
1636
+ " raise Exception(f'Auth wrongly got {found.count} records in RETRIEVE: {user=}; {drs=}')\n",
1637
+ " except Exception as err:\n",
1638
+ " print(f'\\nSUCCESS: RETRIEVE did not get records. \\n{err}')"
1639
+ ]
1640
+ },
1641
+ {
1642
+ "cell_type": "markdown",
1643
+ "metadata": {},
1644
+ "source": [
1645
+ "### Pass RETRIEVE as Auth with Default DRs"
1646
+ ]
1647
+ },
1648
+ {
1649
+ "cell_type": "code",
1650
+ "execution_count": 40,
1651
+ "metadata": {
1652
+ "tags": []
1653
+ },
1654
+ "outputs": [
1655
+ {
1656
+ "name": "stdout",
1657
+ "output_type": "stream",
1658
+ "text": [
1659
+ "Logged in successfully with email='test_user_1@noirlab.edu'\n",
1660
+ "client.authorized={'Loggedin_As': 'test_user_1@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16', 'SDSS-DR17-test'}}\n",
1661
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id'], 'search': []}\n",
1662
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\"], \"search\": []}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1663
+ "Record key counts: {'_dr': 2, 'sparcl_id': 2}\n",
1664
+ "Using url=\"http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl\"\n",
1665
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '[\"000923d5-fe87-11ee-acd2-08002725f1ef\", \"0016db04-fe87-11ee-a58b-08002725f1ef\"]' 'http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl' | python3 -m json.tool\n",
1666
+ "Got response to post in 0.23809996293857694 seconds\n",
1667
+ "Got 2 spectra in 0.24 seconds (8 spectra/sec)\n",
1668
+ "{'success': True, 'info': [\"Successfully found 2 records in dr_list={'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'}\"], 'warnings': []}\n",
1669
+ "\n",
1670
+ "SUCCESS: found.count=20 records from RETRIEVE: user='test_user_1@noirlab.edu'; drs=None\n"
1671
+ ]
1672
+ }
1673
+ ],
1674
+ "source": [
1675
+ "pass_retrieve(auth_user, None)"
1676
+ ]
1677
+ },
1678
+ {
1679
+ "cell_type": "markdown",
1680
+ "metadata": {},
1681
+ "source": [
1682
+ "### Pass RETRIEVE as Auth with Priv&Pub DRs"
1683
+ ]
1684
+ },
1685
+ {
1686
+ "cell_type": "code",
1687
+ "execution_count": 41,
1688
+ "metadata": {},
1689
+ "outputs": [
1690
+ {
1691
+ "name": "stdout",
1692
+ "output_type": "stream",
1693
+ "text": [
1694
+ "Logged in successfully with email='test_user_1@noirlab.edu'\n",
1695
+ "client.authorized={'Loggedin_As': 'test_user_1@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16', 'SDSS-DR17-test'}}\n",
1696
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id'], 'search': [['data_release', 'SDSS-DR17-test', 'BOSS-DR16']]}\n",
1697
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\"], \"search\": [[\"data_release\", \"SDSS-DR17-test\", \"BOSS-DR16\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1698
+ "Record key counts: {'_dr': 2, 'sparcl_id': 2}\n",
1699
+ "Using url=\"http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl&dataset_list=SDSS-DR17-test%2CBOSS-DR16\"\n",
1700
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '[\"510760cd-fe87-11ee-8470-08002725f1ef\", \"5111ce02-fe87-11ee-bea1-08002725f1ef\"]' 'http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl&dataset_list=SDSS-DR17-test%2CBOSS-DR16' | python3 -m json.tool\n",
1701
+ "Got response to post in 0.27477827202528715 seconds\n",
1702
+ "Got 2 spectra in 0.27 seconds (7 spectra/sec)\n",
1703
+ "{'success': True, 'info': [\"Successfully found 2 records in dr_list=['SDSS-DR17-test', 'BOSS-DR16']\"], 'warnings': []}\n",
1704
+ "\n",
1705
+ "SUCCESS: found.count=20 records from RETRIEVE: user='test_user_1@noirlab.edu'; drs=['SDSS-DR17-test', 'BOSS-DR16']\n"
1706
+ ]
1707
+ }
1708
+ ],
1709
+ "source": [
1710
+ "pass_retrieve(auth_user, [priv_dr, pub_dr])"
1711
+ ]
1712
+ },
1713
+ {
1714
+ "cell_type": "markdown",
1715
+ "metadata": {},
1716
+ "source": [
1717
+ "### Pass RETRIEVE as Unauth with Default DRs\n",
1718
+ "DRs default to only what are authorized for authenticated user."
1719
+ ]
1720
+ },
1721
+ {
1722
+ "cell_type": "code",
1723
+ "execution_count": 42,
1724
+ "metadata": {
1725
+ "tags": []
1726
+ },
1727
+ "outputs": [
1728
+ {
1729
+ "name": "stdout",
1730
+ "output_type": "stream",
1731
+ "text": [
1732
+ "Logged in successfully with email='test_user_2@noirlab.edu'\n",
1733
+ "client.authorized={'Loggedin_As': 'test_user_2@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1734
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id'], 'search': []}\n",
1735
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\"], \"search\": []}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1736
+ "Record key counts: {'_dr': 2, 'sparcl_id': 2}\n",
1737
+ "Using url=\"http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl\"\n",
1738
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '[\"000923d5-fe87-11ee-acd2-08002725f1ef\", \"0016db04-fe87-11ee-a58b-08002725f1ef\"]' 'http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl' | python3 -m json.tool\n",
1739
+ "Got response to post in 0.26971720601432025 seconds\n",
1740
+ "Got 2 spectra in 0.27 seconds (7 spectra/sec)\n",
1741
+ "{'success': True, 'info': [\"Successfully found 2 records in dr_list={'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'}\"], 'warnings': []}\n",
1742
+ "\n",
1743
+ "SUCCESS: found.count=20 records from RETRIEVE: user='test_user_2@noirlab.edu'; drs=None\n"
1744
+ ]
1745
+ }
1746
+ ],
1747
+ "source": [
1748
+ "try:\n",
1749
+ " pass_retrieve(unauth_user, None)\n",
1750
+ "except Exception as err:\n",
1751
+ " display(Markdown(f'#### BUG: {str(err)}'))"
1752
+ ]
1753
+ },
1754
+ {
1755
+ "cell_type": "markdown",
1756
+ "metadata": {},
1757
+ "source": [
1758
+ "### Fail RETRIEVE as Unauth with Priv&Pub DRs"
1759
+ ]
1760
+ },
1761
+ {
1762
+ "cell_type": "code",
1763
+ "execution_count": 43,
1764
+ "metadata": {
1765
+ "scrolled": true
1766
+ },
1767
+ "outputs": [
1768
+ {
1769
+ "name": "stdout",
1770
+ "output_type": "stream",
1771
+ "text": [
1772
+ "Logged in successfully with email='test_user_2@noirlab.edu'\n",
1773
+ "client.authorized={'Loggedin_As': 'test_user_2@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1774
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': [['data_release', 'SDSS-DR17-test', 'BOSS-DR16']]}\n",
1775
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": [[\"data_release\", \"SDSS-DR17-test\", \"BOSS-DR16\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1776
+ "Exception: response content=b'{\"errorMessage\": \"test_user_2@noirlab.edu is declined access to datasets [\\'SDSS-DR17-test\\']; drs_requested=[\\'BOSS-DR16\\', \\'SDSS-DR17-test\\'] my_auth=[\\'BOSS-DR16\\', \\'DESI-EDR\\', \\'SDSS-DR16\\']\", \"errorCode\": \"NODRACCESS\", \"statusCode\": 400, \"saved_tb\": \"NoneType: None\\\\n\"}'\n",
1777
+ "\n",
1778
+ "SUCCESS: RETRIEVE did not get records. \n",
1779
+ "[UNKNOWN] test_user_2@noirlab.edu is declined access to datasets ['SDSS-DR17-test']; drs_requested=['BOSS-DR16', 'SDSS-DR17-test'] my_auth=['BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'] [NODRACCESS] None\n"
1780
+ ]
1781
+ }
1782
+ ],
1783
+ "source": [
1784
+ "fail_retrieve(unauth_user, [priv_dr, pub_dr])"
1785
+ ]
1786
+ },
1787
+ {
1788
+ "cell_type": "markdown",
1789
+ "metadata": {},
1790
+ "source": [
1791
+ "### Pass RETRIEVE as Unknown with Default DRs\n",
1792
+ "DRs default to only what are authorized for authenticated user."
1793
+ ]
1794
+ },
1795
+ {
1796
+ "cell_type": "code",
1797
+ "execution_count": 44,
1798
+ "metadata": {
1799
+ "tags": []
1800
+ },
1801
+ "outputs": [
1802
+ {
1803
+ "name": "stdout",
1804
+ "output_type": "stream",
1805
+ "text": [
1806
+ "Logged in successfully with email='test_user_3@noirlab.edu'\n",
1807
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1808
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id'], 'search': []}\n",
1809
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\"], \"search\": []}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1810
+ "Record key counts: {'_dr': 2, 'sparcl_id': 2}\n",
1811
+ "Using url=\"http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl\"\n",
1812
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '[\"000923d5-fe87-11ee-acd2-08002725f1ef\", \"0016db04-fe87-11ee-a58b-08002725f1ef\"]' 'http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl' | python3 -m json.tool\n",
1813
+ "Got response to post in 0.3079184840898961 seconds\n",
1814
+ "Got 2 spectra in 0.31 seconds (6 spectra/sec)\n",
1815
+ "{'success': True, 'info': [\"Successfully found 2 records in dr_list={'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'}\"], 'warnings': []}\n",
1816
+ "\n",
1817
+ "SUCCESS: found.count=20 records from RETRIEVE: user='test_user_3@noirlab.edu'; drs=None\n"
1818
+ ]
1819
+ }
1820
+ ],
1821
+ "source": [
1822
+ "try:\n",
1823
+ " pass_retrieve(non_user, None)\n",
1824
+ "except Exception as err:\n",
1825
+ " display(Markdown(f'#### BUG: {str(err)}'))"
1826
+ ]
1827
+ },
1828
+ {
1829
+ "cell_type": "markdown",
1830
+ "metadata": {},
1831
+ "source": [
1832
+ "### Fail RETRIEVE as Unknown with Priv&Pub DRs"
1833
+ ]
1834
+ },
1835
+ {
1836
+ "cell_type": "code",
1837
+ "execution_count": 45,
1838
+ "metadata": {
1839
+ "scrolled": true
1840
+ },
1841
+ "outputs": [
1842
+ {
1843
+ "name": "stdout",
1844
+ "output_type": "stream",
1845
+ "text": [
1846
+ "Logged in successfully with email='test_user_3@noirlab.edu'\n",
1847
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1848
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': [['data_release', 'SDSS-DR17-test', 'BOSS-DR16']]}\n",
1849
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": [[\"data_release\", \"SDSS-DR17-test\", \"BOSS-DR16\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1850
+ "Exception: response content=b'{\"errorMessage\": \"ANONYMOUS is declined access to datasets [\\'SDSS-DR17-test\\']; drs_requested=[\\'BOSS-DR16\\', \\'SDSS-DR17-test\\'] my_auth=[\\'BOSS-DR16\\', \\'DESI-EDR\\', \\'SDSS-DR16\\']\", \"errorCode\": \"NODRACCESS\", \"statusCode\": 400, \"saved_tb\": \"NoneType: None\\\\n\"}'\n",
1851
+ "\n",
1852
+ "SUCCESS: RETRIEVE did not get records. \n",
1853
+ "[UNKNOWN] ANONYMOUS is declined access to datasets ['SDSS-DR17-test']; drs_requested=['BOSS-DR16', 'SDSS-DR17-test'] my_auth=['BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'] [NODRACCESS] None\n"
1854
+ ]
1855
+ }
1856
+ ],
1857
+ "source": [
1858
+ "fail_retrieve(non_user, [priv_dr, pub_dr])"
1859
+ ]
1860
+ },
1861
+ {
1862
+ "cell_type": "markdown",
1863
+ "metadata": {},
1864
+ "source": [
1865
+ "### Pass RETRIEVE as Anon with Default DRs\n",
1866
+ "DRs default to only what are authorized for authenticated user."
1867
+ ]
1868
+ },
1869
+ {
1870
+ "cell_type": "code",
1871
+ "execution_count": 46,
1872
+ "metadata": {
1873
+ "tags": []
1874
+ },
1875
+ "outputs": [
1876
+ {
1877
+ "name": "stdout",
1878
+ "output_type": "stream",
1879
+ "text": [
1880
+ "Logged-out successfully. Previously logged-in with email test_user_3@noirlab.edu.\n",
1881
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1882
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id'], 'search': []}\n",
1883
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\"], \"search\": []}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1884
+ "Record key counts: {'_dr': 2, 'sparcl_id': 2}\n",
1885
+ "Using url=\"http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl\"\n",
1886
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '[\"000923d5-fe87-11ee-acd2-08002725f1ef\", \"0016db04-fe87-11ee-a58b-08002725f1ef\"]' 'http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl' | python3 -m json.tool\n",
1887
+ "Got response to post in 0.03403094399254769 seconds\n",
1888
+ "Got 2 spectra in 0.03 seconds (59 spectra/sec)\n",
1889
+ "{'success': True, 'info': [\"Successfully found 2 records in dr_list={'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'}\"], 'warnings': []}\n",
1890
+ "\n",
1891
+ "SUCCESS: found.count=20 records from RETRIEVE: user=None; drs=None\n"
1892
+ ]
1893
+ }
1894
+ ],
1895
+ "source": [
1896
+ "try:\n",
1897
+ " pass_retrieve(None, None)\n",
1898
+ "except Exception as err:\n",
1899
+ " display(Markdown(f'#### BUG: {str(err)}'))"
1900
+ ]
1901
+ },
1902
+ {
1903
+ "cell_type": "markdown",
1904
+ "metadata": {},
1905
+ "source": [
1906
+ "### Fail RETRIEVE as Anon with Priv&Pub DR "
1907
+ ]
1908
+ },
1909
+ {
1910
+ "cell_type": "code",
1911
+ "execution_count": 47,
1912
+ "metadata": {
1913
+ "tags": []
1914
+ },
1915
+ "outputs": [
1916
+ {
1917
+ "name": "stdout",
1918
+ "output_type": "stream",
1919
+ "text": [
1920
+ "Logged-out successfully. Previously logged-in with email None.\n",
1921
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1922
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': [['data_release', 'SDSS-DR17-test', 'BOSS-DR16']]}\n",
1923
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": [[\"data_release\", \"SDSS-DR17-test\", \"BOSS-DR16\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1924
+ "Exception: response content=b'{\"errorMessage\": \"ANONYMOUS is declined access to datasets [\\'SDSS-DR17-test\\']; drs_requested=[\\'BOSS-DR16\\', \\'SDSS-DR17-test\\'] my_auth=[\\'BOSS-DR16\\', \\'DESI-EDR\\', \\'SDSS-DR16\\']\", \"errorCode\": \"NODRACCESS\", \"statusCode\": 400, \"saved_tb\": \"NoneType: None\\\\n\"}'\n",
1925
+ "\n",
1926
+ "SUCCESS: RETRIEVE did not get records. \n",
1927
+ "[UNKNOWN] ANONYMOUS is declined access to datasets ['SDSS-DR17-test']; drs_requested=['BOSS-DR16', 'SDSS-DR17-test'] my_auth=['BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'] [NODRACCESS] None\n"
1928
+ ]
1929
+ }
1930
+ ],
1931
+ "source": [
1932
+ "fail_retrieve(None, [priv_dr, pub_dr])"
1933
+ ]
1934
+ },
1935
+ {
1936
+ "cell_type": "markdown",
1937
+ "metadata": {},
1938
+ "source": [
1939
+ "### Pass RETRIEVE as Anon with Public DR "
1940
+ ]
1941
+ },
1942
+ {
1943
+ "cell_type": "code",
1944
+ "execution_count": 48,
1945
+ "metadata": {
1946
+ "tags": []
1947
+ },
1948
+ "outputs": [
1949
+ {
1950
+ "name": "stdout",
1951
+ "output_type": "stream",
1952
+ "text": [
1953
+ "Logged-out successfully. Previously logged-in with email None.\n",
1954
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1955
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id'], 'search': [['data_release', 'BOSS-DR16']]}\n",
1956
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\"], \"search\": [[\"data_release\", \"BOSS-DR16\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1957
+ "Record key counts: {'_dr': 2, 'sparcl_id': 2}\n",
1958
+ "Using url=\"http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl&dataset_list=BOSS-DR16\"\n",
1959
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '[\"510760cd-fe87-11ee-8470-08002725f1ef\", \"5111ce02-fe87-11ee-bea1-08002725f1ef\"]' 'http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl&dataset_list=BOSS-DR16' | python3 -m json.tool\n",
1960
+ "Got response to post in 0.0383652689633891 seconds\n",
1961
+ "Got 2 spectra in 0.04 seconds (52 spectra/sec)\n",
1962
+ "{'success': True, 'info': [\"Successfully found 2 records in dr_list=['BOSS-DR16']\"], 'warnings': []}\n",
1963
+ "\n",
1964
+ "SUCCESS: found.count=20 records from RETRIEVE: user=None; drs=['BOSS-DR16']\n"
1965
+ ]
1966
+ }
1967
+ ],
1968
+ "source": [
1969
+ "pass_retrieve(None, [pub_dr])"
1970
+ ]
1971
+ },
1972
+ {
1973
+ "cell_type": "markdown",
1974
+ "metadata": {},
1975
+ "source": [
1976
+ "# All Done"
1977
+ ]
1978
+ },
1979
+ {
1980
+ "cell_type": "code",
1981
+ "execution_count": 49,
1982
+ "metadata": {
1983
+ "tags": []
1984
+ },
1985
+ "outputs": [
1986
+ {
1987
+ "name": "stdout",
1988
+ "output_type": "stream",
1989
+ "text": [
1990
+ "Run finished: 2024-05-02 10:22:39.403970\n"
1991
+ ]
1992
+ }
1993
+ ],
1994
+ "source": [
1995
+ "print(f'Run finished: {str(datetime.now())}')"
1996
+ ]
1997
+ },
1998
+ {
1999
+ "cell_type": "code",
2000
+ "execution_count": 50,
2001
+ "metadata": {
2002
+ "tags": []
2003
+ },
2004
+ "outputs": [
2005
+ {
2006
+ "name": "stdout",
2007
+ "output_type": "stream",
2008
+ "text": [
2009
+ "Logged in successfully with email='test_user_1@noirlab.edu'\n",
2010
+ "\n",
2011
+ "client.authorized={'Loggedin_As': 'test_user_1@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16', 'SDSS-DR17-test'}}\n",
2012
+ "\n",
2013
+ "\n",
2014
+ "Logged-out successfully. Previously logged-in with email test_user_1@noirlab.edu.\n",
2015
+ "\n",
2016
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n"
2017
+ ]
2018
+ }
2019
+ ],
2020
+ "source": [
2021
+ "# DLS-496\n",
2022
+ "client.login(auth_user, usrpw)\n",
2023
+ "print(f'\\n{client.authorized=}\\n\\n')\n",
2024
+ "client.logout() # can also be done with client.login(None)\n",
2025
+ "print(f'\\n{client.authorized=}')"
2026
+ ]
1495
2027
  }
1496
2028
  ],
1497
2029
  "metadata": {