sparclclient 1.2.1.dev6__py2.py3-none-any.whl → 1.2.2__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,2054 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {
6
+ "tags": []
7
+ },
8
+ "source": [
9
+ "# SPARCLCLIENT Example Usage"
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "code",
14
+ "execution_count": 1,
15
+ "metadata": {
16
+ "tags": []
17
+ },
18
+ "outputs": [],
19
+ "source": [
20
+ "__author__ = 'Steve Pothier <steve.pothier@noirlab.edu>'\n",
21
+ "__version__ = '20240306' # yyyymmdd; \n",
22
+ "__keywords__ = ['HowTo', 'astronomy', 'tutorial', 'client', 'sparcl', 'NOIRlab']"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "markdown",
27
+ "metadata": {
28
+ "tags": []
29
+ },
30
+ "source": [
31
+ "## Table of contents\n",
32
+ "* [Goals & Summary](#goals)\n",
33
+ "* [Imports and setup](#imports)\n",
34
+ "* [Install SPARCLCLIENT](#install)\n",
35
+ "* [Prepare to use sparcl](#prepare)\n",
36
+ "* [Get general info from SPARCL](#info)\n",
37
+ "* [Get Metadata and Spectra](#get)"
38
+ ]
39
+ },
40
+ {
41
+ "cell_type": "markdown",
42
+ "metadata": {
43
+ "tags": []
44
+ },
45
+ "source": [
46
+ "<a class=\"anchor\" id=\"goals\"></a>\n",
47
+ "## Goals & Summary \n",
48
+ "Demonstrate the use of the `sparclclient` package to get metadata and spectra data from the [NOIRLab SPARCL Server](https://astrosparcl.datalab.noirlab.edu/). Show how to get non-public data if you have authorized credentials.\n",
49
+ "- Discovery: Search for matching metadata and return metadata records.\n",
50
+ "- Retrieve spectra"
51
+ ]
52
+ },
53
+ {
54
+ "cell_type": "markdown",
55
+ "metadata": {
56
+ "tags": []
57
+ },
58
+ "source": [
59
+ "<a class=\"anchor\" id=\"imports\"></a>\n",
60
+ "## Imports and Setup"
61
+ ]
62
+ },
63
+ {
64
+ "cell_type": "code",
65
+ "execution_count": 2,
66
+ "metadata": {
67
+ "tags": []
68
+ },
69
+ "outputs": [],
70
+ "source": [
71
+ "from pprint import pformat as pf\n",
72
+ "from pprint import pp\n",
73
+ "import os.path\n",
74
+ "from importlib import reload\n",
75
+ "from collections import defaultdict\n",
76
+ "from datetime import datetime\n",
77
+ "import warnings\n",
78
+ "from getpass import getpass\n",
79
+ "\n",
80
+ "import matplotlib.pyplot as plt\n",
81
+ "import numpy as np\n",
82
+ "import pandas as pd\n",
83
+ "from IPython.display import display, Markdown, Latex\n",
84
+ "\n",
85
+ "class StopExecution(Exception):\n",
86
+ " def _render_traceback_(self):\n",
87
+ " pass\n",
88
+ "\n",
89
+ "# %matplotlib inline\n",
90
+ "# requires installing ipympl\n",
91
+ "%matplotlib widget\n",
92
+ "plt.rcParams['font.size'] = 14"
93
+ ]
94
+ },
95
+ {
96
+ "cell_type": "raw",
97
+ "metadata": {},
98
+ "source": [
99
+ "### "
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "markdown",
104
+ "metadata": {
105
+ "tags": []
106
+ },
107
+ "source": [
108
+ "<a class=\"anchor\" id=\"install\"></a>\n",
109
+ "## Install most recent version of the SPARCLCLIENT\n",
110
+ "*NOTE: After installing the most recent version, please restart your kernel.*"
111
+ ]
112
+ },
113
+ {
114
+ "cell_type": "code",
115
+ "execution_count": 3,
116
+ "metadata": {
117
+ "tags": []
118
+ },
119
+ "outputs": [
120
+ {
121
+ "name": "stdout",
122
+ "output_type": "stream",
123
+ "text": [
124
+ "Processing /home/pothiers/sandbox/sparclclient\n",
125
+ " Installing build dependencies ... \u001b[?25ldone\n",
126
+ "\u001b[?25h Getting requirements to build wheel ... \u001b[?25ldone\n",
127
+ "\u001b[?25h Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n",
128
+ "\u001b[?25hBuilding wheels for collected packages: sparclclient\n",
129
+ " Building wheel for sparclclient (pyproject.toml) ... \u001b[?25ldone\n",
130
+ "\u001b[?25h Created wheel for sparclclient: filename=sparclclient-1.2.2b8-py2.py3-none-any.whl size=3533665 sha256=fc035800e3269eccc70d3658f293c93d2fe7f07850a17cbdb47c9b2ce0de36ad\n",
131
+ " Stored in directory: /tmp/pip-ephem-wheel-cache-lko1mvqq/wheels/9b/de/a2/3f7a82cf4ca7c9e775a1ed1daeea35010570464a1aaa8c370c\n",
132
+ "Successfully built sparclclient\n",
133
+ "Installing collected packages: sparclclient\n",
134
+ " Attempting uninstall: sparclclient\n",
135
+ " Found existing installation: sparclclient 1.2.2b8\n",
136
+ " Uninstalling sparclclient-1.2.2b8:\n",
137
+ " Successfully uninstalled sparclclient-1.2.2b8\n",
138
+ "Successfully installed sparclclient-1.2.2b8\n"
139
+ ]
140
+ }
141
+ ],
142
+ "source": [
143
+ "# !pip install --upgrade sparclclient # Latest released version\n",
144
+ "# !pip install --pre --upgrade sparclclient # Lastest pre-released version\n",
145
+ "\n",
146
+ "# Uncomment next line to load SPARCLCLIENT from local current version of software.\n",
147
+ "!pip install --pre --upgrade ../.."
148
+ ]
149
+ },
150
+ {
151
+ "cell_type": "code",
152
+ "execution_count": 4,
153
+ "metadata": {
154
+ "tags": []
155
+ },
156
+ "outputs": [
157
+ {
158
+ "name": "stdout",
159
+ "output_type": "stream",
160
+ "text": [
161
+ "Run started: 2024-05-02 10:22:12.795845\n"
162
+ ]
163
+ }
164
+ ],
165
+ "source": [
166
+ "import sparcl.client\n",
167
+ "print(f'Run started: {str(datetime.now())}')"
168
+ ]
169
+ },
170
+ {
171
+ "cell_type": "markdown",
172
+ "metadata": {
173
+ "editable": true,
174
+ "slideshow": {
175
+ "slide_type": ""
176
+ },
177
+ "tags": []
178
+ },
179
+ "source": [
180
+ "<a class=\"anchor\" id=\"prepare\"></a>\n",
181
+ "# Configure SPARCLCLIENT"
182
+ ]
183
+ },
184
+ {
185
+ "cell_type": "code",
186
+ "execution_count": 5,
187
+ "metadata": {
188
+ "scrolled": true,
189
+ "tags": []
190
+ },
191
+ "outputs": [
192
+ {
193
+ "name": "stdin",
194
+ "output_type": "stream",
195
+ "text": [
196
+ " ········\n"
197
+ ]
198
+ }
199
+ ],
200
+ "source": [
201
+ "# How much output to we want to show?\n",
202
+ "show_help = False # HELP for client functions\n",
203
+ "show_curl = True # Show the underlying SPARCL Server API call\n",
204
+ "verbose = True\n",
205
+ "\n",
206
+ "server = 'https://astrosparcl.datalab.noirlab.edu' # Public Server\n",
207
+ "server = 'https://sparc1.datalab.noirlab.edu' # internal TEST Server\n",
208
+ "server = 'http://localhost:8050' # internal DEV Server\n",
209
+ "\n",
210
+ "priv_dr = 'SDSS-DR17-test'\n",
211
+ "pub_dr = 'BOSS-DR16'\n",
212
+ "\n",
213
+ "# Authenticated Users that are never authorized for anything important.\n",
214
+ "# These are authenticated on both Public and Test SSO servers.\n",
215
+ "auth_user = 'test_user_1@noirlab.edu'\n",
216
+ "unauth_user = 'test_user_2@noirlab.edu'\n",
217
+ "non_user = 'test_user_3@noirlab.edu'\n",
218
+ "usrpw = getpass()"
219
+ ]
220
+ },
221
+ {
222
+ "cell_type": "code",
223
+ "execution_count": 6,
224
+ "metadata": {
225
+ "scrolled": true,
226
+ "tags": []
227
+ },
228
+ "outputs": [
229
+ {
230
+ "name": "stdout",
231
+ "output_type": "stream",
232
+ "text": [
233
+ "apiurl=http://localhost:8050/sparc\n",
234
+ "client=(sparclclient:1.2.2b8, api:11.0, http://localhost:8050/sparc, client_hash=f7bd410278bee26a425387c598dd47e80a8fcdcb, verbose=True, connect_timeout=1.1, read_timeout=5400.0)\n"
235
+ ]
236
+ }
237
+ ],
238
+ "source": [
239
+ "if show_help:\n",
240
+ " help(sparcl.client.SparclClient)\n",
241
+ "client = sparcl.client.SparclClient(url=server, show_curl=show_curl, verbose=verbose)\n",
242
+ "print(f'{client=}')"
243
+ ]
244
+ },
245
+ {
246
+ "cell_type": "markdown",
247
+ "metadata": {},
248
+ "source": [
249
+ "<a class=\"anchor\" id=\"info\"></a>\n",
250
+ "# General Info from SPARCL"
251
+ ]
252
+ },
253
+ {
254
+ "cell_type": "markdown",
255
+ "metadata": {},
256
+ "source": [
257
+ "<a class=\"anchor\" id=\"datasets\"></a>\n",
258
+ "## Data sets available\n",
259
+ "List all currently available data sets from the server/url associated with client"
260
+ ]
261
+ },
262
+ {
263
+ "cell_type": "code",
264
+ "execution_count": 7,
265
+ "metadata": {
266
+ "tags": []
267
+ },
268
+ "outputs": [
269
+ {
270
+ "data": {
271
+ "text/plain": [
272
+ "{'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16', 'SDSS-DR17-test'}"
273
+ ]
274
+ },
275
+ "execution_count": 7,
276
+ "metadata": {},
277
+ "output_type": "execute_result"
278
+ }
279
+ ],
280
+ "source": [
281
+ "client.all_datasets"
282
+ ]
283
+ },
284
+ {
285
+ "cell_type": "markdown",
286
+ "metadata": {},
287
+ "source": [
288
+ "<a class=\"anchor\" id=\"defaultfieldnames\"></a>\n",
289
+ "## Default field names\n",
290
+ "Gets fields tagged as 'default' that are common to all data sets in the `dataset_list` passed to the function. If `dataset_list` is None (the default), the function returns the intersection of 'default' fields across all datasets currently available in the SPARC database. The following example of this function produces the same output as it would with no `dataset_list` argument because we currently only have SDSS-DR16 and BOSS-DR16 records in the SPARC database."
291
+ ]
292
+ },
293
+ {
294
+ "cell_type": "code",
295
+ "execution_count": 8,
296
+ "metadata": {
297
+ "scrolled": true,
298
+ "tags": []
299
+ },
300
+ "outputs": [],
301
+ "source": [
302
+ "if show_help:\n",
303
+ " client.get_default_fields?"
304
+ ]
305
+ },
306
+ {
307
+ "cell_type": "code",
308
+ "execution_count": 9,
309
+ "metadata": {
310
+ "tags": []
311
+ },
312
+ "outputs": [
313
+ {
314
+ "data": {
315
+ "text/plain": [
316
+ "['dec', 'flux', 'ra', 'sparcl_id', 'specid', 'wavelength']"
317
+ ]
318
+ },
319
+ "execution_count": 9,
320
+ "metadata": {},
321
+ "output_type": "execute_result"
322
+ }
323
+ ],
324
+ "source": [
325
+ "client.get_default_fields(dataset_list=['SDSS-DR16', 'BOSS-DR16'])"
326
+ ]
327
+ },
328
+ {
329
+ "cell_type": "markdown",
330
+ "metadata": {},
331
+ "source": [
332
+ "<a class=\"anchor\" id=\"allfieldnames\"></a>\n",
333
+ "## All field names\n",
334
+ "Gets fields tagged as 'all' that are common to all data sets in the `dataset_list` passed to the function. If `dataset_list` is None (the default), the function returns the intersection of 'all' fields across all datasets currently available in the SPARC database. The following example of this function produces the same output as it would with no `dataset_list` argument because we currently only have SDSS-DR16 and BOSS-DR16 records in the SPARC database."
335
+ ]
336
+ },
337
+ {
338
+ "cell_type": "code",
339
+ "execution_count": 10,
340
+ "metadata": {
341
+ "tags": []
342
+ },
343
+ "outputs": [
344
+ {
345
+ "data": {
346
+ "text/plain": [
347
+ "\u001b[0;31mSignature:\u001b[0m \u001b[0mclient\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_all_fields\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdataset_list\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
348
+ "\u001b[0;31mDocstring:\u001b[0m\n",
349
+ "Get fields tagged as 'all' that are in DATASET_LIST.\n",
350
+ "These are the fields used for the ALL value of the include parameter\n",
351
+ "of client.retrieve().\n",
352
+ "\n",
353
+ "Args:\n",
354
+ " dataset_list (:obj:`list`, optional): List of data sets from\n",
355
+ " which to get all fields. Defaults to None, which\n",
356
+ " will return the intersection of all fields in all\n",
357
+ " data sets hosted on the SPARCL database.\n",
358
+ "\n",
359
+ "Returns:\n",
360
+ " List of fields tagged as 'all' from DATASET_LIST.\n",
361
+ "\n",
362
+ "Example:\n",
363
+ " >>> client = SparclClient()\n",
364
+ " >>> client.get_all_fields()\n",
365
+ " ['data_release', 'datasetgroup', 'dateobs', 'dateobs_center', 'dec', 'exptime', 'flux', 'instrument', 'ivar', 'mask', 'model', 'ra', 'redshift', 'redshift_err', 'redshift_warning', 'site', 'sparcl_id', 'specid', 'specprimary', 'spectype', 'survey', 'targetid', 'telescope', 'wave_sigma', 'wavelength', 'wavemax', 'wavemin']\n",
366
+ "\u001b[0;31mFile:\u001b[0m ~/sandbox/sparclclient/venv/lib/python3.10/site-packages/sparcl/client.py\n",
367
+ "\u001b[0;31mType:\u001b[0m method"
368
+ ]
369
+ },
370
+ "metadata": {},
371
+ "output_type": "display_data"
372
+ }
373
+ ],
374
+ "source": [
375
+ "client.get_all_fields?"
376
+ ]
377
+ },
378
+ {
379
+ "cell_type": "code",
380
+ "execution_count": 11,
381
+ "metadata": {
382
+ "tags": []
383
+ },
384
+ "outputs": [
385
+ {
386
+ "name": "stdout",
387
+ "output_type": "stream",
388
+ "text": [
389
+ "['ancillary_target1', 'ancillary_target2', 'anyandmask', 'anyormask', 'bluefiber', 'boss_specobj_id', 'boss_target1', 'boss_target2', 'calibflux', 'calibflux_ivar', 'chi68p', 'chunk', 'class_noqso', 'class_person', 'comments_person', 'cx', 'cy', 'cz', 'data_release', 'datasetgroup', 'dateobs', 'dateobs_center', 'dec', 'deredsn2', 'designid', 'dof', 'eboss_target0', 'eboss_target1', 'eboss_target2', 'eboss_target_id', 'elodie_bv', 'elodie_dof', 'elodie_feh', 'elodie_filename', 'elodie_logg', 'elodie_object', 'elodie_rchi2', 'elodie_sptype', 'elodie_teff', 'elodie_z', 'elodie_z_err', 'elodie_z_modelerr', 'exptime', 'fiberid', 'firstrelease', 'flux', 'fluxobjid', 'fracnsighi', 'fracnsiglo', 'fracnsigma', 'instrument', 'ivar', 'lambda_eff', 'legacy_target1', 'legacy_target2', 'marvels_target1', 'marvels_target2', 'mask', 'mjd', 'model', 'npoly', 'nspecobs', 'nturnoff', 'objid', 'plate', 'plateid', 'platequality', 'platerun', 'platesn2', 'primtarget', 'programname', 'ra', 'rchi2', 'rchi2diff', 'rchi2diff_noqso', 'redshift', 'redshift_err', 'redshift_warning', 'run1d', 'run2d', 'sectarget', 'segue1_target1', 'segue1_target2', 'segue2_target1', 'segue2_target2', 'site', 'sky', 'sn_median', 'sn_median_all', 'snturnoff', 'sourcetype', 'sparcl_id', 'spec1_g', 'spec1_i', 'spec1_r', 'spec2_g', 'spec2_i', 'spec2_r', 'specboss', 'special_target1', 'special_target2', 'specid', 'speclegacy', 'specprimary', 'specsdss', 'specsegue', 'specsegue1', 'specsegue2', 'spectroflux', 'spectroflux_ivar', 'spectrographid', 'spectroskyflux', 'spectrosynflux', 'spectrosynflux_ivar', 'spectype', 'subclass', 'subclass_noqso', 'survey', 'targetid', 'targetobjid', 'targettype', 'tcolumn', 'telescope', 'tfile', 'theta', 'thing_id', 'thing_id_targeting', 'tile', 'vdisp', 'vdisp_err', 'vdispchi2', 'vdispdof', 'vdispnpix', 'vdispz', 'vdispz_err', 'wave_sigma', 'wavelength', 'wavemax', 'wavemin', 'wcoverage', 'xfocal', 'yfocal', 'z_conf_person', 'z_err_noqso', 'z_noqso', 'z_person', 'zoffset', 'zwarning_noqso']\n"
390
+ ]
391
+ }
392
+ ],
393
+ "source": [
394
+ "print(sorted(client.get_all_fields(dataset_list=['SDSS-DR16', 'BOSS-DR16'])))"
395
+ ]
396
+ },
397
+ {
398
+ "cell_type": "markdown",
399
+ "metadata": {},
400
+ "source": [
401
+ "## Version of Server API used by this client\n",
402
+ "The SPARCL Client you use must match the version of the SPARCL Server you use. The server is specified with the client.SparclClient `url` parameter. If Server and Client are incompatible, when you excecute SparclClient() you will instructed to upgrade your client."
403
+ ]
404
+ },
405
+ {
406
+ "cell_type": "code",
407
+ "execution_count": 12,
408
+ "metadata": {
409
+ "tags": []
410
+ },
411
+ "outputs": [
412
+ {
413
+ "data": {
414
+ "text/plain": [
415
+ "11.0"
416
+ ]
417
+ },
418
+ "execution_count": 12,
419
+ "metadata": {},
420
+ "output_type": "execute_result"
421
+ }
422
+ ],
423
+ "source": [
424
+ "client.version"
425
+ ]
426
+ },
427
+ {
428
+ "cell_type": "markdown",
429
+ "metadata": {},
430
+ "source": [
431
+ "<a class=\"anchor\" id=\"get\"></a>\n",
432
+ "# Get Metadata and Spectra"
433
+ ]
434
+ },
435
+ {
436
+ "cell_type": "markdown",
437
+ "metadata": {},
438
+ "source": [
439
+ "<a class=\"anchor\" id=\"find\"></a>\n",
440
+ "## Get Metadata: `client.find`"
441
+ ]
442
+ },
443
+ {
444
+ "cell_type": "markdown",
445
+ "metadata": {},
446
+ "source": [
447
+ "The first way you can discover your data is by using SPARCL's `client.find()` method, which allows you to find records in the SPARCL database based on certain parameters passed to the function. Only Core fields may be in the `outfields` and `constraints` parameters. The descriptions for all fields, including Core fields, is located [here](https://astrosparcl.datalab.noirlab.edu/sparc/sfc/). The SPARCL Core fields constraint types are:\n",
448
+ "\n",
449
+ "\n",
450
+ "| Field name | Constraint type | Example |\n",
451
+ "|:----------------|:---------------|:-------|\n",
452
+ "| id | List of values (but not<br>intended for data discovery) | ['00001658-460c-4da1-987d-e493d8c9b89b',<br>'000017b6-56a2-4f87-8828-3a3409ba1083']\n",
453
+ "| specid | List of values | [6988698046080241664, 6971782884823945216]\n",
454
+ "| targetid | List of values | [1237679502171374316, 1237678619584692841]\n",
455
+ "| data_release | List of allowed values<br>from [SPARCL Categoricals](https://astrosparcl.datalab.noirlab.edu/sparc/cats/) | ['BOSS-DR16', 'SDSS-DR16']\n",
456
+ "| datasetgroup | List of allowed values<br>from [SPARCL Categoricals](https://astrosparcl.datalab.noirlab.edu/sparc/cats/) | ['SDSS_BOSS']\n",
457
+ "| ra | Range of values (may not<br>\"wrap\" around RA=0) | [44.53, 47.96]\n",
458
+ "| dec | Range of values | [2.03, 7.76]\n",
459
+ "| redshift | Range of values | [0.5, 0.9]\n",
460
+ "| redshift_err | Range of values | [0.000225, 0.000516]\n",
461
+ "| redshift_warning | List of values | [0, 3, 5]\n",
462
+ "| spectype | List of allowed values<br>from [SPARCL Categoricals](https://astrosparcl.datalab.noirlab.edu/sparc/cats/) | ['GALAXY', 'STAR']\n",
463
+ "| instrument | List of allowed values<br>from [SPARCL Categoricals](https://astrosparcl.datalab.noirlab.edu/sparc/cats/) | ['SDSS', 'BOSS']\n",
464
+ "| telescope | List of allowed values<br>from [SPARCL Categoricals](https://astrosparcl.datalab.noirlab.edu/sparc/cats/) | ['sloan25m']\n",
465
+ "| site | List of allowed values<br>from [SPARCL Categoricals](https://astrosparcl.datalab.noirlab.edu/sparc/cats/) | ['apo']\n",
466
+ "| specprimary | List of values (but typically<br>would only include 1 if<br>being used for data<br>discovery constraints) | [1]\n",
467
+ "| wavemin | Range of values | [3607, 3608]\n",
468
+ "| wavemax | Range of values | [10363, 10364]\n",
469
+ "| dateobs_center | Range of values | ['2013-03-14T10:16:17Z',<br>'2014-05-24T12:10:00Z']\n",
470
+ "| exptime | Range of values | [3603.46, 3810.12]\n",
471
+ "| updated | Range of values | ['2022-08-20T21:37:50.636363Z',<br>'2022-09-20T20:00:00.000000Z']\n"
472
+ ]
473
+ },
474
+ {
475
+ "cell_type": "code",
476
+ "execution_count": 13,
477
+ "metadata": {
478
+ "editable": true,
479
+ "scrolled": true,
480
+ "slideshow": {
481
+ "slide_type": ""
482
+ },
483
+ "tags": []
484
+ },
485
+ "outputs": [],
486
+ "source": [
487
+ "if show_help:\n",
488
+ " client.find?"
489
+ ]
490
+ },
491
+ {
492
+ "cell_type": "markdown",
493
+ "metadata": {},
494
+ "source": [
495
+ "#### Define fields and constraints for metadata FIND\n",
496
+ "Define the fields we want returned (`outfields`) and the constraints (`constraints`)"
497
+ ]
498
+ },
499
+ {
500
+ "cell_type": "code",
501
+ "execution_count": 14,
502
+ "metadata": {
503
+ "tags": []
504
+ },
505
+ "outputs": [],
506
+ "source": [
507
+ "out = ['sparcl_id','specid', 'ra', 'dec', 'redshift', 'spectype', 'data_release', 'redshift_err']\n",
508
+ "cons = {'spectype': ['GALAXY'],\n",
509
+ " 'redshift': [0.5, 0.9],\n",
510
+ " 'data_release': ['BOSS-DR16', 'SDSS-DR16']}"
511
+ ]
512
+ },
513
+ {
514
+ "cell_type": "markdown",
515
+ "metadata": {},
516
+ "source": [
517
+ "#### Execute FIND\n",
518
+ "Execute the `client.find()` method with our parameters.\n",
519
+ "The `limit` argument here is being used for demonstration purposes only, and simply returns only the first 20 results here."
520
+ ]
521
+ },
522
+ {
523
+ "cell_type": "code",
524
+ "execution_count": 15,
525
+ "metadata": {
526
+ "scrolled": true,
527
+ "tags": []
528
+ },
529
+ "outputs": [
530
+ {
531
+ "name": "stdout",
532
+ "output_type": "stream",
533
+ "text": [
534
+ "url=http://localhost:8050/sparc/find/?limit=20 sspec={'outfields': ['sparcl_id', 'specid', 'ra', 'dec', 'redshift', 'spectype', 'data_release', 'redshift_err'], 'search': [['spectype', 'GALAXY'], ['redshift', 0.5, 0.9], ['data_release', 'BOSS-DR16', 'SDSS-DR16']]}\n",
535
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"specid\", \"ra\", \"dec\", \"redshift\", \"spectype\", \"data_release\", \"redshift_err\"], \"search\": [[\"spectype\", \"GALAXY\"], [\"redshift\", 0.5, 0.9], [\"data_release\", \"BOSS-DR16\", \"SDSS-DR16\"]]}' 'http://localhost:8050/sparc/find/?limit=20' | python3 -m json.tool\n",
536
+ "Record key counts: {'spectype': 20, 'redshift': 20, 'sparcl_id': 20, 'ra': 20, 'dec': 20, 'specid': 20, '_dr': 20, 'data_release': 20, 'redshift_err': 20}\n"
537
+ ]
538
+ }
539
+ ],
540
+ "source": [
541
+ "found = client.find(outfields=out, constraints=cons, limit=20)"
542
+ ]
543
+ },
544
+ {
545
+ "cell_type": "code",
546
+ "execution_count": null,
547
+ "metadata": {
548
+ "scrolled": true
549
+ },
550
+ "outputs": [],
551
+ "source": []
552
+ },
553
+ {
554
+ "cell_type": "code",
555
+ "execution_count": 16,
556
+ "metadata": {
557
+ "tags": []
558
+ },
559
+ "outputs": [
560
+ {
561
+ "data": {
562
+ "text/html": [
563
+ "<div>\n",
564
+ "<style scoped>\n",
565
+ " .dataframe tbody tr th:only-of-type {\n",
566
+ " vertical-align: middle;\n",
567
+ " }\n",
568
+ "\n",
569
+ " .dataframe tbody tr th {\n",
570
+ " vertical-align: top;\n",
571
+ " }\n",
572
+ "\n",
573
+ " .dataframe thead th {\n",
574
+ " text-align: right;\n",
575
+ " }\n",
576
+ "</style>\n",
577
+ "<table border=\"1\" class=\"dataframe\">\n",
578
+ " <thead>\n",
579
+ " <tr style=\"text-align: right;\">\n",
580
+ " <th></th>\n",
581
+ " <th>redshift</th>\n",
582
+ " <th>ra</th>\n",
583
+ " <th>dec</th>\n",
584
+ " <th>data_release</th>\n",
585
+ " <th>specid</th>\n",
586
+ " <th>redshift_err</th>\n",
587
+ " <th>spectype</th>\n",
588
+ " <th>sparcl_id</th>\n",
589
+ " <th>_dr</th>\n",
590
+ " </tr>\n",
591
+ " </thead>\n",
592
+ " <tbody>\n",
593
+ " <tr>\n",
594
+ " <th>0</th>\n",
595
+ " <td>0.545929</td>\n",
596
+ " <td>246.74298</td>\n",
597
+ " <td>35.985258</td>\n",
598
+ " <td>SDSS-DR16</td>\n",
599
+ " <td>1506516519029336064</td>\n",
600
+ " <td>0.000422</td>\n",
601
+ " <td>GALAXY</td>\n",
602
+ " <td>2c6c82dc-fe87-11ee-838b-08002725f1ef</td>\n",
603
+ " <td>SDSS-DR16</td>\n",
604
+ " </tr>\n",
605
+ " <tr>\n",
606
+ " <th>1</th>\n",
607
+ " <td>0.667431</td>\n",
608
+ " <td>245.40676</td>\n",
609
+ " <td>36.438884</td>\n",
610
+ " <td>SDSS-DR16</td>\n",
611
+ " <td>1506548404866541568</td>\n",
612
+ " <td>0.000026</td>\n",
613
+ " <td>GALAXY</td>\n",
614
+ " <td>3063feb6-fe87-11ee-8aa0-08002725f1ef</td>\n",
615
+ " <td>SDSS-DR16</td>\n",
616
+ " </tr>\n",
617
+ " <tr>\n",
618
+ " <th>2</th>\n",
619
+ " <td>0.502511</td>\n",
620
+ " <td>246.45702</td>\n",
621
+ " <td>36.657405</td>\n",
622
+ " <td>SDSS-DR16</td>\n",
623
+ " <td>1506572869000259584</td>\n",
624
+ " <td>0.000172</td>\n",
625
+ " <td>GALAXY</td>\n",
626
+ " <td>336d71cf-fe87-11ee-9390-08002725f1ef</td>\n",
627
+ " <td>SDSS-DR16</td>\n",
628
+ " </tr>\n",
629
+ " <tr>\n",
630
+ " <th>3</th>\n",
631
+ " <td>0.724874</td>\n",
632
+ " <td>246.89323</td>\n",
633
+ " <td>37.209662</td>\n",
634
+ " <td>SDSS-DR16</td>\n",
635
+ " <td>1506578916314212352</td>\n",
636
+ " <td>11.831918</td>\n",
637
+ " <td>GALAXY</td>\n",
638
+ " <td>342e5eaa-fe87-11ee-9047-08002725f1ef</td>\n",
639
+ " <td>SDSS-DR16</td>\n",
640
+ " </tr>\n",
641
+ " <tr>\n",
642
+ " <th>4</th>\n",
643
+ " <td>0.741196</td>\n",
644
+ " <td>247.40873</td>\n",
645
+ " <td>36.381456</td>\n",
646
+ " <td>SDSS-DR16</td>\n",
647
+ " <td>1506596508500256768</td>\n",
648
+ " <td>0.614932</td>\n",
649
+ " <td>GALAXY</td>\n",
650
+ " <td>36565b1b-fe87-11ee-b857-08002725f1ef</td>\n",
651
+ " <td>SDSS-DR16</td>\n",
652
+ " </tr>\n",
653
+ " <tr>\n",
654
+ " <th>5</th>\n",
655
+ " <td>0.675723</td>\n",
656
+ " <td>134.10755</td>\n",
657
+ " <td>28.038851</td>\n",
658
+ " <td>BOSS-DR16</td>\n",
659
+ " <td>-6444647351317147648</td>\n",
660
+ " <td>0.000241</td>\n",
661
+ " <td>GALAXY</td>\n",
662
+ " <td>5182df54-fe87-11ee-a660-08002725f1ef</td>\n",
663
+ " <td>BOSS-DR16</td>\n",
664
+ " </tr>\n",
665
+ " <tr>\n",
666
+ " <th>6</th>\n",
667
+ " <td>0.782685</td>\n",
668
+ " <td>134.23727</td>\n",
669
+ " <td>28.084685</td>\n",
670
+ " <td>BOSS-DR16</td>\n",
671
+ " <td>-6444646251805519872</td>\n",
672
+ " <td>0.000242</td>\n",
673
+ " <td>GALAXY</td>\n",
674
+ " <td>51ad9b94-fe87-11ee-af3e-08002725f1ef</td>\n",
675
+ " <td>BOSS-DR16</td>\n",
676
+ " </tr>\n",
677
+ " <tr>\n",
678
+ " <th>7</th>\n",
679
+ " <td>0.797439</td>\n",
680
+ " <td>133.98095</td>\n",
681
+ " <td>28.226386</td>\n",
682
+ " <td>BOSS-DR16</td>\n",
683
+ " <td>-6444643503026450432</td>\n",
684
+ " <td>0.000424</td>\n",
685
+ " <td>GALAXY</td>\n",
686
+ " <td>521321c8-fe87-11ee-946d-08002725f1ef</td>\n",
687
+ " <td>BOSS-DR16</td>\n",
688
+ " </tr>\n",
689
+ " <tr>\n",
690
+ " <th>8</th>\n",
691
+ " <td>0.647712</td>\n",
692
+ " <td>134.54531</td>\n",
693
+ " <td>28.429551</td>\n",
694
+ " <td>BOSS-DR16</td>\n",
695
+ " <td>-6444641304003194880</td>\n",
696
+ " <td>0.000238</td>\n",
697
+ " <td>GALAXY</td>\n",
698
+ " <td>52643970-fe87-11ee-abb3-08002725f1ef</td>\n",
699
+ " <td>BOSS-DR16</td>\n",
700
+ " </tr>\n",
701
+ " <tr>\n",
702
+ " <th>9</th>\n",
703
+ " <td>0.886086</td>\n",
704
+ " <td>134.46525</td>\n",
705
+ " <td>28.452505</td>\n",
706
+ " <td>BOSS-DR16</td>\n",
707
+ " <td>-6444640754247380992</td>\n",
708
+ " <td>0.000274</td>\n",
709
+ " <td>GALAXY</td>\n",
710
+ " <td>5278859e-fe87-11ee-8427-08002725f1ef</td>\n",
711
+ " <td>BOSS-DR16</td>\n",
712
+ " </tr>\n",
713
+ " <tr>\n",
714
+ " <th>10</th>\n",
715
+ " <td>0.898559</td>\n",
716
+ " <td>134.43695</td>\n",
717
+ " <td>28.450988</td>\n",
718
+ " <td>BOSS-DR16</td>\n",
719
+ " <td>-6444640204491567104</td>\n",
720
+ " <td>0.000311</td>\n",
721
+ " <td>GALAXY</td>\n",
722
+ " <td>52913c34-fe87-11ee-844b-08002725f1ef</td>\n",
723
+ " <td>BOSS-DR16</td>\n",
724
+ " </tr>\n",
725
+ " <tr>\n",
726
+ " <th>11</th>\n",
727
+ " <td>0.566015</td>\n",
728
+ " <td>133.95386</td>\n",
729
+ " <td>27.305313</td>\n",
730
+ " <td>BOSS-DR16</td>\n",
731
+ " <td>-6444639654735753216</td>\n",
732
+ " <td>0.000315</td>\n",
733
+ " <td>GALAXY</td>\n",
734
+ " <td>52a796f0-fe87-11ee-b337-08002725f1ef</td>\n",
735
+ " <td>BOSS-DR16</td>\n",
736
+ " </tr>\n",
737
+ " <tr>\n",
738
+ " <th>12</th>\n",
739
+ " <td>0.599517</td>\n",
740
+ " <td>134.05133</td>\n",
741
+ " <td>27.381025</td>\n",
742
+ " <td>BOSS-DR16</td>\n",
743
+ " <td>-6444639104979939328</td>\n",
744
+ " <td>0.000412</td>\n",
745
+ " <td>GALAXY</td>\n",
746
+ " <td>52bbb47f-fe87-11ee-b8d7-08002725f1ef</td>\n",
747
+ " <td>BOSS-DR16</td>\n",
748
+ " </tr>\n",
749
+ " <tr>\n",
750
+ " <th>13</th>\n",
751
+ " <td>0.812179</td>\n",
752
+ " <td>133.95189</td>\n",
753
+ " <td>27.333753</td>\n",
754
+ " <td>BOSS-DR16</td>\n",
755
+ " <td>-6444638555224125440</td>\n",
756
+ " <td>0.000338</td>\n",
757
+ " <td>GALAXY</td>\n",
758
+ " <td>52cfb971-fe87-11ee-be51-08002725f1ef</td>\n",
759
+ " <td>BOSS-DR16</td>\n",
760
+ " </tr>\n",
761
+ " <tr>\n",
762
+ " <th>14</th>\n",
763
+ " <td>0.795586</td>\n",
764
+ " <td>134.21014</td>\n",
765
+ " <td>27.571681</td>\n",
766
+ " <td>BOSS-DR16</td>\n",
767
+ " <td>-6444638005468311552</td>\n",
768
+ " <td>0.000337</td>\n",
769
+ " <td>GALAXY</td>\n",
770
+ " <td>52e3cf35-fe87-11ee-b89c-08002725f1ef</td>\n",
771
+ " <td>BOSS-DR16</td>\n",
772
+ " </tr>\n",
773
+ " <tr>\n",
774
+ " <th>15</th>\n",
775
+ " <td>0.554642</td>\n",
776
+ " <td>134.11568</td>\n",
777
+ " <td>27.491442</td>\n",
778
+ " <td>BOSS-DR16</td>\n",
779
+ " <td>-6444636356200869888</td>\n",
780
+ " <td>0.000287</td>\n",
781
+ " <td>GALAXY</td>\n",
782
+ " <td>53203e47-fe87-11ee-b26f-08002725f1ef</td>\n",
783
+ " <td>BOSS-DR16</td>\n",
784
+ " </tr>\n",
785
+ " <tr>\n",
786
+ " <th>16</th>\n",
787
+ " <td>0.688878</td>\n",
788
+ " <td>134.19652</td>\n",
789
+ " <td>27.657880</td>\n",
790
+ " <td>BOSS-DR16</td>\n",
791
+ " <td>-6444635256689242112</td>\n",
792
+ " <td>0.000177</td>\n",
793
+ " <td>GALAXY</td>\n",
794
+ " <td>534af931-fe87-11ee-8467-08002725f1ef</td>\n",
795
+ " <td>BOSS-DR16</td>\n",
796
+ " </tr>\n",
797
+ " <tr>\n",
798
+ " <th>17</th>\n",
799
+ " <td>0.638226</td>\n",
800
+ " <td>133.85629</td>\n",
801
+ " <td>28.080178</td>\n",
802
+ " <td>BOSS-DR16</td>\n",
803
+ " <td>-6444633057665986560</td>\n",
804
+ " <td>0.000194</td>\n",
805
+ " <td>GALAXY</td>\n",
806
+ " <td>539b0add-fe87-11ee-b991-08002725f1ef</td>\n",
807
+ " <td>BOSS-DR16</td>\n",
808
+ " </tr>\n",
809
+ " <tr>\n",
810
+ " <th>18</th>\n",
811
+ " <td>0.614235</td>\n",
812
+ " <td>133.79296</td>\n",
813
+ " <td>27.907149</td>\n",
814
+ " <td>BOSS-DR16</td>\n",
815
+ " <td>-6444632233032265728</td>\n",
816
+ " <td>0.000294</td>\n",
817
+ " <td>GALAXY</td>\n",
818
+ " <td>53b9cd41-fe87-11ee-8132-08002725f1ef</td>\n",
819
+ " <td>BOSS-DR16</td>\n",
820
+ " </tr>\n",
821
+ " <tr>\n",
822
+ " <th>19</th>\n",
823
+ " <td>0.804484</td>\n",
824
+ " <td>133.87033</td>\n",
825
+ " <td>28.192423</td>\n",
826
+ " <td>BOSS-DR16</td>\n",
827
+ " <td>-6444631408398544896</td>\n",
828
+ " <td>0.000317</td>\n",
829
+ " <td>GALAXY</td>\n",
830
+ " <td>53d853da-fe87-11ee-9f77-08002725f1ef</td>\n",
831
+ " <td>BOSS-DR16</td>\n",
832
+ " </tr>\n",
833
+ " </tbody>\n",
834
+ "</table>\n",
835
+ "</div>"
836
+ ],
837
+ "text/plain": [
838
+ " redshift ra dec data_release specid \\\n",
839
+ "0 0.545929 246.74298 35.985258 SDSS-DR16 1506516519029336064 \n",
840
+ "1 0.667431 245.40676 36.438884 SDSS-DR16 1506548404866541568 \n",
841
+ "2 0.502511 246.45702 36.657405 SDSS-DR16 1506572869000259584 \n",
842
+ "3 0.724874 246.89323 37.209662 SDSS-DR16 1506578916314212352 \n",
843
+ "4 0.741196 247.40873 36.381456 SDSS-DR16 1506596508500256768 \n",
844
+ "5 0.675723 134.10755 28.038851 BOSS-DR16 -6444647351317147648 \n",
845
+ "6 0.782685 134.23727 28.084685 BOSS-DR16 -6444646251805519872 \n",
846
+ "7 0.797439 133.98095 28.226386 BOSS-DR16 -6444643503026450432 \n",
847
+ "8 0.647712 134.54531 28.429551 BOSS-DR16 -6444641304003194880 \n",
848
+ "9 0.886086 134.46525 28.452505 BOSS-DR16 -6444640754247380992 \n",
849
+ "10 0.898559 134.43695 28.450988 BOSS-DR16 -6444640204491567104 \n",
850
+ "11 0.566015 133.95386 27.305313 BOSS-DR16 -6444639654735753216 \n",
851
+ "12 0.599517 134.05133 27.381025 BOSS-DR16 -6444639104979939328 \n",
852
+ "13 0.812179 133.95189 27.333753 BOSS-DR16 -6444638555224125440 \n",
853
+ "14 0.795586 134.21014 27.571681 BOSS-DR16 -6444638005468311552 \n",
854
+ "15 0.554642 134.11568 27.491442 BOSS-DR16 -6444636356200869888 \n",
855
+ "16 0.688878 134.19652 27.657880 BOSS-DR16 -6444635256689242112 \n",
856
+ "17 0.638226 133.85629 28.080178 BOSS-DR16 -6444633057665986560 \n",
857
+ "18 0.614235 133.79296 27.907149 BOSS-DR16 -6444632233032265728 \n",
858
+ "19 0.804484 133.87033 28.192423 BOSS-DR16 -6444631408398544896 \n",
859
+ "\n",
860
+ " redshift_err spectype sparcl_id _dr \n",
861
+ "0 0.000422 GALAXY 2c6c82dc-fe87-11ee-838b-08002725f1ef SDSS-DR16 \n",
862
+ "1 0.000026 GALAXY 3063feb6-fe87-11ee-8aa0-08002725f1ef SDSS-DR16 \n",
863
+ "2 0.000172 GALAXY 336d71cf-fe87-11ee-9390-08002725f1ef SDSS-DR16 \n",
864
+ "3 11.831918 GALAXY 342e5eaa-fe87-11ee-9047-08002725f1ef SDSS-DR16 \n",
865
+ "4 0.614932 GALAXY 36565b1b-fe87-11ee-b857-08002725f1ef SDSS-DR16 \n",
866
+ "5 0.000241 GALAXY 5182df54-fe87-11ee-a660-08002725f1ef BOSS-DR16 \n",
867
+ "6 0.000242 GALAXY 51ad9b94-fe87-11ee-af3e-08002725f1ef BOSS-DR16 \n",
868
+ "7 0.000424 GALAXY 521321c8-fe87-11ee-946d-08002725f1ef BOSS-DR16 \n",
869
+ "8 0.000238 GALAXY 52643970-fe87-11ee-abb3-08002725f1ef BOSS-DR16 \n",
870
+ "9 0.000274 GALAXY 5278859e-fe87-11ee-8427-08002725f1ef BOSS-DR16 \n",
871
+ "10 0.000311 GALAXY 52913c34-fe87-11ee-844b-08002725f1ef BOSS-DR16 \n",
872
+ "11 0.000315 GALAXY 52a796f0-fe87-11ee-b337-08002725f1ef BOSS-DR16 \n",
873
+ "12 0.000412 GALAXY 52bbb47f-fe87-11ee-b8d7-08002725f1ef BOSS-DR16 \n",
874
+ "13 0.000338 GALAXY 52cfb971-fe87-11ee-be51-08002725f1ef BOSS-DR16 \n",
875
+ "14 0.000337 GALAXY 52e3cf35-fe87-11ee-b89c-08002725f1ef BOSS-DR16 \n",
876
+ "15 0.000287 GALAXY 53203e47-fe87-11ee-b26f-08002725f1ef BOSS-DR16 \n",
877
+ "16 0.000177 GALAXY 534af931-fe87-11ee-8467-08002725f1ef BOSS-DR16 \n",
878
+ "17 0.000194 GALAXY 539b0add-fe87-11ee-b991-08002725f1ef BOSS-DR16 \n",
879
+ "18 0.000294 GALAXY 53b9cd41-fe87-11ee-8132-08002725f1ef BOSS-DR16 \n",
880
+ "19 0.000317 GALAXY 53d853da-fe87-11ee-9f77-08002725f1ef BOSS-DR16 "
881
+ ]
882
+ },
883
+ "execution_count": 16,
884
+ "metadata": {},
885
+ "output_type": "execute_result"
886
+ }
887
+ ],
888
+ "source": [
889
+ "pd.DataFrame.from_records(found.records)"
890
+ ]
891
+ },
892
+ {
893
+ "cell_type": "markdown",
894
+ "metadata": {},
895
+ "source": [
896
+ "<a class=\"anchor\" id=\"retrieve\"></a>\n",
897
+ "## Get Spectra: `client.retrieve`"
898
+ ]
899
+ },
900
+ {
901
+ "cell_type": "markdown",
902
+ "metadata": {},
903
+ "source": [
904
+ "In order to retrieve spectra records from SPARCL, pass the following to the `client.retrieve()` function:\n",
905
+ "```\n",
906
+ "uuid_list : List of IDs.\n",
907
+ "dataset_list : List of data sets to search for the IDs in (default: None).\n",
908
+ "include : List of field names to include in each record (default: 'DEFAULT').\n",
909
+ "```\n",
910
+ "\n",
911
+ "**NOTE: A reasonable amount of records to request retrieval of is about 10,000. Exceeding this value may cause the retrieval to timeout or fail.**"
912
+ ]
913
+ },
914
+ {
915
+ "cell_type": "code",
916
+ "execution_count": 17,
917
+ "metadata": {
918
+ "scrolled": true,
919
+ "tags": []
920
+ },
921
+ "outputs": [],
922
+ "source": [
923
+ "if show_help:\n",
924
+ " client.retrieve?"
925
+ ]
926
+ },
927
+ {
928
+ "cell_type": "markdown",
929
+ "metadata": {},
930
+ "source": [
931
+ "#### Use IDs from FIND to RETRIEVE records\n",
932
+ "Use the IDs from the output of using `client.find()` to retrieve records from SPARCL. \n",
933
+ "\n",
934
+ "Note that `ids` in `found_I.ids` is a property name of the Found class. It is a list of records from all records, not a field name of a record."
935
+ ]
936
+ },
937
+ {
938
+ "cell_type": "code",
939
+ "execution_count": 18,
940
+ "metadata": {
941
+ "tags": []
942
+ },
943
+ "outputs": [],
944
+ "source": [
945
+ "# Define the fields to include in the retrieve function\n",
946
+ "inc = ['specid', 'data_release', 'redshift', 'flux', 'wavelength', 'model', 'ivar', 'mask', 'spectype']"
947
+ ]
948
+ },
949
+ {
950
+ "cell_type": "code",
951
+ "execution_count": 19,
952
+ "metadata": {
953
+ "tags": []
954
+ },
955
+ "outputs": [
956
+ {
957
+ "name": "stdout",
958
+ "output_type": "stream",
959
+ "text": [
960
+ "Using url=\"http://localhost:8050/sparc/spectras/?include=mask%2Cspectype%2Cmodel%2Credshift%2Cwavelength%2Cspecid%2Civar%2Cdata_release%2Cflux&format=pkl&dataset_list=SDSS-DR16%2CBOSS-DR16\"\n",
961
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '[\"2c6c82dc-fe87-11ee-838b-08002725f1ef\", \"3063feb6-fe87-11ee-8aa0-08002725f1ef\", \"336d71cf-fe87-11ee-9390-08002725f1ef\", \"342e5eaa-fe87-11ee-9047-08002725f1ef\", \"36565b1b-fe87-11ee-b857-08002725f1ef\", \"5182df54-fe87-11ee-a660-08002725f1ef\", \"51ad9b94-fe87-11ee-af3e-08002725f1ef\", \"521321c8-fe87-11ee-946d-08002725f1ef\", \"52643970-fe87-11ee-abb3-08002725f1ef\", \"5278859e-fe87-11ee-8427-08002725f1ef\", \"52913c34-fe87-11ee-844b-08002725f1ef\", \"52a796f0-fe87-11ee-b337-08002725f1ef\", \"52bbb47f-fe87-11ee-b8d7-08002725f1ef\", \"52cfb971-fe87-11ee-be51-08002725f1ef\", \"52e3cf35-fe87-11ee-b89c-08002725f1ef\", \"53203e47-fe87-11ee-b26f-08002725f1ef\", \"534af931-fe87-11ee-8467-08002725f1ef\", \"539b0add-fe87-11ee-b991-08002725f1ef\", \"53b9cd41-fe87-11ee-8132-08002725f1ef\", \"53d853da-fe87-11ee-9f77-08002725f1ef\"]' 'http://localhost:8050/sparc/spectras/?include=mask%2Cspectype%2Cmodel%2Credshift%2Cwavelength%2Cspecid%2Civar%2Cdata_release%2Cflux&format=pkl&dataset_list=SDSS-DR16%2CBOSS-DR16' | python3 -m json.tool\n",
962
+ "Got response to post in 0.264625997049734 seconds\n",
963
+ "Got 20 spectra in 0.26 seconds (76 spectra/sec)\n",
964
+ "{'success': True, 'info': [\"Successfully found 20 records in dr_list=['SDSS-DR16', 'BOSS-DR16']\"], 'warnings': []}\n",
965
+ "CPU times: user 7.69 ms, sys: 10 ms, total: 17.7 ms\n",
966
+ "Wall time: 269 ms\n"
967
+ ]
968
+ },
969
+ {
970
+ "data": {
971
+ "text/plain": [
972
+ "{'status': {'success': True,\n",
973
+ " 'info': [\"Successfully found 20 records in dr_list=['SDSS-DR16', 'BOSS-DR16']\"],\n",
974
+ " 'warnings': []}}"
975
+ ]
976
+ },
977
+ "execution_count": 19,
978
+ "metadata": {},
979
+ "output_type": "execute_result"
980
+ }
981
+ ],
982
+ "source": [
983
+ "%%time\n",
984
+ "results = client.retrieve(uuid_list=found.ids,\n",
985
+ " include=inc,\n",
986
+ " dataset_list=['SDSS-DR16','BOSS-DR16'])\n",
987
+ "results.info"
988
+ ]
989
+ },
990
+ {
991
+ "cell_type": "code",
992
+ "execution_count": 20,
993
+ "metadata": {
994
+ "tags": []
995
+ },
996
+ "outputs": [
997
+ {
998
+ "data": {
999
+ "text/plain": [
1000
+ "{'redshift': 0.5459291338920593,\n",
1001
+ " 'specid': 1506516519029336064,\n",
1002
+ " 'spectype': 'GALAXY',\n",
1003
+ " 'data_release': 'SDSS-DR16',\n",
1004
+ " '_dr': 'SDSS-DR16',\n",
1005
+ " 'ivar': array([0., 0., 0., ..., 0., 0., 0.]),\n",
1006
+ " 'mask': array([16777216, 16777216, 16777216, ..., 16777216, 16777216, 16777216]),\n",
1007
+ " 'flux': array([1.23176956, 1.23148859, 1.23120809, ..., 4.00684404, 4.00690508,\n",
1008
+ " 4.00696611]),\n",
1009
+ " 'wavelength': array([3794.89706208, 3795.77097003, 3796.64507922, ..., 9217.22098659,\n",
1010
+ " 9219.34357452, 9221.46665124]),\n",
1011
+ " 'model': array([0.34971759, 0.35207507, 0.35443148, ..., 2.31373858, 2.30945611,\n",
1012
+ " 2.30356026])}"
1013
+ ]
1014
+ },
1015
+ "execution_count": 20,
1016
+ "metadata": {},
1017
+ "output_type": "execute_result"
1018
+ }
1019
+ ],
1020
+ "source": [
1021
+ "results.records[0]"
1022
+ ]
1023
+ },
1024
+ {
1025
+ "cell_type": "markdown",
1026
+ "metadata": {},
1027
+ "source": [
1028
+ "## Plot spectra"
1029
+ ]
1030
+ },
1031
+ {
1032
+ "cell_type": "code",
1033
+ "execution_count": 21,
1034
+ "metadata": {
1035
+ "tags": []
1036
+ },
1037
+ "outputs": [
1038
+ {
1039
+ "data": {
1040
+ "text/plain": [
1041
+ "<matplotlib.legend.Legend at 0x7fd1f96db7c0>"
1042
+ ]
1043
+ },
1044
+ "execution_count": 21,
1045
+ "metadata": {},
1046
+ "output_type": "execute_result"
1047
+ },
1048
+ {
1049
+ "data": {
1050
+ "application/vnd.jupyter.widget-view+json": {
1051
+ "model_id": "84c674d2919c4a9f804a778cb667076f",
1052
+ "version_major": 2,
1053
+ "version_minor": 0
1054
+ },
1055
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAGQCAYAAABWJQQ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFfklEQVR4nO3dd3gUVdsG8Hu2JqQCCRAgDQhI70gvUlUUFURREVB4bXwWVBAEaQKiKGIvqCCCDRQUUHoNvQSQGiDUAKEmJKRsOd8fyW62l2Szu0nu33VxkcycnTk7mZ2dZ845z5GEEAJEREREREReIPN1BYiIiIiIqPxgAEJERERERF7DAISIiIiIiLyGAQgREREREXkNAxAiIiIiIvIaBiBEREREROQ1DECIiIiIiMhrGIAQEREREZHXMAAhIiIiIiKvYQBCRERERERewwCEiIiIiIi8hgEIERERERF5DQMQIiIiIiLyGgYgRERERETkNQxAiIiIiIjIaxiAEBERERGR1zAAISIiIiIir2EAQkREREREXsMAhIiIiIiIvIYBCBEREREReQ0DECIiIiIi8hoGIERERERE5DUMQIiIiIiIyGsYgBARERERkdcwACEiIiIiIq9hAEJERERERF7DAISIiIiIiLyGAQgREREREXkNAxAiIiIiIvIaBiBEREREROQ1DECIiIiIiMhrGIAQEREREZHXMAAhIiIiIiKvYQBCRERERERewwCEiIiIiIi8hgEIERERERF5DQMQIiIiIiLyGgYgRERERETkNQxAiIiIiIjIaxiAEBERERGR1zAAISIiIiIir2EAQkREREREXsMAhIiIiIiIvIYBCBEREREReQ0DECIiIiIi8hoGIERERERE5DUKX1eACun1eqSmpiIkJASSJPm6OkRERERkQQiB27dvo3r16pDJ+Cy/KBiA+JHU1FRER0f7uhpERERE5MT58+dRs2ZNX1ejVGIA4kdCQkIA5J/QoaGhPq4NEREREVnKyMhAdHS08b6N3McAxI8Yul2FhoYyACEiIiLyY+wuX3TsuEZERERERF7DAISIiIiIiLyGAQgREREREXkNAxAiIiIiIvIaBiBEREREROQ1DECIiIiIiMhrmIaXiIiIqIBOp4NGo/F1NciL5HI5lEqlr6tRrjAAISIionJPCIHLly8jPT0dQghfV4e8TK1WIyIigvOweQkDECIiIir30tPTcevWLURGRiIoKIiTzJUTQghoNBqkp6fj4sWLAMAgxAsYgBARlRF6vYBMxpsmIncJIZCWlobQ0FBERET4ujrkZYGBgQgJCcGFCxdw7do1BiBewEHoRERlQI5Gh66zNuLVX/b7uipEpY5Op4NOp+ONZzkmSRLCwsKQm5vLMUBewACEiKgMWHPkCs7duIOlSam+rgpRqaPVagEACgU7hpRnhoHoOp3OxzUp+xiAEBEREQEc91HO8e/vPQxAiIiIiIjIaxiAEBGVAUwaSkTFodFoMGnSJCQkJECtVkOSJHz88ceQJAlDhw71dfWojGFnRyIiIqJy7sMPP8TkyZPRuXNnDBw4EEqlEn369MFrr73m66pRGcQAhIioDGDPZSIqjuXLlyM4OBhr1qyBSqUCAJw5c8a3laIyi12wiIiIiMq51NRUVK5c2Rh8EJUkBiBERGUAx4AQUVFMmjQJkiQhJSUFZ8+ehSRJkCQJcXFxdl8TFxdnd33Xrl3Nskldv34dNWvWREhICE6ePGlW1tE6KtvYBYuIiIionOratSsA4OOPPwYAvPrqqwCA8PBwj2y/cuXK+PHHH9GzZ0888cQTSExMNM638eyzz+LixYuYN28e6tSp45H9UenAAISIiIionOratSu6du2KefPmAchvETHw1BiQe+65B6NHj8Z7772H8ePHY+bMmfjiiy+wbNkyDBo0CEOGDPHIfqj0YABCRFQGcBA6kecJIZCt8f9ZsQOVcr+fRG/KlClYt24dZs2ahZo1a2LMmDGIi4vDV1995euqkQ8wACEiKgM4BoTI87I1OjR4Z5Wvq+HUkSm9UUHl37d0SqUSP//8M5o1a4aXX34ZcrkcCxcuRGhoqK+rRj7AQehEREREVOJq1aqFpk2bAgBatmyJ9u3b+7hG5Cv+HS4TERER+UigUo4jU3r7uhpOBSrlXt2fTCZDXl6ezXXp6el2X/fRRx8hMTERlStXxq5du/DFF1/gxRdfLKlqkh9jAEJERERkgyRJft+1yRcqVqyIQ4cOQavVQqEoPD5ZWVlITk62+Zr9+/dj3LhxqFevHjZs2IAOHTrgjTfeQJcuXdCwYUNvVZ38BLtgEREREZHLWrduDY1Gg4ULFxqXCSEwduxYZGVlWZXPysrCoEGDAAA///wzoqKisGjRImg0GgwaNAg5OTleqzv5BwYgREREROSykSNHQqVSYfjw4Xjqqafw2muvoXXr1li5cqVxjIepV155BcePH8f06dPRvHlzAEDbtm0xceJEHDp0CG+++aa33wL5GAMQExcvXsTHH3+MXr16ISYmBiqVCtWqVUP//v2xc+dOm6/JyMjAqFGjEBsbC7Vajbi4OLz55pvIzMz0cu2JiIiISl6jRo3w77//omXLlli8eDEWLFiABg0aYNu2bVYTGC5ZsgTfffcdevbsiVGjRpmtGzduHDp37ozPPvsMy5cv9+I7IF+ThBDM3ljgrbfewsyZM1G7dm107doVkZGRSE5OxtKlSyGEwKJFi/DYY48Zy2dlZaFjx45ISkpCr1690Lx5c+zfvx+rV69G69atsXnzZgQEBLi8/4yMDISFhSE9PZ1p6YjILX8dSMXLP+8HAJx5734f14aodMnJyUFKSgri4+Pd+t6mssXV84D3a8XHkVUm2rRpg40bN6JLly5my7ds2YLu3bvjhRdewEMPPQS1Wg0AeP/995GUlIQxY8bgvffeM5Y3BDKzZ8/G2LFjvfoeiIiIiIj8GbtgmXjkkUesgg8A6NSpE7p164abN2/i0KFDAPIHW82dOxfBwcGYMGGCWfkJEyYgODgYc+fO9Uq9iYiIiIhKCwYgLlIqlQBgTDeXnJyM1NRUdOjQAUFBQWZlg4KC0KFDB5w+fRrnz5/3el2JiIiIiPwVAxAXnDt3DmvXrkVUVBQaN24MAMY81wkJCTZfY1huLx82EREREVF5xDEgTmg0GgwePBi5ubmYOXMm5PL82UYNM32GhYXZfJ1hUJKjGUFzc3ORm5tr/D0jI8NT1SYiIiIi8ktsAXFAr9dj6NCh2Lx5M0aMGIHBgwd7dPszZsxAWFiY8V90dLRHt09ERERE5G8YgNih1+vxzDPPYNGiRXjqqafw1Vdfma03tHzYa+EwtGbYayEBgLFjxyI9Pd34j+NFiIiIiKisYxcsG/R6PYYNG4Yff/wRgwYNwrx58yCTmcdqzsZ4OBsjAgBqtdqY0peIqDg4pRMREZUWbAGxYBp8PPbYY1iwYIFx3IephIQEVK9eHYmJicjKyjJbl5WVhcTERMTHx7NbFRERERGRCQYgJgzdrn788Uc8+uij+Omnn2wGHwAgSRKGDx+OzMxMTJ061Wzd1KlTkZmZiREjRnij2kREkCTJ11UgIiJyCbtgmZgyZQrmz5+P4OBg1K1bF++++65VmYceegjNmjUDAIwePRrLli3DzJkzsX//frRo0QL79u3D6tWr0bp1a7z66qvefQNEVG6xCxYREZUWDEBMnDlzBgCQmZmJadOm2SwTFxdnDECCgoKwadMmTJo0CUuWLMGGDRsQFRWF119/HRMnTkRgYKCXak5EREREVDowADExb948zJs3z63XhIWFYfbs2Zg9e3bJVIqIiIiIqAzhGBAiojKAY0CIqKzZuHEjJEnCpEmTirWduLg4xMXFeaRO5BkMQIiIygCOASEiotKCAQgREREREXkNAxAiIiIiIvIaBiBERERE5ZzpeItt27ahW7duCAkJQWRkJF588UVkZ2cDAFasWIF27dohKCgIVatWxejRo6HVas22pdVq8dFHH6Fp06YIDAxEWFgYunXrhr///tvmvrOzs/HWW28hOjoaAQEBaNSoEb799luH9U1JScHw4cMRExMDtVqNqKgoDB06FGfPnvXMAaESxQCEiIiIiAAAO3fuRPfu3REWFobnnnsOMTEx+PLLLzFixAj8+uuvGDBgAGJjY/Hcc88hPDwcH3zwAaZPn258vRACAwYMwOuvv46cnBy89NJLeOKJJ3DgwAE8+OCDVllD9Xo9HnzwQcycORMVK1bEK6+8grZt2+K1117Dhx9+aLeOzZs3x/z589GyZUu88sor6NSpExYuXIg2bdrg9OnTJXqMqPiYhpeIiIjIFiEAzR1f18I5ZQXAQ5nw/v33XyxduhT9+vUDAGg0GrRq1QqLFi3CqlWrsHnzZrRu3RoAMHnyZNSpUwdz5szB2LFjoVQqsWDBAixbtgxdunTB6tWroVKpAABjx45Fy5YtMXr0aPTr1w+1atUCAPz4449Yu3Yt+vTpg+XLl0MulwMAXnnlFbRq1cqqfhqNBo8//jj0ej127dqF5s2bG9dt3boVXbt2xSuvvGK3tYX8AwMQIiIiIls0d4Dp1X1dC+fGpQKqII9sqlu3bsbgAwCUSiUGDBiAgwcP4oEHHjAGHwAQEhKCvn374vvvv8eFCxcQHx+P+fPnAwDef/99Y/ABADExMXjttdfw9ttvY+HChZgwYQKA/AAEAKZNm2YMPgCgcePGGDx4ML777juz+i1fvhxnzpzBlClTzIIPAOjYsSP69euHpUuXIiMjA6GhoR45JuR5DECIiIiICADQrFkzq2VRUVFO16WmpiI+Ph779+9HhQoV0KZNG6uy3bp1AwAkJSUZlx04cABBQUFo0aKFVflOnTpZBSA7duwAABw/ftzm/CCXL1+GXq/HiRMnbLagkH9gAEJERERki7JCfuuCv1NW8NimbLUaKBQKp+s0Gg0AICMjA9HR0Ta3bQhWMjIyjMvS09Ptlq9atarVshs3bgAAFi5caPc9AEBWVpbD9eRbDECIiIiIbJEkj3VtKi9CQ0ORlpZmc93ly5eNZQzCwsJw9epVm+WvXLlic/sA8Pfff6Nv377FrS75CLNgEREREZFHNG/eHHfu3MGuXbus1m3cuBGAeVeupk2bIisrC/v27bMqv2XLFqtld999NwBg+/btnqkw+QQDECIiIiLyiCFDhgDIz3pl6JYFAOfPn8dHH30EhUKBJ5980rh88ODBAIC3334bOp3OuPzQoUNYsGCB1fb79euHmJgYfPTRR9i8ebPVeo1Gg61bt3rs/VDJYBcsIiIiIvKIwYMH448//sCyZcvQpEkT9O3bF1lZWfj1119x48YNfPjhh8YUvEB+wLJo0SL8+++/aN68Oe69917cuHEDP//8M3r16oXly5ebbV+tVmPx4sW499570aVLF9xzzz1o3LgxJEnC2bNnsWXLFlSuXBnHjh3z9lsnNzAAISIiIiKPkCQJixcvxpw5czB//nx8+umnUKlUaNGiBUaNGoUHH3zQrLxMJsOyZcswefJkLFy4EHPmzEHt2rUxe/ZsJCQkWAUgANC6dWscOHAAH3zwAVauXInExESo1WrUqFEDDz30EAYNGuStt0tFJAkhhK8rQfkyMjIQFhaG9PR05q4mIrcsS7qIV35JAgCcee9+31aGqJTJyclBSkoK4uPjERAQ4OvqkI+4eh7wfq34OAaEiIiIiIi8hgEIERERERF5DQMQIiIiIiLyGgYgRERERETkNQxAiIiIiIjIaxiAEBERERGR1zAAISIiIiIir2EAQkRERASAU6OVb/z7ew8DECIiIirXFAoFAECr1fq4JuRLGo0GACCXy31ck7KPAQgRERGVa3K5HHK5HBkZGb6uCvmIEALp6elQq9VQKpW+rk6Zp/B1BYiIiIh8SZIkVKlSBZcuXYJarUZQUBAkSfJ1tcgLhBDQaDRIT09HZmYmatSo4esqlQsMQIiIiKjcCwsLQ3Z2Nq5du4arV6/6ujrkZWq1GjVq1EBoaKivq1IuMAAhIiKick+SJERFRaFKlSrGsQBUPsjlcna78jIGIEREREQFDONBiKjkcBA6ERERERF5DQMQIiIiIiLyGgYgRERERETkNQxAiIiIiIjIaxiAEBERERGR1zAAISIiIiIir2EAQkREREREXsMAhIiIiIiIvIYBCBFRGSCEr2tARETkGgYgRERERETkNQxAiIiIiIjIaxiAEBGVAZLk6xoQERG5hgEIEVEZwDEgRERUWjAAISIiIiIir2EAQkREREREXsMAhIioDOAYECIiKi0YgBARlQEcA0JERKUFAxAiIiIiIvIaBiBEREREROQ1DECIiIiIiMhrGIAQEREREZHXMAAhIiIiIiKvYQBCRERERERewwCEiIiIiIi8hgEIERERERF5DQMQIiIiIiLyGgYgRERERETkNQxAiIjKAAHh6yoQERG5hAEIERERERF5DQMQIqIyQILk6yoQERG5hAEIERERERF5DQMQIqIygGNAiIiotGAAQkREREREXsMAhIioDOAYECIiKi0YgBARERERkdcwACEiKgM4BoSIiEoLBiBEREREROQ1DECIiIiIiMhrGIAQEREREZHXMACx8NNPP+G5555Dq1atoFarIUkS5s2bZ7d8RkYGRo0ahdjYWKjVasTFxeHNN99EZmam9ypNRERERFRKKHxdAX8zfvx4nD17FhEREYiKisLZs2ftls3KykKXLl2QlJSEXr16YdCgQdi/fz9mzZqFTZs2YfPmzQgICPBi7YmIiIiI/BtbQCzMnTsXZ86cwdWrV/H88887LPv+++8jKSkJY8aMwapVq/Dee+9h1apVGDNmDHbv3o3Zs2d7qdZERIWEYEYsIiLyXwxALPTo0QOxsbFOywkhMHfuXAQHB2PChAlm6yZMmIDg4GDMnTu3pKpJRERERFQqMQApouTkZKSmpqJDhw4ICgoyWxcUFIQOHTrg9OnTOH/+vI9qSERERETkfxiAFFFycjIAICEhweZ6w3JDOSIiIiIi4iD0IktPTwcAhIWF2VwfGhpqVs6W3Nxc5ObmGn/PyMjwYA2JiIiIiPwPW0B8aMaMGQgLCzP+i46O9nWViKgM4Bh0IvJ3By/cwpu/H0BaRo6vq0I+wACkiAwtH/ZaOAytGfZaSABg7NixSE9PN/7jeBEiIiIqDx78LBG/772A138/4OuqkA+wC1YRORvj4WyMCACo1Wqo1WrPV46IiIioFDh9NcvXVSAfYAtIESUkJKB69epITExEVpb5hycrKwuJiYmIj49ntyoiIiIiOzhvUfnEAKSIJEnC8OHDkZmZialTp5qtmzp1KjIzMzFixAgf1Y6IyjN+nRMRkT9jFywLc+fOxdatWwEAhw4dMi7buHEjAKBjx44YPnw4AGD06NFYtmwZZs6cif3796NFixbYt28fVq9ejdatW+PVV1/1xVsgIvK5HI0OuVo9wgKVvq4KEfkRnV5ALpPsrtfrBS7eykZ0pQperBV5GwMQC1u3bsX8+fPNliUmJiIxMdH4uyEACQoKwqZNmzBp0iQsWbIEGzZsQFRUFF5//XVMnDgRgYGBXq07EZG/aDdjHW7e0eDAO70QVoFBCBEBSedv4fFvtuPN3nfZLfPG7wfwx/6LeH9AEwxsxW7sZRW7YFmYN28ehBB2/82bN8+sfFhYGGbPno1z584hLy8PZ8+exaxZsxASEuKbN0BE5ZK/daO+eUcDAEi6cMu3FSEiv/Hm7weQo9Fj6vIjdsv8sf8iAOCz9Se9VS3yAQYgRERUYjjAlIgMbHW94hWifGIAQkRUxvCmn4j8kUyyP/aDyhcGIEREZQC/14nI3ynkvFBRPgYgRERlABs9iMjfOcp+ReULAxAiIioxjIuIyEDOploqwACEiKiM4U0/Efkjma1B6LxglUsMQIiIygB/fbDop9UiIh9QsAsWFWAAQkRUBvjrU0Q/rRYR+QDHgJABAxAiIiIqMR+sOoZRvyYxPTTZJPiYolxiAEJEREQl5vMNp/DH/os4nJrh66oQkZ9gAEJEVMb4+kEzn3STLXk6va+rQD5m69IguTlS7HpmLh75IhG/7DrnoVqRLzAAISIilwghsPvMDdy6k+eknOkvJVsnIirdBPKvK/2/3Ib/LqY7Lf/x2mTsO3cLb/1xyAu1o5Ki8HUFiIiodPj3v8t4YeE+VA1VY+e4HnbLMeYgIlvsjfd49KvtAIAn5+40Ly8Ebt3RoGKQyrgsK1dbchUkr2ELCBERuWT5oUsAgCsZuQ7L6dkFi2zgaVF+XLh5B6evZrr9uvRsjdnvr/yShOZT12D7qeueqhr5CQYgVKqcu34H87edwdFLGVi6/yL7mhPZUFJZZVYcvOTa/vmxJJt4YpQXHWduwD0fbkJGjsZpWXvXi3M37uCvA6kAgC83nSpcwUy+ZQK7YBH2nLmBnSk38HyX2n6fo/ueDzdCqy+8WkkS0K9ZDR/WiIgsmQZAV2/bbi2ZsfIoJEnCW/fe5a1qkY8xMC1/Lt3KQWg1pfH3op4Dpg8b3R20Tv6JLSCEAV9txwerjmPJ3gu+ropTpsEHAOw9e9NHNSEqH3R64XZLo2nx0UsOWq2/kZWHrzefxlebTuG2C09IiUqT5QdTceiC88HUZZXp9eLX3ect1hV1m8WpEfkjBiBkdOqa+/01fY0XJaKSk6fVo+usDRj83S63Xufsc5mnLUzHqmdm1nKjPFyu9527iZGL9uOBz7b6uio+Y/r5/z4xxXxdEc8CTlZY9jAAoVKNg12prMvV6vDqL/uxLOmiw3KWH4W9Z29g1eHLTl4jMH3lUfy257zN9fvP3cT5G9nYevIaJv992OU6+8PNwoLtZ/DQ54m4meU4ZTCRJ528Uvoe5HlaSXz6E09ex7qjVwDkd72m0o8BCBmVxn6Vvr/NISpZi3aew9KkVLzyS5LLrxEC6P/ldjy3YC/i3lphN7f+9lPX8c3m0xi92LqbFADITMaE/ZB4xu7+tDo9hs/fjc83nAQA7D5TvK6RG4+n4cSV28XaxoRlh5F0/hY+XX+yWNshzykPz4v8IfguCWkZOfjrQCo0Lkwm6XaXTRfLPTt/j1vbJf/GAIRKtfLwhUbl27VMxylvDRw9FXxp0T7b23bSOuBqTorVR65g7dE0fLDqOLafuo4h35t32UrP1ph1uzK9SRMQ+GXXOfzvxz3I0ehwODUdQ3/YjV6zN7u2cyfu5HHOAPIef/lOupOnxQ+JKbhw845HtnffJ1vx8s/78dXGU84L27D/3E18uPo4crXF73NZ+h6Vki0MQKiU85OrPVEJ0XvgFL91R4Mpfx/B4O924uz1rMJtW2w8/Y7GOHhW52TH6Xc0mPTXYRy8cMtsYrDNyVetyjadvBrdZm00/m56k6bTC7z1xyGsPnIFC3eeK3bLhyV20/QfTJvuPe/9cwyT/z6C+z/xzFgUw4OQtcfSnJa19Vd++Itt+HT9Sew/d6vYdWEXrLKBaXipVOP3GfmjPK0eKoVnnu+4egPtqFh6tsY4GHToD7uxbGQH7DlzA7lanVm5bh9uxI2sPDzSogb+PpAKjc7+RqeuOILFey9g3rYzeH9AE6f1uHgr2/iz6XsyjXPSszWobDLjsSd4IoCjoitvQYfpu9XrhVk3Rm/aknwNgPXEfsVl693kaHRYuPMc7rmrCuIjgrz6vZxyLQvxEUHe2yF5DFtAyKg0PlUoZ99tVAqcv3EH9Sb8gzd/P2C2PM+Nrgfrj13BqF+T8lsWinCO9/3U/lPPlGtZGPr9Ljwzbw8+Xptstu5GQZesP/ZddBh8AMDxy4UtFaY3ma7ccGZkF7aYmJbPztPi1V+TnL7eHbxG+FZZOP538rQY9WuS06QOgPn7Xe9Ca0FJcfTgQgiBpPO3kKPR2S3jjjnrkjF1+RFjK6e742DszRVkj+l41cST19x6LfkPBiBUqpXVAX9Uen23NQVCAL+bzKvz7vIjqDv+H5e7Fz0zbw/+2H8Rn6xPdngjkZmrNd7Amz5AOJnmOBPPvoJuEJfSc1yqjzNjlhwy/uzoE2mo632fbDEuM22hWJaUalZ+04mr6DhzPbYV3GTo9QJDvt+FxpNWIS3Dtbp74gn8H/su4MPVx8vd03xPK61H75vNp/HH/ot4bsFep2VNv5O2nbqOF37ai5Npnu1W6Apbp+rve87jtz3n8dOOs3jo80Q8/b176bXt2XPmhke244r9526aXetkpfHJKQFgAEKlHLtXUGkwd2t+96fZa05gzZErmLjsP5eyyVy4kW33HF+WdBGNJq7Co19tB1D8J82pJl2kXGE6lsSU5bgSU8sPXrJapjOpeJrFk9Ah3+/ChZvZeLkgA9iOlOvYdOIqbufkt5RcvZ3rtIuJJy4Ro347gE/Xn8QeTnzqNneO//XMXExbcQTJHh4HVFxXMlx/Qm85B8Y//13Gk3N3lkCtnNTD4shn5mrx5uKDGL34IL7adBoAsCvF/cDB1v2+ZQbNkozTH/5im9nvct7Fllr801Gp5uxCl53nmSZmync9MxefbziJyw6enN/O0WDEj3vw14FUu2XKKyGAET/uwfztZ+3OvWFKo9ObtYDkaHRYcfAS0rM1xrS8e87e9MgTSFee7prKyLGdXcrRQ4H/+3k/5lh0+3IUsBjkFnQVydUUBm3bTl1H62lr0XTyaoev9eQgdM4pUjzO/hRjlhzEt1tS0GfOFscFSxl3AhhPsTzWpl1A3el6df7GHTwzb7fDMt5uhPjFZHZ1iS0gpRYDEDLz38V0fLIu2WN9Q0uaoy5Y45ceQv13/sWB87e8V6EybuSi/fhg1XE8/b39J3qfbziFNUeu4OWf93uxZqWD6c2wKzclWr0wu5F4d8URvLRoH4bPN78hGPDVduRoi/eZPWRnrhB3Wc58bGn22hNmv+e50BJ0O1eLlYcu2U3h6SiIsbdq28lrSLlmuxXHHk8P6AXyu4itOnzZ7bqUBjq9MBsr5Iyha6CzDGz+zJc1n7/tDH4veLDhqbj7lV/2m41lsXW7b9oNasLS/7w67oddsEovBiBkJCF/8OpHa07g64ImWr/n4EL3045zAIBP1iXbL0Ru2X76OgDghIPZfm9kef9pn7+yHDNgel9lSI6z/dR1jP3jEG7nWN/canR6s20s2Zs/G7qtif7e/vO/YtXVV9/j3T/c5FK5Fxfuw/M/2W6l6ThzPdYeuWJzna1xG0cvZeCJuTvNUgO74s3FB3Hwwi0AMEs9XBybTlzFcwv2ul0XwLXWI1+a+Nd/ZuN9nI3Z83TgIYTApL8O4/utjoNiD+/Ue/sycTk9BxP/Oow3Fx+0eRxNP97u1DD1lvOxVjKTO8kFO8569QGmj5KMkQcwACGbjlzyzNPQkubKhZQPSLzLsj9weWP65Xv39HUWEwkWnrEySYIQAoO+3YGfd53Dh6vNWwYAQxeswt+zS/CLXV6KPyip6TkY/mPhLMn7zhUGaLbGnRxOzTD7PUejM0sTvGjnOfT8aJPNSdy+2nQK7/97DA0nrsK2U9ew+vBlrD9mO/hxxd4ijitZsOMsmkxebfZe/Y3hIZCrPB1QHbiQjnnbzmDK8iMe3a4j3gg/hBDYd+6m2UOLcX8eMltvGXibfrzdSabgymXB8prvzbl32AJSejEAoVLNtQspL1DkHROW/mfWPzntdi6+M3n6atkCYvr0/7SNLjh64b1Mb2XhizwzV4tP1yVj1qrjZsvT75i3Llm+0/s+2YIO763H4dT8By/j/jyE5LRMTF951GofuRo9viiYDfq1X5PwvwV78cy8PdAWdCXL0egw5Ptd+MFGVzQhBF7/7QAm/XXYuKyoN2sTlv6HzFwtXi0YC2SQp9U7vC5+sfEk4t5agXlOusqVhO2nrjt8Oq71cADiSivVjH+OYvj83XaDn7TbObAVVmh1euw4fd1qLh1v3HsvP3gJj3yxDQ+YpNs27SaVf90wZxokOKviybTb+HD1caRna6wy5dkac2H5N/Vmw5yv5lmh4uNEhGRTack26c/VnLvlNBJPXsNXg1tCrZD7ujpeY+8+Nkejw/pjaehQOwJhFZQubWv80kPQ6QVmPNLEeWE/sGDHWYfrTW8MZ1m0eOj0eqsygPe+zF0Zi+HvGk1cZXN5q2lrsP71roiuVAHnb9yxGi9z+mp+8Lfy0CU0rB5mXJ6j0WNrsvk8A6bjUEzH8Wh0AhqdDot2ncOmE1ex6cRV9GtWA0FqufHzf/FWNpbsy0/PPPa+u6BWyJ3+faevPIoTV27juyGtIbdxsyWQP87ilV/248m7YzBl+RHc2ygKnwxqbnN77/+bH5xN+vsIBrSKRrDa+jbgemYuKgWpIIRnb/A+XX8SKdey8NkTLWyu19n54tlwLA01KgaibtUQj9UFyA9MDd2Nd525gba1KgPI/zv9uO0MFHIJn284ZfO1z8zfg80nrgIAzrx3f3799cIrT/8NCT7OXLduoQPyzwlH1XBWxR4fbQbgeppuy+xw3m0B8dquyMMYgJBNppePG1l5qOTh2Yk9xZWbM1892H13Rf7T0z/3XcTjbWJslkk8eQ1xEUGoER5YYvW4kpGDk2mZaF+7colnDLmcnmPWAmDqg1XH8d3WFDSNDseylzo43dbtHI2xC8eonvUQGaL2aF2LIiNHg9s5Wrf+XkcvFXb3cXS6anUCy5Iu4u8D5l2GFu10rxtLWaWEFhrIUZQWTY1O4L1/j+HV7gnoOXuzy6+TkN9iYGqrnYnPnv5+p9XYnBZT1yC2cgVserMbAPMbv+2nrqN5dEWnN4PfbM6/Qd6SfBVt4iuhgsr8a9uQWe3cjTuYsCy/ZeWvA6k4fS0TE+5vgLsLbqptydXorAKQfw5dwgsL96FtrUo4nJqBV7onoHPdSMzfdgaPtY5Gk5rhjivsxPKDl/DZE7bXmbZCaHR6KOUyHLqQjmEFWZgMN/r2aHR6aHUCgSrXHvg89s124897z940BiDP/LAbx52kAjYEHwZanR69Zm+22ZLpac7OGWGj5dT0d9NkCsuSLqJfsxo2t2MrgYvlp2+DjckWOQidXMEuWGRk3kc0v/m6zbS1aDF1jUcGcpfEwDRXumB58/KUlpFj1ZR/x04q4O2nruPJuTvR4b31JVqnu6evw5Nzd2Lj8avOC9tw9XYu3v7zEP5zIUvSq7/az3y1dH/+AGrTLzWtg6fupkdRq/ePp/NNJq1Gh/fW40rBJHhanR4p17Jw4eYduymfTY+7o4B5Z8oNvPJLEtYeLRxPUJQ8/WVRU+kk/lM/i8+Un5gt7ybbj7nKDxCF6063seLgJZvjbPabjKHQ6ITZmIx1x9Kw7ZTzbQO2EwMAwFmTp9SmXYyG/rAb987ZbHZjqNcLrDt6BXvP3sCMlUfN0l0P/WE3Wk5di0vp5vO1XLiZjXM3rJ+E/3cxA499swPHL9/G238ewpHUDON5a9Bm+jqcumqeUGLGP8cAADtO38DtHC3eXXEU93+yBQt3nsODnyV6fObpU1czsSzpIoQQZi0gk//OD6aOXs6w91IrPT/ahPrv/OtygoBjJhm6Pijotpd85bbT4MOWE1cy3Q4+fkhMwdTlR4owwWVh+euZ1kk/9EJYZdmzt4tXLLrwmUp2MqEpAGNwaGpnimufGU9g+FF6MQAhu2atPm6cGOyjNdZf3O74c/8F3DXhX/yyy7NPc73xoGXH6et4/JvtTmez3Xg8DW2mr8P/uZh+1psXaQDYkly0G4e3lhzEwp3n0Nekv7E9Ry/ZP0aWD6q+3XwaCeP/sXuTbfqFaXrjnnItC8/O213kwbt7ztzA6MUHbM7pcDLtNmavOWE2uPNyeg7+9+Me42zcQH5QN/i7nXj+p/zsRR1nbsDQH5zPKmz51LS0CUWmSzf7phTQ4nvl+zgT8ASWq8ZBBfdT2Y5W/Aq1pEFf+U5UK9h/vHQJP6g+QA/5foxVLnJpO/8evmy1zHRis282n0b/L7dZlfGEFQcvWWW6Sk3PwcHzhYH90qSLeHb+HvT/cju+3nwaY/84aFY+W6Nzu0Xs4S8SsXDnOdz3yRbcPX2d2TqdXmDK30eQlas1Xt+UcutbOo2u8AM4b9sZZOVqizVgfO/Zws989w834ZVfkrDy0GWzz7y9AezbTl7DR6uP28z0ZOiSdKAgU5m7tiRfdauFzFRRHsRP/vsIvtuagoMXrB/upN/R4PutKQVjUOxr+e5aq2W2/jQl8V1p7xxwFNQQGTAAIbsO2bgoFtVrvx4AALz1xyEnJd3khS5Yj3+zAztO38CIHx1P1PZlwcDUFYfMu9DY27+3M2gWtV/uMTfy+CssOuReNZvZ2nzdtJVHIUR+gGOL6VNB0y+65xbswbpjaUW+URzw1Xb8tucCptrIjNPjo82Ysy7ZbPDx09/vxOojV/CExWzGW5KvYe3Rwu4HO8toa0UoMnEm4AmcCXgCm9SjsF79OmKkKwAEgnEHph/CR+UbMUf5GWpKaVBCiwHyTTgZ8DTukScBABrJzmCW8iu8pliMLapX0E52GC2kE/hE+SnOBDyB7eqRUMM8MKwtXUQ7WeHf6mfVuwCA+2U7jMvul+1AJG6V0BEovlytDi8t2mdznSG1NZA/47qpDTZaLfN0eqt5YByx1wJrWre+n25Fj482Y1fKDSidTC2deisbDSeuMnvy/fmGk3ji2x0ut3L3/3I7Rvy4B3dPL7x53nPWtc/PE3N34pP1J1F73EqcupqJ9GwNBn2zw+zh1q07GsxecwLnTVqGztkZL2Fq8HfOHyLY4873TFpGjtn17eYd64chbyw+gCnLj+BpG3Vydim3da13pZXl1p089JrtOC226fu0N2bHm/yhDlQ0HANCRlKRM4X7jisZgjyVFtay+4J1XdzjfrN78TjbX65Wh9WHr6B97cqoHFy08RYKi6enWbla49gNe4MFT1/Lwq07eQivYD7OyPQJp+kXqq3uJkVx5rr97hL7CyZEE0I4nPOktKuMdNwtO4qLIgIHRG1IEBij+AVZIgBnRDWMUy7CaX2UsXxFKf9YbFa/ZlyWpK+Nx/PGY736dVSX8m8i+8m34ay+CmJl1v3DH5QX9rv/WTXNbF2UdAPHA4YCAEbkjcJufT2sU79pViZedgXvKH7EvfLCGzO5JDBYsRofaQcW8UiUrHrj/3WpXCRuop7sAhL1DSHsPB+8k6szC3yLKz1ba5wEce4W5/M/GVIYbzJpzTN0X/p9z3kMbhfn0n7XWMzbYm8OEEdX76E/7ML5G/ld0kwDuTGLD+K2RTeszh9swFv33oXnu9R2qX6OHHOjW5ilP/dfwGu/HsDT7WKNy2xNsGnoimnrAZCzh0mWXdBm/HPUpbES329Ncet65w8TRvpBFaiIGICQ0Zbkwi8UIdxvOTh++TZWHEzFc11qI8hGZhUDvV44zKxy4PwtxFUOcilTkjfv4Z3uy826FLVFIk+rxy+7z6FjnQjUigx2+XVXMnIx5e8jeOLuaNSpYp1NZvaaZHy16RTqVAnG2lFdXN7u5fQcJJ68hgeaVodCZv/pqaPzaewfh/DlUy3Nlpk+2TLtO+8soDx7PQtj/ziEF7rWRqeESAf1cX6C++OXW1PpJNIRhBgpDT+qZmKtrjme17wGOfToLDuIU6I6akjXkCKi0FO2BxOVC8xe/4+uNSQAh/TxeFP5m9P9RckdP5luJjuFYwHDrJabBh+fax/EB9rHMVExH8MUtjNVWfpW9ZHZ70Pz3sQ81QcAgGcU+Tf0OiHhDc3zmK36Ei8rluJbbV/cRgWXtm9PfeksYqQ0rNc3h6aYX5HNpJOoKzuPJbrO0MHxwOhPlZ/gAXl+q84c7cOYrX3UZjlnD0LcZZokYbWdyRxdNWHZYeRo9BjaIc44eN5Vpt28DIQQxuDGFkPwYcky+DB4759jeL5LbexKuYH3/rFOseyK/y6mW3VHFUK4/KDrvYIxNj9uL8yYl2cjAJFJks2n+1qd3mmr1pS/zVt3XZ1YOM/G38CS6fv0ZrYre/x9Mk6yjwEIGR0w6XIl4FrLQZ5Wj60nr6JNfGX0+3wrcjR6pN3OxXv97adNXXbgIh5uXtPmuk0nrmLI97sQEazCnvE9ne7fcP3T6vSYsy4Z7WpVRvs6EWZlHNwTe4W9o1jUrKffbD5lTOGaMuM+lzNbGfq/L9p1Ft3rV0V85SC80buecf3fBakdT7ow8NDUfZ9swY2sPJy/eQeZDgZ/OnoCt+fsTcz89xg2HEvD4hfaI1itgOm4c63JF6OzVq9Xf03C/nO3sO3UdYdZc1w5av7whA/IzwDVS7YHn6s+sVrXQ74fC6XpuFt2zKVt3SvP7zrTR+56Nx4A+E57Lw7oa+F95TcIkGyP49itr4vFui6YqfwWAJApAnBP7odIQ0UAwGTt0/hV1w3XRBhqSlexVP0OrohwvJD3KvaJuhit+AUvKv6y2u5aXXNs1DdDvZx5xhYSAPha9wCW6TtglH4xomVXcShgOABgja4l/tPHYYGuJ24gFI/KN2KM4hekiGq4KUJwVlRFT9leKCUtbooQREq38IW2H/KgwAzld8btL9D2gBZyJEgXkIaKeEReeOM5QzMIQxSrjK0+O/T1URkZqCDlYGTeyzgqYvCt6kNESuloKSVjnPZZxEhpkEGPTBGIX1RTES+7gv/lvYYPlF8jTCps2XtOvhyrda1xVlRBpkVAZeiuE4pMDJRvwnJdW1yG/UxX3jZt5VFk5moxx83EJbYSUiSevG4chwjAas6Nohr49XbnheywNRbOneuErev+uRt3MPaPQxjSPhZ3VQsFkD8xqK7gWnc9M9fYKt3r483GtNH2mCaycIe7Dx1tBY3e5g9BEBUNAxAqllmrj+ObzafRtlYl5Gjyr6zOLn57z960G4CsLrhJvpZp3SfWFsPFZ/HeC/h0/Ul8uv6k1U1ncbpgmXYzcHbja2+95VKtTg+FXFbkLlgfry38Yk88eR0dEyJsljt7PQs/JJ6xWp6j0WNFwezQpgGIrQt52u0cm90DTN0oGMz9/dYUZOSYByAaO1HWSotxMkII4xiaX3efx7Md482e/ml0+ZOr/XUg1XieAcCJK7dRt2oIMnO1xnSiVyxy1x+9lIGTaZmQSRI+21CYUtVZl4QLN+/4JP10O9lhdJUl4aSogYP6Wugn32bzptyUq8GHPRmiAkIlx13bvtXeh8uojA25+fNL5Lc0CBxQjzDePD+Z9zbyoESivhGEAC4iAuahnoRjIj8l9TURhrgc88Hj72sfx/vax6FGHraqX0aklIGJmiGYr+sNAMiFCrVzFmCofBWS9LWxV+SfvzO1j+Mz1afG7fSU70VP+V68plxitv0IybrrTA0pv+vOZOV8q3WDFdYDfA3GKn82+72trPCJ+p/qiWbrHlNsxGOKjTa3841qttnvN0UwKkqZWKEeh6siDO9ohuJZxT/YpGuC9frmyMjOb70cpViMoYrVGKpYhe65sxAppSNNhCMPrs2x4wkand5mqlZ3gw8gf4C9pae+Mx935WpXNkeWJV0s9jYsad2Y/0NnI6OfoZXn193ncHpG/veXTAag4JCMWXIQc4e0hk4vnAYfhvq463aOxiwjnCseczGQs7zee9If+y7ikRa27yfIvzEAIftcuG//uWDg347Thd00TG8QbbF3bSzKDbnhFWc9NC7AVPodDYZ87/qgRHvV/2RdMoZ1iAeQ30d6/NL/8M3TrVz6wrqTp8W5G3eMT8V2n7lh9uVyPcs6BaPBE9/uxMVbtrso2GL6FG/p/otoHV/JYYrg9GwNwgILb3Ysgw8A6Dl7M96+rz6OX7ltNqnViwvNB+SaBpyGoMW0aV2rF9icfM0qu0qv2ZvRtV4kNh6/igXPtkGnhEirgO/eOVtsvwGT8ztHozNO7gXk97vuOHMDBrYquS+2BtIZVJVuYoe+PqpL1/GUfC36yRNRSXK9BeozbT90lh1EE1mKcdl7msfRSJaCvvKd+E57L6Zqn4ISOmggR33pHO6R7cchEY92siP4VdcVZ0T+GI8wZEIFDa4WtFYAAv+oxqK+LP8zfhmVAMCii5OEprnf4l7ZLuzR1zXe/F4Q9ru+uSIXKrTO/crmOh3k+E53n9my5fp2yMtTWN3MO5Koa4hWshNIEdVwl6xw7pqj+hi8qnkRq9RvFa3yRbRc1xbvap7E/xQrjF3MIqV0fKmaAwBoJTuB17EYv2bej5aq/agjyz9fa0rXjK1CF0VlDMsbjQgpHSposUdfF5kIxO+qyWgtO4HOubNxTlR1UAsBCcLu+BNLPT7aZJZmuDiWHyy5m1RTJZGhSacXLrWC5Gn1uHnHfhY4003ITR6Q7CsYk3bexe+5ojzb6vd5okvBTdL5W/i/n/fj7fvqu5ygxPJ670lbT17DphNX0aVu8a455H0MQMim/D6t5rLzdNYTPNm40Dmbs8FWn80/91/AtBXHUC3MvcHPhgutw1ipiA0gppM1me7Lbl1Mfj6SWvik1fQL583F+Rmfhny/C892jDcuP3Y5AwlVQqxmOu73WSKS0zLxw7DW6FavCvZYzDXwyi9JiAxWG7udbTiWhtjKFZCt0bkcfNzO0WDC0v/Mujq8+msS3n2okcPXNZ28Gien3et0+9NWutfX2nCcTQM0rU5vNxg0zLMxfeUxrPi/CJdn7zU90rNWHcfcrSlWZX7bc8G1SpsIQjZ6yvYiWdTESVEdAhKGy1cgSdTBN8qPECzlYJrmCbztYupYUzdEMLrnzsJNhBbWHQPxkCwRPeV78I5mGK4jDNABI01OX8NYhqMiFkd1+YNfN+ubmm07HZbjiSS8pnkRD8m3Yq72fhiO2B8vtscjX2wzK/eP/m6334unrda3NraoqKBBS9kJzFF+jirSLYzKex6nRHW8qliCWdqBSBFRuIMA42uDkI0PlV9hn74OftDdCw0UBdsSCEY2MlEBEUiHAPKPLwTayY7gtD4KVwoCM8MVoCpuood8H0JxB3Vl5/Gp9mE8Kt+EFxR/AwC+1t6PnrK9CJTyMFd7LxrLUvCp9mGcEvmTwa3Vt8AzsP+k/zHdCrv5K2tI17FaPcbuazerX8PA3Ak4JqIhg4ASOlxFGPL/tgKfKD/Dg/LtGK8Zhp90zrvAeir4KO20OtcCkPnbzri8TdNxkoaHc/aubb/uLl56+1t38lwKPoD8LGx/H0jF6av+k5xjyPe7UDlIhZqVKrg0yS35BwYgZJOtS2mbaWtxaHJvp+WcXYhtPfk3pOm9ZmNSJcfyt+WoN01RO2AVJ33vfZ+YP3UXQiDPojuS6XHo8/EWPNYqGjMHmI+dMUwEtXT/RXSrV8VmJqkn5u7Emffux96zN2xOCuVIVq4Wc9YmY2lSqtW6sw6yRBW+vgQmlyz4m5rOKeJKX2MhBKbYSK1rz86UG2gzbS02vtm1yH2mLcVJl/Cx8gs0k51yWM6V4ONXbVdjt51JmqexUNfDzqBoCUv1HbFU37EINXbsmIjBe9r8aatPTrsXCicpWt0hl0klNsYmD0ps1zdEm9wvzJYP09i+Oc9CIJ7XvGZjjWQcg3ENYWbLt+sbWpUFgCuohIW6HvmLCj4eM7WD8KH2UQhI0EGOGXiy8GUWH6Ht+gb4UvsALohIyKFDrJSGOdqH0VB2Fu8pvkWsLA0XRWVM0zyJdfoWaCU7jtnKLyGHDpUl50+kf1NPNfv9X11rTNQMwRr1aGM3vHeVP+Atxc84oK+Nd7RDcUFEoop0E91l+5ELJSKRjnX6Fjgs4sy2VVNKQzvZEWzSNcXdsqO4X74TH2gHGoOrRtJpNJalYLGuS7EH+PuTw6np+GX3eYdlcrU6tx7GmHYRNXxK7LWaj1lSvPT27Wa4Pxnu4dSiZwIrCdez8hAcUHbOqfKAfy2yy/IG3FZmEVvdppzdLBZ18LUthS0gnp8P1fL9O02C5aCJ5FJ6DrpaTEJmWfzXPeetAhDLso6CogMmE5q56oNVxy3m6ij07RbrFgFLJTEA0LDJ538qnHfFMniz97p5Fk8YnXXrS7udiwbvrELtyCC36wnkp7GdqfwGW/WNsVtfDyvUbxdpOwbjNcOwQne3sYVjjHYEQnEHGSha/YoqNECBR1tF4zuTViFXg49eDaq6lE0pMliNy25mdAoNUJh19Xule0KRxhv4gtbFr1sBGWZqB1kt365viPvyZmCQfD3+1bcxdnNL1DcuCLQEWkjJCJRycV5UQbZQY47yM7SXH8Efuo74SPsoNqhGQSmZRzx95LttJiQIlnLQQX4Y6+RvWq0DgFFYjF36evhK+wC0kGOs4mdjdz3TYSh95LuRLVRYp2+OvvL8MR0zlN/hodwpGK5YgSP6OMzV3Yc8KHCPbD8ek2/Ee9pBSBHVCrbg+NoegFy8rPgTg+Vr0D13FnKgLPi85L8uEDnQQV6iY2Ms5wjKJ/Ch8ku0kJIxTjsc/ybd5dY25WYtIPn/F2Vshytsjb8pTeYNa42osECbk2iS/2IAQna5clOf5SAd4PkbdzB1+RGM6FzLbLnpTatOL5DqxjgFS65cjp1licrR6JCr0Vul/XU1u9Qn65KRo9E5rMsvu89bpVp05+bdUNbe36SozeE7Tl9HrSLefANw+wbSFUIIq2w3rozFOX7F+umvswH0Bo7SB9sm8H/yP/G6cjGA/ExUrrouQnBeVMEP2t5Ypu+AIOQgDFkIknKQLCzHnEheDz4AoHp4ICb0bYBtp66bpWm1JJOAMX3uwox/CgfBP9k2tsjpXKf2a4gJyw7bXR9eQWUWgLzWsy52plw3G4NWlmUhEHN1+YOUH2ha3Zi5Lp+EfaKu2UXxCc14mE483zz3a0xXfgc1NEgR1dBTthe1ZYVjL26KYDyUNwW9ZbsRLmVhkHy9ce4XW9rIjqONyn6aXINAKc8YfBgsVb8DAOgr34nRyl/N1vWW7zH+nCfk2KBvjjayY3hR8wqGy1eihSwZaSIcQVIOakrXjGV3BbwEID9r2gjN66iCW1ihHocroiIG5Y2HHDqz7ouByMF4xULs1SfgD31nSNBjlGIx6ktnMVLzMlrJTiBKuo7fdV2dvkdLLaRk9C/ImvazahqurFkICe+6PL7GrAVECCSevIaLN4v+XVmWNa0Zjoo+SBhCxcMAhGzyxIPt1387gF1nbljdjJh2u3hp4T5jetiiMDzhNu2a9OhX2zCmT+HTJmdhRLsZ63Dzjgb7J/Q0u4hZdXeycUwW7TyHj9bkp8StEmJ//IqtzCfuBCCGkvZioinLjxRpEN6xy7fdmunc0hcbHXc1KgohgPf/dX5T44q7JriWNcfRvDQAIIMe1aVrGCJfjRGKlU631z93IvaKuoiTLuOsqAoBGZTQIgjZuIVgmJ6VWQhEFgI9Pvdn3arBRZ5E8dNB+ZmunOXYH3dffQzvVMssAFE4OZYGllnjpvZriMHt4hwGIF882cKYBrVqaP7nzTQRgilDX/B+nye6VB9/9uWTLTDqtwNmT6rf6FXXIgBxLhMV8LLm/4y/z8YATFX8AKWkxRua541zlXyjeyD/f+39GKb4F5G4hQBJg4+0j+KyqAgdZBgpX2oMwAEgVygwUzsIq3St8JnqU2SICvhX3xr3ynZBBj2uoBLW6lpACS1mKOciSHKtu61K0hkDEtOJKx0FRj3k+5Eif8r4e4SUgYMBIwAAA3MnoK3sKMKlTHSUHUJd2UU8iXX4CF/hH11rY5rqY/LCuW0mKn5El9zZ6CQ7hI9VXyBHKDFROxTx0mVcEBFI0tfGOMUi5EGJCCkdjWRnkCvMb6+q5p5BZ9khNJJSsF/UwTa99Ri7CsgBcjKAgFCYNjhm5GjxpM1WFgIApcLHufapSBiAkE0Ctm9295+7iWVJqXitZ127X/wG9gZBm6ZXLU7wAZhkDTGp7O4zNzHgK/vpAW9m5WHYvN3o36IGBreLMw4STzp/C0cuZSA7T4c3etezam0w3DDdydNi3dE0dK0XiXF/Fva9TbPTlQmwHdDZurfbduoaEqqEGGcPL3x9fmFbaXUB4HZO4WzG3uTuDZArdp+9ic0m6Y+9wdZTfjXy8Lrid2SJAKt0rqZS9FWhhwx3oEYYsvCM5k2cLGjJMGSYAvIHgt+C9QSQJaVtrcpmAciGN7qim0k3wL9GdsCDn9m+Oa9TJX9Aeo8GVXD8ym1UCw2wWc6gVmSQcRCrqwFItkXrqWEG7d+fb4ez1+9gx+nruJ2jQcq1LOP7aFQjDGfeux9HUjNQs1IgAPsPSxpWD4VCLsOsR5vijd8PuFQnT3qqbQx+2lG8wcEGDaqHYupDjczeR0ylCogIVhdh3FyhXKgwWvuczXUVVHLcyguxOyHip7pH8IOuDx6Wb8VSXUez7GgP500x/vyzrrvVa0/lVcezin/wp64jrokwfKD8Go1kZzBH+wiW6DrhOfly1JalmqU2dmaJriMU0KON7BiiJPstYpZjYEzda2dunGApB3sDXjD+HiBpjHPd2KOWrLssz1fNNP78f3kjESGl40ddL+ggR0VkYKf6JeA9HTDsH7MsWOQYu16VTgxAyC5bs7M+XJD9Jk+nx/SHGzt8vcrOU4mizn9hc1sulLmdo8HG42nolBAJuSx/Loik87eQdP6W8aYHyG+RMORjf7JtjNU8EYZqf7j6BL7bmoIOdVyf/OvbLdYz0S7aaX1z8sS3OxGolGP72HsQXqGwNcawb3tB3d6zN7H3rHs53P2Vt4MPW2pJqVivfsNhmWR9DQzKG28xONm7qoSo7Qa+A1tFm822HB9h3pUrSG3/8m/ofvhy9wTUighGJztzzRgsePZuY8pmy0xucpmELaO7ocPM9WbBgr3um63jKqF1XCUMaJkfxH2x8aRVi1iD6oXdaO5vEmXVyvpSt9rGMSu+ytbzao+6TgOQR1vWxDMd4/Hvf5cxvFM8/th3ERP/OoxqoQFm3RsrBqnMbrI61omAJEnYM74HNDo9mkxajWyNDqN61jW2yDrTo35Vh8kX2taqjPXH0uyuB/JbVBboerm0P1OHRTxGaV40/t43b7rZ+re1zxp/lkMHHWSoiNu4V74b/+haG7tRqaDBr6qpaC47iQXaXkgSdRCGTCxQzUAt6RImaYdALyT8T7HCLNWyQZoIxyLdPXhV8YfZ8jnaR/BKwbJ0UcFskkh3ZIhAdMydAzW0+FP9jll3sU9VnwEAmshO46C+Fl5TLIaqYHyOJvELSNIzZtuKly6hiXQKf+vbQ+9iN67yQunr2YapSBiAkE07Tl+3GYAYnHIyW/bJtNt2n4R6MvONMI6NsG/D8avYcPwq3r6vPkZ0roUsO7N1m8YbeVo91ArzlMNavcBjX2/HzpT8p2uJJ6+7XE93ZozN1ujQbMoaTOjbwLiMs716xwvyvzBG+YvDMlt1DfGbrhtW6O82dlnxBls3lzvGdketcba7hEUEqzHxgQaY/PcRmw8D7D1hXfVqZ+PPaoUc/VvanwvFcFqGmGSfsQxAosICUD080KqlwtXrQKDS8TF+sGl1RIUFIixQid4fby6oQ+H7zbTzebc0sFVNtK8dgaVJF3HPXVXwjklXsB+faYPRiw8ag4Kp/RpCAOhQJwLdP9zk0vYtmU6YWj8q/4Z6SPs4DGkfh0/WJRv/1tMfbozQAKXZ8fv48WbGn5VyGfa/0xN6IVBBpbAZgJx5735sTb6GrDwtnluQn9zhw4FN0XTyarNyP49oi0Hf7rBZ3+Pv9nE4EeBzXWrh603WD1qKy/AZu4lQLLJoTcmDEo/kTUJFZOJGQVCSjmA8mDfNrNwfefnn9MOyLRipWIrbqIDpmiewS9QHAHysHYA+sl34SvUxtEKGz7X9MFs7wPj6BOkChsn/xS+6bjgoaqMiMtBXvgPrdC0QJOXgK+VsfKh9FFv0TaCHhGyo8ZBsK46LGGQUpLd+RzMU36tmWb2/h+WJeFhu3hKpPPE3ZupOQ1ICe0RdzNH2x3zle4iRXUVjbQo+1D6K7II00uG4bWxZVUGDptIpJIk6ZSrLmDPOutCSfyo/Zyi5xVHwATifRTotIxdKO1lznG3bnv8u2s7ypNMLlzLh/H0wFc1jws1aCkxbY+x1uTJlCD68YapJSlnGH8UXgXRkoAJCcQf95ZtxQUTiCfk6dJDbH3NgMFXzJL7T3e+0nD0rX+5klZrZXQ80rW52c7nq1c6QySSM7FbHbIZ3A7lMwtPt4hARrEbL2IpW6+19hutVc7+bmOmWLAf0F7cnyeOtY/DPocvodlcV2/uWJLSJr2S2zDS4chTATH6wISb+Vfj3f6h5DTzUPD9lrGkA0rluJLaPvQdnrt/B+Rt30NlkvNWkBxpg0t/W6Z/DnXRRdeSZjvHYd+4m7msUhYGtowGYH8eKFcwH3AY4CdIAoGNBK9akBxpApZBbdaGtWTEQzWPCjb9btlSbPpCpFKTCjaw8s/UhDlrUSpKAzBh8OPOnvhP+zOtkc92/+jbGeWQsJYuaGKcdbvz9JkILW34E0D3vQ6vX/KHvbPb7en0L9Ml9D5dEJfSW74YKWnSRHUBPeeEkfbdEENJFEGJlaehYcF3qgMN4RfGnscxwxT8YrvgHe/UJyBEqdJAfxo/annhascZYJklfCy/kvYbe8t24ICKRCyXOi0icFVXRTZaEqyIch4R5chh/p0YeZNAbAy8q/RiAUJE4u6nQCYEcO6n9Nhy/iqnLj5g94Xdk79kbGPfHfzazHAkB7ExxrSUiM1drNTbE9CGsZcDhTzf9JZR9scypiAxoCtJ5RkgZeEi+1WyWcHc9kjsJ1xDmZPZooEf9Klh71H53lUpBKnRKiMCW5Gt2yzhjelP976udjIHCG73r4Y3e9ZDw9kqzlrZAlRxymYQHmlY3LqsfFWoc7+LJXgump6dlC8gnjze3+Zqm0eFIqBKMxXsv4P/uqWN324EqOX57vp1b9TF99uGo9TBA6fpBkCQJ8RFBVl3ZhnaIx+NtYjBl+RGsPXLF2CVOIZfhv8m90WjiKqtt2eueahCsVmDesDZW+zewPMbuGNoh3mrZMx3iMe6+u8xSLdetGoINx213hxzRqRZm/luYeECtkGFg62jMWm3d+jLn8WYlMvs4ALzYtXaJJMIoKcdEDADgN103AMBPup5opD2NK6IiZBDQQ4YMVMCvqqlO5xJqKSt86GYafABAM9lpbA/4P8uXmLktAiGDHkFSLs7qq2CJrjN2i3om89vkf24qIBdPyNdht74eDgj7n9OSpIQWK1VjUVW6iX55U43zylDpxgCEisRZC8j1zDycdjAo+rutKS4HIP2/tD+gXEC43L3pdo51Vwx73UC2JF/D+KX/ubRdb1h79Aq2nSz6zWtpJEEPFbQIxR1cRyjuks5hiHw1Kkq3UQE5aCY7hWDJs2mAk/U10DdvGgQkyKFz+Wlb+9oRDgMQmczx4Owfn2mDp52kGjYNGCoHWWdcUyvk0OgKz/EglfVT8Xf6NjB2sZFJEoa2jzObO+WnZ12b0bx97crYduq6MbgRJo2aljfHzWOsW1/euvcuPNK8BioGqfB0u1g0rO7ZcTSmra+OgndXU207E6CUY/rDjZGj0eGPfReNy4PVCiS90xPNppjfID7f2f2nz64OSl75cifsO3cTM1YedZgm3VSQWm4MPv58sT3++e8yXu6egL8OpOJSeo5VRkDTAE8uk7D/nZ6ooFJgxcsd8fmGk1h5KD+5yOrXOuP8Dc/Mlv5+/ya4k6c1a20a1iG+VAUgtvxnoyXiobwp6CHbh2yo8Lz8b3SS/4dVulZ4SfMyoqTr2KK2NWkmsEXXCBv1TTFBudDpfkOkwvGEsbI0jJLlZzQ7qo/BCVETTaRTiJeZjxHaqmuIwyIOAhL26OuhuSwZ63Qt0FR2Cpv1TcwCAxU0CMEdXPfAGLm7pHPGdNEvKv7C65oXnLyCSgMGIFQkKdeyHA4m98TM0lqdHqsOO96OO60UtsqaBiCmXbD8KfgwsD3ZVemkRh7qSKloKzuMh+WJuCbC0FXuvUxFO/V3YYe+PjJEEHbr6+E2KuBMQbrcQq53oXF2b+jo5nHL6G6IrlQB0ZUCcf6G/Tz/pjfLrmSasnVzHW4y141cJmHSgw2x4/R1Yyrmjk4Gmxv89OzdyNXqEVgQ5Egmh83Z030AeL5LbePPTWqGu7RPVwzvGI+1R69g0N0xxmWOxpp4uue4rWtMaID5efTFky3Qq4HjFjVbWsfnB3LOsg82qB6KBtVDsebIFWw6cdVh1yjDxI496hfWp3lMRWPQOP+ZNnjvn2N4rUddAEDlIBWuZ+WhW70qmJd4BqnpObi/cRQqqPL30bB6GO6Or2wMQOpWDfFIANIytqIxKcGMf44Z5/dxNeOaLfc1robJDzZC62lri10/z5OwVt8SQP5Ek9AIGM7W86IqWud8gRcVy3BcRONXXVfESVdwW1QwJsS4JsIQI6Vhp74+/k/xJ3boG2CDvhkelW/Cn7qOqCc7j8HyNYiR0hAumT8orC87h/qwnTyho/wwOsLQNXE5AOAlxV/G9VdFKNbrWuAO1Ogj340o6QZezHsZK/VtrbYlgx7x0iWcFlE250ZpFVsRe8/dhBBAPZMEAp1lB1CQp9OVA0l+jAEIFcnFW9l43UFqS08Mmv52S4pZM39x92MrXaXWdH4OXs88LgyZeFq+Gk8o1jtMjVlU5/SRiJHldxM5ra+GCCkdoVI2ftT2xDe6vsbZooOQDTU0LvcVd1evhtUw2cY4AANHEx1GV8pPXxqsVgKwH4CYBvxyJ2kn/3yxvc3lpi2XxXn4L5NJxuADyL/JHt4xHjohUDnYdxOCje/bAOMtWlYtH5R89kRzjFzk+sSR7rD1UEYmkxColBvn8LivcZRVGVdUCQnArnHdHWYvM/XhwKaYuyUFA1vZTyKweXQ3pN7KMcsqZqpu1RB8P7S18fdNo7vhemYuYisH4ef/tcXfB1LxdPs4s9fEVK5g9ru98+yjgU2RrdHh6KUMm9nCUmbch+UHL2HV4cuY2b+JcaBxi5iK2H46v9uts8+BI188mX+DP+3hRnj7T/974GTO/H1eRTgma4cYf08R5ufUMn1H48+DNfWNP0/WxgEADupqm02uWEtKhQx6hCMTD8sTcZfsHPbpE5AHBZ6Qr8dvui7Yp6+Lj5RfIEjKxTURigjJOnV5pJSBxxQbzZZ9ofoEm3UbcFLUQADy0EZ2DL/puqCnfC9ay05gj74uBuRNstrWA02rY/GIVogbvxoNpMJsfpFSBupKF3BCRNs9WlQ6MAChIjPtamDJlQw3pnNo2OIs+ACKP07DNE0puUYGPYKQgwDkoYp0E5WlDLSTHUFD6Qw6yx3/TV2VK5S4ijCc01fBKVEd98p34ag+BlO1g6GHBDn0OC5inG+ogHGyvxJSPSwAByb2wuHUdDzxbX5L1f2No7DiUH63AZkMVlnVLNnJ2WBkeq47645jq9sTYH4zaNiGpzKsGW78b+donJT0Lp3F++vbpLoxAPFUFywDe5e93eN7YO2RK8Zgs6iqOJmPxVREsBpv3XuXwzLhFVRm6b6dCVYrEFwQAMVWDsLIexKsynStG4l3+jawGdSYjpV6qFkNyGQSvthonUAByP/bPNC0utkYJsD8u8UTc2U8eXdsKQhAStZpUXiM92jNz5kPtI8bf26b+zmCkY1LqIwY6Qqui1C0kR3DIX0tfKL8FHVkqZCgR6SUgYP6eOP4u87yQ+iMwu+GcbKfjT+3kp3AmYAnsEnXBFv0jXFSVIcaGnRO+h5YvRaH1WqrSSu/Vn6Et7XPYpf+LmghB/Q6QOa9jITkGQxAqES4Mmja1jwY7irurZNh3g/KVwkZCJKycY8sCTlQ4WH5VrcmA3PFTv1dqCFdwxl9VSzTd8AqXWvkQoloKQ0SgGRjP+LCm4sJ2mdsbssWQ7cSb5IkCWGBSjSsHgZJyp+fo3/LGsYARC6TcH+TKKuJN38YVvh0ecL9DfDYN7ZToFpyNgbLHtN7cZkxACnSpuwqat1Kis5B0j3TmnoiDrMXzAWrFcbsWmWdJEl4pmPhQHfL7IIGhhYNy4xezpgGlJbjjepWDcaJK5lQK2SY0LeBX3al9Rc/DG2NYfNsT7xoz21UME44aUjMsUGfn2TiCc14Yzk18pALFepJ5/C2YiE6yw/hmD4agchFrKxwrFyKvqpxnEkX+UF0kR8s3FlBMUPwkSkC8KX2Qbyp/A3xsitYpJqOPCHPnzvFMO9lv8+BxgMBhe9aYcl1DECoRHhyrg+HPLgbnRtzdZQmQchGDlTQQY5est14VvEPYqUrUEGDSlLJTdJ2UwRjma49/ta1w3ERDQ0UyIX9LwbD7OHF5e3gw1RYoBJ7x/dEBZUciSZJA2SShL5NovB/P5t3/WlXq3Ayy7trVcb4++vj3RXWAV/dqsGoHh6I2pFBCFDK3creZMo005vhBtDTc8zYiz+CVHJk5ekQ4eUuWo5mcfd0rORPmfP8hmT3FwBA/xY1MfYP11tOp/ZrhMe+3o6XuyeYpR+uWTEQq1/rgqu3c1E5SIVrWbleCUAClDLkaIqWWt6XoisFol7VEGRrdDjnoUQBBobr/HERg6c1YwGzRlGB5tJJnBQ1cBsV0EA6g8flG1BFugU18lBVuoVcKFEpMgqxLfvgzqop0EKGCZphWK5vh0jpFu6WHUW0dNU6CcnaSUDjRz36XqjkMAChEqH1UgCy56znxhVYdtUoHQSCkY22sqOIla4gHUEIQxbule9CK5lrMyK7a7muLU6J6jilr45jIhrXRSg0kCMPSuggt5oAq0Z4IDLtzOBeFlUKyv/yNc3EpJBJNrv7qC0GbD/TIR51q4bg/37ej/Tswm/t74a0hlwmYfVrXSCh6F2HzFtADAuLtCm77LWA/PZ8O8xek4zRfep5dodO/K9zLcxe6/yz4IlghBOGOmbrGJsmLaigkuOOk8xdDaqHImliL2Prx8z+jTF/21l8N7QVACAyJD9DnKOWuLpVg92tul1fD26FISYZ7N7sXa9UtKzXrFgB/7zSCZczctD+vfVF3s72sfeg3Qx3Xi9hvyjsundExOEd7TCrUmMa34UX2tdGg7/iYTrofJJ2aEEJgRq4htay4/i43R1AmwdUbwYorDMEkn9iAEIlQu+lAMSTu/l0vfPJDL1LoK50Aa8pFiNKuoEIKR2ZIhB3mWQE8aRkfQ1kQ4WvtA8gWrqKSOkWPtM+ZJxlt6j6NKqG77YWfS4OT5nxSGO3nrS66u376ttcHmxjdvAPBjRB4slrqBSkRtVQtVUgIZNJ6Fw3EkEquVkAYhg74Gj+B1fun83GkZRQC4ip303m72hYPQxzh7QqsX3ZE6iS49mO8TbPQUc3qSq5DHk6PSoHud5iwwDEmukRNgQH9vRrVgNta1VC82jbY5gMTD8Hj7WOwWOtrceD2fvbHpzUCxUsJm5cO6oL9py5geYxFdH7480O9+1M/xY1jQHIhje6otusjcXaXkkxtB4VtctkVFgA/v6/jogILpkbfvPPkq06SriISLzYrxtwd2yJ1IFKFgMQKhFe64LlQf9dtM7q4Q3BuIMIKR0dZf/haflq1JXZH9xflExd6aIC1ulbYKOuKTbqmyEXSuggQwju4GYJZYUyVdybsl//19blsRGODGoT4/EApFZkEJ416e9uqm7VwsDNEGg82ioaj7Zynr1FU4TPjyuvMOuCVVCn4kxqZ4vpDY2/jAfpVq8KvtuaYjUruqPqLXmhPWatPo6x9zkeyG2qNF73vOnNXvWQlpGLR+1k5pJJ+UGIJ9g7rS3TIgNAnSrBqFMlv1Xkjxfb4/XfDiDFwTxWBrvGdcfRy+YT5JqeU4FKOWpFBFnNiXXi3Xvx4sK9DucOckfTmmE4cCG9SK8t6sf/7fvrl1jwAdjOKAcA3w1phWfn7zH+/iSDj1KLAQiViOS0khtb4P8EZBBQQQM59KgsZeBZ+Up0kB3GOVEFgchDO7n9lK2uWqFrAxkEJABLdR2wR18P1xCKIOTgDtQ2c6ub8kbwAbjWL/7l7gnYdvIa9py9aba8btVg3G0yTqKoahXMXr34+XYY8JX9iS2d6d+iJpbsuwAgv7vI+te72i0brFZgz/geZl2xXKU1GTn9wYAmbr/eHluD0Oc83hzPzNuN0X1cv9F2xE9iDjMdEyKw5IV2iKsc5LxwgcY1wzD/mTbOC5qwNdlpeWfaylcxSOW1VjB7g9+daRFTEXMeb4YHP0u0W6ZGeCC2jO4GmUyyCkDM6iDlz6XS6f0NZstVChnmDmmNlYcu4cWF+4zLq4aqcSXDOl28MwNaRRc5ALFshW0VW9HqOmzzdSWct95wCVz2Ugf0+7zwb9G9vvtz6JB/YgBCJcLWnBtliWGW7jjpMprITuNu2THcL9uBQCnP4evqINXlfSTqGmKm9nEcFLXgTtOHs3SznRIisCW5ZGZVf6RFDav0zK48FR7Vsy4ebVnT6ot6zuPNPVIvw9wUreIqmaXHddW2t+7BjtP5M38bApB+zao7eRWK/ISwZWwlrD16BeEVlC61mLjK1hiQRjXCsHNcd4+lpPWXVg9LLWMrOVzvid5TCVWDsTPF8/PdkPukouVpAADEVnIcqC54to0xiYPVfi1+j65UAbGVK+Ds9fyB3l8PbmlcZzknzB8vdkCHYozHKArLj+tDzWsgPiIIv++94PB1Hm44tWIYk1mvmnUX4Dd61cWs1Sc8+nCGvI8BCJV6Gq1nM5AEIgcqaKGADgPkmxEjpaG/fDMCJA0yRQAqIBcyyXNdLb7R3o8Fuh64IUJLdK4Kg0FtYkosAPloYDMsP3gJeSZ/E1cH99uaI6F+lGdaaWY92tT4s62Zuh0FJWtHdUH18EA80iK/28iUfg2xaOc54+zQJeH9AU0wLzEF/Vu6nhnMpTEgJl2wTLteeXI+DPMbE//ukuTpeUDe7H0XglQKPOhCcFpe+CoctRUIr3mts0uvDaugxJ8vtsfl9By8YNJC0TquIjolRKJWZOEg9hrh9q/Zhhq81K0ORi/OTzHbu2E1szIDW9XEb3su2NzWxje6oqsLY0gebl4DE4qY8cvyOPVuWA37XGkBKeE/rKELlq2/40vd6mBQmxhULsEuYFTyGIBQqTf8xz3OC1lQQIswZOEB+XY0lp1Gf/lWl15nlfbPge+1fbBXXxc6yJAqKiNZ1DBmivKlkh4n+/tz7XD2xh28XJBy1rQvb8qM+xA/dqXd19aPCsXRS0Ubi1MjPBAXC7Jt9ahfFWuPXjGuizXpeqOy0SXq/ib2AxDLQchPt4vD0+3iilRHV1UKUmFUL/eyRbk0BsSkkKdvvkt6u6VBWKASY+0kJSivfHU6mO42WK3AwYm97LZa2GI5mackAb8/396qXJ0qwQgJUBR2v7OxC3vjGQDHD1niIoLQNDocB87fslvm3kbVjJNDFoXlIYkMUSPX0eQ5RiXdBSv/mNk6fyRJYvBRBjAAKcc+XZeMW9n+NWuxpwTjDqpKN9FTthfR0lU8qVgHnZCghRxqyf1+2ldEOKpKt/CfPg5nRDXs19dGuJSFzbom2CvqQu9kvIU/0QuBwW1jsWBH0WeB71CnMhJPXre5rml0OJpGhxsDkMiQwnkYJEnCXdVCcMxOv+l+zaobA5CWsYU3AK5MmtWgeqgxAPn26ZZ4d8VRm5mPTFtAWsSE47+LGehQJwItYytirwtP/koz/26P8D7Te5tyHDeVqJIeK2CP6ZPzYLXCreDDFkc3+Ylv3YOvN53Cg00tBtAX7NLRQ5+G1cPMfh/QsiYWm3R/qhURZAxAZj3aFE1qhqHX7MJMXYa3aWuwuyts/X3yXOhVYPp5+e25dhj4deHYuiUvtEP/L4s21q5trUrYcfqGsfWXH8uyiwFIOfb73gsen4DIW1TQIEq6jhrSNUThBqpKN1BNuoko6QZqSmmobyNVrVwSkMM8+LghgnFKVEecdAWRUjrmau/Fal0rZCIQYVIWjupjkI4gpwO6/dWucd3RZvo6q+WmKWIN9k/oieZT17i0XbXCuhUnPsK83/SXT7ZAerYGDzWvgd0pN9AxIQKA4y/j4R3jUamCCqnp2RjctjC7Sbe7qjit09v31cfeszfxTIc4SJJkd7I+0wBk8fPtkavVI1AlR92qITYDEFvHyh+58kVdNZRPDU0x6Ci7TP+2nvg7O0rHHBqgxJu985M4XL1dOP7RcHPvKPBvE18JXzzZwpggwbIbVue6Efhzf/64ugEOumQWNcAyzVI4slsdAOYByIGJvdB08mqr15nuzXJyUWfjrRxZNLwtbudoEVYhP1uZaSDZqIZ3EqeQd5SOb1YqEYPbxiLx1DVsPH7V11WxEogc1JCuoaZ0reD/q6hR8HMN6Rqq4JbL4zCuiVBESPlP1RfrOuOoPhpVpFv4UdsLFxEBu7dupfxx8Q9DWxsnxQOAxjXCkKfVo2eDqja7OQW50YxvmU1o7tOtzFosAOBekwGWP/+vrfHnPo2q4fgV2y0gCrkMA1u7P+j648eaIS4iCHvH9zB2AbL35NV08j+ZTEKgKj+YsrxJ2TO+BwAUKYuVL7hyukaFBeL7oa1spiItCf46LcYjzWtg37mb6GGSUcdXT+rLOp91wfLQfhc82waz15zAe/2LPuDZ2efAdDC6ZXeth5rVQKBSjsY1w43LglRyZFlM2KgwCUDcac01DUCGdogDAPRsUBWbTlxFVFgAwgJtXytMAwOPjiGTScbgI3/bhes+fLSZx/ZDvscApBwb0bkWwgKVPghABEKRZTe4qCldRSXJeRrfbKHCRRGBS6ISLotKuIxKuCIq4qoIhxw67NA3wE0El9rWi+LqdlcVsy+zSQ82tAoSDB5oWt3m4Gx7XumRgO8T87s3RYao0aOB66kRX+pWByqFrFizBRu6cfVsUBXfPl2Y1tOVL8Ih7eMwb9sZqyxWlq8syRz3vnTPXUxj+dFjzSCEMDtfaldxPUUv+T/TgLI4t8edEiLRKSHS9f3aaHkpzlxIkiShTyPzbFkrXu5kNTjdNKlEp4QItIgJx7dbnE8Aa/rgydDNbFCbGFQPD0BTk6DHkun3hafCj/a1rVOum35GRWl/KkhmGICUcyXzdEogHJmIlq4iWkozCzAMQUeIlO10KxmiAi6KCFwQEbggInFRRBj/XRCRuIEQsIeoY6YXb3vpcP94sT1axNgOTOwJUSvwy//aYtaq45jSr5Fbr1UpZHipWx18tv4ksjU6Y7O/O+YNa4O/D6Q6bC2x1yOhamgADkzsZdWy4a/pY13lj7X35+5rhs/Ge480xpbkaxjSPs63FSKPMv38K914uFIS3LltvrtWZWD9SYdl4iKsg2XTFpD/da6F2WtOuLS/AKUcy/+vIySpcHZ0uUxy+qCiQ50Il7bvqj3je6BiBdvd3JrWDMP1rDzUNsk+RqWf/347lCK7d+/GxIkTsW3bNmg0GjRu3BijRo3CwIEDfV01p4p606VGHmoWBBjR0lXEmPxfU0pDqAsBxjURagwwLpoEGIZg4zas07L6u37NqmNZkutzfXhTaGDhx930z24r+OjZoCrWHMnPIvX5Ey3w0qJ9ZutlMglta1XG4hess8K46ujUPriUno1qoQHOC1uoFhaAEZ1rOS7k4Ny21a3K9IZlSTHeFwFTH2qEy+nZuKua//fZfrxNDB5vE+PrapRZvgqMFSafcUepcr3CjRaQDnUi8NOzd7vcImdo6TF9vxVU7t3aNaoR5ryQiWEd4izSeLv1cpsctTj/+WIHCJi38lDpxwCkmDZs2IDevXsjICAAjz/+OEJCQrBkyRI89thjOH/+PF5//XVfV9Ehex9oCXpUxc3C4EKWZhZsVJOc9y+9IsJxXlQpCDDyg4wLJq0YOSh7XVxmD2yG6Q83RsOJq0p0PzGVKhgTCPw9siMe+Cw/jfA9d1VBZLAazWLCjWXnPN4MqbdyzG4GnfV3b1wjzBiAWN6rV1B5Lo1wVFjJ3Ri4+1Vl2lpkr6saucY0gQCVc7xnhAtzsZoxJOxwR0KVYLvjPpb/X0fsOH0d+8/dcnsSVlvkFhFHSY+fKm4GM/JPDECKQavVYsSIEZDJZNi8eTOaNWsGAHjnnXfQpk0bjBs3DgMGDEBsrJ9+GeekIzz9CHrLdpm1YOR3m7oGteQ4RW+mCMB5UQXnRBWcF5EF/+f/fkFEIhf2s4aUVTKZ5NJg7pfvqYNPnDSzO6I1ydPeuGYYBrWJwYWbdzD36VZWF+t+zWpYvtwp0000iy68GW8QFYo/XiwdrQP3N4nCnHXJqGWju4ItpbwHFpFf4uB+x/OAeMrY++pDkoCHm1tnympUIwyNaoQZU6MXl2XXSl47qSgYgBTD+vXrcerUKQwbNswYfABAWFgYxo0bh6FDh2L+/Pl45513fFdJR+Y0Rdfsm+hqJ07QChkuighjcHGhILgwBBw3OQajyEbek4A6VUPwV1KqccK8r55qied/2uvS6+tWC0FqeuGkiDMeaezR+lVQKXBwUi/cztGiWlhhF6ngAIWxn7C3PXl3DBbuPIeHm7sWUNWtGoIdY7ujYpBrGZ9K+xgQotKuZsWS6Xbr6492iYYfBe8tLFCJGY8UZuqyFfN46jg82zHeMxuico0BSDFs3LgRANCrVy+rdb179wYAbNq0yZtVck/FOOTqJRzJrmTVgnFeVMElUcnns3aXVSqFDA82rY4Hm1ZH3FsrANj+coitXAFnr99BiFqB2lWCMbxTPDolRGLaiiPF2r9l3naDt++rj/XH0jCoTQwCVXKvpWt1xcQHGuL+xlFo4Ub3KNPgyRmGH0Se58pN74Jn22Dd0TQMK0gD62m25i0qKbZu/P01HXVRhVh8L/g6wKPSiQFIMSQnJwMAEhISrNZVq1YNwcHBxjJ+6ZnV2HDsOp7/aZ/zslRiGtcIw+HUdLSzkYJw05vdcPZ6FqLCAs3SHr7Rqx6OXMrAE22K1r1v0N0xOHgxHV3rmU/wN6JzLZuDu4PVCmTmatGlruvpKD1NpZChvYczr5hiP2Mi33A31a2rpj/cGN9uOY2JDzTw+Lbd4YsbdFv75BWO/AkDkGJIT08HkN/lypbQ0FBjGVtyc3ORm1s4a2pGhvXkcCVKoWK3Ex+wnH9i6UsdoNHpEaCUY96w1kg8eQ1hgUpj7vfYytZjGKqEBmD5/3Uqch3UCjk+GtjM5fKrX+uM7aeu44Gm1Z0XLqX4USDyPF9+rJ64OwZP3O3dDGe2riMDWtbE/G1n0O2uKtYri7s/d8qW0EWuqNvtWCcCW09e83BtqLRgAOJDM2bMwOTJk31aBwYgRVM1VI0rGbkIUsnx1eCWGPzdLkzo6/wp25N3x+Ddh8znzZDLJMhl+V0EutarYtUq4Q+qhweif0vrwY1lCQfLEpEnGa4oIQFKbHija4kEAP7Qu4tXTiqK8jlFtIcYWj7stXJkZGTYbR0BgLFjxyI9Pd347/z58yVST0eYV9u+bvXsdwlY+lIHPNU2BstGdkCnhEicee9+lwbmBasVJfYUioqHHwUiz2saHY5gtQJ3VQvxdVV8ytvXfZuD0EtoX0V9a5zZvHxjAFIMhrEftsZ5XL58GZmZmTbHhxio1WqEhoaa/fO28n4vXDnIfqrgVnGV7K6LCgvEuw81Rp0q7n2p8nLrvwxdNfo0rObjmhCVHQFKOfZN6IkVLxe9y2hp4u0B5259hZfQ931RW4/L2uB8cg8DkGLo0qULAGD16tVW61atWmVWxl+V9y5YHz/ezO664Z08n2rQG/ngqWhqVqyAo1P64MunWvi6KkRlikohK5et7f52tWc3U/InDECKoXv37qhVqxYWLVqEpKQk4/L09HRMnz4dKpUKTz/9tO8q6ILy+KVgylE8YJm68aOBTQEAjWoUvaXK3RlxybsCVXJ2kSOiMqlamLpIr2tcw35XcoA9KahoOAi9GBQKBebOnYvevXujc+fOePzxxxESEoIlS5bg7NmzmDVrFuLi4nxdTYd43bBWKyIIo/vcBSB/voxrmXkAgEda1MQDTatDXoyrLRtAiIjIU+pHuf5A7MWudXDxZjbuaxzl1j5+e64d6r/zr931WidP1iY90ACT/i7e3FVU9rAFpJi6deuGrVu3okOHDvj111/x5ZdfomrVqvjll1/w+uuv+7p6zpXzCMSyC9r3Q1th/Rtd0adR/jiArwe3QkylCvhmcEsAgFIuK9Z8ERx0R0RExfXXyA4Y1bOuW12Fg9QKfPx4c/Ryc5xboErucJJIrU7v8PVPt7P92goqTnRcnrEFxAPatGmDf/75x9fVKJKy3Cf07vhK2Jlyw2GZQFV+32RdwRMcy8mwWsZWxObR3TxWJ7aAEBGVDyX57dqkZjia1AwvwT2YqxoaYHddTKUKDl9rr9PAuPvq41J6DobYCVCobGMLCJVZHz3WDNUcXDSB/Awtm0d3Q5e6kfh6cEso5Z7/SLx9X32Pb5PIStl9lkBEPja4bSzaxFXC+Putv88kSXI4D5a9cXVRYYFY8XInDGwd7bF6UunBAKScK8uDx2qEB+ILJxmNIkPUqBEeiPnPtEHvEki/2qdhNYzoXMv4e71yngufShBb14iohASpFfjt+XYY3qmW88JELmAXrHKuDMcfAMy7PLWrVRnbT18HAMx9uhWyNTpUCXHcQlJUr/Woi7lbT2N0n3oAgL9HdsSO09cxsBWf9BARUdlS1u8lyPMYgJBX1Y4MwqmrWV7cY2EEolIUNvj1aFC1RPf6So8EjLynjjHNceOaYWhc03EqQ6Ji4R0Akc+FBSqNP4cEKB2UpLLcA4OcYxescs6bcx60iq3o9dlwTbMDvvNAA4QFKvFGr7pe2Xd5n2OFiKi8USlk2DO+B/aM72H20IuIzPHTUc558wmEQP6g7/iIIJfKz36safH3aRKA1I4Mxv4JPTHynoRib5fI73AMCJFfiAhWIyK4aJP+EZUXDEDKOW8+ozdkz9A4yRluUCnI/gV885uupcYVFnlvizOHBxERUWng6+cRNcIDfVwD8ncMQMjjdoztjmc6xGNMwWziAHDi3XvRPKYiAECrK96lsX3tyoipbDvveJDFxEbNYsJRIzwQbWtVKtY+ifweY2si8hMfP97M11UgP8cApJwriS5Y1cIC8M4DDcy6Wpn2ha0a5lrmKWdVe39AEzzbMR4hAYW5FAJV5nkV1Ao5Nr3ZFT+PaOvSPomIiKh4mkeHo3GNMPRtEgUA+GBAEwQq5Xi5e2EXaA5CL98YgJR77l8B5g1rXaw9fvJ4M3SrF+m0nMJJd6mBraIxoW8Dp+UUcplXB9sTERGVZwq5DH+N7IDPnsifi+vRVtH4b3JvdKwT4eOakb9gAEJuq+pkdnGDKDstHbGVg/DDsDaYN6y1w36i9sZrWMYSptmmHmxaHTIJ6H5XFZfqSERERMVj6xmf5YM/ZoYkU5wHpJwrSsOAo9e0iSsca9E0OhxT+zVEdCXb4zW61quCxLfuwSNfJGLfuVtW+3DWslFYtrBc5WAVjk7tA5WcsTUREZG/kjhwrVxjAEJuc3TRmPZwI7PfB7eLc749OxGN3RYQi/3LTV5fOzIYaoXc8iVERERE5Cf4mLicaxAV6lb5HvWrOGwBCVB65uZfgv0WkJe61TH73bRZt3fDkp3hnIiIiIqPQzPLNwYg5Zy7AcNHjzUrmYrYYKu/aK2IILSrXdlsmWm2LQ42JyIi8k+Wc3NR+cUAhNwSGqCEp68f9kIGhcz69KwYpLJa9sGjTXB/4yj8/nw7z1aMiIiIiDyOY0DIZfc3jnJaxpOD2quGWs+ELrdROCosEJ8/2cL9HRMREZFPsL9C+cYAhFyyf0JPhFdQAgAE7DeBeKoL1OzHmiG8ggpLXmgPtUKGvp9uBQDYaBQhIiIiolKEAQi5JLyC0qXgwlNPNPo1qwEAaBlb0Wy5rW5ZRERE5DsRwdY9FpzhmM3yjQEIucTVC0VJX0/speYlKu/4ySAiA2+P9b6vcRR2n7lh9dCQyB4GIGTlnruqoGbFQEx8oCFmrT6OigVdrwwcXdiKMrGQO6+R8y6LyCbmliEiX5HLJEzp18h5QaICDEDIygNNo/Bw85oAgDF97ir5HboRVMjZBYuIiKjU4/PE8o13c+Q2hy0gJXRF6VovEgAwrENcyeyAiIiIiLyCLSBkpSjdqApfWzK+G9IaV2/nolpYQAntgah049NEIjLg+G7ydwxAyG2maXj/eLE9ZJKEhz5PzF9QlHlATH5e/3oXVKxgPdmgXCYx+CBygGNAiMigNEw4ziCpfGMXLCqWxjXCEKyWG38v0iB0k5fUigy2Ods5EREREZUNDEDIbaZPVmSSBHb+IPI9fgqJqDThPCDlGwMQKhYJ+d2jjL/zekLkE6WgxwURlXO8TpEBAxCy4k4QIUlASEDhUCJ9ETqeFmfQOxERERGVLgxAyG2mMYYkSQgNUNovTERewTCeiIhKC2bBItSPCsXRSxlFfr1KIcOUfg1xO0eLKiHuZ6pity0iIiKi8oMBCOGX/7XF7pQbGP7jHpfK16kSDACooCrMfvV0u7iSqBoRERERlTEMQAhhgUr0aFDV+LuzzBSBKjn+m9wbCplnmi7YAkJEROQ5aiV72JN/YwBCRRKs5qlDRETkj57vXBubT1xFv2bVfV0VIpt4F0lWvN0gEW5j5nMiIiIqmrAKSqx4uZOvq0FkFwMQsuKprlWumti3Aa5n5mJw2ziv7peIiIi8pwiZ+qmMYgBCRiM6xSPp/C10r1/VeWEPqhIagF/+186r+yQiIiIi32AAQkZv39/A11UgIiKiMopJZ8iAaRKIiIiIqMSxCxYZMAAhIiIiIiKvYQBCRERERCWOXbDIgAEIEREREZU4dsEiAwYgRERERETkNQxAiIiIiIjIaxiAEBERERGR1zAAISIqAySO7iQiolKCAQgRURkgOLqTiPycAK9TlI8BCBEREREReQ0DECKiMoBdsIjI30ngdYryMQAhIiIiohLHLlhkwACEiKgM4BgQIiIqLRiAEBEREVGJYxcsMmAAQkRUBnAMCBH5O3bBIgMGIEREZQC7YBERUWnBAISIiIiIiLyGAQgRURnALlhERFRaMAAhIiIiIiKvYQBCRERERCWuUpDK11UgP6HwdQWIiIiIqOy7q1oo3r6vPqqFBfi6KuRjDECIiIiIyCtGdK7l6yqQH2AXLCIiIiIi8hoGIERERERE5DUMQIiIiIiIyGsYgBARERERkdcwACEiKgM4DyEREZUWDECIiMoAIXxdAyIiItcwACEiIiIiIq9hAEJERERERF7DAISIiIiIiLyGAUiBpKQkjBs3Dr1790ZkZCQkSULXrl2dvm7hwoVo06YNgoKCULFiRfTt2xf79u0r+QoTEREREZVCDEAKLF26FDNmzMDGjRtRrVo1l14zbdo0PPXUU0hLS8Pzzz+PRx99FJs3b0b79u2RmJhYwjUmIiIiIip9FL6ugL949NFH8eCDD6Jx48a4fv06oqKiHJZPTk7GpEmTULduXezatQthYWEAgBdffBFt27bFiBEj8N9//0EmY4xHRCWPaXiJiKi04N1xgYYNG6JFixZQKpUulf/hhx+g1Wrx9ttvG4MPAGjWrBkGDRqEo0ePYuvWrSVVXSIiM0zDS0REpQUDkCLauHEjAKBXr15W63r37g0A2LRpkzerRERERETk9xiAFFFycjKCg4NtjhdJSEgwliEi8gZ2wSIiotKCY0CKKD09HVWqVLG5LjQ01FjGkdzcXOTm5hp/z8jI8FwFiYiIiIj8UJkKQF5//XWzG3pnXnnlFWNrhS/MmDEDkydP9tn+iYiIiIi8rUwFIF9//TWysrJcLj9gwIAiByBhYWF2WzgMLRmmg9NtGTt2LEaNGmX2uujo6CLVh4iIiIioNChTAUhmZqbX9pWQkIDt27fj8uXLVuNADGM/nAU3arUaarW6xOpIRERERORvOAi9iLp06QIAWL16tdW6VatWmZUhIiIiIqJ8DECKaNiwYVAoFJg2bZpZV6ykpCT8/PPPqF+/Pjp27OjDGhJRefLt060QGqDAh4829XVViIiIHCpTXbCK49ixY3jvvfcAANnZ2cZlQ4cONZaZN2+e8ee6deti0qRJGD9+PJo2bYr+/fvj9u3b+OWXXwAA3377LWdBJyKvaR1XCUnv9IJMxny8RETk3yQhOH8ukD+xYLdu3RyWsXWoFi5ciI8//hiHDx+GSqVChw4dMHXqVLRo0cLtOmRkZBgHtxtS+RIRERGR/+D9WvExAPEjPKGJiIiI/Bvv14qPfYSIiIiIiMhrGIAQEREREZHXMAAhIiIiIiKvYQBCRERERERewwCEiIiIiIi8hgEIERERERF5DQMQIiIiIiLyGgYgRERERETkNQxAiIiIiIjIaxS+rgAVMkxKn5GR4eOaEBEREZEthvs0w30buY8BiB+5ffs2ACA6OtrHNSEiIiIiR27fvo2wsDBfV6NUkgTDN7+h1+uRmpqKkJAQSJJU4vvLyMhAdHQ0zp8/j9DQ0BLfX2nEY+Qcj5FzPEau4XFyjsfIOR4j53iMnHN0jIQQuH37NqpXrw6ZjKMZioItIH5EJpOhZs2aXt9vaGgoL0BO8Bg5x2PkHI+Ra3icnOMxco7HyDkeI+fsHSO2fBQPwzYiIiIiIvIaBiBEREREROQ1DEDKMbVajYkTJ0KtVvu6Kn6Lx8g5HiPneIxcw+PkHI+RczxGzvEYOcdjVLI4CJ2IiIiIiLyGLSBEREREROQ1DECIiIiIiMhrGIAQEREREZHXMAAhIiIiIiKvYQBSDu3evRv33XcfwsPDERQUhLZt2+K3337zdbVKTFxcHCRJsvmva9euVuVzc3MxZcoUJCQkICAgANWrV8f//vc/pKWl2d3HwoUL0aZNGwQFBaFixYro27cv9u3bV4Lvqmh++uknPPfcc2jVqhXUajUkScK8efPsls/IyMCoUaMQGxsLtVqNuLg4vPnmm8jMzLRZXq/X49NPP0Xjxo0RGBiIyMhIDBo0CKdPn7a7j1WrVqFLly4ICQlBaGgounXrhnXr1hX3rRaZO8do0qRJds8tSZJw5swZm69z9z2fOHECAwcOREREBAIDA9G0aVN8+eWX8EUOkYsXL+Ljjz9Gr169EBMTA5VKhWrVqqF///7YuXOnzdeUt/PI3WNUHs8jAMjJycGoUaPQuXNnVK9eHQEBAahWrRo6dOiAH374ARqNxuo15e1ccvcYlddzydLMmTON73nHjh1W68vbeeSXBJUr69evF0qlUoSEhIgRI0aIUaNGidjYWAFAzJo1y9fVKxGxsbEiLCxMTJw40erfDz/8YFZWp9OJ3r17CwCibdu2YsyYMeKRRx4RkiSJWrVqibS0NKvtv/vuuwKAiI2NFaNGjRIjRowQISEhQq1Wi61bt3rpXbrG8LeOiIgw/mx5DAwyMzNFs2bNBADRq1cvMWbMGNGrVy8BQLRu3VpkZ2dbvWb48OECgGjYsKEYPXq0eOqpp4RKpRKVKlUSJ06csCq/YMECAUBERkaKkSNHipEjR4rIyEghSZL4/fffPf32XeLOMZo4caIAIIYMGWLz/Lp586bVa9x9z4cPHxZhYWFCpVKJp556SowePVo0bNhQABAjR4708Lt3bsyYMQKAqF27tnj22WfFW2+9Jfr37y/kcrmQyWTil19+MStfHs8jd49ReTyPhBDi6tWrIiAgQHTu3FkMHz5cjB07Vjz//PPGz12vXr2ETqczli+P55K7x6i8nkumDh06JNRqtQgKChIAxPbt283Wl8fzyB8xAClHNBqNqF27tlCr1WL//v3G5bdu3RJ169YVKpVKnDlzxncVLCGxsbEiNjbWpbLff/+9ACAGDRok9Hq9cfmXX34pAIj//e9/ZuVPnDghFAqFqFu3rrh165Zx+f79+4VarRb169c3+3LwtTVr1hj/xjNmzHB4c/3OO+8IAGLMmDFmyw03V9OnTzdbvn79egFAdO7cWeTm5hqXr1y50nihN3Xjxg0RHh4uIiIixPnz543Lz58/LyIiIkRERITIyMgoztstEneOkeHLfsOGDS5tuyjvuXPnzgKAWLlypXFZbm6u6NSpkwAgtm3b5t4bLKYlS5aIjRs3Wi3fvHmzUCqVomLFiiInJ8e4vDyeR+4eo/J4HgmR/8DH9G9soNFoRNeuXQUAsXz5cuPy8nguuXuMyuu5ZJCXlydatGgh7r77bvHUU0/ZDEDK43nkjxiAlCOrVq0SAMSwYcOs1s2bN08AEJMnT/ZBzUqWOwFIu3btBACrQEyv14tatWqJoKAgcefOHePysWPHCgBi/vz5VtsaOnSoACA2bdpUrPqXFEc313q9XlSvXl0EBweLzMxMs3WZmZkiODhY1KpVy2z5oEGD7L5fwxfl2bNnjcu+/vpru+fcpEmT7B5Xb/J0AOLuez5+/LgAILp162ZVfuPGjXY/z75ieIq4e/duIQTPI1ssj5EQPI9smTNnjgAgPv74YyEEzyVbLI+REDyXJk6cKNRqtTh8+LAYMmSIVQDC88h/cAxIObJx40YAQK9evazW9e7dGwCwadMmb1bJa3JzczFv3jxMnz4dn332mc1+2Dk5Odi5cyfq1auH2NhYs3WSJKFnz57IysrCnj17jMvL6jFNTk5GamoqOnTogKCgILN1QUFB6NChA06fPo3z588bl2/cuNG4zpKtY1GWjt3mzZsxc+ZMfPDBB1i6dKndfsTuvmdH5Tt27IigoCC/OkZKpRIAoFAoAPA8ssXyGJnieZRPr9fj33//BQA0atQIAM8lS7aOkanyeC7t27cP06ZNw8SJE9GgQQObZXge+Q/rKyCVWcnJyQCAhIQEq3XVqlVDcHCwsUxZc/nyZQwbNsxsWevWrfHzzz+jdu3aAIBTp05Br9fbPD5A4XFLTk5Gp06djD8HBwejWrVqDsuXNo7OFcPyVatWITk5GdHR0cjKysKlS5fQqFEjyOVym+VNt+tsH6Xt2E2cONHs9/DwcMyZMwdPP/202XJ337Oj8nK5HPHx8Thy5Ai0Wq3NG1pvOnfuHNauXYuoqCg0btwYAM8jS7aOkanyeh7l5eVh+vTpEELg+vXrWLduHY4dO4Zhw4ahe/fuAHguuXKMTJW3cyk3NxdPP/00mjVrhtGjR9stV97PI3/CFpByJD09HQAQFhZmc31oaKixTFkybNgwrFu3DleuXEFWVhb279+PwYMHY/fu3ejevTtu374NwLXjY1rO8LM75UsLd49FUY+dvdeUlmPXtGlTfP/99zh9+jSys7ORkpKCTz/9FJIkYejQofjrr7/Myrv7nl05rnq93ngO+4pGo8HgwYORm5uLmTNnGr+oeR4VsneMAJ5HeXl5mDx5MqZMmYLPP/8cx48fxxtvvIFvvvnGWKa8n0uuHCOg/J5L77zzDpKTk/HDDz/YDBQMyvt55E/YAkJlnuWToGbNmuHHH38EACxYsADffvstRo0a5YuqUSn38MMPm/0eFxeHkSNHon79+ujZsyfGjx+PBx980Ee18w69Xo+hQ4di8+bNGDFiBAYPHuzrKvkdZ8eovJ9HwcHBEEJAr9cjNTUVf//9N8aNG4ft27dj5cqVxpu28szVY1Qez6Xt27dj1qxZmDRpks3uaOSf2AJSjhiicXuRd0ZGht0ovyx67rnnAACJiYkAXDs+puUMP7tTvrRw91gU9djZe01pPnYA0L17d9SuXRuHDh0yvhfA/ffsynGVJAkhISEeq7s79Ho9nnnmGSxatAhPPfUUvvrqK7P1PI+cHyNHyst5ZCCTyVCzZk288MIL+Oabb5CYmIhp06YB4Llk4OgYOVJWzyWtVoshQ4agSZMmeOutt5yW53nkPxiAlCOO+h5evnwZmZmZdvtFlkUREREAgKysLABArVq1IJPJ7PbNtNWvMyEhAZmZmbh8+bJL5UsLZ/1ULd9bUFAQoqKikJKSAp1O57S8s32U5mNnYDi/7ty5Y1zm7nt2VF6n0yElJQXx8fE+6bev1+sxbNgwzJ8/H4MGDcK8efMgk5l/pZT388iVY+RMWT+P7DEM4DUM6C3v55ItlsfImbJ4LmVmZiI5ORlJSUlQqVRmky7Onz8fANCuXTtIkoSlS5fyPPIjDEDKkS5dugAAVq9ebbVu1apVZmXKA0MmrLi4OABAYGAg2rRpg+PHj+Ps2bNmZYUQWLNmDYKCgtCqVSvj8rJ6TBMSElC9enUkJiYaAzSDrKwsJCYmIj4+HtHR0cblXbp0Ma6zZDgWnTt3NisPlL1jB+Qfo8OHDyMoKMj4pQ+4/54dld+6dSuysrJ8cowMN9Y//vgjHnvsMSxYsMDuAM3yeh65eowcKevnkSOpqakACrOGledzyR7LY+RIWT2X1Go1nn32WZv/DDf5Dz74IJ599lnExcXxPPInPk0CTF6l0WhErVq1HE5EmJKS4rP6lYSjR4+KrKwsm8urVatmldvb3YkIjx8/XqomIjTlDxMRhoWF+fVkTY6OUUZGhjh+/LjV8jt37hjzxlvmwy/Ke3Y26VdiYmIx36V7dDqdMb/+o48+KjQajcPy5fE8cucYldfzSIj8GbVtXZ+zsrJEnz59BAAxbdo04/LyeC65c4zK87lki615QIQon+eRP2IAUs6sX79eKJVKERISIkaMGCFGjRolYmNjBQAxa9YsX1fP4yZOnChCQkLE/fffL1588UXx5ptvin79+gmlUikAiLFjx5qV1+l0onfv3gKAaNu2rRgzZozo37+/kCRJxMfHi7S0NKt9vPvuuwKAiI2NFaNGjRIjRowQISEhQq1Wi61bt3rrrbrk22+/FUOGDBFDhgwRLVq0EABEhw4djMu+/fZbY9nMzEzRtGlT4wX2rbfeMk6i1rp1a7MJGQ2GDx8uAIiGDRuK0aNHi8GDBwuVSiUqVapk84txwYIFAoCIjIwUI0eOFCNHjhSRkZFCkiTx22+/leixsMfVY5SSkiIkSRJt2rQRQ4YMEWPGjBFDhw4VNWvWFABE48aNxbVr16y27+57/u+//0RYWJhQqVRi8ODBYvTo0aJhw4YCgBg5cmSJHw9LhonOgoODxdtvvy0mTpxo9c/0AUd5PI/cOUbl9TwSovD6fO+994oXXnhBjBkzRjz11FOicuXKAoDo1KmT2flRXs8lV49ReT6XbLEXgJTH88gfMQAph3bu3Cn69OkjQkNDRWBgoGjTpo345ZdffF2tErFx40YxcOBAkZCQIEJDQ4VCoRDVqlUT/fr1E6tWrbL5mpycHDFp0iRRu3ZtoVKpRLVq1cTw4cPF5cuX7e7np59+Eq1atRKBgYEiLCxM3HfffWLv3r0l9baKzHBBtvdvyJAhZuVv3bolXn31VREdHS2USqWIiYkRr7/+ut2nNzqdTsyZM0c0bNhQqNVqUblyZfHYY4+JkydP2q3TP//8Izp16iSCgoJEcHCw6NKli1izZo0n37ZbXD1G6enp4qWXXhKtW7cWkZGRQqFQiJCQENGmTRvx/vvv2/wSM3D3PR87dkwMGDBAVKpUSajVatG4cWPx+eefm7XSeYuz42Orxai8nUfuHKPyeh4JIcTu3bvFiBEjRMOGDUV4eLhQKBSicuXKolu3buLrr7+22XJU3s4ld45ReT6XbLEXgAhR/s4jfyQJIYSjLlpERERERESewkHoRERERETkNQxAiIiIiIjIaxiAEBERERGR1zAAISIiIiIir2EAQkREREREXsMAhIiIiIiIvIYBCBEREREReQ0DECIiIiIi8hoGIERERERE5DUMQIiIiIiIyGsYgBARERERkdcwACEiIiIiIq9hAEJERERERF7DAISIiIiIiLyGAQgREREREXkNAxAiIiIiIvIaBiBEREREROQ1DECIiIiIiMhr/h/IDoeNzfYrXQAAAABJRU5ErkJggg==",
1056
+ "text/html": [
1057
+ "\n",
1058
+ " <div style=\"display: inline-block;\">\n",
1059
+ " <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
1060
+ " Figure\n",
1061
+ " </div>\n",
1062
+ " <img src='' width=800.0/>\n",
1063
+ " </div>\n",
1064
+ " "
1065
+ ],
1066
+ "text/plain": [
1067
+ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
1068
+ ]
1069
+ },
1070
+ "metadata": {},
1071
+ "output_type": "display_data"
1072
+ }
1073
+ ],
1074
+ "source": [
1075
+ "recs = results.records\n",
1076
+ "idx = 0\n",
1077
+ "fig=plt.figure(1, figsize=(8,4), dpi= 100, facecolor='w', edgecolor='k')\n",
1078
+ "fline, = plt.plot(recs[idx].flux, label=f'flux')\n",
1079
+ "mline, = plt.plot(recs[idx].model, label=f'model')\n",
1080
+ "plt.legend(handles=[fline,mline])"
1081
+ ]
1082
+ },
1083
+ {
1084
+ "cell_type": "markdown",
1085
+ "metadata": {
1086
+ "toc-hr-collapsed": true
1087
+ },
1088
+ "source": [
1089
+ "## Plot FLUX for all records"
1090
+ ]
1091
+ },
1092
+ {
1093
+ "cell_type": "code",
1094
+ "execution_count": 22,
1095
+ "metadata": {
1096
+ "tags": []
1097
+ },
1098
+ "outputs": [
1099
+ {
1100
+ "name": "stdout",
1101
+ "output_type": "stream",
1102
+ "text": [
1103
+ "Ignoring unsupported feature: align_records\n"
1104
+ ]
1105
+ }
1106
+ ],
1107
+ "source": [
1108
+ "print('Ignoring unsupported feature: align_records')"
1109
+ ]
1110
+ },
1111
+ {
1112
+ "cell_type": "code",
1113
+ "execution_count": 23,
1114
+ "metadata": {
1115
+ "tags": []
1116
+ },
1117
+ "outputs": [],
1118
+ "source": [
1119
+ "#import sparcl.gather_2d\n",
1120
+ "#ar_dict, grid = sparcl.gather_2d.align_records(results.records)\n",
1121
+ "#modeldf = pd.DataFrame(data=ar_dict['flux'],columns=grid)\n",
1122
+ "#modeldf.transpose().plot(xlabel='Wavelength', ylabel='Flux', legend=False)"
1123
+ ]
1124
+ },
1125
+ {
1126
+ "cell_type": "markdown",
1127
+ "metadata": {},
1128
+ "source": [
1129
+ "# Authorization\n",
1130
+ "Your access to data is affected by how you login (or don't). Both `client.find` and `client.retrieve` allow you to request data (possibly implictly) from specific Datasets. Its possible for your combination of LOGIN and FIND (or RETIEVE) to work now, but fail later without you changing anything. For instance, if you don't login and ask for data from ALL Datasets at a time when all Datasets are public, your FIND will succeed. But if NOIRLab adds a new Dataset that is private, your same find will fail. To avoid the failure, you would have to explicitly request only the public Datasets, or to login as a user that is authorized to access the private Dataset.\n",
1131
+ "\n",
1132
+ "So summarize, there are three cases in which your FIND or RETRIEVE will be authorized:\n",
1133
+ "1. All Datasets are Public (does not matter what you login status is)\n",
1134
+ "2. You have explicitly requested only Public Datasets (does not matter what you login status is)\n",
1135
+ "3. You are logged in and are authorized to access all the Private Datasets you have (explicitly or implicitly) requested.\n",
1136
+ "\n",
1137
+ "You might be authorized to access one Dataset, but not another. So, you must be careful in case #3 above to explictly request the correct Private Dataset(s)."
1138
+ ]
1139
+ },
1140
+ {
1141
+ "cell_type": "markdown",
1142
+ "metadata": {},
1143
+ "source": [
1144
+ "## Logging in and logging out"
1145
+ ]
1146
+ },
1147
+ {
1148
+ "cell_type": "code",
1149
+ "execution_count": 24,
1150
+ "metadata": {
1151
+ "tags": []
1152
+ },
1153
+ "outputs": [],
1154
+ "source": [
1155
+ "if show_help:\n",
1156
+ " client.login?\n",
1157
+ " client.logout?"
1158
+ ]
1159
+ },
1160
+ {
1161
+ "cell_type": "code",
1162
+ "execution_count": 25,
1163
+ "metadata": {
1164
+ "tags": []
1165
+ },
1166
+ "outputs": [
1167
+ {
1168
+ "name": "stdout",
1169
+ "output_type": "stream",
1170
+ "text": [
1171
+ "Logged in successfully with email='test_user_1@noirlab.edu'\n"
1172
+ ]
1173
+ }
1174
+ ],
1175
+ "source": [
1176
+ "client.login(auth_user, usrpw)"
1177
+ ]
1178
+ },
1179
+ {
1180
+ "cell_type": "code",
1181
+ "execution_count": 26,
1182
+ "metadata": {
1183
+ "scrolled": true,
1184
+ "tags": []
1185
+ },
1186
+ "outputs": [
1187
+ {
1188
+ "data": {
1189
+ "text/plain": [
1190
+ "{'Loggedin_As': 'test_user_1@noirlab.edu',\n",
1191
+ " 'Authorized_Datasets': {'BOSS-DR16',\n",
1192
+ " 'DESI-EDR',\n",
1193
+ " 'SDSS-DR16',\n",
1194
+ " 'SDSS-DR17-test'}}"
1195
+ ]
1196
+ },
1197
+ "execution_count": 26,
1198
+ "metadata": {},
1199
+ "output_type": "execute_result"
1200
+ }
1201
+ ],
1202
+ "source": [
1203
+ "client.authorized"
1204
+ ]
1205
+ },
1206
+ {
1207
+ "cell_type": "code",
1208
+ "execution_count": 27,
1209
+ "metadata": {
1210
+ "tags": []
1211
+ },
1212
+ "outputs": [
1213
+ {
1214
+ "name": "stdout",
1215
+ "output_type": "stream",
1216
+ "text": [
1217
+ "Logged-out successfully. Previously logged-in with email test_user_1@noirlab.edu.\n"
1218
+ ]
1219
+ }
1220
+ ],
1221
+ "source": [
1222
+ "client.logout() # can also be done with client.login(None)"
1223
+ ]
1224
+ },
1225
+ {
1226
+ "cell_type": "code",
1227
+ "execution_count": 28,
1228
+ "metadata": {
1229
+ "tags": []
1230
+ },
1231
+ "outputs": [
1232
+ {
1233
+ "data": {
1234
+ "text/plain": [
1235
+ "{'Loggedin_As': 'Anonymous',\n",
1236
+ " 'Authorized_Datasets': {'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'}}"
1237
+ ]
1238
+ },
1239
+ "execution_count": 28,
1240
+ "metadata": {},
1241
+ "output_type": "execute_result"
1242
+ }
1243
+ ],
1244
+ "source": [
1245
+ "client.authorized"
1246
+ ]
1247
+ },
1248
+ {
1249
+ "cell_type": "markdown",
1250
+ "metadata": {},
1251
+ "source": [
1252
+ "## FIND"
1253
+ ]
1254
+ },
1255
+ {
1256
+ "cell_type": "code",
1257
+ "execution_count": 29,
1258
+ "metadata": {},
1259
+ "outputs": [],
1260
+ "source": [
1261
+ "out = ['sparcl_id', 'data_release']\n",
1262
+ "\n",
1263
+ "def pass_find(user, drs):\n",
1264
+ " client.login(user, usrpw)\n",
1265
+ " print(f'{client.authorized=}')\n",
1266
+ " try:\n",
1267
+ " if drs is None:\n",
1268
+ " found = client.find(outfields=out, limit=2)\n",
1269
+ " else:\n",
1270
+ " found = client.find(outfields=out, constraints=dict(data_release=drs), limit=2)\n",
1271
+ " print(f'\\nSUCCESS: {found.count=} records from FIND: {user=}; {drs=}')\n",
1272
+ " except Exception as err:\n",
1273
+ " raise Exception(f'\\nFAILED to get records from FIND: {user=}; {drs=}')\n",
1274
+ "\n",
1275
+ "def fail_find(user, drs):\n",
1276
+ " client.login(user, usrpw)\n",
1277
+ " print(f'{client.authorized=}')\n",
1278
+ "\n",
1279
+ " try:\n",
1280
+ " found = client.find(outfields=out, constraints=dict(data_release=drs), limit=2)\n",
1281
+ " raise Exception(f'\\nFAILED: Auth wrongly got {found.count} records in FIND: {user=}; {drs=}')\n",
1282
+ " except Exception as err:\n",
1283
+ " print(f'\\nSUCCESS: Find did not get records. \\n{err}')"
1284
+ ]
1285
+ },
1286
+ {
1287
+ "cell_type": "markdown",
1288
+ "metadata": {},
1289
+ "source": [
1290
+ "### Pass FIND as Authorized with Default DRs"
1291
+ ]
1292
+ },
1293
+ {
1294
+ "cell_type": "code",
1295
+ "execution_count": 30,
1296
+ "metadata": {
1297
+ "tags": []
1298
+ },
1299
+ "outputs": [
1300
+ {
1301
+ "name": "stdout",
1302
+ "output_type": "stream",
1303
+ "text": [
1304
+ "Logged in successfully with email='test_user_1@noirlab.edu'\n",
1305
+ "client.authorized={'Loggedin_As': 'test_user_1@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16', 'SDSS-DR17-test'}}\n",
1306
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': []}\n",
1307
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": []}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1308
+ "Record key counts: {'data_release': 2, 'sparcl_id': 2, '_dr': 2}\n",
1309
+ "\n",
1310
+ "SUCCESS: found.count=2 records from FIND: user='test_user_1@noirlab.edu'; drs=None\n"
1311
+ ]
1312
+ }
1313
+ ],
1314
+ "source": [
1315
+ "pass_find(auth_user, None)"
1316
+ ]
1317
+ },
1318
+ {
1319
+ "cell_type": "markdown",
1320
+ "metadata": {},
1321
+ "source": [
1322
+ "### Pass FIND as Authorized with Priv&Pub DRs"
1323
+ ]
1324
+ },
1325
+ {
1326
+ "cell_type": "code",
1327
+ "execution_count": 31,
1328
+ "metadata": {
1329
+ "scrolled": true,
1330
+ "tags": []
1331
+ },
1332
+ "outputs": [
1333
+ {
1334
+ "name": "stdout",
1335
+ "output_type": "stream",
1336
+ "text": [
1337
+ "Logged in successfully with email='test_user_1@noirlab.edu'\n",
1338
+ "client.authorized={'Loggedin_As': 'test_user_1@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16', 'SDSS-DR17-test'}}\n",
1339
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': [['data_release', 'BOSS-DR16', 'SDSS-DR17-test']]}\n",
1340
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": [[\"data_release\", \"BOSS-DR16\", \"SDSS-DR17-test\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1341
+ "Record key counts: {'data_release': 2, 'sparcl_id': 2, '_dr': 2}\n",
1342
+ "\n",
1343
+ "SUCCESS: found.count=2 records from FIND: user='test_user_1@noirlab.edu'; drs=['BOSS-DR16', 'SDSS-DR17-test']\n"
1344
+ ]
1345
+ }
1346
+ ],
1347
+ "source": [
1348
+ "pass_find(auth_user, [pub_dr,priv_dr])"
1349
+ ]
1350
+ },
1351
+ {
1352
+ "cell_type": "markdown",
1353
+ "metadata": {},
1354
+ "source": [
1355
+ "### Pass FIND as Unauthorized with Default DRs\n",
1356
+ "DRs default to only what are authorized for authenticated user."
1357
+ ]
1358
+ },
1359
+ {
1360
+ "cell_type": "code",
1361
+ "execution_count": 32,
1362
+ "metadata": {
1363
+ "tags": []
1364
+ },
1365
+ "outputs": [
1366
+ {
1367
+ "name": "stdout",
1368
+ "output_type": "stream",
1369
+ "text": [
1370
+ "Logged in successfully with email='test_user_2@noirlab.edu'\n",
1371
+ "client.authorized={'Loggedin_As': 'test_user_2@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1372
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': []}\n",
1373
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": []}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1374
+ "Record key counts: {'data_release': 2, 'sparcl_id': 2, '_dr': 2}\n",
1375
+ "\n",
1376
+ "SUCCESS: found.count=2 records from FIND: user='test_user_2@noirlab.edu'; drs=None\n"
1377
+ ]
1378
+ }
1379
+ ],
1380
+ "source": [
1381
+ "pass_find(unauth_user, None)"
1382
+ ]
1383
+ },
1384
+ {
1385
+ "cell_type": "markdown",
1386
+ "metadata": {},
1387
+ "source": [
1388
+ "### Fail FIND as Unauthorized with Priv&Pub DRs"
1389
+ ]
1390
+ },
1391
+ {
1392
+ "cell_type": "code",
1393
+ "execution_count": 33,
1394
+ "metadata": {
1395
+ "tags": []
1396
+ },
1397
+ "outputs": [
1398
+ {
1399
+ "name": "stdout",
1400
+ "output_type": "stream",
1401
+ "text": [
1402
+ "Logged in successfully with email='test_user_2@noirlab.edu'\n",
1403
+ "client.authorized={'Loggedin_As': 'test_user_2@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1404
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': [['data_release', 'BOSS-DR16', 'SDSS-DR17-test']]}\n",
1405
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": [[\"data_release\", \"BOSS-DR16\", \"SDSS-DR17-test\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1406
+ "Exception: response content=b'{\"errorMessage\": \"test_user_2@noirlab.edu is declined access to datasets [\\'SDSS-DR17-test\\']; drs_requested=[\\'BOSS-DR16\\', \\'SDSS-DR17-test\\'] my_auth=[\\'BOSS-DR16\\', \\'DESI-EDR\\', \\'SDSS-DR16\\']\", \"errorCode\": \"NODRACCESS\", \"statusCode\": 400, \"saved_tb\": \"NoneType: None\\\\n\"}'\n",
1407
+ "\n",
1408
+ "SUCCESS: Find did not get records. \n",
1409
+ "[UNKNOWN] test_user_2@noirlab.edu is declined access to datasets ['SDSS-DR17-test']; drs_requested=['BOSS-DR16', 'SDSS-DR17-test'] my_auth=['BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'] [NODRACCESS] None\n"
1410
+ ]
1411
+ }
1412
+ ],
1413
+ "source": [
1414
+ "fail_find(unauth_user, [pub_dr,priv_dr])"
1415
+ ]
1416
+ },
1417
+ {
1418
+ "cell_type": "markdown",
1419
+ "metadata": {},
1420
+ "source": [
1421
+ "### Pass FIND as Unknown with Default DRs\n",
1422
+ "DRs default to only what are authorized for authenticated user."
1423
+ ]
1424
+ },
1425
+ {
1426
+ "cell_type": "code",
1427
+ "execution_count": 34,
1428
+ "metadata": {
1429
+ "tags": []
1430
+ },
1431
+ "outputs": [
1432
+ {
1433
+ "name": "stdout",
1434
+ "output_type": "stream",
1435
+ "text": [
1436
+ "Logged in successfully with email='test_user_3@noirlab.edu'\n",
1437
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1438
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': []}\n",
1439
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": []}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1440
+ "Record key counts: {'data_release': 2, 'sparcl_id': 2, '_dr': 2}\n",
1441
+ "\n",
1442
+ "SUCCESS: found.count=2 records from FIND: user='test_user_3@noirlab.edu'; drs=None\n"
1443
+ ]
1444
+ }
1445
+ ],
1446
+ "source": [
1447
+ "pass_find(non_user, None)"
1448
+ ]
1449
+ },
1450
+ {
1451
+ "cell_type": "markdown",
1452
+ "metadata": {},
1453
+ "source": [
1454
+ "### Fail FIND as Unknown with Priv&Pub DRs"
1455
+ ]
1456
+ },
1457
+ {
1458
+ "cell_type": "code",
1459
+ "execution_count": 35,
1460
+ "metadata": {
1461
+ "tags": []
1462
+ },
1463
+ "outputs": [
1464
+ {
1465
+ "name": "stdout",
1466
+ "output_type": "stream",
1467
+ "text": [
1468
+ "Logged in successfully with email='test_user_3@noirlab.edu'\n",
1469
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1470
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': [['data_release', 'BOSS-DR16', 'SDSS-DR17-test']]}\n",
1471
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": [[\"data_release\", \"BOSS-DR16\", \"SDSS-DR17-test\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1472
+ "Exception: response content=b'{\"errorMessage\": \"ANONYMOUS is declined access to datasets [\\'SDSS-DR17-test\\']; drs_requested=[\\'BOSS-DR16\\', \\'SDSS-DR17-test\\'] my_auth=[\\'BOSS-DR16\\', \\'DESI-EDR\\', \\'SDSS-DR16\\']\", \"errorCode\": \"NODRACCESS\", \"statusCode\": 400, \"saved_tb\": \"NoneType: None\\\\n\"}'\n",
1473
+ "\n",
1474
+ "SUCCESS: Find did not get records. \n",
1475
+ "[UNKNOWN] ANONYMOUS is declined access to datasets ['SDSS-DR17-test']; drs_requested=['BOSS-DR16', 'SDSS-DR17-test'] my_auth=['BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'] [NODRACCESS] None\n"
1476
+ ]
1477
+ }
1478
+ ],
1479
+ "source": [
1480
+ "fail_find(non_user, [pub_dr,priv_dr])"
1481
+ ]
1482
+ },
1483
+ {
1484
+ "cell_type": "markdown",
1485
+ "metadata": {},
1486
+ "source": [
1487
+ "### Pass FIND as Anonymous with Default DR list \n",
1488
+ "DRs default to only what are authorized for authenticated user."
1489
+ ]
1490
+ },
1491
+ {
1492
+ "cell_type": "code",
1493
+ "execution_count": 36,
1494
+ "metadata": {
1495
+ "tags": []
1496
+ },
1497
+ "outputs": [
1498
+ {
1499
+ "name": "stdout",
1500
+ "output_type": "stream",
1501
+ "text": [
1502
+ "Logged-out successfully. Previously logged-in with email test_user_3@noirlab.edu.\n",
1503
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1504
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': []}\n",
1505
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": []}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1506
+ "Record key counts: {'data_release': 2, 'sparcl_id': 2, '_dr': 2}\n",
1507
+ "\n",
1508
+ "SUCCESS: found.count=2 records from FIND: user=None; drs=None\n"
1509
+ ]
1510
+ }
1511
+ ],
1512
+ "source": [
1513
+ "pass_find(None, None)"
1514
+ ]
1515
+ },
1516
+ {
1517
+ "cell_type": "markdown",
1518
+ "metadata": {},
1519
+ "source": [
1520
+ "### Pass FIND as Anonymous with Public DR"
1521
+ ]
1522
+ },
1523
+ {
1524
+ "cell_type": "code",
1525
+ "execution_count": 37,
1526
+ "metadata": {
1527
+ "tags": []
1528
+ },
1529
+ "outputs": [
1530
+ {
1531
+ "name": "stdout",
1532
+ "output_type": "stream",
1533
+ "text": [
1534
+ "Logged-out successfully. Previously logged-in with email None.\n",
1535
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1536
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': [['data_release', 'BOSS-DR16']]}\n",
1537
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": [[\"data_release\", \"BOSS-DR16\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1538
+ "Record key counts: {'data_release': 2, 'sparcl_id': 2, '_dr': 2}\n",
1539
+ "\n",
1540
+ "SUCCESS: found.count=2 records from FIND: user=None; drs=['BOSS-DR16']\n"
1541
+ ]
1542
+ }
1543
+ ],
1544
+ "source": [
1545
+ "pass_find(None, [pub_dr])"
1546
+ ]
1547
+ },
1548
+ {
1549
+ "cell_type": "markdown",
1550
+ "metadata": {},
1551
+ "source": [
1552
+ "### Fail FIND as Anonymous with Priv&Pub DRs"
1553
+ ]
1554
+ },
1555
+ {
1556
+ "cell_type": "code",
1557
+ "execution_count": 38,
1558
+ "metadata": {
1559
+ "scrolled": true,
1560
+ "tags": []
1561
+ },
1562
+ "outputs": [
1563
+ {
1564
+ "name": "stdout",
1565
+ "output_type": "stream",
1566
+ "text": [
1567
+ "Logged-out successfully. Previously logged-in with email None.\n",
1568
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1569
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': [['data_release', 'BOSS-DR16', 'SDSS-DR17-test']]}\n",
1570
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": [[\"data_release\", \"BOSS-DR16\", \"SDSS-DR17-test\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1571
+ "Exception: response content=b'{\"errorMessage\": \"ANONYMOUS is declined access to datasets [\\'SDSS-DR17-test\\']; drs_requested=[\\'BOSS-DR16\\', \\'SDSS-DR17-test\\'] my_auth=[\\'BOSS-DR16\\', \\'DESI-EDR\\', \\'SDSS-DR16\\']\", \"errorCode\": \"NODRACCESS\", \"statusCode\": 400, \"saved_tb\": \"NoneType: None\\\\n\"}'\n",
1572
+ "\n",
1573
+ "SUCCESS: Find did not get records. \n",
1574
+ "[UNKNOWN] ANONYMOUS is declined access to datasets ['SDSS-DR17-test']; drs_requested=['BOSS-DR16', 'SDSS-DR17-test'] my_auth=['BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'] [NODRACCESS] None\n"
1575
+ ]
1576
+ }
1577
+ ],
1578
+ "source": [
1579
+ "fail_find(None, [pub_dr, priv_dr])"
1580
+ ]
1581
+ },
1582
+ {
1583
+ "cell_type": "markdown",
1584
+ "metadata": {},
1585
+ "source": [
1586
+ "## RETRIEVE"
1587
+ ]
1588
+ },
1589
+ {
1590
+ "cell_type": "code",
1591
+ "execution_count": 39,
1592
+ "metadata": {
1593
+ "scrolled": true
1594
+ },
1595
+ "outputs": [
1596
+ {
1597
+ "name": "stdout",
1598
+ "output_type": "stream",
1599
+ "text": [
1600
+ "client=(sparclclient:1.2.2b8, api:11.0, http://localhost:8050/sparc, client_hash=f7bd410278bee26a425387c598dd47e80a8fcdcb, verbose=True, connect_timeout=1.1, read_timeout=5400.0)\n"
1601
+ ]
1602
+ }
1603
+ ],
1604
+ "source": [
1605
+ "print(f'{client=}')\n",
1606
+ "inc = ['sparcl_id', 'data_release']\n",
1607
+ "\n",
1608
+ "#pub_ids = client.find(constraints=dict(data_release=[pub_dr]),limit=2).ids\n",
1609
+ "#print(f'{pub_ids=}')\n",
1610
+ "#priv_ids = client.find(constraints=dict(data_release=[priv_dr]),limit=2).ids\n",
1611
+ "#print(f'{priv_ids=}')\n",
1612
+ "\n",
1613
+ "def pass_retrieve(user, drs):\n",
1614
+ " client.login(user, usrpw)\n",
1615
+ " print(f'{client.authorized=}')\n",
1616
+ "\n",
1617
+ " if drs is None:\n",
1618
+ " ids = client.find(outfields=['sparcl_id'], limit=2).ids\n",
1619
+ " else:\n",
1620
+ " ids = client.find(outfields=['sparcl_id'], constraints=dict(data_release=drs), limit=2).ids\n",
1621
+ " try:\n",
1622
+ " if drs is None:\n",
1623
+ " got = client.retrieve(uuid_list=ids, include=inc, limit=2)\n",
1624
+ " else:\n",
1625
+ " got = client.retrieve(uuid_list=ids, include=inc, dataset_list=drs, limit=2)\n",
1626
+ " print(f'\\nSUCCESS: {got.count=} records from RETRIEVE: {user=}; {drs=}')\n",
1627
+ " except Exception as err:\n",
1628
+ " raise Exception(f'Auth wrongly refused records from RETRIEVE: {user=}; {drs=}')\n",
1629
+ "\n",
1630
+ "def fail_retrieve(user, drs):\n",
1631
+ " client.login(user, usrpw)\n",
1632
+ " print(f'{client.authorized=}')\n",
1633
+ "\n",
1634
+ " try:\n",
1635
+ " found = client.find(outfields=out, constraints=dict(data_release=drs), limit=2)\n",
1636
+ " raise Exception(f'Auth wrongly got {found.count} records in RETRIEVE: {user=}; {drs=}')\n",
1637
+ " except Exception as err:\n",
1638
+ " print(f'\\nSUCCESS: RETRIEVE did not get records. \\n{err}')"
1639
+ ]
1640
+ },
1641
+ {
1642
+ "cell_type": "markdown",
1643
+ "metadata": {},
1644
+ "source": [
1645
+ "### Pass RETRIEVE as Auth with Default DRs"
1646
+ ]
1647
+ },
1648
+ {
1649
+ "cell_type": "code",
1650
+ "execution_count": 40,
1651
+ "metadata": {
1652
+ "tags": []
1653
+ },
1654
+ "outputs": [
1655
+ {
1656
+ "name": "stdout",
1657
+ "output_type": "stream",
1658
+ "text": [
1659
+ "Logged in successfully with email='test_user_1@noirlab.edu'\n",
1660
+ "client.authorized={'Loggedin_As': 'test_user_1@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16', 'SDSS-DR17-test'}}\n",
1661
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id'], 'search': []}\n",
1662
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\"], \"search\": []}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1663
+ "Record key counts: {'_dr': 2, 'sparcl_id': 2}\n",
1664
+ "Using url=\"http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl\"\n",
1665
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '[\"000923d5-fe87-11ee-acd2-08002725f1ef\", \"0016db04-fe87-11ee-a58b-08002725f1ef\"]' 'http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl' | python3 -m json.tool\n",
1666
+ "Got response to post in 0.23809996293857694 seconds\n",
1667
+ "Got 2 spectra in 0.24 seconds (8 spectra/sec)\n",
1668
+ "{'success': True, 'info': [\"Successfully found 2 records in dr_list={'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'}\"], 'warnings': []}\n",
1669
+ "\n",
1670
+ "SUCCESS: found.count=20 records from RETRIEVE: user='test_user_1@noirlab.edu'; drs=None\n"
1671
+ ]
1672
+ }
1673
+ ],
1674
+ "source": [
1675
+ "pass_retrieve(auth_user, None)"
1676
+ ]
1677
+ },
1678
+ {
1679
+ "cell_type": "markdown",
1680
+ "metadata": {},
1681
+ "source": [
1682
+ "### Pass RETRIEVE as Auth with Priv&Pub DRs"
1683
+ ]
1684
+ },
1685
+ {
1686
+ "cell_type": "code",
1687
+ "execution_count": 41,
1688
+ "metadata": {},
1689
+ "outputs": [
1690
+ {
1691
+ "name": "stdout",
1692
+ "output_type": "stream",
1693
+ "text": [
1694
+ "Logged in successfully with email='test_user_1@noirlab.edu'\n",
1695
+ "client.authorized={'Loggedin_As': 'test_user_1@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16', 'SDSS-DR17-test'}}\n",
1696
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id'], 'search': [['data_release', 'SDSS-DR17-test', 'BOSS-DR16']]}\n",
1697
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\"], \"search\": [[\"data_release\", \"SDSS-DR17-test\", \"BOSS-DR16\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1698
+ "Record key counts: {'_dr': 2, 'sparcl_id': 2}\n",
1699
+ "Using url=\"http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl&dataset_list=SDSS-DR17-test%2CBOSS-DR16\"\n",
1700
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '[\"510760cd-fe87-11ee-8470-08002725f1ef\", \"5111ce02-fe87-11ee-bea1-08002725f1ef\"]' 'http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl&dataset_list=SDSS-DR17-test%2CBOSS-DR16' | python3 -m json.tool\n",
1701
+ "Got response to post in 0.27477827202528715 seconds\n",
1702
+ "Got 2 spectra in 0.27 seconds (7 spectra/sec)\n",
1703
+ "{'success': True, 'info': [\"Successfully found 2 records in dr_list=['SDSS-DR17-test', 'BOSS-DR16']\"], 'warnings': []}\n",
1704
+ "\n",
1705
+ "SUCCESS: found.count=20 records from RETRIEVE: user='test_user_1@noirlab.edu'; drs=['SDSS-DR17-test', 'BOSS-DR16']\n"
1706
+ ]
1707
+ }
1708
+ ],
1709
+ "source": [
1710
+ "pass_retrieve(auth_user, [priv_dr, pub_dr])"
1711
+ ]
1712
+ },
1713
+ {
1714
+ "cell_type": "markdown",
1715
+ "metadata": {},
1716
+ "source": [
1717
+ "### Pass RETRIEVE as Unauth with Default DRs\n",
1718
+ "DRs default to only what are authorized for authenticated user."
1719
+ ]
1720
+ },
1721
+ {
1722
+ "cell_type": "code",
1723
+ "execution_count": 42,
1724
+ "metadata": {
1725
+ "tags": []
1726
+ },
1727
+ "outputs": [
1728
+ {
1729
+ "name": "stdout",
1730
+ "output_type": "stream",
1731
+ "text": [
1732
+ "Logged in successfully with email='test_user_2@noirlab.edu'\n",
1733
+ "client.authorized={'Loggedin_As': 'test_user_2@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1734
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id'], 'search': []}\n",
1735
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\"], \"search\": []}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1736
+ "Record key counts: {'_dr': 2, 'sparcl_id': 2}\n",
1737
+ "Using url=\"http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl\"\n",
1738
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '[\"000923d5-fe87-11ee-acd2-08002725f1ef\", \"0016db04-fe87-11ee-a58b-08002725f1ef\"]' 'http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl' | python3 -m json.tool\n",
1739
+ "Got response to post in 0.26971720601432025 seconds\n",
1740
+ "Got 2 spectra in 0.27 seconds (7 spectra/sec)\n",
1741
+ "{'success': True, 'info': [\"Successfully found 2 records in dr_list={'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'}\"], 'warnings': []}\n",
1742
+ "\n",
1743
+ "SUCCESS: found.count=20 records from RETRIEVE: user='test_user_2@noirlab.edu'; drs=None\n"
1744
+ ]
1745
+ }
1746
+ ],
1747
+ "source": [
1748
+ "try:\n",
1749
+ " pass_retrieve(unauth_user, None)\n",
1750
+ "except Exception as err:\n",
1751
+ " display(Markdown(f'#### BUG: {str(err)}'))"
1752
+ ]
1753
+ },
1754
+ {
1755
+ "cell_type": "markdown",
1756
+ "metadata": {},
1757
+ "source": [
1758
+ "### Fail RETRIEVE as Unauth with Priv&Pub DRs"
1759
+ ]
1760
+ },
1761
+ {
1762
+ "cell_type": "code",
1763
+ "execution_count": 43,
1764
+ "metadata": {
1765
+ "scrolled": true
1766
+ },
1767
+ "outputs": [
1768
+ {
1769
+ "name": "stdout",
1770
+ "output_type": "stream",
1771
+ "text": [
1772
+ "Logged in successfully with email='test_user_2@noirlab.edu'\n",
1773
+ "client.authorized={'Loggedin_As': 'test_user_2@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1774
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': [['data_release', 'SDSS-DR17-test', 'BOSS-DR16']]}\n",
1775
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": [[\"data_release\", \"SDSS-DR17-test\", \"BOSS-DR16\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1776
+ "Exception: response content=b'{\"errorMessage\": \"test_user_2@noirlab.edu is declined access to datasets [\\'SDSS-DR17-test\\']; drs_requested=[\\'BOSS-DR16\\', \\'SDSS-DR17-test\\'] my_auth=[\\'BOSS-DR16\\', \\'DESI-EDR\\', \\'SDSS-DR16\\']\", \"errorCode\": \"NODRACCESS\", \"statusCode\": 400, \"saved_tb\": \"NoneType: None\\\\n\"}'\n",
1777
+ "\n",
1778
+ "SUCCESS: RETRIEVE did not get records. \n",
1779
+ "[UNKNOWN] test_user_2@noirlab.edu is declined access to datasets ['SDSS-DR17-test']; drs_requested=['BOSS-DR16', 'SDSS-DR17-test'] my_auth=['BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'] [NODRACCESS] None\n"
1780
+ ]
1781
+ }
1782
+ ],
1783
+ "source": [
1784
+ "fail_retrieve(unauth_user, [priv_dr, pub_dr])"
1785
+ ]
1786
+ },
1787
+ {
1788
+ "cell_type": "markdown",
1789
+ "metadata": {},
1790
+ "source": [
1791
+ "### Pass RETRIEVE as Unknown with Default DRs\n",
1792
+ "DRs default to only what are authorized for authenticated user."
1793
+ ]
1794
+ },
1795
+ {
1796
+ "cell_type": "code",
1797
+ "execution_count": 44,
1798
+ "metadata": {
1799
+ "tags": []
1800
+ },
1801
+ "outputs": [
1802
+ {
1803
+ "name": "stdout",
1804
+ "output_type": "stream",
1805
+ "text": [
1806
+ "Logged in successfully with email='test_user_3@noirlab.edu'\n",
1807
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1808
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id'], 'search': []}\n",
1809
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\"], \"search\": []}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1810
+ "Record key counts: {'_dr': 2, 'sparcl_id': 2}\n",
1811
+ "Using url=\"http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl\"\n",
1812
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '[\"000923d5-fe87-11ee-acd2-08002725f1ef\", \"0016db04-fe87-11ee-a58b-08002725f1ef\"]' 'http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl' | python3 -m json.tool\n",
1813
+ "Got response to post in 0.3079184840898961 seconds\n",
1814
+ "Got 2 spectra in 0.31 seconds (6 spectra/sec)\n",
1815
+ "{'success': True, 'info': [\"Successfully found 2 records in dr_list={'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'}\"], 'warnings': []}\n",
1816
+ "\n",
1817
+ "SUCCESS: found.count=20 records from RETRIEVE: user='test_user_3@noirlab.edu'; drs=None\n"
1818
+ ]
1819
+ }
1820
+ ],
1821
+ "source": [
1822
+ "try:\n",
1823
+ " pass_retrieve(non_user, None)\n",
1824
+ "except Exception as err:\n",
1825
+ " display(Markdown(f'#### BUG: {str(err)}'))"
1826
+ ]
1827
+ },
1828
+ {
1829
+ "cell_type": "markdown",
1830
+ "metadata": {},
1831
+ "source": [
1832
+ "### Fail RETRIEVE as Unknown with Priv&Pub DRs"
1833
+ ]
1834
+ },
1835
+ {
1836
+ "cell_type": "code",
1837
+ "execution_count": 45,
1838
+ "metadata": {
1839
+ "scrolled": true
1840
+ },
1841
+ "outputs": [
1842
+ {
1843
+ "name": "stdout",
1844
+ "output_type": "stream",
1845
+ "text": [
1846
+ "Logged in successfully with email='test_user_3@noirlab.edu'\n",
1847
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1848
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': [['data_release', 'SDSS-DR17-test', 'BOSS-DR16']]}\n",
1849
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": [[\"data_release\", \"SDSS-DR17-test\", \"BOSS-DR16\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1850
+ "Exception: response content=b'{\"errorMessage\": \"ANONYMOUS is declined access to datasets [\\'SDSS-DR17-test\\']; drs_requested=[\\'BOSS-DR16\\', \\'SDSS-DR17-test\\'] my_auth=[\\'BOSS-DR16\\', \\'DESI-EDR\\', \\'SDSS-DR16\\']\", \"errorCode\": \"NODRACCESS\", \"statusCode\": 400, \"saved_tb\": \"NoneType: None\\\\n\"}'\n",
1851
+ "\n",
1852
+ "SUCCESS: RETRIEVE did not get records. \n",
1853
+ "[UNKNOWN] ANONYMOUS is declined access to datasets ['SDSS-DR17-test']; drs_requested=['BOSS-DR16', 'SDSS-DR17-test'] my_auth=['BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'] [NODRACCESS] None\n"
1854
+ ]
1855
+ }
1856
+ ],
1857
+ "source": [
1858
+ "fail_retrieve(non_user, [priv_dr, pub_dr])"
1859
+ ]
1860
+ },
1861
+ {
1862
+ "cell_type": "markdown",
1863
+ "metadata": {},
1864
+ "source": [
1865
+ "### Pass RETRIEVE as Anon with Default DRs\n",
1866
+ "DRs default to only what are authorized for authenticated user."
1867
+ ]
1868
+ },
1869
+ {
1870
+ "cell_type": "code",
1871
+ "execution_count": 46,
1872
+ "metadata": {
1873
+ "tags": []
1874
+ },
1875
+ "outputs": [
1876
+ {
1877
+ "name": "stdout",
1878
+ "output_type": "stream",
1879
+ "text": [
1880
+ "Logged-out successfully. Previously logged-in with email test_user_3@noirlab.edu.\n",
1881
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1882
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id'], 'search': []}\n",
1883
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\"], \"search\": []}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1884
+ "Record key counts: {'_dr': 2, 'sparcl_id': 2}\n",
1885
+ "Using url=\"http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl\"\n",
1886
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '[\"000923d5-fe87-11ee-acd2-08002725f1ef\", \"0016db04-fe87-11ee-a58b-08002725f1ef\"]' 'http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl' | python3 -m json.tool\n",
1887
+ "Got response to post in 0.03403094399254769 seconds\n",
1888
+ "Got 2 spectra in 0.03 seconds (59 spectra/sec)\n",
1889
+ "{'success': True, 'info': [\"Successfully found 2 records in dr_list={'BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'}\"], 'warnings': []}\n",
1890
+ "\n",
1891
+ "SUCCESS: found.count=20 records from RETRIEVE: user=None; drs=None\n"
1892
+ ]
1893
+ }
1894
+ ],
1895
+ "source": [
1896
+ "try:\n",
1897
+ " pass_retrieve(None, None)\n",
1898
+ "except Exception as err:\n",
1899
+ " display(Markdown(f'#### BUG: {str(err)}'))"
1900
+ ]
1901
+ },
1902
+ {
1903
+ "cell_type": "markdown",
1904
+ "metadata": {},
1905
+ "source": [
1906
+ "### Fail RETRIEVE as Anon with Priv&Pub DR "
1907
+ ]
1908
+ },
1909
+ {
1910
+ "cell_type": "code",
1911
+ "execution_count": 47,
1912
+ "metadata": {
1913
+ "tags": []
1914
+ },
1915
+ "outputs": [
1916
+ {
1917
+ "name": "stdout",
1918
+ "output_type": "stream",
1919
+ "text": [
1920
+ "Logged-out successfully. Previously logged-in with email None.\n",
1921
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1922
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id', 'data_release'], 'search': [['data_release', 'SDSS-DR17-test', 'BOSS-DR16']]}\n",
1923
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\", \"data_release\"], \"search\": [[\"data_release\", \"SDSS-DR17-test\", \"BOSS-DR16\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1924
+ "Exception: response content=b'{\"errorMessage\": \"ANONYMOUS is declined access to datasets [\\'SDSS-DR17-test\\']; drs_requested=[\\'BOSS-DR16\\', \\'SDSS-DR17-test\\'] my_auth=[\\'BOSS-DR16\\', \\'DESI-EDR\\', \\'SDSS-DR16\\']\", \"errorCode\": \"NODRACCESS\", \"statusCode\": 400, \"saved_tb\": \"NoneType: None\\\\n\"}'\n",
1925
+ "\n",
1926
+ "SUCCESS: RETRIEVE did not get records. \n",
1927
+ "[UNKNOWN] ANONYMOUS is declined access to datasets ['SDSS-DR17-test']; drs_requested=['BOSS-DR16', 'SDSS-DR17-test'] my_auth=['BOSS-DR16', 'DESI-EDR', 'SDSS-DR16'] [NODRACCESS] None\n"
1928
+ ]
1929
+ }
1930
+ ],
1931
+ "source": [
1932
+ "fail_retrieve(None, [priv_dr, pub_dr])"
1933
+ ]
1934
+ },
1935
+ {
1936
+ "cell_type": "markdown",
1937
+ "metadata": {},
1938
+ "source": [
1939
+ "### Pass RETRIEVE as Anon with Public DR "
1940
+ ]
1941
+ },
1942
+ {
1943
+ "cell_type": "code",
1944
+ "execution_count": 48,
1945
+ "metadata": {
1946
+ "tags": []
1947
+ },
1948
+ "outputs": [
1949
+ {
1950
+ "name": "stdout",
1951
+ "output_type": "stream",
1952
+ "text": [
1953
+ "Logged-out successfully. Previously logged-in with email None.\n",
1954
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n",
1955
+ "url=http://localhost:8050/sparc/find/?limit=2 sspec={'outfields': ['sparcl_id'], 'search': [['data_release', 'BOSS-DR16']]}\n",
1956
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '{\"outfields\": [\"sparcl_id\"], \"search\": [[\"data_release\", \"BOSS-DR16\"]]}' 'http://localhost:8050/sparc/find/?limit=2' | python3 -m json.tool\n",
1957
+ "Record key counts: {'_dr': 2, 'sparcl_id': 2}\n",
1958
+ "Using url=\"http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl&dataset_list=BOSS-DR16\"\n",
1959
+ "curl -X 'POST' -H 'Content-Type: application/json' -d '[\"510760cd-fe87-11ee-8470-08002725f1ef\", \"5111ce02-fe87-11ee-bea1-08002725f1ef\"]' 'http://localhost:8050/sparc/spectras/?include=data_release%2Csparcl_id&format=pkl&dataset_list=BOSS-DR16' | python3 -m json.tool\n",
1960
+ "Got response to post in 0.0383652689633891 seconds\n",
1961
+ "Got 2 spectra in 0.04 seconds (52 spectra/sec)\n",
1962
+ "{'success': True, 'info': [\"Successfully found 2 records in dr_list=['BOSS-DR16']\"], 'warnings': []}\n",
1963
+ "\n",
1964
+ "SUCCESS: found.count=20 records from RETRIEVE: user=None; drs=['BOSS-DR16']\n"
1965
+ ]
1966
+ }
1967
+ ],
1968
+ "source": [
1969
+ "pass_retrieve(None, [pub_dr])"
1970
+ ]
1971
+ },
1972
+ {
1973
+ "cell_type": "markdown",
1974
+ "metadata": {},
1975
+ "source": [
1976
+ "# All Done"
1977
+ ]
1978
+ },
1979
+ {
1980
+ "cell_type": "code",
1981
+ "execution_count": 49,
1982
+ "metadata": {
1983
+ "tags": []
1984
+ },
1985
+ "outputs": [
1986
+ {
1987
+ "name": "stdout",
1988
+ "output_type": "stream",
1989
+ "text": [
1990
+ "Run finished: 2024-05-02 10:22:39.403970\n"
1991
+ ]
1992
+ }
1993
+ ],
1994
+ "source": [
1995
+ "print(f'Run finished: {str(datetime.now())}')"
1996
+ ]
1997
+ },
1998
+ {
1999
+ "cell_type": "code",
2000
+ "execution_count": 50,
2001
+ "metadata": {
2002
+ "tags": []
2003
+ },
2004
+ "outputs": [
2005
+ {
2006
+ "name": "stdout",
2007
+ "output_type": "stream",
2008
+ "text": [
2009
+ "Logged in successfully with email='test_user_1@noirlab.edu'\n",
2010
+ "\n",
2011
+ "client.authorized={'Loggedin_As': 'test_user_1@noirlab.edu', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16', 'SDSS-DR17-test'}}\n",
2012
+ "\n",
2013
+ "\n",
2014
+ "Logged-out successfully. Previously logged-in with email test_user_1@noirlab.edu.\n",
2015
+ "\n",
2016
+ "client.authorized={'Loggedin_As': 'Anonymous', 'Authorized_Datasets': {'SDSS-DR16', 'DESI-EDR', 'BOSS-DR16'}}\n"
2017
+ ]
2018
+ }
2019
+ ],
2020
+ "source": [
2021
+ "# DLS-496\n",
2022
+ "client.login(auth_user, usrpw)\n",
2023
+ "print(f'\\n{client.authorized=}\\n\\n')\n",
2024
+ "client.logout() # can also be done with client.login(None)\n",
2025
+ "print(f'\\n{client.authorized=}')"
2026
+ ]
2027
+ }
2028
+ ],
2029
+ "metadata": {
2030
+ "kernelspec": {
2031
+ "display_name": "Python 3 (ipykernel)",
2032
+ "language": "python",
2033
+ "name": "python3"
2034
+ },
2035
+ "language_info": {
2036
+ "codemirror_mode": {
2037
+ "name": "ipython",
2038
+ "version": 3
2039
+ },
2040
+ "file_extension": ".py",
2041
+ "mimetype": "text/x-python",
2042
+ "name": "python",
2043
+ "nbconvert_exporter": "python",
2044
+ "pygments_lexer": "ipython3",
2045
+ "version": "3.10.12"
2046
+ },
2047
+ "toc": {
2048
+ "base_numbering": 1
2049
+ },
2050
+ "toc-showmarkdowntxt": false
2051
+ },
2052
+ "nbformat": 4,
2053
+ "nbformat_minor": 4
2054
+ }