spacr 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- spacr/resources/icons/flow_chart_v3.png +0 -0
- spacr/resources/icons/graphical_abstract.png +0 -0
- {spacr-1.1.1.dist-info → spacr-1.1.2.dist-info}/METADATA +28 -17
- {spacr-1.1.1.dist-info → spacr-1.1.2.dist-info}/RECORD +8 -7
- {spacr-1.1.1.dist-info → spacr-1.1.2.dist-info}/LICENSE +0 -0
- {spacr-1.1.1.dist-info → spacr-1.1.2.dist-info}/WHEEL +0 -0
- {spacr-1.1.1.dist-info → spacr-1.1.2.dist-info}/entry_points.txt +0 -0
- {spacr-1.1.1.dist-info → spacr-1.1.2.dist-info}/top_level.txt +0 -0
Binary file
|
Binary file
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: spacr
|
3
|
-
Version: 1.1.
|
3
|
+
Version: 1.1.2
|
4
4
|
Summary: Spatial phenotype analysis of crisp screens (SpaCr)
|
5
5
|
Home-page: https://github.com/EinarOlafsson/spacr
|
6
6
|
Author: Einar Birnir Olafsson
|
@@ -105,33 +105,32 @@ Badges
|
|
105
105
|
.. |logo| image:: https://raw.githubusercontent.com/EinarOlafsson/spacr/main/spacr/resources/icons/logo_spacr.png
|
106
106
|
:height: 100
|
107
107
|
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
+------------------------------------------------+----------------------------------------------------+
|
108
|
+
|logo| **spaCR**
|
109
|
+
Spatial phenotype analysis of CRISPR–Cas9 screens (spaCR).
|
110
|
+
|
111
|
+
----------------------------------------
|
113
112
|
|
114
113
|
The spatial organization of organelles and proteins within cells constitutes a key level of functional regulation. In the context of infectious disease, the spatial relationships between host cell structures and intracellular pathogens are critical to understanding host clearance mechanisms and how pathogens evade them. SpaCr is a Python-based software package for generating single-cell image data for deep-learning sub-cellular/cellular phenotypic classification from pooled genetic CRISPR-Cas9 screens. SpaCr provides a flexible toolset to extract single-cell images and measurements from high-content cell painting experiments, train deep-learning models to classify cellular/subcellular phenotypes, simulate, and analyze pooled CRISPR-Cas9 imaging screens.
|
115
114
|
|
116
115
|
Features
|
117
116
|
--------
|
118
117
|
|
119
|
-
- **Generate Masks:** Generate cellpose masks of cell, nuclei, and pathogen objects.
|
120
|
-
- **Object Measurements:** Measurements for each object including scikit-image regionprops, intensity percentiles, shannon-entropy, Pearson’s and Manders’ correlations, homogeneity, and radial distribution. Measurements are saved to a SQL database in object-level tables.
|
118
|
+
- **Generate Masks:** Generate `Cellpose <https://github.com/MouseLand/cellpose>`_ masks of cell, nuclei, and pathogen objects.
|
119
|
+
- **Object Measurements:** Measurements for each object including `scikit-image <https://github.com/scikit-image/scikit-image>`_ regionprops, intensity percentiles, shannon-entropy, Pearson’s and Manders’ correlations, homogeneity, and radial distribution. Measurements are saved to a SQL database in object-level tables.
|
121
120
|
- **Crop Images:** Save objects (cells, nuclei, pathogen, cytoplasm) as images. Object image paths are saved in a SQL database.
|
122
|
-
- **Train CNNs or Transformers:** Train
|
121
|
+
- **Train CNNs or Transformers:** Train `PyTorch <https://github.com/pytorch/pytorch>`_ models to classify single object images.
|
123
122
|
- **Manual Annotation (nightly):** Supports manual annotation of single-cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
|
124
|
-
- **Finetune Cellpose Models (nightly):** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
|
123
|
+
- **Finetune Cellpose Models (nightly):** Adjust pre-existing `Cellpose <https://github.com/MouseLand/cellpose>`_ models to your specific dataset for improved performance.
|
125
124
|
- **Timelapse Data Support (nightly):** Track objects in timelapse image data.
|
126
|
-
- **Simulations
|
125
|
+
- **Simulations:** Simulate spatial phenotype screens with `spaCRPower <https://github.com/maomlab/spaCRPower>`_.
|
127
126
|
- **Sequencing:** Map FASTQ reads to barcode and gRNA barcode metadata.
|
128
127
|
- **Misc (nightly):** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
|
129
128
|
|
130
129
|
.. image:: https://github.com/EinarOlafsson/spacr/raw/main/spacr/resources/icons/flow_chart_v3.png
|
131
|
-
:alt:
|
130
|
+
:alt: spaCR workflow
|
132
131
|
:align: center
|
133
132
|
|
134
|
-
**Overview and data organization of spaCR
|
133
|
+
**Overview and data organization of spaCR**
|
135
134
|
|
136
135
|
**a.** Schematic workflow of the spaCR pipeline for pooled image-based CRISPR screens. Microscopy images (TIFF, LIF, CZI, NDI) and sequencing reads (FASTQ) are used as inputs (black). The main modules (teal) are: (1) Mask: generates object masks for cells, nuclei, pathogens, and cytoplasm; (2) Measure: extracts object-level features and crops object images, storing quantitative data in an SQL database; (3) Classify—applies machine learning (ML, e.g., XGBoost) or deep learning (DL, e.g., PyTorch) models to classify objects, summarizing results as well-level classification scores; (4) Map Barcodes: extracts and maps row, column, and gRNA barcodes from sequencing data to corresponding wells; (5) Regression: estimates gRNA effect sizes and gene scores via multiple linear regression using well-level summary statistics.
|
137
136
|
**b.** Output folder structure for each module, including locations for raw and processed images, masks, object-level measurements, datasets, and results.
|
@@ -150,7 +149,11 @@ If using Windows, switch to Linux—it's free, open-source, and better.
|
|
150
149
|
brew install libomp hdf5 cmake openssl
|
151
150
|
|
152
151
|
**Linux GUI requirement:**
|
153
|
-
|
152
|
+
spaCR GUI requires `Tkinter <https://github.com/python/cpython/tree/main/Lib/tkinter>`_.
|
153
|
+
|
154
|
+
::
|
155
|
+
|
156
|
+
sudo apt install python3-tk
|
154
157
|
|
155
158
|
**Install stable version (main):**
|
156
159
|
|
@@ -201,6 +204,14 @@ The following example Jupyter notebooks illustrate common workflows using spaCR.
|
|
201
204
|
- `Finetune cellpose models <https://github.com/EinarOlafsson/spacr/blob/main/Notebooks/5_spacr_train_cellpose.ipynb>`_
|
202
205
|
*Finetune Cellpose models using your own annotated training data for improved segmentation accuracy.*
|
203
206
|
|
207
|
+
.. image:: https://github.com/EinarOlafsson/spacr/raw/main/spacr/resources/icons/graphical_abstract.png
|
208
|
+
:alt: spaCR workflow
|
209
|
+
:align: center
|
210
|
+
|
211
|
+
**Graphical abstract | Workflow for pooled CRISPR–Cas9 spatial phenotype screening**
|
212
|
+
|
213
|
+
A pooled population of cells with perturbations (G\ :sub:`1`\ …\ :sub:`i`) is distributed into wells (W\ :sub:`1`\ …\ :sub:`j`) and expanded. Cells from each well (W\ :sub:`j`) are transferred for genotyping by PCR with barcoded primers, followed by next-generation sequencing (NGS) to determine gRNA abundances (R\ :sub:`ij`). In parallel, cells are phenotyped by MaxViT-based image classification, generating an average well classification score (C\ :sub:`j`). Multiple linear regression (MLR) uses C\ :sub:`j` as the response variable and R\ :sub:`ij` as the predictor to estimate the effect size (β\ :sub:`i`) of each gRNA.
|
214
|
+
|
204
215
|
Interactive Tutorial (under construction)
|
205
216
|
-----------------------------------------
|
206
217
|
|
@@ -211,7 +222,7 @@ Click below to explore the step-by-step GUI and Notebook tutorials for spaCR:
|
|
211
222
|
spaCRPower
|
212
223
|
----------
|
213
224
|
|
214
|
-
Power
|
225
|
+
Power analysis of pooled perturbation spaCR screens.
|
215
226
|
|
216
227
|
`spaCRPower <https://github.com/maomlab/spaCRPower>`_
|
217
228
|
|
@@ -235,12 +246,12 @@ See the `LICENSE <https://github.com/EinarOlafsson/spacr/blob/main/LICENSE>`_ fi
|
|
235
246
|
How to Cite
|
236
247
|
-----------
|
237
248
|
If you use spaCR in your research, please cite:
|
238
|
-
Olafsson EB, et al.
|
249
|
+
Olafsson EB, et al. spaCR: Spatial phenotype analysis of CRISPR-Cas9 screens. *Manuscript in preparation*.
|
239
250
|
|
240
251
|
Papers Using spaCR
|
241
252
|
-------------------
|
242
253
|
Below are selected publications that have used or cited spaCR:
|
243
254
|
|
244
|
-
- Olafsson EB, et al. *
|
255
|
+
- Olafsson EB, et al. *spaCR: Spatial phenotype analysis of CRISPR-Cas9 screens.* Manuscript in preparation.
|
245
256
|
- `IRE1α promotes phagosomal calcium flux to enhance macrophage fungicidal activity <https://doi.org/10.1016/j.celrep.2025.115694>`_
|
246
257
|
- `Metabolic adaptability and nutrient scavenging in Toxoplasma gondii: insights from ingestion pathway-deficient mutants <https://doi.org/10.1128/msphere.01011-24>`_
|
@@ -85,7 +85,8 @@ spacr/resources/icons/default.png,sha256=KoNhaSHukO4wDyivyYEgSbb5mGj-sAxmhKikLLt
|
|
85
85
|
spacr/resources/icons/dna_matrix.mp4,sha256=NegOQkn4q4kHhFgqcIX2dd58wVytBtnkmbgg0ZegL8U,23462876
|
86
86
|
spacr/resources/icons/download.png,sha256=1nUoWRaTc4vIsK6gompdeqk0cIv2GdH-gCNHaEBX6Mc,20467
|
87
87
|
spacr/resources/icons/flow_chart_v2.png,sha256=4U4uzJlyQ8L-exWIXIhyqtkoO-KIiubO23kA7eLZYYE,640609
|
88
|
-
spacr/resources/icons/flow_chart_v3.png,sha256=
|
88
|
+
spacr/resources/icons/flow_chart_v3.png,sha256=N1wNoUJbLu7zIbHvtkg6ZVZPyldYcUv1cGG_jowwl94,1152221
|
89
|
+
spacr/resources/icons/graphical_abstract.png,sha256=9yr88eXBmpNUdR1Kz5hQ7gxiQlPTo4pZZDFs4tbz5E4,1422622
|
89
90
|
spacr/resources/icons/logo.pdf,sha256=VB4cS41V3VV_QxD7l6CwdQKQiYLErugLBxWoCoxjQU0,377925
|
90
91
|
spacr/resources/icons/logo_spacr.png,sha256=Z7kE-8hBbfyqNgjDY8K79jfpzdxktVLDjtDRFE4Zo_I,152950
|
91
92
|
spacr/resources/icons/logo_spacr_1.png,sha256=g9y2ZmnV3hab8r1idDfytm8AaHbBiQdu_93Jd7YKzwA,610892
|
@@ -112,9 +113,9 @@ spacr/resources/icons/umap.png,sha256=dOLF3DeLYy9k0nkUybiZMe1wzHQwLJFRmgccppw-8b
|
|
112
113
|
spacr/resources/images/plate1_E01_T0001F001L01A01Z01C02.tif,sha256=Tl0ZUfZ_AYAbu0up_nO0tPRtF1BxXhWQ3T3pURBCCRo,7958528
|
113
114
|
spacr/resources/images/plate1_E01_T0001F001L01A02Z01C01.tif,sha256=m8N-V71rA1TT4dFlENNg8s0Q0YEXXs8slIn7yObmZJQ,7958528
|
114
115
|
spacr/resources/images/plate1_E01_T0001F001L01A03Z01C03.tif,sha256=Pbhk7xn-KUP6RSIhJsxQcrHFImBm3GEpLkzx7WOc-5M,7958528
|
115
|
-
spacr-1.1.
|
116
|
-
spacr-1.1.
|
117
|
-
spacr-1.1.
|
118
|
-
spacr-1.1.
|
119
|
-
spacr-1.1.
|
120
|
-
spacr-1.1.
|
116
|
+
spacr-1.1.2.dist-info/LICENSE,sha256=t0Pov6pnK8thLteoF4xZGmdCwe5mhNwl3OXxLYTGD9U,1081
|
117
|
+
spacr-1.1.2.dist-info/METADATA,sha256=UTK8cUxCfSqftM7sG63K_BNyJLmJArqbbTYK81jp3rE,12226
|
118
|
+
spacr-1.1.2.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
|
119
|
+
spacr-1.1.2.dist-info/entry_points.txt,sha256=6pHChJ00ozJ-Awokdfd28wUjiPXFJ8ONVx50rEKjBi8,176
|
120
|
+
spacr-1.1.2.dist-info/top_level.txt,sha256=GJPU8FgwRXGzKeut6JopsSRY2R8T3i9lDgya42tLInY,6
|
121
|
+
spacr-1.1.2.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|