spacr 1.0.7__py3-none-any.whl → 1.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: spacr
3
- Version: 1.0.7
3
+ Version: 1.1.0
4
4
  Summary: Spatial phenotype analysis of crisp screens (SpaCr)
5
5
  Home-page: https://github.com/EinarOlafsson/spacr
6
6
  Author: Einar Birnir Olafsson
@@ -101,10 +101,15 @@ Badges
101
101
  ------
102
102
  |Docs| |PyPI version| |Python version| |Licence: MIT| |repo size| |Tutorial|
103
103
 
104
- SpaCr
105
- =====
106
104
 
107
- **Spatial phenotype analysis of CRISPR-Cas9 screens (SpaCr).**
105
+ .. |logo| image:: https://raw.githubusercontent.com/EinarOlafsson/spacr/main/spacr/resources/icons/logo_spacr.png
106
+ :height: 100
107
+
108
+ +------------------------------------------------+----------------------------------------------------+
109
+ | |logo| | **spaCR** |
110
+ | | Spatial phenotype analysis of CRISPR- |
111
+ | | Cas9 screens (spaCR). |
112
+ +------------------------------------------------+----------------------------------------------------+
108
113
 
109
114
  The spatial organization of organelles and proteins within cells constitutes a key level of functional regulation. In the context of infectious disease, the spatial relationships between host cell structures and intracellular pathogens are critical to understanding host clearance mechanisms and how pathogens evade them. SpaCr is a Python-based software package for generating single-cell image data for deep-learning sub-cellular/cellular phenotypic classification from pooled genetic CRISPR-Cas9 screens. SpaCr provides a flexible toolset to extract single-cell images and measurements from high-content cell painting experiments, train deep-learning models to classify cellular/subcellular phenotypes, simulate, and analyze pooled CRISPR-Cas9 imaging screens.
110
115
 
@@ -115,12 +120,12 @@ Features
115
120
  - **Object Measurements:** Measurements for each object including scikit-image regionprops, intensity percentiles, shannon-entropy, Pearson’s and Manders’ correlations, homogeneity, and radial distribution. Measurements are saved to a SQL database in object-level tables.
116
121
  - **Crop Images:** Save objects (cells, nuclei, pathogen, cytoplasm) as images. Object image paths are saved in a SQL database.
117
122
  - **Train CNNs or Transformers:** Train Torch models to classify single object images.
118
- - **Manual Annotation:** Supports manual annotation of single-cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
119
- - **Finetune Cellpose Models:** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
120
- - **Timelapse Data Support:** Track objects in timelapse image data.
121
- - **Simulations:** Simulate spatial phenotype screens.
123
+ - **Manual Annotation (nightly):** Supports manual annotation of single-cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.
124
+ - **Finetune Cellpose Models (nightly):** Adjust pre-existing Cellpose models to your specific dataset for improved performance.
125
+ - **Timelapse Data Support (nightly):** Track objects in timelapse image data.
126
+ - **Simulations (nightly):** Simulate spatial phenotype screens.
122
127
  - **Sequencing:** Map FASTQ reads to barcode and gRNA barcode metadata.
123
- - **Misc:** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
128
+ - **Misc (nightly):** Analyze Ca oscillation, recruitment, infection rate, plaque size/count.
124
129
 
125
130
  .. image:: https://github.com/EinarOlafsson/spacr/raw/main/spacr/resources/icons/flow_chart_v3.png
126
131
  :alt: SpaCr workflow
@@ -129,9 +134,8 @@ Features
129
134
  **Overview and data organization of spaCR.**
130
135
 
131
136
  **a.** Schematic workflow of the spaCR pipeline for pooled image-based CRISPR screens. Microscopy images (TIFF, LIF, CZI, NDI) and sequencing reads (FASTQ) are used as inputs (black). The main modules (teal) are: (1) Mask: generates object masks for cells, nuclei, pathogens, and cytoplasm; (2) Measure: extracts object-level features and crops object images, storing quantitative data in an SQL database; (3) Classify—applies machine learning (ML, e.g., XGBoost) or deep learning (DL, e.g., PyTorch) models to classify objects, summarizing results as well-level classification scores; (4) Map Barcodes: extracts and maps row, column, and gRNA barcodes from sequencing data to corresponding wells; (5) Regression: estimates gRNA effect sizes and gene scores via multiple linear regression using well-level summary statistics.
132
- **b.** Downstream submodules available for extended analyses at each stage.
133
- **c.** Output folder structure for each module, including locations for raw and processed images, masks, object-level measurements, datasets, and results.
134
- **d.** List of all spaCR package modules.
137
+ **b.** Output folder structure for each module, including locations for raw and processed images, masks, object-level measurements, datasets, and results.
138
+ **c.** List of all spaCR package modules.
135
139
 
136
140
  Installation
137
141
  ------------
@@ -146,24 +150,34 @@ If using Windows, switch to Linux—it's free, open-source, and better.
146
150
  brew install libomp hdf5 cmake openssl
147
151
 
148
152
  **Linux GUI requirement:**
149
- SpaCr GUI requires Tkinter.
153
+ SpaCr GUI requires Tkinter. **b.** Downstream submodules available for extended analyses at each stage.
154
+
155
+ **Install stable version (main):**
150
156
 
151
157
  ::
152
158
 
153
- sudo apt-get install python3-tk
159
+ pip install spacr
154
160
 
155
- **Installation:**
161
+ **Install nightly version:**
156
162
 
157
163
  ::
158
164
 
159
- pip install spacr
165
+ pip install spacr-nightly
160
166
 
161
- **Run SpaCr GUI:**
167
+ **Launch GUI (stable):**
162
168
 
163
169
  ::
164
170
 
165
171
  spacr
166
172
 
173
+ **Launch GUI (nightly):**
174
+
175
+ ::
176
+
177
+ spacrn
178
+
179
+
180
+
167
181
  Example Notebooks
168
182
  -----------------
169
183
 
@@ -1,35 +1,35 @@
1
1
  spacr/__init__.py,sha256=q92ucJ7ZZB84kIFNyswNUiCq8y7jRyzrTtG7srVGRUA,1412
2
2
  spacr/__main__.py,sha256=H4MjaMF9ohZL6xfl1kTxVn1Nt_vEhhZArENMMBv8f4E,77
3
3
  spacr/app_annotate.py,sha256=svqVBFiuMohWt8a5uqia2P7CGpN3cMKTaznYc06_R6A,2909
4
- spacr/app_classify.py,sha256=urTP_wlZ58hSyM5a19slYlBxN0PdC-9-ga0hvq8CGWc,165
4
+ spacr/app_classify.py,sha256=xvGOrzErWE2iQQ_OF80NLxKfGNFlvhLf4916qPfPCr4,554
5
5
  spacr/app_make_masks.py,sha256=pqDhRpluiHZz-kPX2Zh_KbYe4TsU43qYBa_7f-rsjpw,1694
6
- spacr/app_mask.py,sha256=l-dBY8ftzCMdDe6-pXc2Nh_u-idNL9G7UOARiLJBtds,153
7
- spacr/app_measure.py,sha256=_K7APYIeOKpV6e_LcqabBjvEi7mfq9Fch8175x1x0k8,162
8
- spacr/app_sequencing.py,sha256=DjG26jy4cpddnV8WOOAIiExtOe9MleVMY4MFa5uTo5w,157
6
+ spacr/app_mask.py,sha256=R1IwAS8ADXj1KMvR4G5rmQhTcFHseyLUZc5a4mHWVFA,557
7
+ spacr/app_measure.py,sha256=PpZHt_JZHmd46kAa6bRs7qlw6fK83q98VC7xQ51R6eo,538
8
+ spacr/app_sequencing.py,sha256=C_5VvLaHNfuAMEme2e_OG5jnKxvxuxQdCnaukpufT_A,533
9
9
  spacr/app_umap.py,sha256=ZWAmf_OsIKbYvolYuWPMYhdlVe-n2CADoJulAizMiEo,153
10
10
  spacr/chat_bot.py,sha256=n3Fhqg3qofVXHmh3H9sUcmfYy9MmgRnr48663MVdY9E,1244
11
- spacr/core.py,sha256=C95l6I3sLDDiMNaw-kMwbwfPtzBZiX0rUZ26ZmScWUQ,28116
12
- spacr/deep_spacr.py,sha256=uKACN4Gali9oH9YKxbNbd-MRztJvPSOOgx8LNI1mVRw,54459
13
- spacr/gui.py,sha256=zBjz05JMFbrw_I76n8B6gk4EVpX72UTeJouOgvAidjY,8404
14
- spacr/gui_core.py,sha256=854KnVy23nK7hdcyb9RKRIdrH0rPdLUbVxj2GCOLjsI,54031
15
- spacr/gui_elements.py,sha256=xefuE0_PgScPmX5Ibi2qIQl7U0K8D7HGmNKlU4RnsKU,75276
16
- spacr/gui_utils.py,sha256=VtIeYSPhNAZFMZsYMKzCB-V5T9SKEKVuXYOTpWjGFcU,40753
17
- spacr/io.py,sha256=hFT_yNQWuZf66s34MdnG8wVshXJvt7wgHKA2FVMMHCY,158978
18
- spacr/logger.py,sha256=lJhTqt-_wfAunCPl93xE65Wr9Y1oIHJWaZMjunHUeIw,1538
19
- spacr/measure.py,sha256=nYvrfVfCIqD1AUk4QBE2jtpeSFtLdfUcnkhkqf9G4xQ,60877
11
+ spacr/core.py,sha256=vToj3JY1YeMJhVf3vxHRk56BOrP2giizvzwkjR7opFk,39399
12
+ spacr/deep_spacr.py,sha256=UfI2cU1-QxDI-wewuMXnWj0UnjpbPYQwbZZid6n2nSg,70245
13
+ spacr/gui.py,sha256=iE65-TbVOAiL6d9cf0h0xqFs2geIbu5PiL6RS6WM8E0,10851
14
+ spacr/gui_core.py,sha256=NbIBrjka-RBXs0cLmDituG8AaLPU2MgSIoYamHmGYMQ,67278
15
+ spacr/gui_elements.py,sha256=bQMEvlL6O9fesndUF9uz07LlwMh7k_dyn4gUC7wbX_0,105314
16
+ spacr/gui_utils.py,sha256=WZa5eVi9tR5ExbDlpgSSmiTxvAodHhVEJGM_O5YpeYI,47556
17
+ spacr/io.py,sha256=OqVpKGeC9nHuEYi0HiKsLFXnkKEOHUPh80_M0qMIcXQ,195353
18
+ spacr/logger.py,sha256=b6rPzhkQhhtjhH8FWPDwAc_ULjDPenC32xCUUf7QLvs,2670
19
+ spacr/measure.py,sha256=pwfoaItL5nojMHo6HjyBOWoj7POBvGgEjMgvQqa7jgg,73123
20
20
  spacr/mediar.py,sha256=p0F515eFbm6_rePSnChsgqrgH-H5Sr_3zWrghtOnAUg,14863
21
- spacr/ml.py,sha256=iE7vI9Q1rjN_gHukqe8IXiWFCRaFj1lj3poFjEZY6Kw,91499
21
+ spacr/ml.py,sha256=iZxpx1c6HL_fVVTpJ_Q5BVlgcT372NjViBvLtxrhIZ8,113336
22
22
  spacr/openai.py,sha256=5vBZ3Jl2llYcW3oaTEXgdyCB2aJujMUIO5K038z7w_A,1246
23
- spacr/plot.py,sha256=_tG409NXqZTR2ZbwoIyWEvn4veUlBYPcqGy3Xx_DGAI,171285
24
- spacr/sequencing.py,sha256=EY12RdW5QRKpHDRQCw1QoAlxCq8FK2v6WoVa5uuDBXQ,26745
25
- spacr/settings.py,sha256=KAZmZB8cZRoVcSv-ceIcyZb4wCxbQCjSyKoBIzLLF38,88521
23
+ spacr/plot.py,sha256=FRifRjiZV4bESXtYjltcbsO25rOlQjMPwLVnWw5cBeE,203541
24
+ spacr/sequencing.py,sha256=NnVEwvN27bLrSHcwxsQy1kPAmKJ8EkuyAyv6fF1-EZ8,46411
25
+ spacr/settings.py,sha256=rxgo-WV_qJAPjDrmlwVgIb_Dv3o0_JW7zN9v5fktdXM,147122
26
26
  spacr/sim.py,sha256=EiCXNCarU6TAFwIKKSr7LOPKtNrxWK6_3XSBMaEpg20,71176
27
- spacr/sp_stats.py,sha256=KoQe5F0jfPBrZQ38MG_1b3AnF4XFNupR8a9crXiyi64,9516
28
- spacr/spacr_cellpose.py,sha256=IrGA-MC2-txMrh3vbFgi1MNwiD6Glnwvwmj63hUcOMc,16741
29
- spacr/submodules.py,sha256=kyX_oX0llXBrU5YwLLq0DssCczG3J1BAa2QeKI9P7oE,83114
30
- spacr/timelapse.py,sha256=WKz21Qy4ZJAMHUeYZNHnuw8SATA-q2CfnKgEUETDGMM,43031
31
- spacr/toxo.py,sha256=7to5GHfHt0EPL9qaxAQnA-_Io1t2NQ1nBxXlfZc3_oI,25674
32
- spacr/utils.py,sha256=sowqODYK2UQ0gDldwh_fdeQW42J2RjUTMujXW6TG3U8,242490
27
+ spacr/sp_stats.py,sha256=W_-POb_l0gE56Gnpv74UNn1UQ8C_FoF8Ya4lahT1XS0,12836
28
+ spacr/spacr_cellpose.py,sha256=jE5jtNv1-jAm-uskxoCirxegnP2qYdokoZLfrsuTRxI,22973
29
+ spacr/submodules.py,sha256=OABidoTtjfD3jul3nxUCWQHsatdAqw4hlw8W18brILU,123667
30
+ spacr/timelapse.py,sha256=o45y8NFBcB-UWfnOcb0a_inpzp9ZOHOBK174vl8kljE,51811
31
+ spacr/toxo.py,sha256=I8--_xf_AE7IPd6tOlqm3Z-548p9W3fGVa7SViIgCRY,32736
32
+ spacr/utils.py,sha256=ygD9LZmnu2_90q3UGRhI9vcMT2X-EWW25qr8W9k_vEE,349120
33
33
  spacr/version.py,sha256=axH5tnGwtgSnJHb5IDhiu4Zjk5GhLyAEDRe-rnaoFOA,409
34
34
  spacr/resources/data/lopit.csv,sha256=p3Hfga9W3Ohqnv40IEqawUk9nEGElijoJih3fGacllk,202507
35
35
  spacr/resources/data/toxoplasma_metadata.csv,sha256=9TXx0VlClDHAxQmaLhoklE8NuETduXaGHZjhR_6lZfs,2969409
@@ -112,9 +112,9 @@ spacr/resources/icons/umap.png,sha256=dOLF3DeLYy9k0nkUybiZMe1wzHQwLJFRmgccppw-8b
112
112
  spacr/resources/images/plate1_E01_T0001F001L01A01Z01C02.tif,sha256=Tl0ZUfZ_AYAbu0up_nO0tPRtF1BxXhWQ3T3pURBCCRo,7958528
113
113
  spacr/resources/images/plate1_E01_T0001F001L01A02Z01C01.tif,sha256=m8N-V71rA1TT4dFlENNg8s0Q0YEXXs8slIn7yObmZJQ,7958528
114
114
  spacr/resources/images/plate1_E01_T0001F001L01A03Z01C03.tif,sha256=Pbhk7xn-KUP6RSIhJsxQcrHFImBm3GEpLkzx7WOc-5M,7958528
115
- spacr-1.0.7.dist-info/LICENSE,sha256=t0Pov6pnK8thLteoF4xZGmdCwe5mhNwl3OXxLYTGD9U,1081
116
- spacr-1.0.7.dist-info/METADATA,sha256=XephNrSZIP9Q8hNEMoX0KHI6qCuTvX7rEMd0lbotW40,10792
117
- spacr-1.0.7.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
118
- spacr-1.0.7.dist-info/entry_points.txt,sha256=6pHChJ00ozJ-Awokdfd28wUjiPXFJ8ONVx50rEKjBi8,176
119
- spacr-1.0.7.dist-info/top_level.txt,sha256=GJPU8FgwRXGzKeut6JopsSRY2R8T3i9lDgya42tLInY,6
120
- spacr-1.0.7.dist-info/RECORD,,
115
+ spacr-1.1.0.dist-info/LICENSE,sha256=t0Pov6pnK8thLteoF4xZGmdCwe5mhNwl3OXxLYTGD9U,1081
116
+ spacr-1.1.0.dist-info/METADATA,sha256=II9ed4R3ZOhLMG0rCF4TmdCar4IjjFsY3mQl560pKT8,11508
117
+ spacr-1.1.0.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
118
+ spacr-1.1.0.dist-info/entry_points.txt,sha256=6pHChJ00ozJ-Awokdfd28wUjiPXFJ8ONVx50rEKjBi8,176
119
+ spacr-1.1.0.dist-info/top_level.txt,sha256=GJPU8FgwRXGzKeut6JopsSRY2R8T3i9lDgya42tLInY,6
120
+ spacr-1.1.0.dist-info/RECORD,,
File without changes
File without changes