spacr 0.4.60__py3-none-any.whl → 0.9.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- spacr/__init__.py +2 -4
- spacr/__main__.py +3 -3
- spacr/core.py +13 -107
- spacr/gui.py +0 -1
- spacr/gui_core.py +2 -2
- spacr/gui_utils.py +5 -14
- spacr/io.py +189 -200
- spacr/mediar.py +12 -8
- spacr/plot.py +50 -13
- spacr/settings.py +71 -14
- spacr/submodules.py +21 -14
- spacr/timelapse.py +192 -6
- spacr/utils.py +180 -56
- {spacr-0.4.60.dist-info → spacr-0.9.0.dist-info}/METADATA +64 -62
- {spacr-0.4.60.dist-info → spacr-0.9.0.dist-info}/RECORD +20 -72
- {spacr-0.4.60.dist-info → spacr-0.9.0.dist-info}/WHEEL +1 -1
- spacr/resources/MEDIAR/.gitignore +0 -18
- spacr/resources/MEDIAR/LICENSE +0 -21
- spacr/resources/MEDIAR/README.md +0 -189
- spacr/resources/MEDIAR/SetupDict.py +0 -39
- spacr/resources/MEDIAR/config/baseline.json +0 -60
- spacr/resources/MEDIAR/config/mediar_example.json +0 -72
- spacr/resources/MEDIAR/config/pred/pred_mediar.json +0 -17
- spacr/resources/MEDIAR/config/step1_pretraining/phase1.json +0 -55
- spacr/resources/MEDIAR/config/step1_pretraining/phase2.json +0 -58
- spacr/resources/MEDIAR/config/step2_finetuning/finetuning1.json +0 -66
- spacr/resources/MEDIAR/config/step2_finetuning/finetuning2.json +0 -66
- spacr/resources/MEDIAR/config/step3_prediction/base_prediction.json +0 -16
- spacr/resources/MEDIAR/config/step3_prediction/ensemble_tta.json +0 -23
- spacr/resources/MEDIAR/core/BasePredictor.py +0 -120
- spacr/resources/MEDIAR/core/BaseTrainer.py +0 -240
- spacr/resources/MEDIAR/core/Baseline/Predictor.py +0 -59
- spacr/resources/MEDIAR/core/Baseline/Trainer.py +0 -113
- spacr/resources/MEDIAR/core/Baseline/__init__.py +0 -2
- spacr/resources/MEDIAR/core/Baseline/utils.py +0 -80
- spacr/resources/MEDIAR/core/MEDIAR/EnsemblePredictor.py +0 -105
- spacr/resources/MEDIAR/core/MEDIAR/Predictor.py +0 -234
- spacr/resources/MEDIAR/core/MEDIAR/Trainer.py +0 -172
- spacr/resources/MEDIAR/core/MEDIAR/__init__.py +0 -3
- spacr/resources/MEDIAR/core/MEDIAR/utils.py +0 -429
- spacr/resources/MEDIAR/core/__init__.py +0 -2
- spacr/resources/MEDIAR/core/utils.py +0 -40
- spacr/resources/MEDIAR/evaluate.py +0 -71
- spacr/resources/MEDIAR/generate_mapping.py +0 -121
- spacr/resources/MEDIAR/image/examples/img1.tiff +0 -0
- spacr/resources/MEDIAR/image/examples/img2.tif +0 -0
- spacr/resources/MEDIAR/image/failure_cases.png +0 -0
- spacr/resources/MEDIAR/image/mediar_framework.png +0 -0
- spacr/resources/MEDIAR/image/mediar_model.PNG +0 -0
- spacr/resources/MEDIAR/image/mediar_results.png +0 -0
- spacr/resources/MEDIAR/main.py +0 -125
- spacr/resources/MEDIAR/predict.py +0 -70
- spacr/resources/MEDIAR/requirements.txt +0 -14
- spacr/resources/MEDIAR/train_tools/__init__.py +0 -3
- spacr/resources/MEDIAR/train_tools/data_utils/__init__.py +0 -1
- spacr/resources/MEDIAR/train_tools/data_utils/custom/CellAware.py +0 -88
- spacr/resources/MEDIAR/train_tools/data_utils/custom/LoadImage.py +0 -161
- spacr/resources/MEDIAR/train_tools/data_utils/custom/NormalizeImage.py +0 -77
- spacr/resources/MEDIAR/train_tools/data_utils/custom/__init__.py +0 -3
- spacr/resources/MEDIAR/train_tools/data_utils/custom/modalities.pkl +0 -0
- spacr/resources/MEDIAR/train_tools/data_utils/datasetter.py +0 -208
- spacr/resources/MEDIAR/train_tools/data_utils/transforms.py +0 -148
- spacr/resources/MEDIAR/train_tools/data_utils/utils.py +0 -84
- spacr/resources/MEDIAR/train_tools/measures.py +0 -200
- spacr/resources/MEDIAR/train_tools/models/MEDIARFormer.py +0 -102
- spacr/resources/MEDIAR/train_tools/models/__init__.py +0 -1
- spacr/resources/MEDIAR/train_tools/utils.py +0 -70
- spacr/stats.py +0 -221
- /spacr/{cellpose.py → spacr_cellpose.py} +0 -0
- {spacr-0.4.60.dist-info → spacr-0.9.0.dist-info}/LICENSE +0 -0
- {spacr-0.4.60.dist-info → spacr-0.9.0.dist-info}/entry_points.txt +0 -0
- {spacr-0.4.60.dist-info → spacr-0.9.0.dist-info}/top_level.txt +0 -0
@@ -1,429 +0,0 @@
|
|
1
|
-
"""
|
2
|
-
Copyright © 2022 Howard Hughes Medical Institute,
|
3
|
-
Authored by Carsen Stringer and Marius Pachitariu.
|
4
|
-
|
5
|
-
Redistribution and use in source and binary forms, with or without
|
6
|
-
modification, are permitted provided that the following conditions are met:
|
7
|
-
|
8
|
-
1. Redistributions of source code must retain the above copyright notice,
|
9
|
-
this list of conditions and the following disclaimer.
|
10
|
-
|
11
|
-
2. Redistributions in binary form must reproduce the above copyright notice,
|
12
|
-
this list of conditions and the following disclaimer in the documentation
|
13
|
-
and/or other materials provided with the distribution.
|
14
|
-
|
15
|
-
3. Neither the name of HHMI nor the names of its contributors may be used to
|
16
|
-
endorse or promote products derived from this software without specific
|
17
|
-
prior written permission.
|
18
|
-
|
19
|
-
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
20
|
-
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
21
|
-
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
22
|
-
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
23
|
-
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
24
|
-
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
25
|
-
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
26
|
-
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
27
|
-
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
28
|
-
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
29
|
-
POSSIBILITY OF SUCH DAMAGE.
|
30
|
-
|
31
|
-
--------------------------------------------------------------------------
|
32
|
-
MEDIAR Prediction uses CellPose's Gradient Flow Tracking.
|
33
|
-
|
34
|
-
This code is adapted from the following codes:
|
35
|
-
[1] https://github.com/MouseLand/cellpose/blob/main/cellpose/utils.py
|
36
|
-
[2] https://github.com/MouseLand/cellpose/blob/main/cellpose/dynamics.py
|
37
|
-
[3] https://github.com/MouseLand/cellpose/blob/main/cellpose/metrics.py
|
38
|
-
"""
|
39
|
-
|
40
|
-
import torch
|
41
|
-
from torch.nn.functional import grid_sample
|
42
|
-
import numpy as np
|
43
|
-
import fastremap
|
44
|
-
|
45
|
-
from skimage import morphology
|
46
|
-
from scipy.ndimage import mean, find_objects
|
47
|
-
from scipy.ndimage.filters import maximum_filter1d
|
48
|
-
|
49
|
-
torch_GPU = torch.device("cuda")
|
50
|
-
torch_CPU = torch.device("cpu")
|
51
|
-
|
52
|
-
|
53
|
-
def labels_to_flows(labels, use_gpu=False, device=None, redo_flows=False):
|
54
|
-
"""
|
55
|
-
Convert labels (list of masks or flows) to flows for training model
|
56
|
-
"""
|
57
|
-
|
58
|
-
# Labels b x 1 x h x w
|
59
|
-
labels = labels.cpu().numpy().astype(np.int16)
|
60
|
-
nimg = len(labels)
|
61
|
-
|
62
|
-
if labels[0].ndim < 3:
|
63
|
-
labels = [labels[n][np.newaxis, :, :] for n in range(nimg)]
|
64
|
-
|
65
|
-
# Flows need to be recomputed
|
66
|
-
if labels[0].shape[0] == 1 or labels[0].ndim < 3 or redo_flows:
|
67
|
-
# compute flows; labels are fixed here to be unique, so they need to be passed back
|
68
|
-
# make sure labels are unique!
|
69
|
-
labels = [fastremap.renumber(label, in_place=True)[0] for label in labels]
|
70
|
-
veci = [
|
71
|
-
masks_to_flows(labels[n][0], use_gpu=use_gpu, device=device)
|
72
|
-
for n in range(nimg)
|
73
|
-
]
|
74
|
-
|
75
|
-
# concatenate labels, distance transform, vector flows, heat (boundary and mask are computed in augmentations)
|
76
|
-
flows = [
|
77
|
-
np.concatenate((labels[n], labels[n] > 0.5, veci[n]), axis=0).astype(
|
78
|
-
np.float32
|
79
|
-
)
|
80
|
-
for n in range(nimg)
|
81
|
-
]
|
82
|
-
|
83
|
-
return np.array(flows)
|
84
|
-
|
85
|
-
|
86
|
-
def compute_masks(
|
87
|
-
dP,
|
88
|
-
cellprob,
|
89
|
-
p=None,
|
90
|
-
niter=200,
|
91
|
-
cellprob_threshold=0.4,
|
92
|
-
flow_threshold=0.4,
|
93
|
-
interp=True,
|
94
|
-
resize=None,
|
95
|
-
use_gpu=False,
|
96
|
-
device=None,
|
97
|
-
):
|
98
|
-
"""compute masks using dynamics from dP, cellprob, and boundary"""
|
99
|
-
|
100
|
-
cp_mask = cellprob > cellprob_threshold
|
101
|
-
cp_mask = morphology.remove_small_holes(cp_mask, area_threshold=16)
|
102
|
-
cp_mask = morphology.remove_small_objects(cp_mask, min_size=16)
|
103
|
-
|
104
|
-
if np.any(cp_mask): # mask at this point is a cell cluster binary map, not labels
|
105
|
-
# follow flows
|
106
|
-
if p is None:
|
107
|
-
p, inds = follow_flows(
|
108
|
-
dP * cp_mask / 5.0,
|
109
|
-
niter=niter,
|
110
|
-
interp=interp,
|
111
|
-
use_gpu=use_gpu,
|
112
|
-
device=device,
|
113
|
-
)
|
114
|
-
if inds is None:
|
115
|
-
shape = resize if resize is not None else cellprob.shape
|
116
|
-
mask = np.zeros(shape, np.uint16)
|
117
|
-
p = np.zeros((len(shape), *shape), np.uint16)
|
118
|
-
return mask, p
|
119
|
-
|
120
|
-
# calculate masks
|
121
|
-
mask = get_masks(p, iscell=cp_mask)
|
122
|
-
|
123
|
-
# flow thresholding factored out of get_masks
|
124
|
-
shape0 = p.shape[1:]
|
125
|
-
if mask.max() > 0 and flow_threshold is not None and flow_threshold > 0:
|
126
|
-
# make sure labels are unique at output of get_masks
|
127
|
-
mask = remove_bad_flow_masks(
|
128
|
-
mask, dP, threshold=flow_threshold, use_gpu=use_gpu, device=device
|
129
|
-
)
|
130
|
-
else: # nothing to compute, just make it compatible
|
131
|
-
shape = resize if resize is not None else cellprob.shape
|
132
|
-
mask = np.zeros(shape, np.uint16)
|
133
|
-
p = np.zeros((len(shape), *shape), np.uint16)
|
134
|
-
|
135
|
-
return mask, p
|
136
|
-
|
137
|
-
|
138
|
-
def _extend_centers_gpu(
|
139
|
-
neighbors, centers, isneighbor, Ly, Lx, n_iter=200, device=torch.device("cuda")
|
140
|
-
):
|
141
|
-
if device is not None:
|
142
|
-
device = device
|
143
|
-
nimg = neighbors.shape[0] // 9
|
144
|
-
pt = torch.from_numpy(neighbors).to(device)
|
145
|
-
|
146
|
-
T = torch.zeros((nimg, Ly, Lx), dtype=torch.double, device=device)
|
147
|
-
meds = torch.from_numpy(centers.astype(int)).to(device).long()
|
148
|
-
isneigh = torch.from_numpy(isneighbor).to(device)
|
149
|
-
for i in range(n_iter):
|
150
|
-
T[:, meds[:, 0], meds[:, 1]] += 1
|
151
|
-
Tneigh = T[:, pt[:, :, 0], pt[:, :, 1]]
|
152
|
-
Tneigh *= isneigh
|
153
|
-
T[:, pt[0, :, 0], pt[0, :, 1]] = Tneigh.mean(axis=1)
|
154
|
-
del meds, isneigh, Tneigh
|
155
|
-
T = torch.log(1.0 + T)
|
156
|
-
# gradient positions
|
157
|
-
grads = T[:, pt[[2, 1, 4, 3], :, 0], pt[[2, 1, 4, 3], :, 1]]
|
158
|
-
del pt
|
159
|
-
dy = grads[:, 0] - grads[:, 1]
|
160
|
-
dx = grads[:, 2] - grads[:, 3]
|
161
|
-
del grads
|
162
|
-
mu_torch = np.stack((dy.cpu().squeeze(), dx.cpu().squeeze()), axis=-2)
|
163
|
-
return mu_torch
|
164
|
-
|
165
|
-
|
166
|
-
def diameters(masks):
|
167
|
-
_, counts = np.unique(np.int32(masks), return_counts=True)
|
168
|
-
counts = counts[1:]
|
169
|
-
md = np.median(counts ** 0.5)
|
170
|
-
if np.isnan(md):
|
171
|
-
md = 0
|
172
|
-
md /= (np.pi ** 0.5) / 2
|
173
|
-
return md, counts ** 0.5
|
174
|
-
|
175
|
-
|
176
|
-
def masks_to_flows_gpu(masks, device=None):
|
177
|
-
if device is None:
|
178
|
-
device = torch.device("cuda")
|
179
|
-
|
180
|
-
Ly0, Lx0 = masks.shape
|
181
|
-
Ly, Lx = Ly0 + 2, Lx0 + 2
|
182
|
-
|
183
|
-
masks_padded = np.zeros((Ly, Lx), np.int64)
|
184
|
-
masks_padded[1:-1, 1:-1] = masks
|
185
|
-
|
186
|
-
# get mask pixel neighbors
|
187
|
-
y, x = np.nonzero(masks_padded)
|
188
|
-
neighborsY = np.stack((y, y - 1, y + 1, y, y, y - 1, y - 1, y + 1, y + 1), axis=0)
|
189
|
-
neighborsX = np.stack((x, x, x, x - 1, x + 1, x - 1, x + 1, x - 1, x + 1), axis=0)
|
190
|
-
neighbors = np.stack((neighborsY, neighborsX), axis=-1)
|
191
|
-
|
192
|
-
# get mask centers
|
193
|
-
slices = find_objects(masks)
|
194
|
-
|
195
|
-
centers = np.zeros((masks.max(), 2), "int")
|
196
|
-
for i, si in enumerate(slices):
|
197
|
-
if si is not None:
|
198
|
-
sr, sc = si
|
199
|
-
|
200
|
-
ly, lx = sr.stop - sr.start + 1, sc.stop - sc.start + 1
|
201
|
-
yi, xi = np.nonzero(masks[sr, sc] == (i + 1))
|
202
|
-
yi = yi.astype(np.int32) + 1 # add padding
|
203
|
-
xi = xi.astype(np.int32) + 1 # add padding
|
204
|
-
ymed = np.median(yi)
|
205
|
-
xmed = np.median(xi)
|
206
|
-
imin = np.argmin((xi - xmed) ** 2 + (yi - ymed) ** 2)
|
207
|
-
xmed = xi[imin]
|
208
|
-
ymed = yi[imin]
|
209
|
-
centers[i, 0] = ymed + sr.start
|
210
|
-
centers[i, 1] = xmed + sc.start
|
211
|
-
|
212
|
-
# get neighbor validator (not all neighbors are in same mask)
|
213
|
-
neighbor_masks = masks_padded[neighbors[:, :, 0], neighbors[:, :, 1]]
|
214
|
-
isneighbor = neighbor_masks == neighbor_masks[0]
|
215
|
-
ext = np.array(
|
216
|
-
[[sr.stop - sr.start + 1, sc.stop - sc.start + 1] for sr, sc in slices]
|
217
|
-
)
|
218
|
-
n_iter = 2 * (ext.sum(axis=1)).max()
|
219
|
-
# run diffusion
|
220
|
-
mu = _extend_centers_gpu(
|
221
|
-
neighbors, centers, isneighbor, Ly, Lx, n_iter=n_iter, device=device
|
222
|
-
)
|
223
|
-
|
224
|
-
# normalize
|
225
|
-
mu /= 1e-20 + (mu ** 2).sum(axis=0) ** 0.5
|
226
|
-
|
227
|
-
# put into original image
|
228
|
-
mu0 = np.zeros((2, Ly0, Lx0))
|
229
|
-
mu0[:, y - 1, x - 1] = mu
|
230
|
-
mu_c = np.zeros_like(mu0)
|
231
|
-
return mu0, mu_c
|
232
|
-
|
233
|
-
|
234
|
-
def masks_to_flows(masks, use_gpu=False, device=None):
|
235
|
-
if masks.max() == 0 or (masks != 0).sum() == 1:
|
236
|
-
# dynamics_logger.warning('empty masks!')
|
237
|
-
return np.zeros((2, *masks.shape), "float32")
|
238
|
-
|
239
|
-
if use_gpu:
|
240
|
-
if use_gpu and device is None:
|
241
|
-
device = torch_GPU
|
242
|
-
elif device is None:
|
243
|
-
device = torch_CPU
|
244
|
-
masks_to_flows_device = masks_to_flows_gpu
|
245
|
-
|
246
|
-
if masks.ndim == 3:
|
247
|
-
Lz, Ly, Lx = masks.shape
|
248
|
-
mu = np.zeros((3, Lz, Ly, Lx), np.float32)
|
249
|
-
for z in range(Lz):
|
250
|
-
mu0 = masks_to_flows_device(masks[z], device=device)[0]
|
251
|
-
mu[[1, 2], z] += mu0
|
252
|
-
for y in range(Ly):
|
253
|
-
mu0 = masks_to_flows_device(masks[:, y], device=device)[0]
|
254
|
-
mu[[0, 2], :, y] += mu0
|
255
|
-
for x in range(Lx):
|
256
|
-
mu0 = masks_to_flows_device(masks[:, :, x], device=device)[0]
|
257
|
-
mu[[0, 1], :, :, x] += mu0
|
258
|
-
return mu
|
259
|
-
elif masks.ndim == 2:
|
260
|
-
mu, mu_c = masks_to_flows_device(masks, device=device)
|
261
|
-
return mu
|
262
|
-
|
263
|
-
else:
|
264
|
-
raise ValueError("masks_to_flows only takes 2D or 3D arrays")
|
265
|
-
|
266
|
-
|
267
|
-
def steps2D_interp(p, dP, niter, use_gpu=False, device=None):
|
268
|
-
shape = dP.shape[1:]
|
269
|
-
if use_gpu:
|
270
|
-
if device is None:
|
271
|
-
device = torch_GPU
|
272
|
-
shape = (
|
273
|
-
np.array(shape)[[1, 0]].astype("float") - 1
|
274
|
-
) # Y and X dimensions (dP is 2.Ly.Lx), flipped X-1, Y-1
|
275
|
-
pt = (
|
276
|
-
torch.from_numpy(p[[1, 0]].T).float().to(device).unsqueeze(0).unsqueeze(0)
|
277
|
-
) # p is n_points by 2, so pt is [1 1 2 n_points]
|
278
|
-
im = (
|
279
|
-
torch.from_numpy(dP[[1, 0]]).float().to(device).unsqueeze(0)
|
280
|
-
) # covert flow numpy array to tensor on GPU, add dimension
|
281
|
-
# normalize pt between 0 and 1, normalize the flow
|
282
|
-
for k in range(2):
|
283
|
-
im[:, k, :, :] *= 2.0 / shape[k]
|
284
|
-
pt[:, :, :, k] /= shape[k]
|
285
|
-
|
286
|
-
# normalize to between -1 and 1
|
287
|
-
pt = pt * 2 - 1
|
288
|
-
|
289
|
-
# here is where the stepping happens
|
290
|
-
for t in range(niter):
|
291
|
-
# align_corners default is False, just added to suppress warning
|
292
|
-
dPt = grid_sample(im, pt, align_corners=False)
|
293
|
-
|
294
|
-
for k in range(2): # clamp the final pixel locations
|
295
|
-
pt[:, :, :, k] = torch.clamp(
|
296
|
-
pt[:, :, :, k] + dPt[:, k, :, :], -1.0, 1.0
|
297
|
-
)
|
298
|
-
|
299
|
-
# undo the normalization from before, reverse order of operations
|
300
|
-
pt = (pt + 1) * 0.5
|
301
|
-
for k in range(2):
|
302
|
-
pt[:, :, :, k] *= shape[k]
|
303
|
-
|
304
|
-
p = pt[:, :, :, [1, 0]].cpu().numpy().squeeze().T
|
305
|
-
return p
|
306
|
-
|
307
|
-
else:
|
308
|
-
assert print("ho")
|
309
|
-
|
310
|
-
|
311
|
-
def follow_flows(dP, mask=None, niter=200, interp=True, use_gpu=True, device=None):
|
312
|
-
shape = np.array(dP.shape[1:]).astype(np.int32)
|
313
|
-
niter = np.uint32(niter)
|
314
|
-
|
315
|
-
p = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing="ij")
|
316
|
-
p = np.array(p).astype(np.float32)
|
317
|
-
|
318
|
-
inds = np.array(np.nonzero(np.abs(dP[0]) > 1e-3)).astype(np.int32).T
|
319
|
-
|
320
|
-
if inds.ndim < 2 or inds.shape[0] < 5:
|
321
|
-
return p, None
|
322
|
-
|
323
|
-
if not interp:
|
324
|
-
assert print("woo")
|
325
|
-
|
326
|
-
else:
|
327
|
-
p_interp = steps2D_interp(
|
328
|
-
p[:, inds[:, 0], inds[:, 1]], dP, niter, use_gpu=use_gpu, device=device
|
329
|
-
)
|
330
|
-
p[:, inds[:, 0], inds[:, 1]] = p_interp
|
331
|
-
|
332
|
-
return p, inds
|
333
|
-
|
334
|
-
|
335
|
-
def flow_error(maski, dP_net, use_gpu=False, device=None):
|
336
|
-
if dP_net.shape[1:] != maski.shape:
|
337
|
-
print("ERROR: net flow is not same size as predicted masks")
|
338
|
-
return
|
339
|
-
|
340
|
-
# flows predicted from estimated masks
|
341
|
-
dP_masks = masks_to_flows(maski, use_gpu=use_gpu, device=device)
|
342
|
-
# difference between predicted flows vs mask flows
|
343
|
-
flow_errors = np.zeros(maski.max())
|
344
|
-
for i in range(dP_masks.shape[0]):
|
345
|
-
flow_errors += mean(
|
346
|
-
(dP_masks[i] - dP_net[i] / 5.0) ** 2,
|
347
|
-
maski,
|
348
|
-
index=np.arange(1, maski.max() + 1),
|
349
|
-
)
|
350
|
-
|
351
|
-
return flow_errors, dP_masks
|
352
|
-
|
353
|
-
|
354
|
-
def remove_bad_flow_masks(masks, flows, threshold=0.4, use_gpu=False, device=None):
|
355
|
-
merrors, _ = flow_error(masks, flows, use_gpu, device)
|
356
|
-
badi = 1 + (merrors > threshold).nonzero()[0]
|
357
|
-
masks[np.isin(masks, badi)] = 0
|
358
|
-
return masks
|
359
|
-
|
360
|
-
|
361
|
-
def get_masks(p, iscell=None, rpad=20):
|
362
|
-
pflows = []
|
363
|
-
edges = []
|
364
|
-
shape0 = p.shape[1:]
|
365
|
-
dims = len(p)
|
366
|
-
|
367
|
-
for i in range(dims):
|
368
|
-
pflows.append(p[i].flatten().astype("int32"))
|
369
|
-
edges.append(np.arange(-0.5 - rpad, shape0[i] + 0.5 + rpad, 1))
|
370
|
-
|
371
|
-
h, _ = np.histogramdd(tuple(pflows), bins=edges)
|
372
|
-
hmax = h.copy()
|
373
|
-
for i in range(dims):
|
374
|
-
hmax = maximum_filter1d(hmax, 5, axis=i)
|
375
|
-
|
376
|
-
seeds = np.nonzero(np.logical_and(h - hmax > -1e-6, h > 10))
|
377
|
-
Nmax = h[seeds]
|
378
|
-
isort = np.argsort(Nmax)[::-1]
|
379
|
-
for s in seeds:
|
380
|
-
s = s[isort]
|
381
|
-
|
382
|
-
pix = list(np.array(seeds).T)
|
383
|
-
|
384
|
-
shape = h.shape
|
385
|
-
if dims == 3:
|
386
|
-
expand = np.nonzero(np.ones((3, 3, 3)))
|
387
|
-
else:
|
388
|
-
expand = np.nonzero(np.ones((3, 3)))
|
389
|
-
for e in expand:
|
390
|
-
e = np.expand_dims(e, 1)
|
391
|
-
|
392
|
-
for iter in range(5):
|
393
|
-
for k in range(len(pix)):
|
394
|
-
if iter == 0:
|
395
|
-
pix[k] = list(pix[k])
|
396
|
-
newpix = []
|
397
|
-
iin = []
|
398
|
-
for i, e in enumerate(expand):
|
399
|
-
epix = e[:, np.newaxis] + np.expand_dims(pix[k][i], 0) - 1
|
400
|
-
epix = epix.flatten()
|
401
|
-
iin.append(np.logical_and(epix >= 0, epix < shape[i]))
|
402
|
-
newpix.append(epix)
|
403
|
-
iin = np.all(tuple(iin), axis=0)
|
404
|
-
for p in newpix:
|
405
|
-
p = p[iin]
|
406
|
-
newpix = tuple(newpix)
|
407
|
-
igood = h[newpix] > 2
|
408
|
-
for i in range(dims):
|
409
|
-
pix[k][i] = newpix[i][igood]
|
410
|
-
if iter == 4:
|
411
|
-
pix[k] = tuple(pix[k])
|
412
|
-
|
413
|
-
M = np.zeros(h.shape, np.uint32)
|
414
|
-
for k in range(len(pix)):
|
415
|
-
M[pix[k]] = 1 + k
|
416
|
-
|
417
|
-
for i in range(dims):
|
418
|
-
pflows[i] = pflows[i] + rpad
|
419
|
-
M0 = M[tuple(pflows)]
|
420
|
-
|
421
|
-
# remove big masks
|
422
|
-
uniq, counts = fastremap.unique(M0, return_counts=True)
|
423
|
-
big = np.prod(shape0) * 0.9
|
424
|
-
bigc = uniq[counts > big]
|
425
|
-
if len(bigc) > 0 and (len(bigc) > 1 or bigc[0] != 0):
|
426
|
-
M0 = fastremap.mask(M0, bigc)
|
427
|
-
fastremap.renumber(M0, in_place=True) # convenient to guarantee non-skipped labels
|
428
|
-
M0 = np.reshape(M0, shape0)
|
429
|
-
return M0
|
@@ -1,40 +0,0 @@
|
|
1
|
-
import torch
|
2
|
-
import wandb
|
3
|
-
import pprint
|
4
|
-
|
5
|
-
__all__ = ["print_learning_device", "print_with_logging"]
|
6
|
-
|
7
|
-
|
8
|
-
def print_learning_device(device):
|
9
|
-
"""Get and print the learning device information."""
|
10
|
-
if device == "cpu":
|
11
|
-
device_name = device
|
12
|
-
|
13
|
-
else:
|
14
|
-
if isinstance(device, str):
|
15
|
-
device_idx = int(device[-1])
|
16
|
-
elif isinstance(device, torch._device):
|
17
|
-
device_idx = device.index
|
18
|
-
|
19
|
-
device_name = torch.cuda.get_device_name(device_idx)
|
20
|
-
|
21
|
-
print("")
|
22
|
-
print("=" * 50)
|
23
|
-
print("Train start on device: {}".format(device_name))
|
24
|
-
print("=" * 50)
|
25
|
-
|
26
|
-
|
27
|
-
def print_with_logging(results, step):
|
28
|
-
"""Print and log on the W&B server.
|
29
|
-
|
30
|
-
Args:
|
31
|
-
results (dict): results dictionary
|
32
|
-
step (int): epoch index
|
33
|
-
"""
|
34
|
-
# Print the results dictionary
|
35
|
-
pp = pprint.PrettyPrinter(compact=True)
|
36
|
-
pp.pprint(results)
|
37
|
-
print()
|
38
|
-
|
39
|
-
# Log on the w&b server
|
40
|
-
wandb.log(results, step=step)
|
@@ -1,71 +0,0 @@
|
|
1
|
-
import numpy as np
|
2
|
-
import pandas as pd
|
3
|
-
import tifffile as tif
|
4
|
-
import argparse
|
5
|
-
import os
|
6
|
-
from collections import OrderedDict
|
7
|
-
from tqdm import tqdm
|
8
|
-
|
9
|
-
from train_tools.measures import evaluate_f1_score_cellseg
|
10
|
-
|
11
|
-
|
12
|
-
def main():
|
13
|
-
### Directory path arguments ###
|
14
|
-
parser = argparse.ArgumentParser("Compute F1 score for cell segmentation results")
|
15
|
-
parser.add_argument(
|
16
|
-
"--gt_path",
|
17
|
-
type=str,
|
18
|
-
help="path to ground truth; file names end with _label.tiff",
|
19
|
-
required=True,
|
20
|
-
)
|
21
|
-
parser.add_argument(
|
22
|
-
"--pred_path", type=str, help="path to segmentation results", required=True
|
23
|
-
)
|
24
|
-
parser.add_argument("--save_path", default=None, help="path where to save metrics")
|
25
|
-
|
26
|
-
args = parser.parse_args()
|
27
|
-
|
28
|
-
# Get files from the paths
|
29
|
-
gt_path, pred_path = args.gt_path, args.pred_path
|
30
|
-
names = sorted(os.listdir(pred_path))
|
31
|
-
|
32
|
-
names_total = []
|
33
|
-
precisions_total, recalls_total, f1_scores_total = [], [], []
|
34
|
-
|
35
|
-
for name in tqdm(names):
|
36
|
-
assert name.endswith(
|
37
|
-
"_label.tiff"
|
38
|
-
), "The suffix of label name should be _label.tiff"
|
39
|
-
|
40
|
-
# Load the images
|
41
|
-
gt = tif.imread(os.path.join(gt_path, name))
|
42
|
-
pred = tif.imread(os.path.join(pred_path, name))
|
43
|
-
|
44
|
-
# Evaluate metrics
|
45
|
-
precision, recall, f1_score = evaluate_f1_score_cellseg(gt, pred, threshold=0.5)
|
46
|
-
|
47
|
-
names_total.append(name)
|
48
|
-
precisions_total.append(np.round(precision, 4))
|
49
|
-
recalls_total.append(np.round(recall, 4))
|
50
|
-
f1_scores_total.append(np.round(f1_score, 4))
|
51
|
-
|
52
|
-
# Refine data as dataframe
|
53
|
-
cellseg_metric = OrderedDict()
|
54
|
-
cellseg_metric["Names"] = names_total
|
55
|
-
cellseg_metric["Precision"] = precisions_total
|
56
|
-
cellseg_metric["Recall"] = recalls_total
|
57
|
-
cellseg_metric["F1_Score"] = f1_scores_total
|
58
|
-
|
59
|
-
cellseg_metric = pd.DataFrame(cellseg_metric)
|
60
|
-
print("mean F1 Score:", np.mean(cellseg_metric["F1_Score"]))
|
61
|
-
|
62
|
-
# Save results
|
63
|
-
if args.save_path is not None:
|
64
|
-
os.makedirs(args.save_path, exist_ok=True)
|
65
|
-
cellseg_metric.to_csv(
|
66
|
-
os.path.join(args.save_path, "seg_metric.csv"), index=False
|
67
|
-
)
|
68
|
-
|
69
|
-
|
70
|
-
if __name__ == "__main__":
|
71
|
-
main()
|
@@ -1,121 +0,0 @@
|
|
1
|
-
import os, glob
|
2
|
-
import json
|
3
|
-
import argparse
|
4
|
-
|
5
|
-
|
6
|
-
def public_paths_labeled(root):
|
7
|
-
"""Map paths for public datasets as dictionary list"""
|
8
|
-
|
9
|
-
images_raw = sorted(glob.glob(os.path.join(root, "Public/images/*")))
|
10
|
-
labels_raw = sorted(glob.glob(os.path.join(root, "Public/labels/*")))
|
11
|
-
|
12
|
-
data_dicts = []
|
13
|
-
|
14
|
-
for image_path, label_path in zip(images_raw, labels_raw):
|
15
|
-
name1 = image_path.split("/")[-1].split(".")[0]
|
16
|
-
name2 = label_path.split("/")[-1].split("_label")[0]
|
17
|
-
assert name1 == name2
|
18
|
-
|
19
|
-
data_item = {
|
20
|
-
"img": image_path.split("MEDIAR/")[-1],
|
21
|
-
"label": label_path.split("MEDIAR/")[-1],
|
22
|
-
}
|
23
|
-
|
24
|
-
data_dicts.append(data_item)
|
25
|
-
|
26
|
-
map_dict = {"public": data_dicts}
|
27
|
-
|
28
|
-
return map_dict
|
29
|
-
|
30
|
-
|
31
|
-
def official_paths_labeled(root):
|
32
|
-
"""Map paths for official labeled datasets as dictionary list"""
|
33
|
-
|
34
|
-
image_path = os.path.join(root, "Official/Training/images/*")
|
35
|
-
label_path = os.path.join(root, "Official/Training/labels/*")
|
36
|
-
|
37
|
-
images_raw = sorted(glob.glob(image_path))
|
38
|
-
labels_raw = sorted(glob.glob(label_path))
|
39
|
-
data_dicts = []
|
40
|
-
|
41
|
-
for image_path, label_path in zip(images_raw, labels_raw):
|
42
|
-
name1 = image_path.split("/")[-1].split(".")[0]
|
43
|
-
name2 = label_path.split("/")[-1].split("_label")[0]
|
44
|
-
assert name1 == name2
|
45
|
-
|
46
|
-
data_item = {
|
47
|
-
"img": image_path.split("MEDIAR/")[-1],
|
48
|
-
"label": label_path.split("MEDIAR/")[-1],
|
49
|
-
}
|
50
|
-
|
51
|
-
data_dicts.append(data_item)
|
52
|
-
|
53
|
-
map_dict = {"official": data_dicts}
|
54
|
-
|
55
|
-
return map_dict
|
56
|
-
|
57
|
-
|
58
|
-
def official_paths_tuning(root):
|
59
|
-
"""Map paths for official tuning datasets as dictionary list"""
|
60
|
-
|
61
|
-
image_path = os.path.join(root, "Official/Tuning/images/*")
|
62
|
-
images_raw = sorted(glob.glob(image_path))
|
63
|
-
|
64
|
-
data_dicts = []
|
65
|
-
|
66
|
-
for image_path in images_raw:
|
67
|
-
data_item = {"img": image_path.split("MEDIAR/")[-1]}
|
68
|
-
data_dicts.append(data_item)
|
69
|
-
|
70
|
-
map_dict = {"official": data_dicts}
|
71
|
-
|
72
|
-
return map_dict
|
73
|
-
|
74
|
-
|
75
|
-
def add_mapping_to_json(json_file, map_dict):
|
76
|
-
"""Save mapped dictionary as a json file"""
|
77
|
-
|
78
|
-
if not os.path.exists(json_file):
|
79
|
-
with open(json_file, "w") as file:
|
80
|
-
json.dump({}, file)
|
81
|
-
|
82
|
-
with open(json_file, "r") as file:
|
83
|
-
data = json.load(file)
|
84
|
-
|
85
|
-
for map_key, map_item in map_dict.items():
|
86
|
-
if map_key not in data.keys():
|
87
|
-
data[map_key] = map_item
|
88
|
-
else:
|
89
|
-
print('>>> "{}" already exists in path map keys...'.format(map_key))
|
90
|
-
|
91
|
-
with open(json_file, "w") as file:
|
92
|
-
json.dump(data, file)
|
93
|
-
|
94
|
-
|
95
|
-
if __name__ == "__main__":
|
96
|
-
# [!Caution] The paths should be overrided for the local environment!
|
97
|
-
parser = argparse.ArgumentParser(description="Mapping files and paths")
|
98
|
-
parser.add_argument("--root", default=".", type=str)
|
99
|
-
args = parser.parse_args()
|
100
|
-
|
101
|
-
MAP_DIR = "./train_tools/data_utils/"
|
102
|
-
|
103
|
-
print("\n----------- Path Mapping for Labeled Data is Started... -----------\n")
|
104
|
-
|
105
|
-
map_labeled = os.path.join(MAP_DIR, "mapping_labeled.json")
|
106
|
-
map_dict = official_paths_labeled(args.root)
|
107
|
-
add_mapping_to_json(map_labeled, map_dict)
|
108
|
-
|
109
|
-
print("\n----------- Path Mapping for Tuning Data is Started... -----------\n")
|
110
|
-
|
111
|
-
map_labeled = os.path.join(MAP_DIR, "mapping_tuning.json")
|
112
|
-
map_dict = official_paths_tuning(args.root)
|
113
|
-
add_mapping_to_json(map_labeled, map_dict)
|
114
|
-
|
115
|
-
print("\n----------- Path Mapping for Public Data is Started... -----------\n")
|
116
|
-
|
117
|
-
map_public = os.path.join(MAP_DIR, "mapping_public.json")
|
118
|
-
map_dict = public_paths_labeled(args.root)
|
119
|
-
add_mapping_to_json(map_public, map_dict)
|
120
|
-
|
121
|
-
print("\n-------------- Path Mapping is Ended !!! ---------------------------\n")
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|