spacr 0.4.15__py3-none-any.whl → 0.4.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
spacr/settings.py CHANGED
@@ -26,12 +26,14 @@ def set_default_plot_merge_settings():
26
26
 
27
27
  def set_default_settings_preprocess_generate_masks(settings={}):
28
28
 
29
+ settings.setdefault('denoise', False)
29
30
  settings.setdefault('src', 'path')
30
31
  settings.setdefault('delete_intermediate', False)
31
32
  settings.setdefault('segmentation_mode', 'cellpose')
32
33
  settings.setdefault('preprocess', True)
33
34
  settings.setdefault('masks', True)
34
35
  settings.setdefault('save', True)
36
+ settings.setdefault('consolidate', False)
35
37
  settings.setdefault('batch_size', 50)
36
38
  settings.setdefault('test_mode', False)
37
39
  settings.setdefault('test_images', 10)
@@ -86,7 +88,7 @@ def set_default_settings_preprocess_generate_masks(settings={}):
86
88
  settings.setdefault('fps', 2)
87
89
  settings.setdefault('timelapse_displacement', None)
88
90
  settings.setdefault('timelapse_memory', 3)
89
- settings.setdefault('timelapse_frame_limits', [5,60])
91
+ settings.setdefault('timelapse_frame_limits', [5,])
90
92
  settings.setdefault('timelapse_remove_transient', False)
91
93
  settings.setdefault('timelapse_mode', 'trackpy')
92
94
  settings.setdefault('timelapse_objects', None)
@@ -219,7 +221,7 @@ def set_default_umap_image_settings(settings={}):
219
221
  settings.setdefault('smooth_lines', True)
220
222
  settings.setdefault('clustering', 'dbscan')
221
223
  settings.setdefault('exclude', None)
222
- settings.setdefault('col_to_compare', 'column_name')
224
+ settings.setdefault('col_to_compare', 'columnID')
223
225
  settings.setdefault('pos', 'c1')
224
226
  settings.setdefault('neg', 'c2')
225
227
  settings.setdefault('mix', 'c3')
@@ -301,76 +303,6 @@ def get_measure_crop_settings(settings={}):
301
303
  print(f'Test mode enabled with {test_imgs} images, plotting set to True')
302
304
 
303
305
  return settings
304
- settings.setdefault('normalize_by','png')
305
- settings.setdefault('crop_mode',['cell'])
306
- settings.setdefault('dialate_pngs', False)
307
- settings.setdefault('dialate_png_ratios', [0.2])
308
-
309
- # Timelapsed settings
310
- settings.setdefault('timelapse', False)
311
- settings.setdefault('timelapse_objects', 'cell')
312
-
313
- # Operational settings
314
- settings.setdefault('plot',False)
315
- settings.setdefault('n_jobs', os.cpu_count()-2)
316
-
317
- # Object settings
318
- settings.setdefault('cell_mask_dim',4)
319
- settings.setdefault('nucleus_mask_dim',5)
320
- settings.setdefault('pathogen_mask_dim',6)
321
- settings.setdefault('cytoplasm',False)
322
- settings.setdefault('uninfected',True)
323
- settings.setdefault('cell_min_size',0)
324
- settings.setdefault('nucleus_min_size',0)
325
- settings.setdefault('pathogen_min_size',0)
326
- settings.setdefault('cytoplasm_min_size',0)
327
- settings.setdefault('merge_edge_pathogen_cells', True)
328
-
329
- if settings['test_mode']:
330
- settings['verbose'] = True
331
- settings['plot'] = True
332
- test_imgs = settings['test_nr']
333
- print(f'Test mode enabled with {test_imgs} images, plotting set to True')
334
-
335
- return settings
336
- settings.setdefault('save_arrays', False)
337
- settings.setdefault('save_png',True)
338
- settings.setdefault('use_bounding_box',False)
339
- settings.setdefault('png_size',[224,224])
340
- settings.setdefault('png_dims',[0,1,2])
341
- settings.setdefault('normalize',False)
342
- settings.setdefault('normalize_by','png')
343
- settings.setdefault('crop_mode',['cell'])
344
- settings.setdefault('dialate_pngs', False)
345
- settings.setdefault('dialate_png_ratios', [0.2])
346
-
347
- # Timelapsed settings
348
- settings.setdefault('timelapse', False)
349
- settings.setdefault('timelapse_objects', 'cell')
350
-
351
- # Operational settings
352
- settings.setdefault('plot',False)
353
- settings.setdefault('n_jobs', os.cpu_count()-2)
354
-
355
- # Object settings
356
- settings.setdefault('cell_mask_dim',4)
357
- settings.setdefault('nucleus_mask_dim',5)
358
- settings.setdefault('pathogen_mask_dim',6)
359
- settings.setdefault('cytoplasm',False)
360
- settings.setdefault('uninfected',True)
361
- settings.setdefault('cell_min_size',0)
362
- settings.setdefault('nucleus_min_size',0)
363
- settings.setdefault('pathogen_min_size',0)
364
- settings.setdefault('cytoplasm_min_size',0)
365
- settings.setdefault('merge_edge_pathogen_cells', True)
366
-
367
- if settings['test_mode']:
368
- settings['verbose'] = True
369
- settings['plot'] = True
370
- test_imgs = settings['test_nr']
371
- print(f'Test mode enabled with {test_imgs} images, plotting set to True')
372
-
373
- return settings
374
306
 
375
307
  def set_default_analyze_screen(settings):
376
308
  settings.setdefault('src', 'path')
@@ -388,7 +320,7 @@ def set_default_analyze_screen(settings):
388
320
  settings.setdefault('learning_rate',0.001)
389
321
  settings.setdefault('n_estimators',1000)
390
322
  settings.setdefault('test_size',0.2)
391
- settings.setdefault('location_column','column_name')
323
+ settings.setdefault('location_column','columnID')
392
324
  settings.setdefault('positive_control','c2')
393
325
  settings.setdefault('negative_control','c1')
394
326
  settings.setdefault('exclude',None)
@@ -451,7 +383,7 @@ def set_generate_training_dataset_defaults(settings):
451
383
  settings.setdefault('size',224)
452
384
  settings.setdefault('test_split',0.1)
453
385
  settings.setdefault('class_metadata',[['c1'],['c2']])
454
- settings.setdefault('metadata_type_by','column_name')
386
+ settings.setdefault('metadata_type_by','columnID')
455
387
  settings.setdefault('channel_of_interest',3)
456
388
  settings.setdefault('custom_measurement',None)
457
389
  settings.setdefault('tables',None)
@@ -473,7 +405,7 @@ def deep_spacr_defaults(settings):
473
405
  settings.setdefault('size',224)
474
406
  settings.setdefault('test_split',0.1)
475
407
  settings.setdefault('class_metadata',[['c1'],['c2']])
476
- settings.setdefault('metadata_type_by','column_name')
408
+ settings.setdefault('metadata_type_by','columnID')
477
409
  settings.setdefault('channel_of_interest',3)
478
410
  settings.setdefault('custom_measurement',None)
479
411
  settings.setdefault('tables',None)
@@ -557,7 +489,7 @@ def get_analyze_recruitment_default_settings(settings):
557
489
  settings.setdefault('pathogen_plate_metadata',[['c1', 'c2', 'c3'],['c4','c5', 'c6']])
558
490
  settings.setdefault('treatments',['cm', 'lovastatin'])
559
491
  settings.setdefault('treatment_plate_metadata',[['r1', 'r2','r3'], ['r4', 'r5','r6']])
560
- #settings.setdefault('metadata_types',['column_name', 'column_name', 'row_name'])
492
+ #settings.setdefault('metadata_types',['columnID', 'columnID', 'rowID'])
561
493
  settings.setdefault('channel_dims',[0,1,2,3])
562
494
  settings.setdefault('cell_chann_dim',3)
563
495
  settings.setdefault('cell_mask_dim',4)
@@ -579,7 +511,40 @@ def get_analyze_recruitment_default_settings(settings):
579
511
  settings.setdefault('pathogen_intensity_range',[0,100000])
580
512
  settings.setdefault('nucleus_intensity_range',[0,100000])
581
513
  settings.setdefault('cell_intensity_range',[0,100000])
582
- settings.setdefault('target_intensity_min',0)
514
+ settings.setdefault('target_intensity_min',1)
515
+ return settings
516
+
517
+ def get_default_test_cellpose_model_settings(settings):
518
+ settings.setdefault('src','path')
519
+ settings.setdefault('model_path','path')
520
+ settings.setdefault('save',True)
521
+ settings.setdefault('normalize',True)
522
+ settings.setdefault('percentiles',(2,98))
523
+ settings.setdefault('batch_size',50)
524
+ settings.setdefault('CP_probability',0)
525
+ settings.setdefault('FT',100)
526
+ settings.setdefault('target_size',1000)
527
+ return settings
528
+
529
+ def get_default_apply_cellpose_model_settings(settings):
530
+ settings.setdefault('src','path')
531
+ settings.setdefault('model_path','path')
532
+ settings.setdefault('save',True)
533
+ settings.setdefault('normalize',True)
534
+ settings.setdefault('percentiles',(2,98))
535
+ settings.setdefault('batch_size',50)
536
+ settings.setdefault('CP_probability',0)
537
+ settings.setdefault('FT',100)
538
+ settings.setdefault('circularize',False)
539
+ settings.setdefault('target_size',1000)
540
+ return settings
541
+
542
+ def default_settings_analyze_percent_positive(settings):
543
+ settings.setdefault('src','path')
544
+ settings.setdefault('tables',['cell'])
545
+ settings.setdefault('filter_1',['cell_area',1000])
546
+ settings.setdefault('value_col','cell_channel_2_mean_intensity')
547
+ settings.setdefault('threshold',2000)
583
548
  return settings
584
549
 
585
550
  def get_analyze_reads_default_settings(settings):
@@ -654,9 +619,8 @@ def get_perform_regression_default_settings(settings):
654
619
  settings.setdefault('cov_type',None)
655
620
  settings.setdefault('alpha',1)
656
621
  settings.setdefault('filter_value',['c1', 'c2', 'c3'])
657
- settings.setdefault('filter_column','column')
658
- settings.setdefault('plate','plate1')
659
- settings.setdefault('class_1_threshold',None)
622
+ settings.setdefault('filter_column','columnID')
623
+ settings.setdefault('plateID','plate1')
660
624
  settings.setdefault('metadata_files',['/home/carruthers/Documents/TGGT1_Summary.csv','/home/carruthers/Documents/TGME49_Summary.csv'])
661
625
  settings.setdefault('volcano','gene')
662
626
  settings.setdefault('toxo', True)
@@ -925,6 +889,7 @@ expected_types = {
925
889
  "agg_type": str,
926
890
  "min_cell_count": int,
927
891
  "resize": bool,
892
+ "denoise":bool,
928
893
  "target_height": (int, type(None)),
929
894
  "target_width": (int, type(None)),
930
895
  "rescale": bool,
@@ -1017,12 +982,13 @@ expected_types = {
1017
982
  "flow_threshold":float,
1018
983
  "cell_diamiter":int,
1019
984
  "nucleus_diamiter":int,
1020
- "pathogen_diamiter":int
985
+ "pathogen_diamiter":int,
986
+ "consolidate":bool
1021
987
  }
1022
988
 
1023
989
  categories = {"Paths":[ "src", "grna", "barcodes", "custom_model_path", "dataset","model_path","grna_csv","row_csv","column_csv", "metadata_files", "score_data","count_data"],
1024
990
  "General": ["cell_mask_dim", "cytoplasm", "cell_chann_dim", "cell_channel", "nucleus_chann_dim", "nucleus_channel", "nucleus_mask_dim", "pathogen_mask_dim", "pathogen_chann_dim", "pathogen_channel", "test_mode", "plot", "metadata_type", "custom_regex", "experiment", "channels", "magnification", "channel_dims", "apply_model_to_dataset", "generate_training_dataset", "train_DL_model", "segmentation_mode", "delete_intermediate", "uninfected", ],
1025
- "Cellpose":["fill_in","from_scratch", "n_epochs", "width_height", "model_name", "custom_model", "resample", "rescale", "CP_prob", "flow_threshold", "percentiles", "invert", "diameter", "grayscale", "Signal_to_noise", "resize", "target_height", "target_width"],
991
+ "Cellpose":["denoise","fill_in","from_scratch", "n_epochs", "width_height", "model_name", "custom_model", "resample", "rescale", "CP_prob", "flow_threshold", "percentiles", "invert", "diameter", "grayscale", "Signal_to_noise", "resize", "target_height", "target_width"],
1026
992
  "Cell": ["cell_diamiter","cell_intensity_range", "cell_size_range", "cell_background", "cell_Signal_to_noise", "cell_CP_prob", "cell_FT", "remove_background_cell", "cell_min_size", "cytoplasm_min_size", "adjust_cells", "cells", "cell_loc"],
1027
993
  "Nucleus": ["nucleus_diamiter","nucleus_intensity_range", "nucleus_size_range", "nucleus_background", "nucleus_Signal_to_noise", "nucleus_CP_prob", "nucleus_FT", "remove_background_nucleus", "nucleus_min_size", "nucleus_loc"],
1028
994
  "Pathogen": ["pathogen_diamiter","pathogen_intensity_range", "pathogen_size_range", "pathogen_background", "pathogen_Signal_to_noise", "pathogen_CP_prob", "pathogen_FT", "pathogen_model", "remove_background_pathogen", "pathogen_min_size", "pathogens", "pathogen_loc", "pathogen_types", "pathogen_plate_metadata", ],
@@ -1033,13 +999,13 @@ categories = {"Paths":[ "src", "grna", "barcodes", "custom_model_path", "dataset
1033
999
  "Hyperparamiters (Training)": ["png_type", "score_threshold","file_type", "train_channels", "epochs", "loss_type", "optimizer_type","image_size","val_split","learning_rate","weight_decay","dropout_rate", "init_weights", "train", "classes", "augment", "amsgrad","use_checkpoint","gradient_accumulation","gradient_accumulation_steps","intermedeate_save","pin_memory"],
1034
1000
  "Hyperparamiters (Embedding)": ["visualize","n_neighbors","min_dist","metric","resnet_features","reduction_method","embedding_by_controls","col_to_compare","log_data"],
1035
1001
  "Hyperparamiters (Clustering)": ["eps","min_samples","analyze_clusters","clustering","remove_cluster_noise"],
1036
- "Hyperparamiters (Regression)":["cross_validation","prune_features","reg_lambda","reg_alpha","cov_type", "class_1_threshold", "plate", "other", "fraction_threshold", "alpha", "random_row_column_effects", "regression_type", "min_cell_count", "agg_type", "transform", "dependent_variable"],
1002
+ "Hyperparamiters (Regression)":["cross_validation","prune_features","reg_lambda","reg_alpha","cov_type", "plate", "other", "fraction_threshold", "alpha", "random_row_column_effects", "regression_type", "min_cell_count", "agg_type", "transform", "dependent_variable"],
1037
1003
  "Hyperparamiters (Activation)":["cam_type", "overlay", "correlation", "target_layer", "normalize_input"],
1038
1004
  "Annotation": ["filter_column", "filter_value","volcano", "toxo", "controls", "nc_loc", "pc_loc", "nc", "pc", "cell_plate_metadata","treatment_plate_metadata", "metadata_types", "cell_types", "target","positive_control","negative_control", "location_column", "treatment_loc", "channel_of_interest", "measurement", "treatments", "um_per_pixel", "nr_imgs", "exclude", "exclude_conditions", "mix", "pos", "neg"],
1039
1005
  "Plot": ["split_axis_lims", "x_lim","log_x","log_y", "plot_control", "plot_nr", "examples_to_plot", "normalize_plots", "cmap", "figuresize", "plot_cluster_grids", "img_zoom", "row_limit", "color_by", "plot_images", "smooth_lines", "plot_points", "plot_outlines", "black_background", "plot_by_cluster", "heatmap_feature","grouping","min_max","cmap","save_figure"],
1040
1006
  "Timelapse": ["timelapse", "fps", "timelapse_displacement", "timelapse_memory", "timelapse_frame_limits", "timelapse_remove_transient", "timelapse_mode", "timelapse_objects", "compartments"],
1041
1007
  "Advanced": ["merge_edge_pathogen_cells", "test_images", "random_test", "test_nr", "test", "test_split", "normalize", "target_unique_count","threshold_multiplier", "threshold_method", "min_n","shuffle", "target_intensity_min", "cells_per_well", "nuclei_limit", "pathogen_limit", "background", "backgrounds", "schedule", "test_size","exclude","n_repeats","top_features", "model_type_ml", "model_type","minimum_cell_count","n_estimators","preprocess", "remove_background", "normalize", "lower_percentile", "merge_pathogens", "batch_size", "filter", "save", "masks", "verbose", "randomize", "n_jobs"],
1042
- "Beta": ["all_to_mip", "pick_slice", "skip_mode", "upscale", "upscale_factor"]
1008
+ "Beta": ["all_to_mip", "pick_slice", "skip_mode", "upscale", "upscale_factor", "consolidate"]
1043
1009
  }
1044
1010
 
1045
1011
 
@@ -1053,38 +1019,38 @@ def check_settings(vars_dict, expected_types, q=None):
1053
1019
  q = Queue()
1054
1020
 
1055
1021
  settings = {}
1022
+ errors = [] # Collect errors instead of stopping at the first one
1056
1023
 
1057
1024
  for key, (label, widget, var, _) in vars_dict.items():
1058
- if key not in expected_types:
1059
- if key not in category_keys:
1060
- q.put(f"Key {key} not found in expected types.")
1061
- continue
1025
+ if key not in expected_types and key not in category_keys:
1026
+ errors.append(f"Warning: Key '{key}' not found in expected types.")
1027
+ continue
1062
1028
 
1063
- value = var.get()
1029
+ value = var.get()
1064
1030
  if value in ['None', '']:
1065
1031
  value = None
1066
1032
 
1067
1033
  expected_type = expected_types.get(key, str)
1068
1034
 
1069
1035
  try:
1070
- #if key in ["cell_plate_metadata", "timelapse_frame_limits", "png_size", "pathogen_loc", "treatment_loc", "pathogen_plate_metadata", "treatment_plate_metadata", "barcode_coordinates", "class_metadata"]:
1071
1036
  if key in ["cell_plate_metadata", "timelapse_frame_limits", "png_size", "png_dims", "pathogen_plate_metadata", "treatment_plate_metadata", "class_metadata", "crop_mode"]:
1072
-
1073
1037
  if value is None:
1074
- parsed_value = None
1038
+ parsed_value = None
1075
1039
  else:
1076
- parsed_value = ast.literal_eval(value) if isinstance(value, str) and value.strip() else None
1077
-
1078
- #parsed_value = ast.literal_eval(value) if value else None
1079
-
1040
+ try:
1041
+ parsed_value = ast.literal_eval(value)
1042
+ except (ValueError, SyntaxError):
1043
+ raise ValueError(f"Expected a list or list of lists but got an invalid format: {value}")
1044
+
1080
1045
  if isinstance(parsed_value, list):
1081
1046
  if all(isinstance(i, list) for i in parsed_value) or all(not isinstance(i, list) for i in parsed_value):
1082
1047
  settings[key] = parsed_value
1083
1048
  else:
1084
- raise ValueError("Invalid format: Mixed list and list of lists")
1049
+ raise ValueError(f"Invalid format: '{key}' contains mixed types (single values and lists).")
1050
+
1085
1051
  else:
1086
- raise ValueError("Invalid format for list or list of lists")
1087
-
1052
+ raise ValueError(f"Expected a list for '{key}', but got {type(parsed_value).__name__}.")
1053
+
1088
1054
  elif expected_type == list:
1089
1055
  settings[key] = parse_list(value) if value else None
1090
1056
 
@@ -1092,37 +1058,52 @@ def check_settings(vars_dict, expected_types, q=None):
1092
1058
  settings[key] = settings[key][0]
1093
1059
 
1094
1060
  elif expected_type == bool:
1095
- settings[key] = value if isinstance(value, bool) else value.lower() in ['true', '1', 't', 'y', 'yes']
1061
+ settings[key] = value.lower() in ['true', '1', 't', 'y', 'yes'] if isinstance(value, str) else bool(value)
1062
+
1096
1063
  elif expected_type == (int, type(None)):
1097
- settings[key] = settings[key] = int(value) if isinstance(value, int) or str(value).isdigit() else None
1064
+ if value is None or str(value).isdigit():
1065
+ settings[key] = int(value) if value is not None else None
1066
+ else:
1067
+ raise ValueError(f"Expected an integer or None for '{key}', but got '{value}'.")
1068
+
1098
1069
  elif expected_type == (float, type(None)):
1099
- settings[key] = float(value) if isinstance(value, float) or (isinstance(value, str) and value.replace(".", "", 1).isdigit()) else None
1070
+ if value is None or (isinstance(value, str) and value.replace(".", "", 1).isdigit()):
1071
+ settings[key] = float(value) if value is not None else None
1072
+ else:
1073
+ raise ValueError(f"Expected a float or None for '{key}', but got '{value}'.")
1074
+
1100
1075
  elif expected_type == (int, float):
1101
- settings[key] = float(value) if '.' in value else int(value)
1076
+ try:
1077
+ settings[key] = float(value) if '.' in str(value) else int(value)
1078
+ except ValueError:
1079
+ raise ValueError(f"Expected an integer or float for '{key}', but got '{value}'.")
1080
+
1102
1081
  elif expected_type == (str, type(None)):
1103
- settings[key] = str(value) if value else None
1082
+ settings[key] = str(value) if value is not None else None
1083
+
1104
1084
  elif expected_type == (str, type(None), list):
1105
1085
  if isinstance(value, list):
1106
1086
  settings[key] = parse_list(value) if value else None
1107
1087
  elif isinstance(value, str):
1108
- settings[key] = str(value)
1088
+ settings[key] = str(value)
1109
1089
  else:
1110
1090
  settings[key] = None
1111
1091
 
1112
1092
  elif expected_type == dict:
1113
1093
  try:
1114
- # Ensure that the value is a string that can be converted to a dictionary
1115
1094
  if isinstance(value, str):
1116
- settings[key] = ast.literal_eval(value)
1095
+ parsed_dict = ast.literal_eval(value)
1117
1096
  else:
1118
1097
  raise ValueError("Expected a string representation of a dictionary.")
1119
-
1120
- # Check if the result is actually a dictionary
1121
- if not isinstance(settings[key], dict):
1122
- raise ValueError("Value is not a valid dictionary.")
1098
+
1099
+ if not isinstance(parsed_dict, dict):
1100
+ raise ValueError(f"Expected a dictionary for '{key}', but got {type(parsed_dict).__name__}.")
1101
+
1102
+ settings[key] = parsed_dict
1123
1103
  except (ValueError, SyntaxError) as e:
1124
1104
  settings[key] = {}
1125
- q.put(f"Error: Invalid format for {key}. Expected type: dict. Error: {e}")
1105
+ errors.append(f"Error: Invalid dictionary format for '{key}'. Expected type: dict. Error: {e}")
1106
+
1126
1107
  elif isinstance(expected_type, tuple):
1127
1108
  for typ in expected_type:
1128
1109
  try:
@@ -1131,15 +1112,25 @@ def check_settings(vars_dict, expected_types, q=None):
1131
1112
  except (ValueError, TypeError):
1132
1113
  continue
1133
1114
  else:
1134
- raise ValueError
1115
+ raise ValueError(f"Value '{value}' for '{key}' does not match any expected types: {expected_type}.")
1116
+
1135
1117
  else:
1136
- settings[key] = expected_type(value) if value else None
1118
+ try:
1119
+ settings[key] = expected_type(value) if value else None
1120
+ except (ValueError, TypeError):
1121
+ raise ValueError(f"Expected type {expected_type.__name__} for '{key}', but got '{value}'.")
1122
+
1137
1123
  except (ValueError, SyntaxError) as e:
1138
1124
  expected_type_name = ' or '.join([t.__name__ for t in expected_type]) if isinstance(expected_type, tuple) else expected_type.__name__
1139
- q.put(f"Error: Invalid format for {key}. Expected type: {expected_type_name}. Error: {e}, Value entered: {value}")
1140
- return
1125
+ errors.append(f"Error: '{key}' has invalid format. Expected type: {expected_type_name}. Got value: '{value}'. Error: {e}")
1141
1126
 
1142
- return settings
1127
+ # Send all collected errors to the queue
1128
+ for error in errors:
1129
+ q.put(error)
1130
+
1131
+
1132
+
1133
+ return settings, errors
1143
1134
 
1144
1135
  def generate_fields(variables, scrollable_frame):
1145
1136
  from .gui_utils import create_input_field
@@ -1164,16 +1155,25 @@ def generate_fields(variables, scrollable_frame):
1164
1155
  "black_background": "(bool) - Whether to use a black background for plots.",
1165
1156
  "calculate_correlation": "(bool) - Whether to calculate correlations between features.",
1166
1157
  "cell_CP_prob": "(float) - The cellpose probability threshold for the cell channel. This will be used in cell segmentation.",
1158
+ "nucleus_CP_prob": "(float) - The cellpose probability threshold for the nucleus channel. This will be used in cell segmentation.",
1159
+ "pathogen_CP_prob": "(float) - The cellpose probability threshold for the pathogen channel. This will be used in cell segmentation.",
1167
1160
  "cell_FT": "(float) - The flow threshold for cell objects. This will be used to segment the cells.",
1168
- "cell_background": "(float) - The background intensity for the cell channel. This will be used to remove background noise.",
1161
+ "nucleus_FT": "(float) - The flow threshold for nucleus objects. This will be used to segment the cells.",
1162
+ "pathogen_FT": "(float) - The flow threshold for pathogen objects. This will be used to segment the cells.",
1163
+ "cell_background": "(int) - The background intensity for the cell channel. This will be used to remove background noise.",
1164
+ "nucleus_background": "(int) - The background intensity for the nucleus channel. This will be used to remove background noise.",
1165
+ "pathogen_background": "(int) - The background intensity for the pathogen channel. This will be used to remove background noise.",
1169
1166
  "cell_chann_dim": "(int) - Dimension of the channel to use for cell segmentation.",
1170
- "cell_channel": "(int) - The channel to use for the cell. If None, the cell will not be segmented.",
1167
+ "cell_channel": "(int) - The channel to use for generatin cell masks. If None, cell masks will not be generated.",
1168
+ "nucleus_channel": "(int) - The channel to use for generatin nucleus masks. If None, nucleus masks will not be generated.",
1169
+ "pathogen_channel": "(int) - The channel to use for generatin pathogen masks. If None, pathogen masks will not be generated.",
1171
1170
  "cell_intensity_range": "(list) - Intensity range for cell segmentation.",
1172
1171
  "cell_loc": "(list) - The locations of the cell types in the images.",
1173
- "cell_mask_dim": "(int) - The dimension of the array the cell mask is saved in.",
1172
+ "cell_mask_dim": "(int) - The dimension of the array the cell mask is saved in (array order:channels,cell, nucleus, pathogen, cytoplasm) array starts at dimension 0.",
1173
+ "nucleus_mask_dim": "(int) - The dimension of the array the nucleus mask is saved in (array order:channels,cell, nucleus, pathogen, cytoplasm) array starts at dimension 0.",
1174
1174
  "cell_min_size": "(int) - The minimum size of cell objects in pixels^2.",
1175
1175
  "cell_plate_metadata": "(str) - Metadata for the cell plate.",
1176
- "cell_Signal_to_noise": "(float) - The signal-to-noise ratio for the cell channel. This will be used to determine the range of intensities to normalize images to for cell segmentation.",
1176
+ "cell_Signal_to_noise": "(int) - The signal-to-noise ratio for the cell channel. This will be used to determine the range of intensities to normalize images to for cell segmentation.",
1177
1177
  "cell_size_range": "(list) - Size range for cell segmentation.",
1178
1178
  "cell_types": "(list) - Types of cells to include in the analysis.",
1179
1179
  "cells": "(list of lists) - The cell types to include in the analysis.",
@@ -1188,13 +1188,17 @@ def generate_fields(variables, scrollable_frame):
1188
1188
  "col_to_compare": "(str) - Column to compare in the embeddings.",
1189
1189
  "color_by": "(str) - Coloring scheme for the plots.",
1190
1190
  "compartments": "(list) - The compartments to measure in the images.",
1191
+ "consolidate": "(bool) - Consolidate image files from subfolders into one folder named consolidated.",
1191
1192
  "CP_prob": "(float) - Cellpose probability threshold for segmentation.",
1192
1193
  "crop_mode": "(str) - Mode to use for cropping images (cell, nucleus, pathogen, cytoplasm).",
1193
1194
  "custom_model": "(str) - Path to a custom Cellpose model.",
1194
- "custom_regex": "(str) - Custom regex pattern to extract metadata from the image names. This will only be used if 'custom' is selected for 'metadata_type'.",
1195
+ "custom_regex": "(str) - Custom regex pattern to extract metadata from the image names. This will only be used if 'custom' or 'auto' is selected for 'metadata_type'.",
1195
1196
  "cytoplasm": "(bool) - Whether to segment the cytoplasm (Cell - Nucleus + Pathogen).",
1196
1197
  "cytoplasm_min_size": "(int) - The minimum size of cytoplasm objects in pixels^2.",
1198
+ "nucleus_min_size": "(int) - The minimum size of nucleus objects in pixels^2.",
1199
+ "normalize_by": "(str) - Normalize cropped png images by png or by field of view.",
1197
1200
  "dependent_variable": "(str) - The dependent variable for the regression analysis.",
1201
+ "delete_intermediate": "(bool) - Delete intermediate folders (stack, channel, norm_channel_stack).",
1198
1202
  "diameter": "(float) - Diameter of the objects to segment.",
1199
1203
  "dialate_png_ratios": "(list) - The ratios to use for dilating the PNG images. This will determine the amount of dilation applied to the images before cropping.",
1200
1204
  "dialate_pngs": "(bool) - Whether to dilate the PNG images before saving.",
@@ -1242,7 +1246,7 @@ def generate_fields(variables, scrollable_frame):
1242
1246
  "manders_thresholds": "(list) - Thresholds for Manders' coefficients.",
1243
1247
  "mask": "(bool) - Whether to generate masks for the segmented objects. If True, masks will be generated for the nucleus, cell, and pathogen.",
1244
1248
  "measurement": "(str) - The measurement to use for the analysis.",
1245
- "metadata_type": "(str) - Type of metadata to expect in the images. This will determine how the images are processed. If 'custom' is selected, you can provide a custom regex pattern to extract metadata from the image names.",
1249
+ "metadata_type": "(str) - Type of metadata to expect in the images. If 'custom' is selected, you can provide a custom regex pattern to extract metadata from the image names. auto will attempt to automatically extract metadata from the image names. cellvoyager and cq1 will use the default metadata extraction for CellVoyager and CQ1 images.",
1246
1250
  "metadata_types": "(list) - Types of metadata to include in the analysis.",
1247
1251
  "merge_edge_pathogen_cells": "(bool) - Whether to merge cells that share pathogen objects.",
1248
1252
  "merge_pathogens": "(bool) - Whether to merge pathogen objects that share more than 75 percent of their perimeter.",
@@ -1263,7 +1267,8 @@ def generate_fields(variables, scrollable_frame):
1263
1267
  "n_jobs": "(int) - The number of n_jobs to use for processing the images. This will determine how many images are processed in parallel. Increase to speed up processing.",
1264
1268
  "n_neighbors": "(int) - Number of neighbors for UMAP.",
1265
1269
  "n_repeats": "(int) - Number of repeats for the pathogen plate.",
1266
- "pathogen_Signal_to_noise": "(float) - The signal-to-noise ratio for the pathogen channel. This will be used to determine the range of intensities to normalize images to for pathogen segmentation.",
1270
+ "pathogen_Signal_to_noise": "(int) - The signal-to-noise ratio for the pathogen channel. This will be used to determine the range of intensities to normalize images to for pathogen segmentation.",
1271
+ "nucleus_Signal_to_noise": "(int) - The signal-to-noise ratio for the nucleus channel. This will be used to determine the range of intensities to normalize images to for nucleus segmentation.",
1267
1272
  "pathogen_size_range": "(list) - Size range for pathogen segmentation.",
1268
1273
  "pathogen_types": "(list) - Types of pathogens to include in the analysis.",
1269
1274
  "pc": "(str) - Positive control identifier.",
@@ -1310,10 +1315,11 @@ def generate_fields(variables, scrollable_frame):
1310
1315
  "save_measurements": "(bool) - Whether to save the measurements to disk.",
1311
1316
  "save_png": "(bool) - Whether to save the segmented objects as PNG images.",
1312
1317
  "schedule": "(str) - Schedule for processing the data.",
1313
- "Signal_to_noise": "(float) - Signal-to-noise ratio for the images.",
1318
+ "Signal_to_noise": "(int) - Signal-to-noise ratio for the images.",
1314
1319
  "skip_mode": "(str) - The mode to use for skipping images. This will determine how to handle images that cannot be processed.",
1315
1320
  "smooth_lines": "(bool) - Whether to smooth lines in the plots.",
1316
1321
  "src": "(str, path) - Path to source directory.",
1322
+ "segmentation_mode": "(str) - Algorithm to use for segmentation (cellpose or mediar).",
1317
1323
  "target": "(str) - Target variable for the analysis.",
1318
1324
  "target_height": "(int) - Target height for resizing the images.",
1319
1325
  "target_intensity_min": "(float) - Minimum intensity for the target objects.",
@@ -1363,7 +1369,7 @@ def generate_fields(variables, scrollable_frame):
1363
1369
  "masks": "(bool) - Whether to generate masks for the segmented objects.",
1364
1370
  "timelapse": "(bool) - Whether to analyze images as a timelapse.",
1365
1371
  "pathogen_min_size": "(int) - The minimum size of pathogen objects in pixels^2.",
1366
- "pathogen_mask_dim": "(int) - The dimension of the array the pathogen mask is saved in.",
1372
+ "pathogen_mask_dim": "(int) - The dimension of the array the pathogen mask is saved in (array order:channels,cell, nucleus, pathogen, cytoplasm) array starts at dimension 0.",
1367
1373
  "use_bounding_box": "(bool) - Whether to use the bounding box for cropping the images.",
1368
1374
  "plot_points": "(bool) - Whether to plot scatterplot points.",
1369
1375
  "embedding_by_controls": "(bool) - Use the controlls to greate the embedding, then apply this embedding to all of the data.",
@@ -1393,6 +1399,7 @@ def generate_fields(variables, scrollable_frame):
1393
1399
  "shuffle": "(bool) - Shuffle the dataset bufore generating the activation maps",
1394
1400
  "correlation": "(bool) - Calculate correlation between image channels and activation maps. Data is saved to .db.",
1395
1401
  "normalize_input": "(bool) - Normalize the input images before passing them to the model.",
1402
+ "normalize_plots": "(bool) - Normalize images before plotting.",
1396
1403
  }
1397
1404
 
1398
1405
  for key, (var_type, options, default_value) in variables.items():
@@ -1444,8 +1451,8 @@ def set_annotate_default_settings(settings):
1444
1451
  settings.setdefault('normalize', 'False')
1445
1452
  settings.setdefault('normalize_channels', "r,g,b")
1446
1453
  settings.setdefault('percentiles', [2, 98])
1447
- settings.setdefault('measurement', '')#'cytoplasm_channel_3_mean_intensity,pathogen_channel_3_mean_intensity')
1448
- settings.setdefault('threshold', '')#'2')
1454
+ settings.setdefault('measurement', '') #'cytoplasm_channel_3_mean_intensity,pathogen_channel_3_mean_intensity')
1455
+ settings.setdefault('threshold', '') #'2')
1449
1456
  return settings
1450
1457
 
1451
1458
  def set_default_generate_barecode_mapping(settings={}):
@@ -1465,6 +1472,7 @@ def set_default_generate_barecode_mapping(settings={}):
1465
1472
  settings.setdefault('mode', 'paired')
1466
1473
  settings.setdefault('single_direction', 'R1')
1467
1474
  settings.setdefault('test', False)
1475
+ settings.setdefault('fill_na', False)
1468
1476
  return settings
1469
1477
 
1470
1478
  def get_default_generate_activation_map_settings(settings):