spacr 0.4.12__py3-none-any.whl → 0.4.60__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
spacr/settings.py CHANGED
@@ -26,12 +26,14 @@ def set_default_plot_merge_settings():
26
26
 
27
27
  def set_default_settings_preprocess_generate_masks(settings={}):
28
28
 
29
+ settings.setdefault('denoise', False)
29
30
  settings.setdefault('src', 'path')
30
31
  settings.setdefault('delete_intermediate', False)
31
32
  settings.setdefault('segmentation_mode', 'cellpose')
32
33
  settings.setdefault('preprocess', True)
33
34
  settings.setdefault('masks', True)
34
35
  settings.setdefault('save', True)
36
+ settings.setdefault('consolidate', False)
35
37
  settings.setdefault('batch_size', 50)
36
38
  settings.setdefault('test_mode', False)
37
39
  settings.setdefault('test_images', 10)
@@ -86,7 +88,7 @@ def set_default_settings_preprocess_generate_masks(settings={}):
86
88
  settings.setdefault('fps', 2)
87
89
  settings.setdefault('timelapse_displacement', None)
88
90
  settings.setdefault('timelapse_memory', 3)
89
- settings.setdefault('timelapse_frame_limits', None)
91
+ settings.setdefault('timelapse_frame_limits', [5,])
90
92
  settings.setdefault('timelapse_remove_transient', False)
91
93
  settings.setdefault('timelapse_mode', 'trackpy')
92
94
  settings.setdefault('timelapse_objects', None)
@@ -219,7 +221,7 @@ def set_default_umap_image_settings(settings={}):
219
221
  settings.setdefault('smooth_lines', True)
220
222
  settings.setdefault('clustering', 'dbscan')
221
223
  settings.setdefault('exclude', None)
222
- settings.setdefault('col_to_compare', 'column_name')
224
+ settings.setdefault('col_to_compare', 'columnID')
223
225
  settings.setdefault('pos', 'c1')
224
226
  settings.setdefault('neg', 'c2')
225
227
  settings.setdefault('mix', 'c3')
@@ -256,7 +258,13 @@ def get_measure_crop_settings(settings={}):
256
258
  settings.setdefault('homogeneity', True)
257
259
  settings.setdefault('homogeneity_distances', [8,16,32])
258
260
 
259
- # Cropping settings
261
+ # Cropping settings # Cropping settings
262
+ settings.setdefault('save_arrays', False)
263
+ settings.setdefault('save_png',True)
264
+ settings.setdefault('use_bounding_box',False)
265
+ settings.setdefault('png_size',[224,224])
266
+ settings.setdefault('png_dims',[0,1,2])
267
+ settings.setdefault('normalize',False) # Cropping settings
260
268
  settings.setdefault('save_arrays', False)
261
269
  settings.setdefault('save_png',True)
262
270
  settings.setdefault('use_bounding_box',False)
@@ -277,9 +285,9 @@ def get_measure_crop_settings(settings={}):
277
285
  settings.setdefault('n_jobs', os.cpu_count()-2)
278
286
 
279
287
  # Object settings
280
- settings.setdefault('cell_mask_dim',None)
281
- settings.setdefault('nucleus_mask_dim',None)
282
- settings.setdefault('pathogen_mask_dim',None)
288
+ settings.setdefault('cell_mask_dim',4)
289
+ settings.setdefault('nucleus_mask_dim',5)
290
+ settings.setdefault('pathogen_mask_dim',6)
283
291
  settings.setdefault('cytoplasm',False)
284
292
  settings.setdefault('uninfected',True)
285
293
  settings.setdefault('cell_min_size',0)
@@ -312,7 +320,7 @@ def set_default_analyze_screen(settings):
312
320
  settings.setdefault('learning_rate',0.001)
313
321
  settings.setdefault('n_estimators',1000)
314
322
  settings.setdefault('test_size',0.2)
315
- settings.setdefault('location_column','column_name')
323
+ settings.setdefault('location_column','columnID')
316
324
  settings.setdefault('positive_control','c2')
317
325
  settings.setdefault('negative_control','c1')
318
326
  settings.setdefault('exclude',None)
@@ -375,7 +383,7 @@ def set_generate_training_dataset_defaults(settings):
375
383
  settings.setdefault('size',224)
376
384
  settings.setdefault('test_split',0.1)
377
385
  settings.setdefault('class_metadata',[['c1'],['c2']])
378
- settings.setdefault('metadata_type_by','column_name')
386
+ settings.setdefault('metadata_type_by','columnID')
379
387
  settings.setdefault('channel_of_interest',3)
380
388
  settings.setdefault('custom_measurement',None)
381
389
  settings.setdefault('tables',None)
@@ -397,7 +405,7 @@ def deep_spacr_defaults(settings):
397
405
  settings.setdefault('size',224)
398
406
  settings.setdefault('test_split',0.1)
399
407
  settings.setdefault('class_metadata',[['c1'],['c2']])
400
- settings.setdefault('metadata_type_by','column_name')
408
+ settings.setdefault('metadata_type_by','columnID')
401
409
  settings.setdefault('channel_of_interest',3)
402
410
  settings.setdefault('custom_measurement',None)
403
411
  settings.setdefault('tables',None)
@@ -473,7 +481,7 @@ def get_train_test_model_settings(settings):
473
481
  return settings
474
482
 
475
483
  def get_analyze_recruitment_default_settings(settings):
476
- settings.setdefault('src','path')
484
+ settings.setdefault('src', 'path')
477
485
  settings.setdefault('target','protein')
478
486
  settings.setdefault('cell_types',['HeLa'])
479
487
  settings.setdefault('cell_plate_metadata',None)
@@ -481,7 +489,7 @@ def get_analyze_recruitment_default_settings(settings):
481
489
  settings.setdefault('pathogen_plate_metadata',[['c1', 'c2', 'c3'],['c4','c5', 'c6']])
482
490
  settings.setdefault('treatments',['cm', 'lovastatin'])
483
491
  settings.setdefault('treatment_plate_metadata',[['r1', 'r2','r3'], ['r4', 'r5','r6']])
484
- #settings.setdefault('metadata_types',['column_name', 'column_name', 'row_name'])
492
+ #settings.setdefault('metadata_types',['columnID', 'columnID', 'rowID'])
485
493
  settings.setdefault('channel_dims',[0,1,2,3])
486
494
  settings.setdefault('cell_chann_dim',3)
487
495
  settings.setdefault('cell_mask_dim',4)
@@ -503,7 +511,40 @@ def get_analyze_recruitment_default_settings(settings):
503
511
  settings.setdefault('pathogen_intensity_range',[0,100000])
504
512
  settings.setdefault('nucleus_intensity_range',[0,100000])
505
513
  settings.setdefault('cell_intensity_range',[0,100000])
506
- settings.setdefault('target_intensity_min',0)
514
+ settings.setdefault('target_intensity_min',1)
515
+ return settings
516
+
517
+ def get_default_test_cellpose_model_settings(settings):
518
+ settings.setdefault('src','path')
519
+ settings.setdefault('model_path','path')
520
+ settings.setdefault('save',True)
521
+ settings.setdefault('normalize',True)
522
+ settings.setdefault('percentiles',(2,98))
523
+ settings.setdefault('batch_size',50)
524
+ settings.setdefault('CP_probability',0)
525
+ settings.setdefault('FT',100)
526
+ settings.setdefault('target_size',1000)
527
+ return settings
528
+
529
+ def get_default_apply_cellpose_model_settings(settings):
530
+ settings.setdefault('src','path')
531
+ settings.setdefault('model_path','path')
532
+ settings.setdefault('save',True)
533
+ settings.setdefault('normalize',True)
534
+ settings.setdefault('percentiles',(2,98))
535
+ settings.setdefault('batch_size',50)
536
+ settings.setdefault('CP_probability',0)
537
+ settings.setdefault('FT',100)
538
+ settings.setdefault('circularize',False)
539
+ settings.setdefault('target_size',1000)
540
+ return settings
541
+
542
+ def default_settings_analyze_percent_positive(settings):
543
+ settings.setdefault('src','path')
544
+ settings.setdefault('tables',['cell'])
545
+ settings.setdefault('filter_1',['cell_area',1000])
546
+ settings.setdefault('value_col','cell_channel_2_mean_intensity')
547
+ settings.setdefault('threshold',2000)
507
548
  return settings
508
549
 
509
550
  def get_analyze_reads_default_settings(settings):
@@ -578,9 +619,8 @@ def get_perform_regression_default_settings(settings):
578
619
  settings.setdefault('cov_type',None)
579
620
  settings.setdefault('alpha',1)
580
621
  settings.setdefault('filter_value',['c1', 'c2', 'c3'])
581
- settings.setdefault('filter_column','column')
582
- settings.setdefault('plate','plate1')
583
- settings.setdefault('class_1_threshold',None)
622
+ settings.setdefault('filter_column','columnID')
623
+ settings.setdefault('plateID','plate1')
584
624
  settings.setdefault('metadata_files',['/home/carruthers/Documents/TGGT1_Summary.csv','/home/carruthers/Documents/TGME49_Summary.csv'])
585
625
  settings.setdefault('volcano','gene')
586
626
  settings.setdefault('toxo', True)
@@ -672,6 +712,7 @@ expected_types = {
672
712
  "timelapse_displacement": int,
673
713
  "timelapse_memory": int,
674
714
  "timelapse_frame_limits": (list, type(None)), # This can be a list of lists
715
+ #"timelapse_frame_limits": (list, type(None)), # This can be a list of lists
675
716
  "timelapse_remove_transient": bool,
676
717
  "timelapse_mode": str,
677
718
  "timelapse_objects": list,
@@ -848,6 +889,7 @@ expected_types = {
848
889
  "agg_type": str,
849
890
  "min_cell_count": int,
850
891
  "resize": bool,
892
+ "denoise":bool,
851
893
  "target_height": (int, type(None)),
852
894
  "target_width": (int, type(None)),
853
895
  "rescale": bool,
@@ -940,30 +982,30 @@ expected_types = {
940
982
  "flow_threshold":float,
941
983
  "cell_diamiter":int,
942
984
  "nucleus_diamiter":int,
943
- "pathogen_diamiter":int
985
+ "pathogen_diamiter":int,
986
+ "consolidate":bool
944
987
  }
945
988
 
946
989
  categories = {"Paths":[ "src", "grna", "barcodes", "custom_model_path", "dataset","model_path","grna_csv","row_csv","column_csv", "metadata_files", "score_data","count_data"],
947
- "General": ["metadata_type", "custom_regex", "experiment", "channels", "magnification", "channel_dims", "apply_model_to_dataset", "generate_training_dataset", "train_DL_model", "segmentation_mode", "delete_intermediate"],
948
- "Cellpose":["fill_in","from_scratch", "n_epochs", "width_height", "model_name", "custom_model", "resample", "rescale", "CP_prob", "flow_threshold", "percentiles", "invert", "diameter", "grayscale", "Signal_to_noise", "resize", "target_height", "target_width"],
949
- "Cell": ["cell_diamiter","cell_intensity_range", "cell_size_range", "cell_chann_dim", "cell_channel", "cell_background", "cell_Signal_to_noise", "cell_CP_prob", "cell_FT", "remove_background_cell", "cell_min_size", "cell_mask_dim", "cytoplasm", "cytoplasm_min_size", "uninfected", "merge_edge_pathogen_cells", "adjust_cells", "cells", "cell_loc"],
950
- "Nucleus": ["nucleus_diamiter","nucleus_intensity_range", "nucleus_size_range", "nucleus_chann_dim", "nucleus_channel", "nucleus_background", "nucleus_Signal_to_noise", "nucleus_CP_prob", "nucleus_FT", "remove_background_nucleus", "nucleus_min_size", "nucleus_mask_dim", "nucleus_loc"],
951
- "Pathogen": ["pathogen_diamiter","pathogen_intensity_range", "pathogen_size_range", "pathogen_chann_dim", "pathogen_channel", "pathogen_background", "pathogen_Signal_to_noise", "pathogen_CP_prob", "pathogen_FT", "pathogen_model", "remove_background_pathogen", "pathogen_min_size", "pathogen_mask_dim", "pathogens", "pathogen_loc", "pathogen_types", "pathogen_plate_metadata", ],
990
+ "General": ["cell_mask_dim", "cytoplasm", "cell_chann_dim", "cell_channel", "nucleus_chann_dim", "nucleus_channel", "nucleus_mask_dim", "pathogen_mask_dim", "pathogen_chann_dim", "pathogen_channel", "test_mode", "plot", "metadata_type", "custom_regex", "experiment", "channels", "magnification", "channel_dims", "apply_model_to_dataset", "generate_training_dataset", "train_DL_model", "segmentation_mode", "delete_intermediate", "uninfected", ],
991
+ "Cellpose":["denoise","fill_in","from_scratch", "n_epochs", "width_height", "model_name", "custom_model", "resample", "rescale", "CP_prob", "flow_threshold", "percentiles", "invert", "diameter", "grayscale", "Signal_to_noise", "resize", "target_height", "target_width"],
992
+ "Cell": ["cell_diamiter","cell_intensity_range", "cell_size_range", "cell_background", "cell_Signal_to_noise", "cell_CP_prob", "cell_FT", "remove_background_cell", "cell_min_size", "cytoplasm_min_size", "adjust_cells", "cells", "cell_loc"],
993
+ "Nucleus": ["nucleus_diamiter","nucleus_intensity_range", "nucleus_size_range", "nucleus_background", "nucleus_Signal_to_noise", "nucleus_CP_prob", "nucleus_FT", "remove_background_nucleus", "nucleus_min_size", "nucleus_loc"],
994
+ "Pathogen": ["pathogen_diamiter","pathogen_intensity_range", "pathogen_size_range", "pathogen_background", "pathogen_Signal_to_noise", "pathogen_CP_prob", "pathogen_FT", "pathogen_model", "remove_background_pathogen", "pathogen_min_size", "pathogens", "pathogen_loc", "pathogen_types", "pathogen_plate_metadata", ],
952
995
  "Measurements": ["remove_image_canvas", "remove_highly_correlated", "homogeneity", "homogeneity_distances", "radial_dist", "calculate_correlation", "manders_thresholds", "save_measurements", "tables", "image_nr", "dot_size", "filter_by", "remove_highly_correlated_features", "remove_low_variance_features", "channel_of_interest"],
953
- "Object Image": ["save_png", "dialate_pngs", "dialate_png_ratios", "png_size", "png_dims", "save_arrays", "normalize_by", "crop_mode", "normalize", "use_bounding_box"],
996
+ "Object Image": ["save_png", "dialate_pngs", "dialate_png_ratios", "png_size", "png_dims", "save_arrays", "normalize_by", "crop_mode", "use_bounding_box"],
954
997
  "Sequencing": ["outlier_detection","offset_start","chunk_size","single_direction", "signal_direction","mode","comp_level","comp_type","save_h5","expected_end","offset","target_sequence","regex", "highlight"],
955
998
  "Generate Dataset":["save_to_db","file_metadata","class_metadata", "annotation_column","annotated_classes", "dataset_mode", "metadata_type_by","custom_measurement", "sample", "size"],
956
999
  "Hyperparamiters (Training)": ["png_type", "score_threshold","file_type", "train_channels", "epochs", "loss_type", "optimizer_type","image_size","val_split","learning_rate","weight_decay","dropout_rate", "init_weights", "train", "classes", "augment", "amsgrad","use_checkpoint","gradient_accumulation","gradient_accumulation_steps","intermedeate_save","pin_memory"],
957
1000
  "Hyperparamiters (Embedding)": ["visualize","n_neighbors","min_dist","metric","resnet_features","reduction_method","embedding_by_controls","col_to_compare","log_data"],
958
1001
  "Hyperparamiters (Clustering)": ["eps","min_samples","analyze_clusters","clustering","remove_cluster_noise"],
959
- "Hyperparamiters (Regression)":["cross_validation","prune_features","reg_lambda","reg_alpha","cov_type", "class_1_threshold", "plate", "other", "fraction_threshold", "alpha", "random_row_column_effects", "regression_type", "min_cell_count", "agg_type", "transform", "dependent_variable"],
1002
+ "Hyperparamiters (Regression)":["cross_validation","prune_features","reg_lambda","reg_alpha","cov_type", "plate", "other", "fraction_threshold", "alpha", "random_row_column_effects", "regression_type", "min_cell_count", "agg_type", "transform", "dependent_variable"],
960
1003
  "Hyperparamiters (Activation)":["cam_type", "overlay", "correlation", "target_layer", "normalize_input"],
961
1004
  "Annotation": ["filter_column", "filter_value","volcano", "toxo", "controls", "nc_loc", "pc_loc", "nc", "pc", "cell_plate_metadata","treatment_plate_metadata", "metadata_types", "cell_types", "target","positive_control","negative_control", "location_column", "treatment_loc", "channel_of_interest", "measurement", "treatments", "um_per_pixel", "nr_imgs", "exclude", "exclude_conditions", "mix", "pos", "neg"],
962
- "Plot": ["plot", "split_axis_lims", "x_lim","log_x","log_y", "plot_control", "plot_nr", "examples_to_plot", "normalize_plots", "cmap", "figuresize", "plot_cluster_grids", "img_zoom", "row_limit", "color_by", "plot_images", "smooth_lines", "plot_points", "plot_outlines", "black_background", "plot_by_cluster", "heatmap_feature","grouping","min_max","cmap","save_figure"],
963
- "Test": ["test_mode", "test_images", "random_test", "test_nr", "test", "test_split"],
1005
+ "Plot": ["split_axis_lims", "x_lim","log_x","log_y", "plot_control", "plot_nr", "examples_to_plot", "normalize_plots", "cmap", "figuresize", "plot_cluster_grids", "img_zoom", "row_limit", "color_by", "plot_images", "smooth_lines", "plot_points", "plot_outlines", "black_background", "plot_by_cluster", "heatmap_feature","grouping","min_max","cmap","save_figure"],
964
1006
  "Timelapse": ["timelapse", "fps", "timelapse_displacement", "timelapse_memory", "timelapse_frame_limits", "timelapse_remove_transient", "timelapse_mode", "timelapse_objects", "compartments"],
965
- "Advanced": ["target_unique_count","threshold_multiplier", "threshold_method", "min_n","shuffle", "target_intensity_min", "cells_per_well", "nuclei_limit", "pathogen_limit", "background", "backgrounds", "schedule", "test_size","exclude","n_repeats","top_features", "model_type_ml", "model_type","minimum_cell_count","n_estimators","preprocess", "remove_background", "normalize", "lower_percentile", "merge_pathogens", "batch_size", "filter", "save", "masks", "verbose", "randomize", "n_jobs"],
966
- "Miscellaneous": ["all_to_mip", "pick_slice", "skip_mode", "upscale", "upscale_factor"]
1007
+ "Advanced": ["merge_edge_pathogen_cells", "test_images", "random_test", "test_nr", "test", "test_split", "normalize", "target_unique_count","threshold_multiplier", "threshold_method", "min_n","shuffle", "target_intensity_min", "cells_per_well", "nuclei_limit", "pathogen_limit", "background", "backgrounds", "schedule", "test_size","exclude","n_repeats","top_features", "model_type_ml", "model_type","minimum_cell_count","n_estimators","preprocess", "remove_background", "normalize", "lower_percentile", "merge_pathogens", "batch_size", "filter", "save", "masks", "verbose", "randomize", "n_jobs"],
1008
+ "Beta": ["all_to_mip", "pick_slice", "skip_mode", "upscale", "upscale_factor", "consolidate"]
967
1009
  }
968
1010
 
969
1011
 
@@ -977,32 +1019,38 @@ def check_settings(vars_dict, expected_types, q=None):
977
1019
  q = Queue()
978
1020
 
979
1021
  settings = {}
1022
+ errors = [] # Collect errors instead of stopping at the first one
980
1023
 
981
1024
  for key, (label, widget, var, _) in vars_dict.items():
982
- if key not in expected_types:
983
- if key not in category_keys:
984
- q.put(f"Key {key} not found in expected types.")
985
- continue
1025
+ if key not in expected_types and key not in category_keys:
1026
+ errors.append(f"Warning: Key '{key}' not found in expected types.")
1027
+ continue
986
1028
 
987
1029
  value = var.get()
988
- if value == 'None':
1030
+ if value in ['None', '']:
989
1031
  value = None
990
1032
 
991
1033
  expected_type = expected_types.get(key, str)
992
1034
 
993
1035
  try:
994
- if key in ["cell_plate_metadata", "timelapse_frame_limits", "png_size", "pathogen_loc", "treatment_loc", "pathogen_plate_metadata", "treatment_plate_metadata", "barcode_coordinates", "class_metadata"]:
995
- parsed_value = ast.literal_eval(value) if value else None
1036
+ if key in ["cell_plate_metadata", "timelapse_frame_limits", "png_size", "png_dims", "pathogen_plate_metadata", "treatment_plate_metadata", "class_metadata", "crop_mode"]:
1037
+ if value is None:
1038
+ parsed_value = None
1039
+ else:
1040
+ try:
1041
+ parsed_value = ast.literal_eval(value)
1042
+ except (ValueError, SyntaxError):
1043
+ raise ValueError(f"Expected a list or list of lists but got an invalid format: {value}")
1044
+
996
1045
  if isinstance(parsed_value, list):
997
1046
  if all(isinstance(i, list) for i in parsed_value) or all(not isinstance(i, list) for i in parsed_value):
998
1047
  settings[key] = parsed_value
999
1048
  else:
1000
- raise ValueError("Invalid format: Mixed list and list of lists")
1001
- #elif parsed_value == None:
1002
- # settings[key] = None
1049
+ raise ValueError(f"Invalid format: '{key}' contains mixed types (single values and lists).")
1050
+
1003
1051
  else:
1004
- raise ValueError("Invalid format for list or list of lists")
1005
-
1052
+ raise ValueError(f"Expected a list for '{key}', but got {type(parsed_value).__name__}.")
1053
+
1006
1054
  elif expected_type == list:
1007
1055
  settings[key] = parse_list(value) if value else None
1008
1056
 
@@ -1010,37 +1058,52 @@ def check_settings(vars_dict, expected_types, q=None):
1010
1058
  settings[key] = settings[key][0]
1011
1059
 
1012
1060
  elif expected_type == bool:
1013
- settings[key] = value if isinstance(value, bool) else value.lower() in ['true', '1', 't', 'y', 'yes']
1061
+ settings[key] = value.lower() in ['true', '1', 't', 'y', 'yes'] if isinstance(value, str) else bool(value)
1062
+
1014
1063
  elif expected_type == (int, type(None)):
1015
- settings[key] = settings[key] = int(value) if isinstance(value, int) or str(value).isdigit() else None
1064
+ if value is None or str(value).isdigit():
1065
+ settings[key] = int(value) if value is not None else None
1066
+ else:
1067
+ raise ValueError(f"Expected an integer or None for '{key}', but got '{value}'.")
1068
+
1016
1069
  elif expected_type == (float, type(None)):
1017
- settings[key] = float(value) if isinstance(value, float) or (isinstance(value, str) and value.replace(".", "", 1).isdigit()) else None
1070
+ if value is None or (isinstance(value, str) and value.replace(".", "", 1).isdigit()):
1071
+ settings[key] = float(value) if value is not None else None
1072
+ else:
1073
+ raise ValueError(f"Expected a float or None for '{key}', but got '{value}'.")
1074
+
1018
1075
  elif expected_type == (int, float):
1019
- settings[key] = float(value) if '.' in value else int(value)
1076
+ try:
1077
+ settings[key] = float(value) if '.' in str(value) else int(value)
1078
+ except ValueError:
1079
+ raise ValueError(f"Expected an integer or float for '{key}', but got '{value}'.")
1080
+
1020
1081
  elif expected_type == (str, type(None)):
1021
- settings[key] = str(value) if value else None
1082
+ settings[key] = str(value) if value is not None else None
1083
+
1022
1084
  elif expected_type == (str, type(None), list):
1023
1085
  if isinstance(value, list):
1024
1086
  settings[key] = parse_list(value) if value else None
1025
1087
  elif isinstance(value, str):
1026
- settings[key] = str(value)
1088
+ settings[key] = str(value)
1027
1089
  else:
1028
1090
  settings[key] = None
1029
1091
 
1030
1092
  elif expected_type == dict:
1031
1093
  try:
1032
- # Ensure that the value is a string that can be converted to a dictionary
1033
1094
  if isinstance(value, str):
1034
- settings[key] = ast.literal_eval(value)
1095
+ parsed_dict = ast.literal_eval(value)
1035
1096
  else:
1036
1097
  raise ValueError("Expected a string representation of a dictionary.")
1037
-
1038
- # Check if the result is actually a dictionary
1039
- if not isinstance(settings[key], dict):
1040
- raise ValueError("Value is not a valid dictionary.")
1098
+
1099
+ if not isinstance(parsed_dict, dict):
1100
+ raise ValueError(f"Expected a dictionary for '{key}', but got {type(parsed_dict).__name__}.")
1101
+
1102
+ settings[key] = parsed_dict
1041
1103
  except (ValueError, SyntaxError) as e:
1042
1104
  settings[key] = {}
1043
- q.put(f"Error: Invalid format for {key}. Expected type: dict. Error: {e}")
1105
+ errors.append(f"Error: Invalid dictionary format for '{key}'. Expected type: dict. Error: {e}")
1106
+
1044
1107
  elif isinstance(expected_type, tuple):
1045
1108
  for typ in expected_type:
1046
1109
  try:
@@ -1049,15 +1112,25 @@ def check_settings(vars_dict, expected_types, q=None):
1049
1112
  except (ValueError, TypeError):
1050
1113
  continue
1051
1114
  else:
1052
- raise ValueError
1115
+ raise ValueError(f"Value '{value}' for '{key}' does not match any expected types: {expected_type}.")
1116
+
1053
1117
  else:
1054
- settings[key] = expected_type(value) if value else None
1118
+ try:
1119
+ settings[key] = expected_type(value) if value else None
1120
+ except (ValueError, TypeError):
1121
+ raise ValueError(f"Expected type {expected_type.__name__} for '{key}', but got '{value}'.")
1122
+
1055
1123
  except (ValueError, SyntaxError) as e:
1056
1124
  expected_type_name = ' or '.join([t.__name__ for t in expected_type]) if isinstance(expected_type, tuple) else expected_type.__name__
1057
- q.put(f"Error: Invalid format for {key}. Expected type: {expected_type_name}. Error: {e}, Value entered: {value}")
1058
- return
1125
+ errors.append(f"Error: '{key}' has invalid format. Expected type: {expected_type_name}. Got value: '{value}'. Error: {e}")
1059
1126
 
1060
- return settings
1127
+ # Send all collected errors to the queue
1128
+ for error in errors:
1129
+ q.put(error)
1130
+
1131
+
1132
+
1133
+ return settings, errors
1061
1134
 
1062
1135
  def generate_fields(variables, scrollable_frame):
1063
1136
  from .gui_utils import create_input_field
@@ -1082,16 +1155,25 @@ def generate_fields(variables, scrollable_frame):
1082
1155
  "black_background": "(bool) - Whether to use a black background for plots.",
1083
1156
  "calculate_correlation": "(bool) - Whether to calculate correlations between features.",
1084
1157
  "cell_CP_prob": "(float) - The cellpose probability threshold for the cell channel. This will be used in cell segmentation.",
1158
+ "nucleus_CP_prob": "(float) - The cellpose probability threshold for the nucleus channel. This will be used in cell segmentation.",
1159
+ "pathogen_CP_prob": "(float) - The cellpose probability threshold for the pathogen channel. This will be used in cell segmentation.",
1085
1160
  "cell_FT": "(float) - The flow threshold for cell objects. This will be used to segment the cells.",
1086
- "cell_background": "(float) - The background intensity for the cell channel. This will be used to remove background noise.",
1161
+ "nucleus_FT": "(float) - The flow threshold for nucleus objects. This will be used to segment the cells.",
1162
+ "pathogen_FT": "(float) - The flow threshold for pathogen objects. This will be used to segment the cells.",
1163
+ "cell_background": "(int) - The background intensity for the cell channel. This will be used to remove background noise.",
1164
+ "nucleus_background": "(int) - The background intensity for the nucleus channel. This will be used to remove background noise.",
1165
+ "pathogen_background": "(int) - The background intensity for the pathogen channel. This will be used to remove background noise.",
1087
1166
  "cell_chann_dim": "(int) - Dimension of the channel to use for cell segmentation.",
1088
- "cell_channel": "(int) - The channel to use for the cell. If None, the cell will not be segmented.",
1167
+ "cell_channel": "(int) - The channel to use for generatin cell masks. If None, cell masks will not be generated.",
1168
+ "nucleus_channel": "(int) - The channel to use for generatin nucleus masks. If None, nucleus masks will not be generated.",
1169
+ "pathogen_channel": "(int) - The channel to use for generatin pathogen masks. If None, pathogen masks will not be generated.",
1089
1170
  "cell_intensity_range": "(list) - Intensity range for cell segmentation.",
1090
1171
  "cell_loc": "(list) - The locations of the cell types in the images.",
1091
- "cell_mask_dim": "(int) - The dimension of the array the cell mask is saved in.",
1172
+ "cell_mask_dim": "(int) - The dimension of the array the cell mask is saved in (array order:channels,cell, nucleus, pathogen, cytoplasm) array starts at dimension 0.",
1173
+ "nucleus_mask_dim": "(int) - The dimension of the array the nucleus mask is saved in (array order:channels,cell, nucleus, pathogen, cytoplasm) array starts at dimension 0.",
1092
1174
  "cell_min_size": "(int) - The minimum size of cell objects in pixels^2.",
1093
1175
  "cell_plate_metadata": "(str) - Metadata for the cell plate.",
1094
- "cell_Signal_to_noise": "(float) - The signal-to-noise ratio for the cell channel. This will be used to determine the range of intensities to normalize images to for cell segmentation.",
1176
+ "cell_Signal_to_noise": "(int) - The signal-to-noise ratio for the cell channel. This will be used to determine the range of intensities to normalize images to for cell segmentation.",
1095
1177
  "cell_size_range": "(list) - Size range for cell segmentation.",
1096
1178
  "cell_types": "(list) - Types of cells to include in the analysis.",
1097
1179
  "cells": "(list of lists) - The cell types to include in the analysis.",
@@ -1106,13 +1188,17 @@ def generate_fields(variables, scrollable_frame):
1106
1188
  "col_to_compare": "(str) - Column to compare in the embeddings.",
1107
1189
  "color_by": "(str) - Coloring scheme for the plots.",
1108
1190
  "compartments": "(list) - The compartments to measure in the images.",
1191
+ "consolidate": "(bool) - Consolidate image files from subfolders into one folder named consolidated.",
1109
1192
  "CP_prob": "(float) - Cellpose probability threshold for segmentation.",
1110
1193
  "crop_mode": "(str) - Mode to use for cropping images (cell, nucleus, pathogen, cytoplasm).",
1111
1194
  "custom_model": "(str) - Path to a custom Cellpose model.",
1112
- "custom_regex": "(str) - Custom regex pattern to extract metadata from the image names. This will only be used if 'custom' is selected for 'metadata_type'.",
1195
+ "custom_regex": "(str) - Custom regex pattern to extract metadata from the image names. This will only be used if 'custom' or 'auto' is selected for 'metadata_type'.",
1113
1196
  "cytoplasm": "(bool) - Whether to segment the cytoplasm (Cell - Nucleus + Pathogen).",
1114
1197
  "cytoplasm_min_size": "(int) - The minimum size of cytoplasm objects in pixels^2.",
1198
+ "nucleus_min_size": "(int) - The minimum size of nucleus objects in pixels^2.",
1199
+ "normalize_by": "(str) - Normalize cropped png images by png or by field of view.",
1115
1200
  "dependent_variable": "(str) - The dependent variable for the regression analysis.",
1201
+ "delete_intermediate": "(bool) - Delete intermediate folders (stack, channel, norm_channel_stack).",
1116
1202
  "diameter": "(float) - Diameter of the objects to segment.",
1117
1203
  "dialate_png_ratios": "(list) - The ratios to use for dilating the PNG images. This will determine the amount of dilation applied to the images before cropping.",
1118
1204
  "dialate_pngs": "(bool) - Whether to dilate the PNG images before saving.",
@@ -1160,7 +1246,7 @@ def generate_fields(variables, scrollable_frame):
1160
1246
  "manders_thresholds": "(list) - Thresholds for Manders' coefficients.",
1161
1247
  "mask": "(bool) - Whether to generate masks for the segmented objects. If True, masks will be generated for the nucleus, cell, and pathogen.",
1162
1248
  "measurement": "(str) - The measurement to use for the analysis.",
1163
- "metadata_type": "(str) - Type of metadata to expect in the images. This will determine how the images are processed. If 'custom' is selected, you can provide a custom regex pattern to extract metadata from the image names.",
1249
+ "metadata_type": "(str) - Type of metadata to expect in the images. If 'custom' is selected, you can provide a custom regex pattern to extract metadata from the image names. auto will attempt to automatically extract metadata from the image names. cellvoyager and cq1 will use the default metadata extraction for CellVoyager and CQ1 images.",
1164
1250
  "metadata_types": "(list) - Types of metadata to include in the analysis.",
1165
1251
  "merge_edge_pathogen_cells": "(bool) - Whether to merge cells that share pathogen objects.",
1166
1252
  "merge_pathogens": "(bool) - Whether to merge pathogen objects that share more than 75 percent of their perimeter.",
@@ -1180,31 +1266,9 @@ def generate_fields(variables, scrollable_frame):
1180
1266
  "n_epochs": "(int) - Number of epochs for training the Cellpose model.",
1181
1267
  "n_jobs": "(int) - The number of n_jobs to use for processing the images. This will determine how many images are processed in parallel. Increase to speed up processing.",
1182
1268
  "n_neighbors": "(int) - Number of neighbors for UMAP.",
1183
- "n_repeats": "(int) - Number of repeats for cross-validation.",
1184
- "normalize": "(list) - The percentiles to use for normalizing the images. This will be used to determine the range of intensities to normalize images to. If None, no normalization is done.",
1185
- "normalize_by": "(str) - Whether to normalize the images by field of view (fov) or by PNG image (png).",
1186
- "normalize_plots": "(bool) - Whether to normalize the plots.",
1187
- "nr_imgs": "(int) - The number of images to plot.",
1188
- "nucleus_CP_prob": "(float) - The cellpose probability threshold for the nucleus channel. This will be used to segment the nucleus.",
1189
- "nucleus_FT": "(float) - The flow threshold for nucleus objects. This will be used in nucleus segmentation.",
1190
- "nucleus_background": "(float) - The background intensity for the nucleus channel. This will be used to remove background noise.",
1191
- "nucleus_chann_dim": "(int) - Dimension of the channel to use for nucleus segmentation.",
1192
- "nucleus_channel": "(int) - The channel to use for the nucleus. If None, the nucleus will not be segmented.",
1193
- "nucleus_intensity_range": "(list) - Intensity range for nucleus segmentation.",
1194
- "nucleus_loc": "(str) - Location of the nucleus in the images.",
1195
- "nucleus_mask_dim": "(int) - The dimension of the array the nucleus mask is saved in.",
1196
- "nucleus_min_size": "(int) - The minimum size of nucleus objects in pixels^2.",
1197
- "nucleus_Signal_to_noise": "(float) - The signal-to-noise ratio for the nucleus channel. This will be used to determine the range of intensities to normalize images to for nucleus segmentation.",
1198
- "nucleus_size_range": "(list) - Size range for nucleus segmentation.",
1199
- "optimizer_type": "(str) - Type of optimizer to use.",
1200
- "other": "(dict) - Additional parameters for the regression analysis.",
1201
- "pathogen_CP_prob": "(float) - The cellpose probability threshold for the pathogen channel. This will be used to segment the pathogen.",
1202
- "pathogen_FT": "(float) - The flow threshold for pathogen objects. This will be used in pathogen segmentation.",
1203
- "pathogen_background": "(float) - The background intensity for the pathogen channel. This will be used to remove background noise.",
1204
- "pathogen_chann_dim": "(int) - Dimension of the channel to use for pathogen segmentation.",
1205
- "pathogen_channel": "(int) - The channel to use for the pathogen. If None, the pathogen will not be segmented.",
1206
- "pathogen_intensity_range": "(str) - Metadata for the pathogen plate.",
1207
- "pathogen_Signal_to_noise": "(float) - The signal-to-noise ratio for the pathogen channel. This will be used to determine the range of intensities to normalize images to for pathogen segmentation.",
1269
+ "n_repeats": "(int) - Number of repeats for the pathogen plate.",
1270
+ "pathogen_Signal_to_noise": "(int) - The signal-to-noise ratio for the pathogen channel. This will be used to determine the range of intensities to normalize images to for pathogen segmentation.",
1271
+ "nucleus_Signal_to_noise": "(int) - The signal-to-noise ratio for the nucleus channel. This will be used to determine the range of intensities to normalize images to for nucleus segmentation.",
1208
1272
  "pathogen_size_range": "(list) - Size range for pathogen segmentation.",
1209
1273
  "pathogen_types": "(list) - Types of pathogens to include in the analysis.",
1210
1274
  "pc": "(str) - Positive control identifier.",
@@ -1222,7 +1286,7 @@ def generate_fields(variables, scrollable_frame):
1222
1286
  "plot_nr": "(int) - Number of plots to generate.",
1223
1287
  "plot_outlines": "(bool) - Whether to plot outlines of segmented objects.",
1224
1288
  "png_dims": "(list) - The dimensions of the PNG images to save. This will determine the dimensions of the saved images. Maximum of 3 dimensions e.g. [1,2,3].",
1225
- "png_size": "(int) - The size of the PNG images to save. This will determine the size of the saved images.",
1289
+ "png_size": "(list) - The size of the PNG images to save. This will determine the size of the saved images.",
1226
1290
  "positive_control": "(str) - Identifier for the positive control.",
1227
1291
  "preprocess": "(bool) - Whether to preprocess the images before segmentation. This includes background removal and normalization. Set to False only if this step has already been done.",
1228
1292
  "radial_dist": "(list) - Radial distances for measuring features.",
@@ -1251,10 +1315,11 @@ def generate_fields(variables, scrollable_frame):
1251
1315
  "save_measurements": "(bool) - Whether to save the measurements to disk.",
1252
1316
  "save_png": "(bool) - Whether to save the segmented objects as PNG images.",
1253
1317
  "schedule": "(str) - Schedule for processing the data.",
1254
- "Signal_to_noise": "(float) - Signal-to-noise ratio for the images.",
1318
+ "Signal_to_noise": "(int) - Signal-to-noise ratio for the images.",
1255
1319
  "skip_mode": "(str) - The mode to use for skipping images. This will determine how to handle images that cannot be processed.",
1256
1320
  "smooth_lines": "(bool) - Whether to smooth lines in the plots.",
1257
1321
  "src": "(str, path) - Path to source directory.",
1322
+ "segmentation_mode": "(str) - Algorithm to use for segmentation (cellpose or mediar).",
1258
1323
  "target": "(str) - Target variable for the analysis.",
1259
1324
  "target_height": "(int) - Target height for resizing the images.",
1260
1325
  "target_intensity_min": "(float) - Minimum intensity for the target objects.",
@@ -1304,7 +1369,7 @@ def generate_fields(variables, scrollable_frame):
1304
1369
  "masks": "(bool) - Whether to generate masks for the segmented objects.",
1305
1370
  "timelapse": "(bool) - Whether to analyze images as a timelapse.",
1306
1371
  "pathogen_min_size": "(int) - The minimum size of pathogen objects in pixels^2.",
1307
- "pathogen_mask_dim": "(int) - The dimension of the array the pathogen mask is saved in.",
1372
+ "pathogen_mask_dim": "(int) - The dimension of the array the pathogen mask is saved in (array order:channels,cell, nucleus, pathogen, cytoplasm) array starts at dimension 0.",
1308
1373
  "use_bounding_box": "(bool) - Whether to use the bounding box for cropping the images.",
1309
1374
  "plot_points": "(bool) - Whether to plot scatterplot points.",
1310
1375
  "embedding_by_controls": "(bool) - Use the controlls to greate the embedding, then apply this embedding to all of the data.",
@@ -1334,6 +1399,7 @@ def generate_fields(variables, scrollable_frame):
1334
1399
  "shuffle": "(bool) - Shuffle the dataset bufore generating the activation maps",
1335
1400
  "correlation": "(bool) - Calculate correlation between image channels and activation maps. Data is saved to .db.",
1336
1401
  "normalize_input": "(bool) - Normalize the input images before passing them to the model.",
1402
+ "normalize_plots": "(bool) - Normalize images before plotting.",
1337
1403
  }
1338
1404
 
1339
1405
  for key, (var_type, options, default_value) in variables.items():
@@ -1385,8 +1451,8 @@ def set_annotate_default_settings(settings):
1385
1451
  settings.setdefault('normalize', 'False')
1386
1452
  settings.setdefault('normalize_channels', "r,g,b")
1387
1453
  settings.setdefault('percentiles', [2, 98])
1388
- settings.setdefault('measurement', '')#'cytoplasm_channel_3_mean_intensity,pathogen_channel_3_mean_intensity')
1389
- settings.setdefault('threshold', '')#'2')
1454
+ settings.setdefault('measurement', '') #'cytoplasm_channel_3_mean_intensity,pathogen_channel_3_mean_intensity')
1455
+ settings.setdefault('threshold', '') #'2')
1390
1456
  return settings
1391
1457
 
1392
1458
  def set_default_generate_barecode_mapping(settings={}):
@@ -1406,6 +1472,7 @@ def set_default_generate_barecode_mapping(settings={}):
1406
1472
  settings.setdefault('mode', 'paired')
1407
1473
  settings.setdefault('single_direction', 'R1')
1408
1474
  settings.setdefault('test', False)
1475
+ settings.setdefault('fill_na', False)
1409
1476
  return settings
1410
1477
 
1411
1478
  def get_default_generate_activation_map_settings(settings):