spacr 0.3.0__py3-none-any.whl → 0.3.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (41) hide show
  1. spacr/__init__.py +19 -3
  2. spacr/cellpose.py +311 -0
  3. spacr/core.py +142 -2495
  4. spacr/deep_spacr.py +151 -29
  5. spacr/gui.py +1 -0
  6. spacr/gui_core.py +74 -63
  7. spacr/gui_elements.py +110 -5
  8. spacr/gui_utils.py +346 -6
  9. spacr/io.py +631 -51
  10. spacr/logger.py +28 -9
  11. spacr/measure.py +107 -95
  12. spacr/mediar.py +0 -5
  13. spacr/ml.py +964 -0
  14. spacr/openai.py +37 -0
  15. spacr/plot.py +281 -16
  16. spacr/resources/data/lopit.csv +3833 -0
  17. spacr/resources/data/toxoplasma_metadata.csv +8843 -0
  18. spacr/resources/icons/convert.png +0 -0
  19. spacr/resources/{models/cp/toxo_plaque_cyto_e25000_X1120_Y1120.CP_model → icons/dna_matrix.mp4} +0 -0
  20. spacr/sequencing.py +241 -1311
  21. spacr/settings.py +129 -43
  22. spacr/sim.py +0 -2
  23. spacr/submodules.py +348 -0
  24. spacr/timelapse.py +0 -2
  25. spacr/toxo.py +233 -0
  26. spacr/utils.py +275 -173
  27. {spacr-0.3.0.dist-info → spacr-0.3.2.dist-info}/METADATA +7 -1
  28. {spacr-0.3.0.dist-info → spacr-0.3.2.dist-info}/RECORD +32 -33
  29. spacr/chris.py +0 -50
  30. spacr/graph_learning.py +0 -340
  31. spacr/resources/MEDIAR/.git +0 -1
  32. spacr/resources/MEDIAR_weights/.DS_Store +0 -0
  33. spacr/resources/icons/.DS_Store +0 -0
  34. spacr/resources/icons/spacr_logo_rotation.gif +0 -0
  35. spacr/resources/models/cp/toxo_plaque_cyto_e25000_X1120_Y1120.CP_model_settings.csv +0 -23
  36. spacr/resources/models/cp/toxo_pv_lumen.CP_model +0 -0
  37. spacr/sim_app.py +0 -0
  38. {spacr-0.3.0.dist-info → spacr-0.3.2.dist-info}/LICENSE +0 -0
  39. {spacr-0.3.0.dist-info → spacr-0.3.2.dist-info}/WHEEL +0 -0
  40. {spacr-0.3.0.dist-info → spacr-0.3.2.dist-info}/entry_points.txt +0 -0
  41. {spacr-0.3.0.dist-info → spacr-0.3.2.dist-info}/top_level.txt +0 -0
spacr/settings.py CHANGED
@@ -2,9 +2,9 @@ import os, ast
2
2
 
3
3
  def set_default_plot_merge_settings():
4
4
  settings = {}
5
- settings.setdefault('include_noninfected', True)
6
- settings.setdefault('include_multiinfected', 10)
7
- settings.setdefault('include_multinucleated', 1)
5
+ settings.setdefault('uninfected', True)
6
+ settings.setdefault('pathogen_limit', 10)
7
+ settings.setdefault('nuclei_limit', 1)
8
8
  settings.setdefault('remove_background', False)
9
9
  settings.setdefault('filter_min_max', None)
10
10
  settings.setdefault('channel_dims', [0,1,2,3])
@@ -217,7 +217,7 @@ def set_default_umap_image_settings(settings={}):
217
217
  settings.setdefault('verbose',True)
218
218
  return settings
219
219
 
220
- def get_measure_crop_settings(settings):
220
+ def get_measure_crop_settings(settings={}):
221
221
 
222
222
  settings.setdefault('src', 'path')
223
223
  settings.setdefault('verbose', False)
@@ -246,7 +246,7 @@ def get_measure_crop_settings(settings):
246
246
  settings.setdefault('normalize_by','png')
247
247
  settings.setdefault('crop_mode',['cell'])
248
248
  settings.setdefault('dialate_pngs', False)
249
- settings.setdefault('dialate_png_ratios', [0.2])
249
+ settings.setdefault('dialate_png_ratios', [0.2, 0,2])
250
250
 
251
251
  # Timelapsed settings
252
252
  settings.setdefault('timelapse', False)
@@ -291,6 +291,9 @@ def set_default_analyze_screen(settings):
291
291
  settings.setdefault('positive_control','c2')
292
292
  settings.setdefault('negative_control','c1')
293
293
  settings.setdefault('exclude',None)
294
+ settings.setdefault('nuclei_limit',True)
295
+ settings.setdefault('pathogen_limit',3)
296
+ settings.setdefault('uninfected',True)
294
297
  settings.setdefault('n_repeats',10)
295
298
  settings.setdefault('top_features',30)
296
299
  settings.setdefault('remove_low_variance_features',True)
@@ -345,6 +348,9 @@ def set_generate_training_dataset_defaults(settings):
345
348
  settings.setdefault('channel_of_interest',3)
346
349
  settings.setdefault('custom_measurement',None)
347
350
  settings.setdefault('tables',None)
351
+ settings.setdefault('nuclei_limit',True)
352
+ settings.setdefault('pathogen_limit',True)
353
+ settings.setdefault('uninfected',True)
348
354
  settings.setdefault('png_type','cell_png')
349
355
 
350
356
  return settings
@@ -392,7 +398,6 @@ def deep_spacr_defaults(settings):
392
398
  settings.setdefault('n_jobs',cores)
393
399
  settings.setdefault('train_channels',['r','g','b'])
394
400
  settings.setdefault('augment',False)
395
- settings.setdefault('preload_batches', 3)
396
401
  settings.setdefault('verbose',True)
397
402
  settings.setdefault('apply_model_to_dataset',True)
398
403
  settings.setdefault('file_metadata',None)
@@ -406,6 +411,37 @@ def deep_spacr_defaults(settings):
406
411
  settings.setdefault('train_DL_model', True)
407
412
  return settings
408
413
 
414
+ def get_train_test_model_settings(settings):
415
+ settings.setdefault('src', 'path')
416
+ settings.setdefault('train', True)
417
+ settings.setdefault('test', False)
418
+ settings.setdefault('custom_model', False)
419
+ settings.setdefault('classes', ['nc','pc'])
420
+ settings.setdefault('train_channels', ['r','g','b'])
421
+ settings.setdefault('model_type', 'maxvit_t')
422
+ settings.setdefault('optimizer_type', 'adamw')
423
+ settings.setdefault('schedule', 'reduce_lr_on_plateau')
424
+ settings.setdefault('loss_type', 'focal_loss')
425
+ settings.setdefault('normalize', True)
426
+ settings.setdefault('image_size', 224)
427
+ settings.setdefault('batch_size', 64)
428
+ settings.setdefault('epochs', 100)
429
+ settings.setdefault('val_split', 0.1)
430
+ settings.setdefault('learning_rate', 0.0001)
431
+ settings.setdefault('weight_decay', 0.00001)
432
+ settings.setdefault('dropout_rate', 0.1)
433
+ settings.setdefault('init_weights', True)
434
+ settings.setdefault('amsgrad', True)
435
+ settings.setdefault('use_checkpoint', True)
436
+ settings.setdefault('gradient_accumulation', True)
437
+ settings.setdefault('gradient_accumulation_steps', 4)
438
+ settings.setdefault('intermedeate_save',True)
439
+ settings.setdefault('pin_memory', True)
440
+ settings.setdefault('n_jobs', 30)
441
+ settings.setdefault('augment', True)
442
+ settings.setdefault('verbose', True)
443
+ return settings
444
+
409
445
  def get_analyze_recruitment_default_settings(settings):
410
446
  settings.setdefault('src','path')
411
447
  settings.setdefault('target','protein')
@@ -428,9 +464,9 @@ def get_analyze_recruitment_default_settings(settings):
428
464
  settings.setdefault('plot_nr',10)
429
465
  settings.setdefault('plot_control',True)
430
466
  settings.setdefault('figuresize',10)
431
- settings.setdefault('include_noninfected',True)
432
- settings.setdefault('include_multiinfected',10)
433
- settings.setdefault('include_multinucleated',1)
467
+ settings.setdefault('uninfected',True)
468
+ settings.setdefault('pathogen_limit',10)
469
+ settings.setdefault('nuclei_limit',1)
434
470
  settings.setdefault('cells_per_well',0)
435
471
  settings.setdefault('pathogen_size_range',[0,100000])
436
472
  settings.setdefault('nucleus_size_range',[0,100000])
@@ -481,14 +517,21 @@ def get_train_cellpose_default_settings(settings):
481
517
  settings.setdefault('verbose',True)
482
518
  return settings
483
519
 
520
+ def set_generate_dataset_defaults(settings):
521
+ settings.setdefault('src','path')
522
+ settings.setdefault('file_metadata',None)
523
+ settings.setdefault('experiment','experiment_1')
524
+ settings.setdefault('sample',None)
525
+ return settings
526
+
484
527
  def get_perform_regression_default_settings(settings):
485
- settings.setdefault('gene_weights_csv', '/nas_mnt/carruthers/Einar/mitoscreen/sequencing/combined_reads/EO1_combined/EO1_combined_combination_counts.csv')
528
+ settings.setdefault('highlight','239740')
486
529
  settings.setdefault('dependent_variable','predictions')
487
530
  settings.setdefault('transform',None)
488
531
  settings.setdefault('agg_type','mean')
489
532
  settings.setdefault('min_cell_count',25)
490
533
  settings.setdefault('regression_type','ols')
491
- settings.setdefault('remove_row_column_effect',False)
534
+ settings.setdefault('random_row_column_effects',False)
492
535
  settings.setdefault('alpha',1)
493
536
  settings.setdefault('fraction_threshold',0.1)
494
537
  settings.setdefault('nc','c1')
@@ -496,6 +539,10 @@ def get_perform_regression_default_settings(settings):
496
539
  settings.setdefault('other','c3')
497
540
  settings.setdefault('plate','plate1')
498
541
  settings.setdefault('class_1_threshold',None)
542
+ settings.setdefault('cov_type',None)
543
+ settings.setdefault('metadata_files',['/home/carruthers/Documents/TGME49_Summary.csv','/home/carruthers/Documents/TGGT1_Summary.csv'])
544
+ settings.setdefault('toxo', True)
545
+
499
546
 
500
547
  if settings['regression_type'] == 'quantile':
501
548
  print(f"Using alpha as quantile for quantile regression, alpha: {settings['alpha']}")
@@ -552,9 +599,10 @@ def get_identify_masks_finetune_default_settings(settings):
552
599
 
553
600
  q = None
554
601
  expected_types = {
555
- "src": str,
602
+ "src": (str, list),
556
603
  "metadata_type": str,
557
604
  "custom_regex": (str, type(None)),
605
+ "cov_type": (str, type(None)),
558
606
  "experiment": str,
559
607
  "channels": list,
560
608
  "magnification": int,
@@ -628,9 +676,9 @@ expected_types = {
628
676
  "measurement": str,
629
677
  "nr_imgs": int,
630
678
  "um_per_pixel": (int, float),
631
- "include_noninfected": bool,
632
- "include_multiinfected": int,
633
- "include_multinucleated": int,
679
+ "uninfected": bool,
680
+ "pathogen_limit": int,
681
+ "nuclei_limit": int,
634
682
  "filter_min_max": (list, type(None)),
635
683
  "channel_dims": list,
636
684
  "backgrounds": list,
@@ -767,7 +815,7 @@ expected_types = {
767
815
  "agg_type": str,
768
816
  "min_cell_count": int,
769
817
  "regression_type": str,
770
- "remove_row_column_effect": bool,
818
+ "random_row_column_effects": bool,
771
819
  "alpha": float,
772
820
  "fraction_threshold": float,
773
821
  "class_1_threshold": (float, type(None)),
@@ -829,34 +877,33 @@ expected_types = {
829
877
  "png_type":str,
830
878
  "custom_model_path":str,
831
879
  "generate_training_dataset":bool,
832
- 'preload_batches':int,
833
880
  "segmentation_mode":str,
834
881
  "train_DL_model":bool,
835
882
  }
836
883
 
837
- categories = {"General": ["src", "metadata_type", "custom_regex", "experiment", "channels", "magnification", "channel_dims", "apply_model_to_dataset", "generate_training_dataset", "train_DL_model", "segmentation_mode"],
838
- "Cell": ["cell_intensity_range", "cell_size_range", "cell_chann_dim", "cell_channel", "cell_background", "cell_Signal_to_noise", "cell_CP_prob", "cell_FT", "remove_background_cell", "cell_min_size", "cell_mask_dim", "cytoplasm", "cytoplasm_min_size", "include_uninfected", "merge_edge_pathogen_cells", "adjust_cells"],
884
+ categories = {"Paths":[ "src", "grna", "barcodes", "custom_model_path", "tar_path","model_path","grna_csv","row_csv","column_csv"],
885
+ "General": ["metadata_type", "custom_regex", "experiment", "channels", "magnification", "channel_dims", "apply_model_to_dataset", "generate_training_dataset", "train_DL_model", "segmentation_mode"],
886
+ "Cellpose":["from_scratch", "n_epochs", "width_height", "model_name", "custom_model", "resample", "rescale", "CP_prob", "flow_threshold", "percentiles", "circular", "invert", "diameter", "grayscale", "background", "Signal_to_noise", "resize", "target_height", "target_width"],
887
+ "Cell": ["cell_intensity_range", "cell_size_range", "cell_chann_dim", "cell_channel", "cell_background", "cell_Signal_to_noise", "cell_CP_prob", "cell_FT", "remove_background_cell", "cell_min_size", "cell_mask_dim", "cytoplasm", "cytoplasm_min_size", "include_uninfected", "merge_edge_pathogen_cells", "adjust_cells", "cells", "cell_loc"],
839
888
  "Nucleus": ["nucleus_intensity_range", "nucleus_size_range", "nucleus_chann_dim", "nucleus_channel", "nucleus_background", "nucleus_Signal_to_noise", "nucleus_CP_prob", "nucleus_FT", "remove_background_nucleus", "nucleus_min_size", "nucleus_mask_dim", "nucleus_loc"],
840
- "Pathogen": ["pathogen_intensity_range", "pathogen_size_range", "pathogen_chann_dim", "pathogen_channel", "pathogen_background", "pathogen_Signal_to_noise", "pathogen_CP_prob", "pathogen_FT", "pathogen_model", "remove_background_pathogen", "pathogen_min_size", "pathogen_mask_dim"],
841
- "Timelapse": ["fps", "timelapse_displacement", "timelapse_memory", "timelapse_frame_limits", "timelapse_remove_transient", "timelapse_mode", "timelapse_objects", "compartments"],
842
- "Plot": ["plot_control", "plot_nr", "examples_to_plot", "normalize_plots", "normalize", "cmap", "figuresize", "plot_cluster_grids", "img_zoom", "row_limit", "color_by", "plot_images", "smooth_lines", "plot_points", "plot_outlines", "black_background", "plot_by_cluster", "heatmap_feature","grouping","min_max","cmap","save_figure"],
889
+ "Pathogen": ["pathogen_intensity_range", "pathogen_size_range", "pathogen_chann_dim", "pathogen_channel", "pathogen_background", "pathogen_Signal_to_noise", "pathogen_CP_prob", "pathogen_FT", "pathogen_model", "remove_background_pathogen", "pathogen_min_size", "pathogen_mask_dim", "pathogens", "pathogen_loc", "pathogen_types", "pathogen_plate_metadata", ],
843
890
  "Measurements": ["remove_image_canvas", "remove_highly_correlated", "homogeneity", "homogeneity_distances", "radial_dist", "calculate_correlation", "manders_thresholds", "save_measurements", "tables", "image_nr", "dot_size", "filter_by", "remove_highly_correlated_features", "remove_low_variance_features", "channel_of_interest"],
844
- "Paths":["grna", "barcodes", "custom_model_path", "tar_path","model_path"],
845
- "Sequencing": ["upstream", "downstream", "barecode_length_1", "barecode_length_2", "chunk_size", "barcode_mapping", "reverse_complement", "barcode_coordinates", "complevel", "compression","plate_dict"],
846
- "Embedding": ["visualize","n_neighbors","min_dist","metric","resnet_features","reduction_method","embedding_by_controls","col_to_compare","log_data"],
847
- "Clustering": ["eps","min_samples","analyze_clusters","clustering","remove_cluster_noise"],
848
891
  "Object Image": ["save_png", "dialate_pngs", "dialate_png_ratios", "png_size", "png_dims", "save_arrays", "normalize_by", "dialate_png_ratios", "crop_mode", "dialate_pngs", "normalize", "use_bounding_box"],
849
- "Annotation": ["nc_loc", "pc_loc", "nc", "pc", "cell_plate_metadata","pathogen_types", "pathogen_plate_metadata", "treatment_plate_metadata", "metadata_types", "cell_types", "target","positive_control","negative_control", "location_column", "treatment_loc", "cells", "cell_loc", "pathogens", "pathogen_loc", "channel_of_interest", "measurement", "treatments", "um_per_pixel", "nr_imgs", "exclude", "exclude_conditions", "mix", "pos", "neg"],
850
- "Machine Learning":[],
851
- "Deep Learning": ["png_type","score_threshold","file_type", "train_channels", "epochs", "loss_type", "optimizer_type","image_size","val_split","learning_rate","weight_decay","dropout_rate", "init_weights", "train", "classes", "augment"],
852
- "Generate Dataset":["preload_batches", "file_metadata","class_metadata", "annotation_column","annotated_classes", "dataset_mode", "metadata_type_by","custom_measurement", "sample", "size"],
853
- "Cellpose":["from_scratch", "n_epochs", "width_height", "model_name", "custom_model", "resample", "rescale", "CP_prob", "flow_threshold", "percentiles", "circular", "invert", "diameter", "grayscale", "background", "Signal_to_noise", "resize", "target_height", "target_width"],
854
- "Regression":["class_1_threshold", "plate", "other", "fraction_threshold", "alpha", "remove_row_column_effect", "regression_type", "min_cell_count", "agg_type", "transform", "dependent_variable", "gene_weights_csv"],
855
- "Miscellaneous": ["all_to_mip", "pick_slice", "skip_mode", "upscale", "upscale_factor"],
892
+ "Sequencing": ["signal_direction","mode","comp_level","comp_type","save_h5","expected_end","offset","target_sequence","regex", "highlight"],
893
+ "Generate Dataset":["file_metadata","class_metadata", "annotation_column","annotated_classes", "dataset_mode", "metadata_type_by","custom_measurement", "sample", "size"],
894
+ "Hyperparamiters (Training)": ["png_type", "score_threshold","file_type", "train_channels", "epochs", "loss_type", "optimizer_type","image_size","val_split","learning_rate","weight_decay","dropout_rate", "init_weights", "train", "classes", "augment", "amsgrad","use_checkpoint","gradient_accumulation","gradient_accumulation_steps","intermedeate_save","pin_memory"],
895
+ "Hyperparamiters (Embedding)": ["visualize","n_neighbors","min_dist","metric","resnet_features","reduction_method","embedding_by_controls","col_to_compare","log_data"],
896
+ "Hyperparamiters (Clustering)": ["eps","min_samples","analyze_clusters","clustering","remove_cluster_noise"],
897
+ "Hyperparamiters (Regression)":["cov_type", "class_1_threshold", "plate", "other", "fraction_threshold", "alpha", "random_row_column_effects", "regression_type", "min_cell_count", "agg_type", "transform", "dependent_variable"],
898
+ "Annotation": ["nc_loc", "pc_loc", "nc", "pc", "cell_plate_metadata","treatment_plate_metadata", "metadata_types", "cell_types", "target","positive_control","negative_control", "location_column", "treatment_loc", "channel_of_interest", "measurement", "treatments", "um_per_pixel", "nr_imgs", "exclude", "exclude_conditions", "mix", "pos", "neg"],
899
+ "Plot": ["plot", "plot_control", "plot_nr", "examples_to_plot", "normalize_plots", "cmap", "figuresize", "plot_cluster_grids", "img_zoom", "row_limit", "color_by", "plot_images", "smooth_lines", "plot_points", "plot_outlines", "black_background", "plot_by_cluster", "heatmap_feature","grouping","min_max","cmap","save_figure"],
856
900
  "Test": ["test_mode", "test_images", "random_test", "test_nr", "test", "test_split"],
857
- "Advanced": ["target_intensity_min", "cells_per_well", "include_multinucleated", "include_multiinfected", "include_noninfected", "backgrounds", "plot", "timelapse", "schedule", "test_size","exclude","n_repeats","top_features", "model_type_ml", "model_type","minimum_cell_count","n_estimators","preprocess", "remove_background", "normalize", "lower_percentile", "merge_pathogens", "batch_size", "filter", "save", "masks", "verbose", "randomize", "n_jobs", "amsgrad","use_checkpoint","gradient_accumulation","gradient_accumulation_steps","intermedeate_save","pin_memory"]
901
+ "Timelapse": ["timelapse", "fps", "timelapse_displacement", "timelapse_memory", "timelapse_frame_limits", "timelapse_remove_transient", "timelapse_mode", "timelapse_objects", "compartments"],
902
+ "Advanced": ["target_intensity_min", "cells_per_well", "nuclei_limit", "pathogen_limit", "uninfected", "backgrounds", "schedule", "test_size","exclude","n_repeats","top_features", "model_type_ml", "model_type","minimum_cell_count","n_estimators","preprocess", "remove_background", "normalize", "lower_percentile", "merge_pathogens", "batch_size", "filter", "save", "masks", "verbose", "randomize", "n_jobs"],
903
+ "Miscellaneous": ["all_to_mip", "pick_slice", "skip_mode", "upscale", "upscale_factor"]
858
904
  }
859
905
 
906
+
860
907
  category_keys = list(categories.keys())
861
908
 
862
909
  def check_settings(vars_dict, expected_types, q=None):
@@ -935,7 +982,7 @@ def check_settings(vars_dict, expected_types, q=None):
935
982
 
936
983
  def generate_fields(variables, scrollable_frame):
937
984
  from .gui_utils import create_input_field
938
- from .gui_elements import set_dark_style, spacrToolTip
985
+ from .gui_elements import spacrToolTip
939
986
  row = 1
940
987
  vars_dict = {}
941
988
  tooltips = {
@@ -1015,9 +1062,9 @@ def generate_fields(variables, scrollable_frame):
1015
1062
  "image_nr": "(int) - Number of images to process.",
1016
1063
  "image_size": "(int) - Size of the images for training.",
1017
1064
  "img_zoom": "(float) - Zoom factor for the images in plots.",
1018
- "include_multinucleated": "(int) - Whether to include multinucleated cells in the analysis.",
1019
- "include_multiinfected": "(int) - Whether to include multi-infected cells in the analysis.",
1020
- "include_noninfected": "(bool) - Whether to include non-infected cells in the analysis.",
1065
+ "nuclei_limit": "(int) - Whether to include multinucleated cells in the analysis.",
1066
+ "pathogen_limit": "(int) - Whether to include multi-infected cells in the analysis.",
1067
+ "uninfected": "(bool) - Whether to include non-infected cells in the analysis.",
1021
1068
  "include_uninfected": "(bool) - Whether to include uninfected cells in the analysis.",
1022
1069
  "init_weights": "(bool) - Whether to initialize weights for the model.",
1023
1070
  "src": "(str) - Path to the folder containing the images.",
@@ -1109,7 +1156,7 @@ def generate_fields(variables, scrollable_frame):
1109
1156
  "remove_highly_correlated_features": "(bool) - Whether to remove highly correlated features from the analysis.",
1110
1157
  "remove_image_canvas": "(bool) - Whether to remove the image canvas after plotting.",
1111
1158
  "remove_low_variance_features": "(bool) - Whether to remove low variance features from the analysis.",
1112
- "remove_row_column_effect": "(bool) - Whether to remove row and column effects from the data.",
1159
+ "random_row_column_effects": "(bool) - Whether to remove row and column effects from the data.",
1113
1160
  "resize": "(bool) - Resize factor for the images.",
1114
1161
  "resample": "(bool) - Whether to resample the images during processing.",
1115
1162
  "rescale": "(float) - Rescaling factor for the images.",
@@ -1163,9 +1210,44 @@ def generate_fields(variables, scrollable_frame):
1163
1210
  "train_channels": "list - channels to use for training",
1164
1211
  "dataset_mode": "str - How to generate train/test dataset.",
1165
1212
  "annotated_classes": "list - list of numbers in annotation column.",
1166
- "um_per_pixel": "(float) - The micrometers per pixel for the images."
1213
+ "um_per_pixel": "(float) - The micrometers per pixel for the images.",
1214
+ "segmentation_model": "(str) - The segmentation model to use, either cellpose or mediar.",
1215
+ "pathogen_model": "(str) - use a custom cellpose model to detect pathogen objects.",
1216
+ "timelapse_displacement": "(int) - Displacement for timelapse tracking.",
1217
+ "timelapse_memory": "(int) - Memory for timelapse tracking.",
1218
+ "timelapse_mode": "(str) - Mode for timelapse tracking, trackpy or btrack.",
1219
+ "timelapse_frame_limits": "(list) - Frame limits for timelapse tracking [start,end].",
1220
+ "timelapse_objects": "(list) - Objects to track in the timelapse, cells, nuclei, or pathogens.",
1221
+ "timelapse_remove_transient": "(bool) - Whether to remove transient objects in the timelapse.",
1222
+ "masks": "(bool) - Whether to generate masks for the segmented objects.",
1223
+ "timelapse": "(bool) - Whether to analyze images as a timelapse.",
1224
+ "pathogen_min_size": "(int) - The minimum size of pathogen objects in pixels^2.",
1225
+ "pathogen_mask_dim": "(int) - The dimension of the array the pathogen mask is saved in.",
1226
+ "use_bounding_box": "(bool) - Whether to use the bounding box for cropping the images.",
1227
+ "plot_points": "(bool) - Whether to plot scatterplot points.",
1228
+ "embedding_by_controls": "(bool) - Use the controlls to greate the embedding, then apply this embedding to all of the data.",
1229
+ "pos": "(str) - Positive control identifier.",
1230
+ "neg": "(str) - Negative control identifier.",
1231
+ "minimum_cell_count": "(int) - Minimum number of cells/well. if number of cells < minimum_cell_count, the well is excluded from the analysis.",
1232
+ "circular": "(bool) - If a circle is to be drawn and corners excluded (e.g. square images of round wells).",
1233
+ "highlight": "(str) - highlight genes/grnas containing this string.",
1234
+ "pathogen_plate_metadata": "(str) - Metadata for the pathogen plate.",
1235
+ "treatment_plate_metadata": "(str) - Metadata for the treatment plate.",
1236
+ "regex": "(str) - Regular expression to use.",
1237
+ "target_sequence": "(str) - The DNA sequence to look for that the consensus sequence will start with directly downstream of the first barcode.",
1238
+ "offset": "(int) - The offset to use for the consensus sequence, e.g. -8 if the barecode is 8 bases before target_sequence.",
1239
+ "expected_end": "(int) - The expected length of the sequence from the start of the first barcode to the end of the last.",
1240
+ "column_csv": "(path) - path to the csv file containing column barcodes.",
1241
+ "row_csv": "(path) - path to the csv file containing row barcodes.",
1242
+ "grna_csv": "(path) - path to the csv file containing gRNA sequences.",
1243
+ "save_h5": "(bool) - Whether to save the results to an HDF5 file. (this generates a large file, if compression is used this can be very time consuming)",
1244
+ "comp_type": "(str) - Compression type for the HDF5 file (e.g. zlib).",
1245
+ "comp_level": "(int) - Compression level for the HDF5 file (0-9). Higher is slower and yields smaller files.",
1246
+ "mode": "(str) - Mode to use for sequence analysis (either single for R1 or R2 fastq files or paired for the combination of R1 and R2).",
1247
+ "signal_direction": "(str) - Direction of fastq file (R1 or R2). only relevent when mode is single.",
1248
+ "custom_model_path": "(str) - Path to the custom model to finetune.",
1167
1249
  }
1168
-
1250
+
1169
1251
  for key, (var_type, options, default_value) in variables.items():
1170
1252
  label, widget, var, frame = create_input_field(scrollable_frame.scrollable_frame, key, row, var_type, options, default_value)
1171
1253
  vars_dict[key] = (label, widget, var, frame) # Store the label, widget, and variable
@@ -1210,12 +1292,13 @@ def set_annotate_default_settings(settings):
1210
1292
  settings.setdefault('annotation_column', 'test')
1211
1293
  settings.setdefault('normalize', 'False')
1212
1294
  settings.setdefault('percentiles', [2, 98])
1213
- settings.setdefault('measurement', 'cytoplasm_channel_3_mean_intensity,pathogen_channel_3_mean_intensity')
1214
- settings.setdefault('threshold', '2')
1295
+ settings.setdefault('measurement', '')#'cytoplasm_channel_3_mean_intensity,pathogen_channel_3_mean_intensity')
1296
+ settings.setdefault('threshold', '')#'2')
1215
1297
  return settings
1216
1298
 
1217
1299
  def set_default_generate_barecode_mapping(settings={}):
1218
1300
  settings.setdefault('src', 'path')
1301
+ settings.setdefault('regex', '^(?P<column>.{8})TGCTG.*TAAAC(?P<grna>.{20,21})AACTT.*AGAAG(?P<row>.{8}).*'),
1219
1302
  settings.setdefault('target_sequence', 'TGCTGTTTCCAGCATAGCTCTTAAAC')
1220
1303
  settings.setdefault('offset_start', -8)
1221
1304
  settings.setdefault('expected_end', 89)
@@ -1227,4 +1310,7 @@ def set_default_generate_barecode_mapping(settings={}):
1227
1310
  settings.setdefault('comp_level', 5)
1228
1311
  settings.setdefault('chunk_size', 100000)
1229
1312
  settings.setdefault('n_jobs', None)
1313
+ settings.setdefault('mode', 'paired')
1314
+ settings.setdefault('single_direction', 'R1')
1315
+ settings.setdefault('test', False)
1230
1316
  return settings
spacr/sim.py CHANGED
@@ -15,8 +15,6 @@ import statsmodels.api as sm
15
15
  from multiprocessing import cpu_count, Pool, Manager
16
16
  from copy import deepcopy
17
17
 
18
- from .logger import log_function_call
19
-
20
18
  warnings.filterwarnings("ignore")
21
19
  warnings.filterwarnings("ignore", category=RuntimeWarning) # Ignore RuntimeWarning
22
20