spacr 0.2.46__py3-none-any.whl → 0.2.56__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- spacr/core.py +306 -21
- spacr/deep_spacr.py +101 -41
- spacr/gui.py +1 -3
- spacr/gui_core.py +78 -65
- spacr/gui_elements.py +437 -152
- spacr/gui_utils.py +84 -73
- spacr/io.py +14 -7
- spacr/measure.py +196 -145
- spacr/plot.py +2 -42
- spacr/resources/font/open_sans/OFL.txt +93 -0
- spacr/resources/font/open_sans/OpenSans-Italic-VariableFont_wdth,wght.ttf +0 -0
- spacr/resources/font/open_sans/OpenSans-VariableFont_wdth,wght.ttf +0 -0
- spacr/resources/font/open_sans/README.txt +100 -0
- spacr/resources/font/open_sans/static/OpenSans-Bold.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans-BoldItalic.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans-ExtraBold.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans-ExtraBoldItalic.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans-Italic.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans-Light.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans-LightItalic.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans-Medium.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans-MediumItalic.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans-Regular.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans-SemiBold.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans-SemiBoldItalic.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_Condensed-Bold.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_Condensed-BoldItalic.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_Condensed-ExtraBold.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_Condensed-ExtraBoldItalic.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_Condensed-Italic.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_Condensed-Light.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_Condensed-LightItalic.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_Condensed-Medium.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_Condensed-MediumItalic.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_Condensed-Regular.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_Condensed-SemiBold.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_Condensed-SemiBoldItalic.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-Bold.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-BoldItalic.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-ExtraBold.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-ExtraBoldItalic.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-Italic.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-Light.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-LightItalic.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-Medium.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-MediumItalic.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-Regular.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-SemiBold.ttf +0 -0
- spacr/resources/font/open_sans/static/OpenSans_SemiCondensed-SemiBoldItalic.ttf +0 -0
- spacr/sequencing.py +481 -587
- spacr/settings.py +197 -122
- spacr/utils.py +21 -13
- {spacr-0.2.46.dist-info → spacr-0.2.56.dist-info}/METADATA +7 -4
- spacr-0.2.56.dist-info/RECORD +100 -0
- spacr-0.2.46.dist-info/RECORD +0 -60
- {spacr-0.2.46.dist-info → spacr-0.2.56.dist-info}/LICENSE +0 -0
- {spacr-0.2.46.dist-info → spacr-0.2.56.dist-info}/WHEEL +0 -0
- {spacr-0.2.46.dist-info → spacr-0.2.56.dist-info}/entry_points.txt +0 -0
- {spacr-0.2.46.dist-info → spacr-0.2.56.dist-info}/top_level.txt +0 -0
spacr/settings.py
CHANGED
@@ -220,6 +220,7 @@ def get_measure_crop_settings(settings):
|
|
220
220
|
|
221
221
|
settings.setdefault('src', 'path')
|
222
222
|
settings.setdefault('verbose', False)
|
223
|
+
settings.setdefault('experiment', 'exp')
|
223
224
|
|
224
225
|
# Test mode
|
225
226
|
settings.setdefault('test_mode', False)
|
@@ -252,8 +253,6 @@ def get_measure_crop_settings(settings):
|
|
252
253
|
|
253
254
|
# Operational settings
|
254
255
|
settings.setdefault('plot',False)
|
255
|
-
settings.setdefault('plot_filtration',False)
|
256
|
-
settings.setdefault('representative_images', False)
|
257
256
|
settings.setdefault('n_jobs', os.cpu_count()-2)
|
258
257
|
|
259
258
|
# Object settings
|
@@ -268,24 +267,9 @@ def get_measure_crop_settings(settings):
|
|
268
267
|
settings.setdefault('cytoplasm_min_size',0)
|
269
268
|
settings.setdefault('merge_edge_pathogen_cells', True)
|
270
269
|
|
271
|
-
# Miscellaneous settings
|
272
|
-
settings.setdefault('experiment', 'exp')
|
273
|
-
settings.setdefault('cells', ['HeLa'])
|
274
|
-
settings.setdefault('cell_loc', None)
|
275
|
-
settings.setdefault('pathogens', ['ME49Dku80WT', 'ME49Dku80dgra8:GRA8', 'ME49Dku80dgra8', 'ME49Dku80TKO'])
|
276
|
-
settings.setdefault('pathogen_loc', [['c1', 'c2', 'c3', 'c4', 'c5', 'c6'], ['c7', 'c8', 'c9', 'c10', 'c11', 'c12'], ['c13', 'c14', 'c15', 'c16', 'c17', 'c18'], ['c19', 'c20', 'c21', 'c22', 'c23', 'c24']])
|
277
|
-
settings.setdefault('treatments', ['BR1', 'BR2', 'BR3'])
|
278
|
-
settings.setdefault('treatment_loc', [['c1', 'c2', 'c7', 'c8', 'c13', 'c14', 'c19', 'c20'], ['c3', 'c4', 'c9', 'c10', 'c15', 'c16', 'c21', 'c22'], ['c5', 'c6', 'c11', 'c12', 'c17', 'c18', 'c23', 'c24']])
|
279
|
-
settings.setdefault('channel_of_interest', 2)
|
280
|
-
settings.setdefault('compartments', ['pathogen', 'cytoplasm'])
|
281
|
-
settings.setdefault('measurement', 'mean_intensity')
|
282
|
-
settings.setdefault('nr_imgs', 32)
|
283
|
-
settings.setdefault('um_per_pixel', 0.1)
|
284
|
-
|
285
270
|
if settings['test_mode']:
|
286
271
|
settings['verbose'] = True
|
287
272
|
settings['plot'] = True
|
288
|
-
settings['plot_filtration'] = True
|
289
273
|
test_imgs = settings['test_nr']
|
290
274
|
print(f'Test mode enabled with {test_imgs} images, plotting set to True')
|
291
275
|
|
@@ -293,7 +277,7 @@ def get_measure_crop_settings(settings):
|
|
293
277
|
|
294
278
|
def set_default_analyze_screen(settings):
|
295
279
|
settings.setdefault('src', 'path')
|
296
|
-
settings.setdefault('
|
280
|
+
settings.setdefault('model_type_ml','xgboost')
|
297
281
|
settings.setdefault('heatmap_feature','predictions')
|
298
282
|
settings.setdefault('grouping','mean')
|
299
283
|
settings.setdefault('min_max','allq')
|
@@ -342,11 +326,87 @@ def set_default_train_test_model(settings):
|
|
342
326
|
settings.setdefault('intermedeate_save',True)
|
343
327
|
settings.setdefault('pin_memory',True)
|
344
328
|
settings.setdefault('n_jobs',cores)
|
345
|
-
settings.setdefault('
|
329
|
+
settings.setdefault('train_channels',['r','g','b'])
|
346
330
|
settings.setdefault('augment',False)
|
347
331
|
settings.setdefault('verbose',False)
|
348
332
|
return settings
|
349
333
|
|
334
|
+
def set_generate_training_dataset_defaults(settings):
|
335
|
+
|
336
|
+
settings.setdefault('src','path')
|
337
|
+
settings.setdefault('dataset_mode','annotation')
|
338
|
+
settings.setdefault('annotation_column','test')
|
339
|
+
settings.setdefault('annotated_classes',[1,2])
|
340
|
+
settings.setdefault('classes',['nc','pc'])
|
341
|
+
settings.setdefault('size',224)
|
342
|
+
settings.setdefault('test_split',0.1)
|
343
|
+
settings.setdefault('class_metadata',[['c1'],['c2']])
|
344
|
+
settings.setdefault('metadata_type_by','col')
|
345
|
+
settings.setdefault('channel_of_interest',3)
|
346
|
+
settings.setdefault('custom_measurement',None)
|
347
|
+
settings.setdefault('tables',None)
|
348
|
+
settings.setdefault('png_type','cell_png')
|
349
|
+
|
350
|
+
return settings
|
351
|
+
|
352
|
+
def deep_spacr_defaults(settings):
|
353
|
+
|
354
|
+
cores = os.cpu_count()-2
|
355
|
+
|
356
|
+
settings.setdefault('src','path')
|
357
|
+
settings.setdefault('dataset_mode','annotation')
|
358
|
+
settings.setdefault('annotation_column','test')
|
359
|
+
settings.setdefault('annotated_classes',[1,2])
|
360
|
+
settings.setdefault('classes',['nc','pc'])
|
361
|
+
settings.setdefault('size',224)
|
362
|
+
settings.setdefault('test_split',0.1)
|
363
|
+
settings.setdefault('class_metadata',[['c1'],['c2']])
|
364
|
+
settings.setdefault('metadata_type_by','col')
|
365
|
+
settings.setdefault('channel_of_interest',3)
|
366
|
+
settings.setdefault('custom_measurement',None)
|
367
|
+
settings.setdefault('tables',None)
|
368
|
+
settings.setdefault('png_type','cell_png')
|
369
|
+
settings.setdefault('custom_model',False)
|
370
|
+
settings.setdefault('custom_model_path','path')
|
371
|
+
settings.setdefault('train',True)
|
372
|
+
settings.setdefault('test',False)
|
373
|
+
settings.setdefault('model_type','maxvit_t')
|
374
|
+
settings.setdefault('optimizer_type','adamw')
|
375
|
+
settings.setdefault('schedule','reduce_lr_on_plateau') #reduce_lr_on_plateau, step_lr
|
376
|
+
settings.setdefault('loss_type','focal_loss') # binary_cross_entropy_with_logits
|
377
|
+
settings.setdefault('normalize',True)
|
378
|
+
settings.setdefault('image_size',224)
|
379
|
+
settings.setdefault('batch_size',64)
|
380
|
+
settings.setdefault('epochs',100)
|
381
|
+
settings.setdefault('val_split',0.1)
|
382
|
+
settings.setdefault('train_mode','erm')
|
383
|
+
settings.setdefault('learning_rate',0.001)
|
384
|
+
settings.setdefault('weight_decay',0.00001)
|
385
|
+
settings.setdefault('dropout_rate',0.1)
|
386
|
+
settings.setdefault('init_weights',True)
|
387
|
+
settings.setdefault('amsgrad',True)
|
388
|
+
settings.setdefault('use_checkpoint',True)
|
389
|
+
settings.setdefault('gradient_accumulation',True)
|
390
|
+
settings.setdefault('gradient_accumulation_steps',4)
|
391
|
+
settings.setdefault('intermedeate_save',True)
|
392
|
+
settings.setdefault('pin_memory',True)
|
393
|
+
settings.setdefault('n_jobs',cores)
|
394
|
+
settings.setdefault('train_channels',['r','g','b'])
|
395
|
+
settings.setdefault('augment',False)
|
396
|
+
settings.setdefault('verbose',False)
|
397
|
+
settings.setdefault('apply_model_to_dataset',False)
|
398
|
+
settings.setdefault('file_metadata',None)
|
399
|
+
settings.setdefault('sample',None)
|
400
|
+
settings.setdefault('experiment','exp.')
|
401
|
+
settings.setdefault('score_threshold',0.5)
|
402
|
+
settings.setdefault('tar_path','path')
|
403
|
+
settings.setdefault('model_path','path')
|
404
|
+
settings.setdefault('file_type','cell_png')
|
405
|
+
settings.setdefault('generate_training_dataset', True)
|
406
|
+
settings.setdefault('train_DL_model', True)
|
407
|
+
|
408
|
+
return settings
|
409
|
+
|
350
410
|
def get_analyze_recruitment_default_settings(settings):
|
351
411
|
settings.setdefault('target','protein')
|
352
412
|
settings.setdefault('cell_types',['HeLa'])
|
@@ -384,6 +444,7 @@ def get_analyze_recruitment_default_settings(settings):
|
|
384
444
|
return settings
|
385
445
|
|
386
446
|
def get_analyze_reads_default_settings(settings):
|
447
|
+
settings.setdefault('src', 'path')
|
387
448
|
settings.setdefault('upstream', 'CTTCTGGTAAATGGGGATGTCAAGTT')
|
388
449
|
settings.setdefault('downstream', 'GTTTAAGAGCTATGCTGGAAACAGCAG') #This is the reverce compliment of the column primer starting from the end #TGCTGTTTAAGAGCTATGCTGGAAACAGCA
|
389
450
|
settings.setdefault('barecode_length_1', 8)
|
@@ -396,7 +457,7 @@ def get_map_barcodes_default_settings(settings):
|
|
396
457
|
settings.setdefault('src', 'path')
|
397
458
|
settings.setdefault('grna', '/home/carruthers/Documents/grna_barcodes.csv')
|
398
459
|
settings.setdefault('barcodes', '/home/carruthers/Documents/SCREEN_BARCODES.csv')
|
399
|
-
settings.setdefault('plate_dict', {'EO1': 'plate1', 'EO2': 'plate2', 'EO3': 'plate3', 'EO4': 'plate4', 'EO5': 'plate5', 'EO6': 'plate6', 'EO7': 'plate7', 'EO8': 'plate8'})
|
460
|
+
settings.setdefault('plate_dict', "{'EO1': 'plate1', 'EO2': 'plate2', 'EO3': 'plate3', 'EO4': 'plate4', 'EO5': 'plate5', 'EO6': 'plate6', 'EO7': 'plate7', 'EO8': 'plate8'}")
|
400
461
|
settings.setdefault('test', False)
|
401
462
|
settings.setdefault('verbose', True)
|
402
463
|
settings.setdefault('pc', 'TGGT1_220950_1')
|
@@ -549,13 +610,11 @@ expected_types = {
|
|
549
610
|
"save_png": bool,
|
550
611
|
"crop_mode": list,
|
551
612
|
"use_bounding_box": bool,
|
552
|
-
"png_size": list, # This can be a list of lists
|
613
|
+
"png_size": list, # This can be a list of lists
|
553
614
|
"normalize": bool,
|
554
615
|
"png_dims": list,
|
555
616
|
"normalize_by": str,
|
556
617
|
"save_measurements": bool,
|
557
|
-
"representative_images": bool,
|
558
|
-
"plot_filtration": bool,
|
559
618
|
"include_uninfected": bool,
|
560
619
|
"dialate_pngs": bool,
|
561
620
|
"dialate_png_ratios": list,
|
@@ -563,7 +622,7 @@ expected_types = {
|
|
563
622
|
"cells": list,
|
564
623
|
"cell_loc": list,
|
565
624
|
"pathogens": list,
|
566
|
-
"pathogen_loc": (list, list), # This can be a list of lists
|
625
|
+
"pathogen_loc": (list, list), # This can be a list of lists
|
567
626
|
"treatments": list,
|
568
627
|
"treatment_loc": (list, list), # This can be a list of lists
|
569
628
|
"channel_of_interest": int,
|
@@ -571,7 +630,6 @@ expected_types = {
|
|
571
630
|
"measurement": str,
|
572
631
|
"nr_imgs": int,
|
573
632
|
"um_per_pixel": (int, float),
|
574
|
-
# Additional settings based on provided defaults
|
575
633
|
"include_noninfected": bool,
|
576
634
|
"include_multiinfected": bool,
|
577
635
|
"include_multinucleated": bool,
|
@@ -685,7 +743,7 @@ expected_types = {
|
|
685
743
|
"cell_types": list,
|
686
744
|
"cell_plate_metadata": (list, type(None)),
|
687
745
|
"pathogen_types": list,
|
688
|
-
"pathogen_plate_metadata": (list, list), # This can be a list of lists
|
746
|
+
"pathogen_plate_metadata": (list, list), # This can be a list of lists
|
689
747
|
"treatment_plate_metadata": (list, list), # This can be a list of lists
|
690
748
|
"metadata_types": list,
|
691
749
|
"cell_chann_dim": int,
|
@@ -738,63 +796,69 @@ expected_types = {
|
|
738
796
|
"from_scratch": bool,
|
739
797
|
"width_height": list,
|
740
798
|
"resize": bool,
|
799
|
+
"compression": str,
|
800
|
+
"complevel": int,
|
741
801
|
"gene_weights_csv": str,
|
742
802
|
"fraction_threshold": float,
|
803
|
+
"barcode_mapping":dict,
|
804
|
+
"redunction_method":str,
|
805
|
+
"mix":str,
|
806
|
+
"model_type_ml":str,
|
807
|
+
"exclude_conditions":list,
|
808
|
+
"remove_highly_correlated_features":bool,
|
809
|
+
'barcode_coordinates':list, # This is a list of lists
|
810
|
+
'reverse_complement':bool,
|
811
|
+
'file_type':str,
|
812
|
+
'model_path':str,
|
813
|
+
'tar_path':str,
|
814
|
+
'score_threshold':float,
|
815
|
+
'sample':None,
|
816
|
+
'file_metadata':None,
|
817
|
+
'apply_model_to_dataset':False,
|
818
|
+
"train":bool,
|
819
|
+
"test":bool,
|
820
|
+
'train_channels':list,
|
821
|
+
"optimizer_type":str,
|
822
|
+
"dataset_mode":str,
|
823
|
+
"annotated_classes":list,
|
824
|
+
"annotation_column":str,
|
825
|
+
"apply_model_to_dataset":bool,
|
826
|
+
"metadata_type_by":str,
|
827
|
+
"custom_measurement":str,
|
828
|
+
"custom_model":bool,
|
829
|
+
"size":int,
|
830
|
+
"test_split":float,
|
831
|
+
"class_metadata":list, # This is a list of lists
|
832
|
+
"png_type":str,
|
833
|
+
"custom_model_path":str,
|
834
|
+
"generate_training_dataset":bool,
|
835
|
+
"train_DL_model":bool,
|
743
836
|
}
|
744
837
|
|
745
|
-
|
746
|
-
|
747
|
-
|
748
|
-
|
749
|
-
|
750
|
-
|
751
|
-
|
752
|
-
|
753
|
-
|
754
|
-
|
755
|
-
|
756
|
-
|
757
|
-
|
838
|
+
categories = {"General": ["src", "metadata_type", "custom_regex", "experiment", "channels", "magnification", "channel_dims", "apply_model_to_dataset", "generate_training_dataset", "train_DL_model"],
|
839
|
+
"Cell": ["cell_intensity_range", "cell_size_range", "cell_chann_dim", "cell_channel", "cell_background", "cell_Signal_to_noise", "cell_CP_prob", "cell_FT", "remove_background_cell", "cell_min_size", "cell_mask_dim", "cytoplasm", "cytoplasm_min_size", "include_uninfected", "merge_edge_pathogen_cells", "adjust_cells"],
|
840
|
+
"Nucleus": ["nucleus_intensity_range", "nucleus_size_range", "nucleus_chann_dim", "nucleus_channel", "nucleus_background", "nucleus_Signal_to_noise", "nucleus_CP_prob", "nucleus_FT", "remove_background_nucleus", "nucleus_min_size", "nucleus_mask_dim", "nucleus_loc"],
|
841
|
+
"Pathogen": ["pathogen_intensity_range", "pathogen_size_range", "pathogen_chann_dim", "pathogen_channel", "pathogen_background", "pathogen_Signal_to_noise", "pathogen_CP_prob", "pathogen_FT", "pathogen_model", "remove_background_pathogen", "pathogen_min_size", "pathogen_mask_dim"],
|
842
|
+
"Timelapse": ["fps", "timelapse_displacement", "timelapse_memory", "timelapse_frame_limits", "timelapse_remove_transient", "timelapse_mode", "timelapse_objects", "compartments"],
|
843
|
+
"Plot": ["plot_control", "plot_nr", "examples_to_plot", "normalize_plots", "normalize", "cmap", "figuresize", "plot_cluster_grids", "img_zoom", "row_limit", "color_by", "plot_images", "smooth_lines", "plot_points", "plot_outlines", "black_background", "plot_by_cluster", "heatmap_feature","grouping","min_max","cmap","save_figure"],
|
844
|
+
"Measurements": ["remove_image_canvas", "remove_highly_correlated", "homogeneity", "homogeneity_distances", "radial_dist", "calculate_correlation", "manders_thresholds", "save_measurements", "tables", "image_nr", "dot_size", "filter_by", "remove_highly_correlated_features", "remove_low_variance_features", "channel_of_interest"],
|
845
|
+
"Paths":["grna", "barcodes", "custom_model_path", "tar_path","model_path"],
|
846
|
+
"Sequencing": ["upstream", "downstream", "barecode_length_1", "barecode_length_2", "chunk_size", "barcode_mapping", "reverse_complement", "barcode_coordinates", "complevel", "compression","plate_dict"],
|
847
|
+
"Embedding": ["visualize","n_neighbors","min_dist","metric","resnet_features","reduction_method","embedding_by_controls","col_to_compare","log_data"],
|
848
|
+
"Clustering": ["eps","min_samples","analyze_clusters","clustering","remove_cluster_noise"],
|
849
|
+
"Object Image": ["save_png", "dialate_pngs", "dialate_png_ratios", "png_size", "png_dims", "save_arrays", "normalize_by", "dialate_png_ratios", "crop_mode", "dialate_pngs", "normalize", "use_bounding_box"],
|
850
|
+
"Annotation": ["nc_loc", "pc_loc", "nc", "pc", "cell_plate_metadata","pathogen_types", "pathogen_plate_metadata", "treatment_plate_metadata", "metadata_types", "cell_types", "target","positive_control","negative_control", "location_column", "treatment_loc", "cells", "cell_loc", "pathogens", "pathogen_loc", "channel_of_interest", "measurement", "treatments", "um_per_pixel", "nr_imgs", "exclude", "exclude_conditions", "mix", "pos", "neg"],
|
851
|
+
"Machine Learning":[],
|
852
|
+
"Deep Learning": ["png_type","score_threshold","file_type", "train_channels", "epochs", "loss_type", "optimizer_type","image_size","val_split","learning_rate","weight_decay","dropout_rate", "init_weights", "train", "classes", "augment"],
|
853
|
+
"Generate Dataset":["file_metadata","class_metadata", "annotation_column","annotated_classes", "dataset_mode", "metadata_type_by","custom_measurement", "sample", "size"],
|
854
|
+
"Cellpose":["from_scratch", "n_epochs", "width_height", "model_name", "custom_model", "resample", "rescale", "CP_prob", "flow_threshold", "percentiles", "circular", "invert", "diameter", "grayscale", "background", "Signal_to_noise", "resize", "target_height", "target_width"],
|
855
|
+
"Regression":["class_1_threshold", "plate", "other", "fraction_threshold", "alpha", "remove_row_column_effect", "regression_type", "min_cell_count", "agg_type", "transform", "dependent_variable", "gene_weights_csv"],
|
856
|
+
"Miscellaneous": ["all_to_mip", "pick_slice", "skip_mode", "upscale", "upscale_factor"],
|
857
|
+
"Test": ["test_mode", "test_images", "random_test", "test_nr", "test", "test_split"],
|
858
|
+
"Advanced": ["target_intensity_min", "cells_per_well", "include_multinucleated", "include_multiinfected", "include_noninfected", "backgrounds", "plot", "timelapse", "schedule", "test_size","exclude","n_repeats","top_features", "model_type_ml", "model_type","minimum_cell_count","n_estimators","preprocess", "remove_background", "normalize", "lower_percentile", "merge_pathogens", "batch_size", "filter", "save", "masks", "verbose", "randomize", "n_jobs", "train_mode","amsgrad","use_checkpoint","gradient_accumulation","gradient_accumulation_steps","intermedeate_save","pin_memory"]
|
859
|
+
}
|
758
860
|
|
759
|
-
|
760
|
-
if key in ["png_size", "pathogen_plate_metadata", "treatment_plate_metadata"]:
|
761
|
-
parsed_value = ast.literal_eval(value) if value else None
|
762
|
-
if isinstance(parsed_value, list):
|
763
|
-
if all(isinstance(i, list) for i in parsed_value) or all(not isinstance(i, list) for i in parsed_value):
|
764
|
-
settings[key] = parsed_value
|
765
|
-
else:
|
766
|
-
raise ValueError("Invalid format: Mixed list and list of lists")
|
767
|
-
else:
|
768
|
-
raise ValueError("Invalid format for list or list of lists")
|
769
|
-
elif expected_type == list:
|
770
|
-
settings[key] = parse_list(value) if value else None
|
771
|
-
elif expected_type == bool:
|
772
|
-
settings[key] = value if isinstance(value, bool) else value.lower() in ['true', '1', 't', 'y', 'yes']
|
773
|
-
elif expected_type == (int, type(None)):
|
774
|
-
settings[key] = int(value) if value else None
|
775
|
-
elif expected_type == (float, type(None)):
|
776
|
-
settings[key] = float(value) if value else None
|
777
|
-
elif expected_type == (int, float):
|
778
|
-
settings[key] = float(value) if '.' in value else int(value)
|
779
|
-
elif expected_type == (str, type(None)):
|
780
|
-
settings[key] = str(value) if value else None
|
781
|
-
elif isinstance(expected_type, tuple):
|
782
|
-
for typ in expected_type:
|
783
|
-
try:
|
784
|
-
settings[key] = typ(value) if value else None
|
785
|
-
break
|
786
|
-
except (ValueError, TypeError):
|
787
|
-
continue
|
788
|
-
else:
|
789
|
-
raise ValueError
|
790
|
-
else:
|
791
|
-
settings[key] = expected_type(value) if value else None
|
792
|
-
except (ValueError, SyntaxError):
|
793
|
-
expected_type_name = ' or '.join([t.__name__ for t in expected_type]) if isinstance(expected_type, tuple) else expected_type.__name__
|
794
|
-
q.put(f"Error: Invalid format for {key}. Expected type: {expected_type_name}.")
|
795
|
-
return
|
796
|
-
|
797
|
-
return settings
|
861
|
+
category_keys = list(categories.keys())
|
798
862
|
|
799
863
|
def check_settings(vars_dict, expected_types, q=None):
|
800
864
|
from .gui_utils import parse_list
|
@@ -805,9 +869,9 @@ def check_settings(vars_dict, expected_types, q=None):
|
|
805
869
|
|
806
870
|
settings = {}
|
807
871
|
|
808
|
-
for key, (label, widget, var) in vars_dict.items():
|
872
|
+
for key, (label, widget, var, _) in vars_dict.items():
|
809
873
|
if key not in expected_types:
|
810
|
-
if key not in
|
874
|
+
if key not in category_keys:
|
811
875
|
q.put(f"Key {key} not found in expected types.")
|
812
876
|
continue
|
813
877
|
|
@@ -815,7 +879,7 @@ def check_settings(vars_dict, expected_types, q=None):
|
|
815
879
|
expected_type = expected_types.get(key, str)
|
816
880
|
|
817
881
|
try:
|
818
|
-
if key in ["png_size", "pathogen_plate_metadata", "treatment_plate_metadata"]:
|
882
|
+
if key in ["timelapse_frame_limits", "png_size", "pathogen_loc", "treatment_loc", "pathogen_plate_metadata", "treatment_plate_metadata", "barcode_coordinates", "class_metadata"]:
|
819
883
|
parsed_value = ast.literal_eval(value) if value else None
|
820
884
|
if isinstance(parsed_value, list):
|
821
885
|
if all(isinstance(i, list) for i in parsed_value) or all(not isinstance(i, list) for i in parsed_value):
|
@@ -836,6 +900,20 @@ def check_settings(vars_dict, expected_types, q=None):
|
|
836
900
|
settings[key] = float(value) if '.' in value else int(value)
|
837
901
|
elif expected_type == (str, type(None)):
|
838
902
|
settings[key] = str(value) if value else None
|
903
|
+
elif expected_type == dict:
|
904
|
+
try:
|
905
|
+
# Ensure that the value is a string that can be converted to a dictionary
|
906
|
+
if isinstance(value, str):
|
907
|
+
settings[key] = ast.literal_eval(value)
|
908
|
+
else:
|
909
|
+
raise ValueError("Expected a string representation of a dictionary.")
|
910
|
+
|
911
|
+
# Check if the result is actually a dictionary
|
912
|
+
if not isinstance(settings[key], dict):
|
913
|
+
raise ValueError("Value is not a valid dictionary.")
|
914
|
+
except (ValueError, SyntaxError) as e:
|
915
|
+
settings[key] = {}
|
916
|
+
q.put(f"Error: Invalid format for {key}. Expected type: dict. Error: {e}")
|
839
917
|
elif isinstance(expected_type, tuple):
|
840
918
|
for typ in expected_type:
|
841
919
|
try:
|
@@ -856,7 +934,7 @@ def check_settings(vars_dict, expected_types, q=None):
|
|
856
934
|
|
857
935
|
def generate_fields(variables, scrollable_frame):
|
858
936
|
from .gui_utils import create_input_field
|
859
|
-
from .gui_elements import spacrToolTip
|
937
|
+
from .gui_elements import set_dark_style, spacrToolTip
|
860
938
|
row = 1
|
861
939
|
vars_dict = {}
|
862
940
|
tooltips = {
|
@@ -886,7 +964,7 @@ def generate_fields(variables, scrollable_frame):
|
|
886
964
|
"cell_Signal_to_noise": "(float) - The signal-to-noise ratio for the cell channel. This will be used to determine the range of intensities to normalize images to for cell segmentation.",
|
887
965
|
"cell_size_range": "(list) - Size range for cell segmentation.",
|
888
966
|
"cell_types": "(list) - Types of cells to include in the analysis.",
|
889
|
-
"cells": "(list) - The cell types to include in the analysis.",
|
967
|
+
"cells": "(list of lists) - The cell types to include in the analysis.",
|
890
968
|
"cells_per_well": "(int) - Number of cells per well.",
|
891
969
|
"channel_dims": "(list) - The dimensions of the image channels.",
|
892
970
|
"channel_of_interest": "(int) - The channel of interest to use for the analysis.",
|
@@ -955,7 +1033,7 @@ def generate_fields(variables, scrollable_frame):
|
|
955
1033
|
"metadata_type": "(str) - Type of metadata to expect in the images. This will determine how the images are processed. If 'custom' is selected, you can provide a custom regex pattern to extract metadata from the image names.",
|
956
1034
|
"metadata_types": "(list) - Types of metadata to include in the analysis.",
|
957
1035
|
"merge_edge_pathogen_cells": "(bool) - Whether to merge cells that share pathogen objects.",
|
958
|
-
"merge_pathogens": "(bool) - Whether to merge pathogen objects that share more than 75
|
1036
|
+
"merge_pathogens": "(bool) - Whether to merge pathogen objects that share more than 75 percent of their perimeter.",
|
959
1037
|
"metric": "(str) - Metric to use for UMAP.",
|
960
1038
|
"min_cell_count": "(int) - Minimum number of cells required for analysis.",
|
961
1039
|
"min_dist": "(float) - Minimum distance for UMAP.",
|
@@ -964,6 +1042,7 @@ def generate_fields(variables, scrollable_frame):
|
|
964
1042
|
"mix": "(dict) - Mixing settings for the samples.",
|
965
1043
|
"model_name": "(str) - Name of the Cellpose model.",
|
966
1044
|
"model_type": "(str) - Type of model to use for the analysis.",
|
1045
|
+
"model_type_ml": "(str) - Type of model to use for machine learning.",
|
967
1046
|
"nc": "(str) - Negative control identifier.",
|
968
1047
|
"nc_loc": "(str) - Location of the negative control in the images.",
|
969
1048
|
"negative_control": "(str) - Identifier for the negative control.",
|
@@ -994,12 +1073,7 @@ def generate_fields(variables, scrollable_frame):
|
|
994
1073
|
"pathogen_background": "(float) - The background intensity for the pathogen channel. This will be used to remove background noise.",
|
995
1074
|
"pathogen_chann_dim": "(int) - Dimension of the channel to use for pathogen segmentation.",
|
996
1075
|
"pathogen_channel": "(int) - The channel to use for the pathogen. If None, the pathogen will not be segmented.",
|
997
|
-
"pathogen_intensity_range": "(
|
998
|
-
"pathogen_loc": "(list) - The locations of the pathogen types in the images.",
|
999
|
-
"pathogen_mask_dim": "(int) - The dimension of the array the pathogen mask is saved in.",
|
1000
|
-
"pathogen_min_size": "(int) - The minimum size of pathogen objects in pixels^2.",
|
1001
|
-
"pathogen_model": "(str) - Model to use for pathogen segmentation.",
|
1002
|
-
"pathogen_plate_metadata": "(str) - Metadata for the pathogen plate.",
|
1076
|
+
"pathogen_intensity_range": "(str) - Metadata for the pathogen plate.",
|
1003
1077
|
"pathogen_Signal_to_noise": "(float) - The signal-to-noise ratio for the pathogen channel. This will be used to determine the range of intensities to normalize images to for pathogen segmentation.",
|
1004
1078
|
"pathogen_size_range": "(list) - Size range for pathogen segmentation.",
|
1005
1079
|
"pathogen_types": "(list) - Types of pathogens to include in the analysis.",
|
@@ -1014,7 +1088,6 @@ def generate_fields(variables, scrollable_frame):
|
|
1014
1088
|
"plot_by_cluster": "(bool) - Whether to plot images by clusters.",
|
1015
1089
|
"plot_cluster_grids": "(bool) - Whether to plot grids of clustered images.",
|
1016
1090
|
"plot_control": "(dict) - Control settings for plotting.",
|
1017
|
-
"plot_filtration": "(bool) - Whether to plot the filtration steps.",
|
1018
1091
|
"plot_images": "(bool) - Whether to plot images.",
|
1019
1092
|
"plot_nr": "(int) - Number of plots to generate.",
|
1020
1093
|
"plot_outlines": "(bool) - Whether to plot outlines of segmented objects.",
|
@@ -1036,7 +1109,6 @@ def generate_fields(variables, scrollable_frame):
|
|
1036
1109
|
"remove_image_canvas": "(bool) - Whether to remove the image canvas after plotting.",
|
1037
1110
|
"remove_low_variance_features": "(bool) - Whether to remove low variance features from the analysis.",
|
1038
1111
|
"remove_row_column_effect": "(bool) - Whether to remove row and column effects from the data.",
|
1039
|
-
"representative_images": "(bool) - Whether to save representative images of the segmented objects (Not working yet).",
|
1040
1112
|
"resize": "(bool) - Resize factor for the images.",
|
1041
1113
|
"resample": "(bool) - Whether to resample the images during processing.",
|
1042
1114
|
"rescale": "(float) - Rescaling factor for the images.",
|
@@ -1077,42 +1149,35 @@ def generate_fields(variables, scrollable_frame):
|
|
1077
1149
|
"verbose": "(bool) - Whether to print verbose output during processing.",
|
1078
1150
|
"weight_decay": "(float) - Weight decay for regularization.",
|
1079
1151
|
"width_height": "(tuple) - Width and height of the input images.",
|
1152
|
+
"barcode_coordinates": "(list of lists) - Coordinates of the barcodes in the sequence.",
|
1153
|
+
"barcode_mapping": "dict - names and barecode csv files",
|
1154
|
+
"compression": "str - type of compression (e.g. zlib)",
|
1155
|
+
"complevel": "int - level of compression (0-9). Higher is slower and yealds smaller files",
|
1156
|
+
"file_type": "str - type of file to process",
|
1157
|
+
"model_path": "str - path to the model",
|
1158
|
+
"tar_path": "str - path to the tar file with image dataset",
|
1159
|
+
"score_threshold": "float - threshold for classification",
|
1160
|
+
"sample": "str - number of images to sample for tar dataset (including both classes). Default: None",
|
1161
|
+
"file_metadata": "str - string that must be present in image path to be included in the dataset",
|
1162
|
+
"apply_model_to_dataset": "bool - whether to apply model to the dataset",
|
1163
|
+
"train_channels": "list - channels to use for training",
|
1164
|
+
"dataset_mode": "str - How to generate train/test dataset.",
|
1165
|
+
"annotated_classes": "list - list of numbers in annotation column.",
|
1080
1166
|
"um_per_pixel": "(float) - The micrometers per pixel for the images."
|
1081
1167
|
}
|
1082
1168
|
|
1083
|
-
|
1084
1169
|
for key, (var_type, options, default_value) in variables.items():
|
1085
|
-
label, widget, var = create_input_field(scrollable_frame.scrollable_frame, key, row, var_type, options, default_value)
|
1086
|
-
vars_dict[key] = (label, widget, var) # Store the label, widget, and variable
|
1170
|
+
label, widget, var, frame = create_input_field(scrollable_frame.scrollable_frame, key, row, var_type, options, default_value)
|
1171
|
+
vars_dict[key] = (label, widget, var, frame) # Store the label, widget, and variable
|
1087
1172
|
|
1088
1173
|
# Add tooltip to the label if it exists in the tooltips dictionary
|
1089
1174
|
if key in tooltips:
|
1090
1175
|
spacrToolTip(label, tooltips[key])
|
1176
|
+
|
1091
1177
|
row += 1
|
1178
|
+
|
1092
1179
|
return vars_dict
|
1093
1180
|
|
1094
|
-
categories = {
|
1095
|
-
"General": ["src", "metadata_type", "custom_regex", "experiment", "channels", "magnification", "channel_dims"],
|
1096
|
-
"Paths":["grna", "barcodes"],
|
1097
|
-
"Regression":["class_1_threshold", "plate", "other", "fraction_threshold", "alpha", "remove_row_column_effect", "regression_type", "min_cell_count", "agg_type", "transform", "dependent_variable", "gene_weights_csv"],
|
1098
|
-
"Cellpose":["from_scratch", "n_epochs", "width_height", "model_name", "custom_model", "resample", "rescale", "CP_prob", "flow_threshold", "percentiles", "circular", "invert", "diameter", "grayscale", "background", "Signal_to_noise", "resize", "target_height", "target_width"],
|
1099
|
-
"Nucleus": ["nucleus_intensity_range", "nucleus_size_range", "nucleus_chann_dim", "nucleus_channel", "nucleus_background", "nucleus_Signal_to_noise", "nucleus_CP_prob", "nucleus_FT", "remove_background_nucleus", "nucleus_min_size", "nucleus_mask_dim", "nucleus_loc"],
|
1100
|
-
"Cell": ["cell_intensity_range", "cell_size_range", "cell_chann_dim", "cell_channel", "cell_background", "cell_Signal_to_noise", "cell_CP_prob", "cell_FT", "remove_background_cell", "cell_min_size", "cell_mask_dim", "cytoplasm", "cytoplasm_min_size", "include_uninfected", "merge_edge_pathogen_cells", "adjust_cells"],
|
1101
|
-
"Pathogen": ["pathogen_intensity_range", "pathogen_size_range", "pathogen_chann_dim", "pathogen_channel", "pathogen_background", "pathogen_Signal_to_noise", "pathogen_CP_prob", "pathogen_FT", "pathogen_model", "remove_background_pathogen", "pathogen_min_size", "pathogen_mask_dim"],
|
1102
|
-
"Timelapse": ["fps", "timelapse_displacement", "timelapse_memory", "timelapse_frame_limits", "timelapse_remove_transient", "timelapse_mode", "timelapse_objects", "compartments"],
|
1103
|
-
"Plot": ["plot_control", "plot_nr", "plot_filtration", "examples_to_plot", "normalize_plots", "normalize", "cmap", "figuresize", "plot_cluster_grids", "img_zoom", "row_limit", "color_by", "plot_images", "smooth_lines", "plot_points", "plot_outlines", "black_background", "plot_by_cluster", "heatmap_feature","grouping","min_max","cmap","save_figure"],
|
1104
|
-
"Object Image": ["save_png", "dialate_pngs", "dialate_png_ratios", "png_size", "png_dims", "save_arrays", "normalize_by", "dialate_png_ratios", "crop_mode", "dialate_pngs", "normalize", "use_bounding_box"],
|
1105
|
-
"Annotate Data": ["nc_loc", "pc_loc", "nc", "pc", "cell_plate_metadata","pathogen_types", "pathogen_plate_metadata", "treatment_plate_metadata", "metadata_types", "cell_types", "target","positive_control","negative_control", "location_column", "treatment_loc", "cells", "cell_loc", "pathogens", "pathogen_loc", "channel_of_interest", "measurement", "treatments", "representative_images", "um_per_pixel", "nr_imgs", "exclude", "exclude_conditions", "mix", "pos", "neg"],
|
1106
|
-
"Measurements": ["remove_image_canvas", "remove_highly_correlated", "homogeneity", "homogeneity_distances", "radial_dist", "calculate_correlation", "manders_thresholds", "save_measurements", "tables", "image_nr", "dot_size", "filter_by", "remove_highly_correlated_features", "remove_low_variance_features", "channel_of_interest"],
|
1107
|
-
"Advanced": ["plate_dict", "target_intensity_min", "cells_per_well", "include_multinucleated", "include_multiinfected", "include_noninfected", "backgrounds", "plot", "timelapse", "schedule", "test_size","exclude","n_repeats","top_features", "model_type","minimum_cell_count","n_estimators","preprocess", "remove_background", "normalize", "lower_percentile", "merge_pathogens", "batch_size", "filter", "save", "masks", "verbose", "randomize", "n_jobs", "train_mode","amsgrad","use_checkpoint","gradient_accumulation","gradient_accumulation_steps","intermedeate_save","pin_memory","n_jobs","channels","augment"],
|
1108
|
-
"Clustering": ["eps","min_samples","analyze_clusters","clustering","remove_cluster_noise"],
|
1109
|
-
"Embedding": ["visualize","n_neighbors","min_dist","metric","resnet_features","reduction_method","embedding_by_controls","col_to_compare","log_data"],
|
1110
|
-
"Train DL Model": ["epochs", "loss_type", "optimizer_type","image_size","val_split","learning_rate","weight_decay","dropout_rate", "init_weights", "train", "classes"],
|
1111
|
-
"Miscellaneous": ["all_to_mip", "pick_slice", "skip_mode", "upscale", "upscale_factor"],
|
1112
|
-
"Test": ["test_mode", "test_images", "random_test", "test_nr", "test"],
|
1113
|
-
"Sequencing": ["upstream", "downstream", "barecode_length_1", "barecode_length_2", "chunk_size"]
|
1114
|
-
}
|
1115
|
-
|
1116
1181
|
descriptions = {
|
1117
1182
|
'mask': "\n\nHelp:\n- Generate Cells, Nuclei, Pathogens, and Cytoplasm masks from intensity images in src.\n- To ensure that spacr is installed correctly:\n- 1. Downloade the training set (click Download).\n- 2. Import settings (click settings navigate to downloaded dataset settings folder and import preprocess_generate_masks_settings.csv).\n- 3. Run the module.\n- 4. Proceed to the Measure module (click Measure in the menue bar).\n- For further help, click the Help button in the menue bar.",
|
1118
1183
|
|
@@ -1120,8 +1185,6 @@ descriptions = {
|
|
1120
1185
|
|
1121
1186
|
'classify': "Train and Test any Torch Computer vision model. (Requires PNG images from the Measure module). Function: train_test_model from spacr.deep_spacr.\n\nKey Features:\n- Deep Learning Integration: Train and evaluate state-of-the-art Torch models for various classification tasks.\n- Flexible Training: Supports a wide range of Torch models, allowing customization based on specific research needs.\n- Data Requirement: Requires PNG images generated by the Measure module for training and testing.",
|
1122
1187
|
|
1123
|
-
'sequencing': "Find Barcodes and gRNA sequences in FASTQ files. (Requires paired-end FASTQ files, R1 and R2). Function: analyze_reads from spacr.sequencing.\n\nKey Features:\n- Barcode and gRNA Identification: Efficiently detect and extract barcode and gRNA sequences from raw sequencing data.\n- Paired-End Support: Specifically designed to handle paired-end FASTQ files, ensuring accurate sequence alignment and analysis.\n- High Throughput: Capable of processing large sequencing datasets quickly and accurately.",
|
1124
|
-
|
1125
1188
|
'umap': "Generate UMAP or tSNE embeddings and represent points as single cell images. (Requires measurements.db and PNG images from the Measure module). Function: generate_image_umap from spacr.core.\n\nKey Features:\n- Dimensionality Reduction: Employ UMAP or tSNE algorithms to reduce high-dimensional data into two dimensions for visualization.\n- Single Cell Representation: Visualize embedding points as single cell images, providing an intuitive understanding of data clusters.\n- Data Integration: Requires measurements and images generated by the Measure module, ensuring comprehensive data representation.",
|
1126
1189
|
|
1127
1190
|
'train_cellpose': "Train custom Cellpose models for your specific dataset. Function: train_cellpose_model from spacr.core.\n\nKey Features:\n- Custom Model Training: Train Cellpose models on your dataset to improve segmentation accuracy.\n- Data Adaptation: Tailor the model to handle specific types of biological samples more effectively.\n- Advanced Training Options: Supports various training parameters and configurations for optimized performance.",
|
@@ -1132,8 +1195,8 @@ descriptions = {
|
|
1132
1195
|
|
1133
1196
|
'cellpose_all': "Run Cellpose on all images in your dataset and obtain masks and measurements. Function: cellpose_analysis from spacr.cellpose.\n\nKey Features:\n- End-to-End Analysis: Perform both segmentation and measurement extraction in a single step.\n- Efficiency: Process entire datasets with minimal manual intervention.\n- Comprehensive Output: Obtain detailed masks and corresponding measurements for further analysis.",
|
1134
1197
|
|
1135
|
-
'map_barcodes': "Map barcodes
|
1136
|
-
|
1198
|
+
'map_barcodes': "\n\nHelp:\n- 1 .Generate consensus read fastq files from R1 and R2 files.\n- 2. Map barcodes from sequencing data for identification and tracking of samples.\n- 3. Run the module to extract and map barcodes from your FASTQ files in chunks.\n- Prepare your barcode CSV files with the appropriate 'name' and 'sequence' columns.\n- Configure the barcode settings (coordinates and reverse complement flags) according to your experimental setup.\n- For further help, click the Help button in the menu bar.",
|
1199
|
+
|
1137
1200
|
'regression': "Perform regression analysis on your data. Function: regression_tools from spacr.analysis.\n\nKey Features:\n- Statistical Analysis: Conduct various types of regression analysis to identify relationships within your data.\n- Flexible Options: Supports multiple regression models and configurations.\n- Data Insight: Gain deeper insights into your dataset through advanced regression techniques.",
|
1138
1201
|
|
1139
1202
|
'recruitment': "Analyze recruitment data to understand sample recruitment dynamics. Function: recruitment_analysis_tools from spacr.analysis.\n\nKey Features:\n- Recruitment Analysis: Investigate and analyze the recruitment of samples over time or conditions.\n- Visualization: Generate visualizations to represent recruitment trends and patterns.\n- Integration: Utilize data from various sources for a comprehensive recruitment analysis."
|
@@ -1142,7 +1205,7 @@ descriptions = {
|
|
1142
1205
|
def set_annotate_default_settings(settings):
|
1143
1206
|
settings.setdefault('src', 'path')
|
1144
1207
|
settings.setdefault('image_type', 'cell_png')
|
1145
|
-
settings.setdefault('channels', 'r,g,b')
|
1208
|
+
settings.setdefault('channels', "'r','g','b'")
|
1146
1209
|
settings.setdefault('img_size', 200)
|
1147
1210
|
settings.setdefault('annotation_column', 'test')
|
1148
1211
|
settings.setdefault('normalize', 'False')
|
@@ -1151,3 +1214,15 @@ def set_annotate_default_settings(settings):
|
|
1151
1214
|
settings.setdefault('threshold', '2')
|
1152
1215
|
return settings
|
1153
1216
|
|
1217
|
+
def set_default_generate_barecode_mapping(settings={}):
|
1218
|
+
settings.setdefault('src', 'path')
|
1219
|
+
settings.setdefault('chunk_size', 100000)
|
1220
|
+
|
1221
|
+
settings.setdefault('barcode_mapping', {'row': ['/home/carruthers/Documents/row_barcodes.csv',(80, 88), True],
|
1222
|
+
'grna': ['/home/carruthers/Documents/grna_barcodes.csv',(34, 55), True],
|
1223
|
+
'column': ['/home/carruthers/Documents/column_barcodes.csv',(0, 7), False]})
|
1224
|
+
|
1225
|
+
settings.setdefault('n_jobs', None)
|
1226
|
+
settings.setdefault('compression', 'zlib')
|
1227
|
+
settings.setdefault('complevel', 5)
|
1228
|
+
return settings
|
spacr/utils.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
import sys, os, re, sqlite3, torch, torchvision, random, string, shutil, cv2, tarfile, glob, psutil, platform,
|
1
|
+
import sys, os, re, sqlite3, torch, torchvision, random, string, shutil, cv2, tarfile, glob, psutil, platform, gzip
|
2
2
|
|
3
3
|
import numpy as np
|
4
4
|
from cellpose import models as cp_models
|
@@ -88,11 +88,11 @@ from sklearn.cluster import KMeans
|
|
88
88
|
from scipy import stats
|
89
89
|
|
90
90
|
|
91
|
-
def print_progress(files_processed, files_to_process, n_jobs, time_ls=None, batch_size=None, operation_type=""):
|
91
|
+
def print_progress(files_processed, files_to_process, n_jobs, time_ls=None, batch_size=None, operation_type="", metricks=None):
|
92
92
|
if isinstance(files_processed, list):
|
93
|
-
files_processed = len(files_processed)
|
93
|
+
files_processed = len(set(files_processed))
|
94
94
|
if isinstance(files_to_process, list):
|
95
|
-
files_to_process = len(files_to_process)
|
95
|
+
files_to_process = len(set(files_to_process))
|
96
96
|
if isinstance(batch_size, list):
|
97
97
|
batch_size = len(batch_size)
|
98
98
|
|
@@ -117,9 +117,10 @@ def print_progress(files_processed, files_to_process, n_jobs, time_ls=None, batc
|
|
117
117
|
average_time_img = average_time / batch_size
|
118
118
|
time_info = f'Time/batch: {average_time:.3f}sec, Time/image: {average_time_img:.3f}sec, Time_left: {time_left:.3f} min.'
|
119
119
|
|
120
|
-
|
121
|
-
|
122
|
-
|
120
|
+
if metricks is None:
|
121
|
+
print(f'Progress: {files_processed}/{files_to_process}, operation_type: {operation_type} {time_info}')
|
122
|
+
else:
|
123
|
+
print(f'Progress: {files_processed}/{files_to_process}, {metricks}, operation_type: {operation_type} {time_info}')
|
123
124
|
|
124
125
|
def reset_mp():
|
125
126
|
current_method = get_start_method()
|
@@ -3628,22 +3629,22 @@ def delete_folder(folder_path):
|
|
3628
3629
|
def measure_test_mode(settings):
|
3629
3630
|
|
3630
3631
|
if settings['test_mode']:
|
3631
|
-
if not os.path.basename(settings['
|
3632
|
-
all_files = os.listdir(settings['
|
3632
|
+
if not os.path.basename(settings['src']) == 'test':
|
3633
|
+
all_files = os.listdir(settings['src'])
|
3633
3634
|
random_files = random.sample(all_files, settings['test_nr'])
|
3634
3635
|
|
3635
|
-
src = os.path.join(os.path.dirname(settings['
|
3636
|
+
src = os.path.join(os.path.dirname(settings['src']),'test', 'merged')
|
3636
3637
|
if os.path.exists(src):
|
3637
3638
|
delete_folder(src)
|
3638
3639
|
os.makedirs(src, exist_ok=True)
|
3639
3640
|
|
3640
3641
|
for file in random_files:
|
3641
|
-
shutil.copy(os.path.join(settings['
|
3642
|
+
shutil.copy(os.path.join(settings['src'], file), os.path.join(src,file))
|
3642
3643
|
|
3643
|
-
settings['
|
3644
|
+
settings['src'] = src
|
3644
3645
|
print(f'Changed source folder to {src} for test mode')
|
3645
3646
|
else:
|
3646
|
-
print(f'Test mode enabled, using source folder {settings["
|
3647
|
+
print(f'Test mode enabled, using source folder {settings["src"]}')
|
3647
3648
|
|
3648
3649
|
return settings
|
3649
3650
|
|
@@ -4424,3 +4425,10 @@ def correct_masks(src):
|
|
4424
4425
|
cell_path = os.path.join(src,'norm_channel_stack', 'cell_mask_stack')
|
4425
4426
|
convert_and_relabel_masks(cell_path)
|
4426
4427
|
_load_and_concatenate_arrays(src, [0,1,2,3], 1, 0, 2)
|
4428
|
+
|
4429
|
+
def count_reads_in_fastq(fastq_file):
|
4430
|
+
count = 0
|
4431
|
+
with gzip.open(fastq_file, "rt") as f:
|
4432
|
+
for _ in f:
|
4433
|
+
count += 1
|
4434
|
+
return count // 4
|