spacr 0.1.85__py3-none-any.whl → 0.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (82) hide show
  1. spacr/__init__.py +6 -2
  2. spacr/app_annotate.py +6 -5
  3. spacr/app_make_masks.py +8 -15
  4. spacr/core.py +1 -1
  5. spacr/gui.py +62 -100
  6. spacr/gui_2.py +110 -113
  7. spacr/gui_core.py +43 -16
  8. spacr/gui_elements.py +109 -20
  9. spacr/gui_utils.py +3 -3
  10. spacr/icons/abort.png +0 -0
  11. spacr/icons/abort.svg +1 -0
  12. spacr/icons/download.png +0 -0
  13. spacr/icons/download.svg +1 -0
  14. spacr/icons/download_for_offline_100dp_E8EAED_FILL0_wght100_GRAD-25_opsz48.png +0 -0
  15. spacr/icons/download_for_offline_100dp_E8EAED_FILL0_wght100_GRAD-25_opsz48.svg +1 -0
  16. spacr/icons/logo_spacr.png +0 -0
  17. spacr/icons/make_masks.png +0 -0
  18. spacr/icons/make_masks.svg +1 -0
  19. spacr/icons/map_barcodes.png +0 -0
  20. spacr/icons/map_barcodes.svg +1 -0
  21. spacr/icons/mask.png +0 -0
  22. spacr/icons/mask.svg +1 -0
  23. spacr/icons/measure.png +0 -0
  24. spacr/icons/measure.svg +1 -0
  25. spacr/icons/play_circle_100dp_E8EAED_FILL0_wght100_GRAD-25_opsz48.png +0 -0
  26. spacr/icons/play_circle_100dp_E8EAED_FILL0_wght100_GRAD-25_opsz48.svg +1 -0
  27. spacr/icons/run.png +0 -0
  28. spacr/icons/run.svg +1 -0
  29. spacr/icons/sequencing.png +0 -0
  30. spacr/icons/sequencing.svg +1 -0
  31. spacr/icons/settings.png +0 -0
  32. spacr/icons/settings.svg +1 -0
  33. spacr/icons/settings_100dp_E8EAED_FILL0_wght100_GRAD-25_opsz48.png +0 -0
  34. spacr/icons/settings_100dp_E8EAED_FILL0_wght100_GRAD-25_opsz48.svg +1 -0
  35. spacr/icons/stop_circle_100dp_E8EAED_FILL0_wght100_GRAD-25_opsz48.png +0 -0
  36. spacr/icons/stop_circle_100dp_E8EAED_FILL0_wght100_GRAD-25_opsz48.svg +1 -0
  37. spacr/icons/theater_comedy_100dp_E8EAED_FILL0_wght100_GRAD200_opsz48.png +0 -0
  38. spacr/icons/theater_comedy_100dp_E8EAED_FILL0_wght100_GRAD200_opsz48.svg +1 -0
  39. spacr/resources/icons/abort.png +0 -0
  40. spacr/resources/icons/abort.svg +1 -0
  41. spacr/resources/icons/annotate.png +0 -0
  42. spacr/resources/icons/annotate.svg +1 -0
  43. spacr/resources/icons/cellpose.png +0 -0
  44. spacr/resources/icons/cellpose_masks.png +0 -0
  45. spacr/resources/icons/classify.png +0 -0
  46. spacr/resources/icons/classify.svg +1 -0
  47. spacr/resources/icons/default.png +0 -0
  48. spacr/resources/icons/download.png +0 -0
  49. spacr/resources/icons/download.svg +1 -0
  50. spacr/resources/icons/icon.psd +0 -0
  51. spacr/resources/icons/logo_spacr.png +0 -0
  52. spacr/resources/icons/make_masks.png +0 -0
  53. spacr/resources/icons/make_masks.svg +1 -0
  54. spacr/resources/icons/map_barcodes.png +0 -0
  55. spacr/resources/icons/map_barcodes.svg +1 -0
  56. spacr/resources/icons/mask.png +0 -0
  57. spacr/resources/icons/mask.svg +1 -0
  58. spacr/resources/icons/measure.png +0 -0
  59. spacr/resources/icons/measure.svg +1 -0
  60. spacr/resources/icons/regression.png +0 -0
  61. spacr/resources/icons/run.png +0 -0
  62. spacr/resources/icons/run.svg +1 -0
  63. spacr/resources/icons/run_2.png +0 -0
  64. spacr/resources/icons/run_2.svg +1 -0
  65. spacr/resources/icons/sequencing.png +0 -0
  66. spacr/resources/icons/sequencing.svg +1 -0
  67. spacr/resources/icons/settings.png +0 -0
  68. spacr/resources/icons/settings.svg +1 -0
  69. spacr/resources/icons/train_cellpose.png +0 -0
  70. spacr/resources/icons/train_cellpose.svg +1 -0
  71. spacr/resources/icons/umap.png +0 -0
  72. spacr/resources/models/cp/toxo_plaque_cyto_e25000_X1120_Y1120.CP_model +0 -0
  73. spacr/resources/models/cp/toxo_plaque_cyto_e25000_X1120_Y1120.CP_model_settings.csv +23 -0
  74. spacr/resources/models/cp/toxo_pv_lumen.CP_model +0 -0
  75. spacr/settings.py +12 -12
  76. {spacr-0.1.85.dist-info → spacr-0.2.0.dist-info}/METADATA +1 -1
  77. spacr-0.2.0.dist-info/RECORD +126 -0
  78. spacr-0.1.85.dist-info/RECORD +0 -61
  79. {spacr-0.1.85.dist-info → spacr-0.2.0.dist-info}/LICENSE +0 -0
  80. {spacr-0.1.85.dist-info → spacr-0.2.0.dist-info}/WHEEL +0 -0
  81. {spacr-0.1.85.dist-info → spacr-0.2.0.dist-info}/entry_points.txt +0 -0
  82. {spacr-0.1.85.dist-info → spacr-0.2.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,23 @@
1
+ Key,Value
2
+ img_src,/nas_mnt/carruthers/patrick/Plaque_assay_training/train
3
+ model_name,toxo_plaque
4
+ model_type,cyto
5
+ Signal_to_noise,10
6
+ background,200
7
+ remove_background,False
8
+ learning_rate,0.2
9
+ weight_decay,1e-05
10
+ batch_size,8
11
+ n_epochs,25000
12
+ from_scratch,False
13
+ diameter,30
14
+ resize,True
15
+ width_height,"[1120, 1120]"
16
+ verbose,True
17
+ channels,"[0, 0]"
18
+ normalize,True
19
+ percentiles,
20
+ circular,False
21
+ invert,False
22
+ grayscale,True
23
+ test,False
spacr/settings.py CHANGED
@@ -1114,29 +1114,29 @@ categories = {
1114
1114
  }
1115
1115
 
1116
1116
  descriptions = {
1117
- 'mask': "Generate Cellpose masks for Cells, Nuclei, and Pathogens. This module uses: preprocess_generate_masks from spacr.core.\n\nKey Features:\n- Automated Mask Generation: Automatically generate accurate masks for various cellular components using Cellpose, a robust deep learning model for cell segmentation.\n- Versatility: Capable of handling different types of biological samples, including cells, nuclei, and pathogens.\n- Integration: Directly integrates with other modules, providing the foundational masks required for subsequent analysis.",
1117
+ 'mask': "Generate Cellpose masks for Cells, Nuclei, and Pathogens. Function: preprocess_generate_masks from spacr.core.\n\nKey Features:\n- Automated Mask Generation: Automatically generate accurate masks for various cellular components using Cellpose, a robust deep learning model for cell segmentation.\n- Versatility: Capable of handling different types of biological samples, including cells, nuclei, and pathogens.\n- Integration: Directly integrates with other modules, providing the foundational masks required for subsequent analysis.",
1118
1118
 
1119
- 'measure': "Capture Measurements from Cells, Nuclei, Pathogens, and Cytoplasm objects. Generate single object PNG images for one or several objects. (Requires masks from the Mask module). This module uses: measure_crop from spacr.measure.\n\nKey Features:\n- Comprehensive Measurement Capture: Obtain detailed measurements for various cellular components, including area, perimeter, intensity, and more.\n- Image Generation: Create high-resolution PNG images of individual objects, facilitating further analysis and visualization.\n- Mask Dependency: Requires accurate masks generated by the Mask module to ensure precise measurements.",
1119
+ 'measure': "Capture Measurements from Cells, Nuclei, Pathogens, and Cytoplasm objects. Generate single object PNG images for one or several objects. (Requires masks from the Mask module). Function: measure_crop from spacr.measure.\n\nKey Features:\n- Comprehensive Measurement Capture: Obtain detailed measurements for various cellular components, including area, perimeter, intensity, and more.\n- Image Generation: Create high-resolution PNG images of individual objects, facilitating further analysis and visualization.\n- Mask Dependency: Requires accurate masks generated by the Mask module to ensure precise measurements.",
1120
1120
 
1121
- 'classify': "Train and Test any Torch Computer vision model. (Requires PNG images from the Measure module). This module uses: train_test_model from spacr.deep_spacr.\n\nKey Features:\n- Deep Learning Integration: Train and evaluate state-of-the-art Torch models for various classification tasks.\n- Flexible Training: Supports a wide range of Torch models, allowing customization based on specific research needs.\n- Data Requirement: Requires PNG images generated by the Measure module for training and testing.",
1121
+ 'classify': "Train and Test any Torch Computer vision model. (Requires PNG images from the Measure module). Function: train_test_model from spacr.deep_spacr.\n\nKey Features:\n- Deep Learning Integration: Train and evaluate state-of-the-art Torch models for various classification tasks.\n- Flexible Training: Supports a wide range of Torch models, allowing customization based on specific research needs.\n- Data Requirement: Requires PNG images generated by the Measure module for training and testing.",
1122
1122
 
1123
- 'sequencing': "Find Barcodes and gRNA sequences in FASTQ files. (Requires paired-end FASTQ files, R1 and R2). This module uses: analyze_reads from spacr.sequencing.\n\nKey Features:\n- Barcode and gRNA Identification: Efficiently detect and extract barcode and gRNA sequences from raw sequencing data.\n- Paired-End Support: Specifically designed to handle paired-end FASTQ files, ensuring accurate sequence alignment and analysis.\n- High Throughput: Capable of processing large sequencing datasets quickly and accurately.",
1123
+ 'sequencing': "Find Barcodes and gRNA sequences in FASTQ files. (Requires paired-end FASTQ files, R1 and R2). Function: analyze_reads from spacr.sequencing.\n\nKey Features:\n- Barcode and gRNA Identification: Efficiently detect and extract barcode and gRNA sequences from raw sequencing data.\n- Paired-End Support: Specifically designed to handle paired-end FASTQ files, ensuring accurate sequence alignment and analysis.\n- High Throughput: Capable of processing large sequencing datasets quickly and accurately.",
1124
1124
 
1125
- 'umap': "Generate UMAP or tSNE embeddings and represent points as single cell images. (Requires measurements.db and PNG images from the Measure module). This module uses: generate_image_umap from spacr.core.\n\nKey Features:\n- Dimensionality Reduction: Employ UMAP or tSNE algorithms to reduce high-dimensional data into two dimensions for visualization.\n- Single Cell Representation: Visualize embedding points as single cell images, providing an intuitive understanding of data clusters.\n- Data Integration: Requires measurements and images generated by the Measure module, ensuring comprehensive data representation.",
1125
+ 'umap': "Generate UMAP or tSNE embeddings and represent points as single cell images. (Requires measurements.db and PNG images from the Measure module). Function: generate_image_umap from spacr.core.\n\nKey Features:\n- Dimensionality Reduction: Employ UMAP or tSNE algorithms to reduce high-dimensional data into two dimensions for visualization.\n- Single Cell Representation: Visualize embedding points as single cell images, providing an intuitive understanding of data clusters.\n- Data Integration: Requires measurements and images generated by the Measure module, ensuring comprehensive data representation.",
1126
1126
 
1127
- 'train_cellpose': "Train custom Cellpose models for your specific dataset. This module uses: train_cellpose_model from spacr.core.\n\nKey Features:\n- Custom Model Training: Train Cellpose models on your dataset to improve segmentation accuracy.\n- Data Adaptation: Tailor the model to handle specific types of biological samples more effectively.\n- Advanced Training Options: Supports various training parameters and configurations for optimized performance.",
1127
+ 'train_cellpose': "Train custom Cellpose models for your specific dataset. Function: train_cellpose_model from spacr.core.\n\nKey Features:\n- Custom Model Training: Train Cellpose models on your dataset to improve segmentation accuracy.\n- Data Adaptation: Tailor the model to handle specific types of biological samples more effectively.\n- Advanced Training Options: Supports various training parameters and configurations for optimized performance.",
1128
1128
 
1129
- 'ml_analyze': "Perform machine learning analysis on your data. This module uses: ml_analysis_tools from spacr.ml.\n\nKey Features:\n- Comprehensive Analysis: Utilize a suite of machine learning tools for data analysis.\n- Customizable Workflows: Configure and run different ML algorithms based on your research requirements.\n- Integration: Works seamlessly with other modules to analyze data produced from various steps.",
1129
+ 'ml_analyze': "Perform machine learning analysis on your data. Function: ml_analysis_tools from spacr.ml.\n\nKey Features:\n- Comprehensive Analysis: Utilize a suite of machine learning tools for data analysis.\n- Customizable Workflows: Configure and run different ML algorithms based on your research requirements.\n- Integration: Works seamlessly with other modules to analyze data produced from various steps.",
1130
1130
 
1131
- 'cellpose_masks': "Generate masks using Cellpose for all images in your dataset. This module uses: generate_masks from spacr.cellpose.\n\nKey Features:\n- Batch Processing: Generate masks for large sets of images efficiently.\n- Robust Segmentation: Leverage Cellpose's capabilities for accurate segmentation across diverse samples.\n- Automation: Automate the mask generation process for streamlined workflows.",
1131
+ 'cellpose_masks': "Generate masks using Cellpose for all images in your dataset. Function: generate_masks from spacr.cellpose.\n\nKey Features:\n- Batch Processing: Generate masks for large sets of images efficiently.\n- Robust Segmentation: Leverage Cellpose's capabilities for accurate segmentation across diverse samples.\n- Automation: Automate the mask generation process for streamlined workflows.",
1132
1132
 
1133
- 'cellpose_all': "Run Cellpose on all images in your dataset and obtain masks and measurements. This module uses: cellpose_analysis from spacr.cellpose.\n\nKey Features:\n- End-to-End Analysis: Perform both segmentation and measurement extraction in a single step.\n- Efficiency: Process entire datasets with minimal manual intervention.\n- Comprehensive Output: Obtain detailed masks and corresponding measurements for further analysis.",
1133
+ 'cellpose_all': "Run Cellpose on all images in your dataset and obtain masks and measurements. Function: cellpose_analysis from spacr.cellpose.\n\nKey Features:\n- End-to-End Analysis: Perform both segmentation and measurement extraction in a single step.\n- Efficiency: Process entire datasets with minimal manual intervention.\n- Comprehensive Output: Obtain detailed masks and corresponding measurements for further analysis.",
1134
1134
 
1135
- 'map_barcodes': "Map barcodes to your data for identification and tracking. This module uses: barcode_mapping_tools from spacr.sequencing.\n\nKey Features:\n- Barcode Integration: Efficiently map and integrate barcode information into your dataset.\n- Tracking: Enable tracking and identification of samples using barcodes.\n- Compatibility: Works with sequencing data to ensure accurate mapping and analysis.",
1135
+ 'map_barcodes': "Map barcodes to your data for identification and tracking. Function: barcode_mapping_tools from spacr.sequencing.\n\nKey Features:\n- Barcode Integration: Efficiently map and integrate barcode information into your dataset.\n- Tracking: Enable tracking and identification of samples using barcodes.\n- Compatibility: Works with sequencing data to ensure accurate mapping and analysis.",
1136
1136
 
1137
- 'regression': "Perform regression analysis on your data. This module uses: regression_tools from spacr.analysis.\n\nKey Features:\n- Statistical Analysis: Conduct various types of regression analysis to identify relationships within your data.\n- Flexible Options: Supports multiple regression models and configurations.\n- Data Insight: Gain deeper insights into your dataset through advanced regression techniques.",
1137
+ 'regression': "Perform regression analysis on your data. Function: regression_tools from spacr.analysis.\n\nKey Features:\n- Statistical Analysis: Conduct various types of regression analysis to identify relationships within your data.\n- Flexible Options: Supports multiple regression models and configurations.\n- Data Insight: Gain deeper insights into your dataset through advanced regression techniques.",
1138
1138
 
1139
- 'recruitment': "Analyze recruitment data to understand sample recruitment dynamics. This module uses: recruitment_analysis_tools from spacr.analysis.\n\nKey Features:\n- Recruitment Analysis: Investigate and analyze the recruitment of samples over time or conditions.\n- Visualization: Generate visualizations to represent recruitment trends and patterns.\n- Integration: Utilize data from various sources for a comprehensive recruitment analysis."
1139
+ 'recruitment': "Analyze recruitment data to understand sample recruitment dynamics. Function: recruitment_analysis_tools from spacr.analysis.\n\nKey Features:\n- Recruitment Analysis: Investigate and analyze the recruitment of samples over time or conditions.\n- Visualization: Generate visualizations to represent recruitment trends and patterns.\n- Integration: Utilize data from various sources for a comprehensive recruitment analysis."
1140
1140
  }
1141
1141
 
1142
1142
  def set_annotate_default_settings(settings):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: spacr
3
- Version: 0.1.85
3
+ Version: 0.2.0
4
4
  Summary: Spatial phenotype analysis of crisp screens (SpaCr)
5
5
  Home-page: https://github.com/EinarOlafsson/spacr
6
6
  Author: Einar Birnir Olafsson
@@ -0,0 +1,126 @@
1
+ spacr/__init__.py,sha256=pJ7Mm7Kb1DhHIdLmNgMILFVWJ9QAG47pT0M6wtiXl8E,1465
2
+ spacr/__main__.py,sha256=bkAJJD2kjIqOP-u1kLvct9jQQCeUXzlEjdgitwi1Lm8,75
3
+ spacr/alpha.py,sha256=Y95sLEfpK2OSYKRn3M8eUOU33JJeXfV8zhrC4KnwSTY,35244
4
+ spacr/annotate_app.py,sha256=imQ7ZEXDyM6ce1dxZ1xUS1-KequuF_NCI4xCaPLjvco,29275
5
+ spacr/annotate_app_v2.py,sha256=imQ7ZEXDyM6ce1dxZ1xUS1-KequuF_NCI4xCaPLjvco,29275
6
+ spacr/app_annotate.py,sha256=xA39bsgvrQlY8P22cUC7sAaw4O57tgZawZtsANmY0ek,2302
7
+ spacr/app_classify.py,sha256=urTP_wlZ58hSyM5a19slYlBxN0PdC-9-ga0hvq8CGWc,165
8
+ spacr/app_make_masks.py,sha256=pqDhRpluiHZz-kPX2Zh_KbYe4TsU43qYBa_7f-rsjpw,1694
9
+ spacr/app_make_masks_v2.py,sha256=OkNeskNbgep8wQa4ES3jpJjZLfn4yIkGwQOd9r0spfA,30497
10
+ spacr/app_mask.py,sha256=l-dBY8ftzCMdDe6-pXc2Nh_u-idNL9G7UOARiLJBtds,153
11
+ spacr/app_measure.py,sha256=_K7APYIeOKpV6e_LcqabBjvEi7mfq9Fch8175x1x0k8,162
12
+ spacr/app_sequencing.py,sha256=DjG26jy4cpddnV8WOOAIiExtOe9MleVMY4MFa5uTo5w,157
13
+ spacr/app_umap.py,sha256=ZWAmf_OsIKbYvolYuWPMYhdlVe-n2CADoJulAizMiEo,153
14
+ spacr/chris.py,sha256=YlBjSgeZaY8HPy6jkrT_ISAnCMAKVfvCxF0I9eAZLFM,2418
15
+ spacr/classify_app.py,sha256=Zi15ryc1ocYitRF4kyxlC27XxGyzfSPdvj2d6ZrSh7E,8446
16
+ spacr/cli.py,sha256=507jfOOEV8BoL4eeUcblvH-iiDHdBrEVJLu1ghAAPSc,1800
17
+ spacr/core.py,sha256=wL6E1MMNrRyvyileqsTOnQ3lhABnw_L6O-4UApZGL84,160216
18
+ spacr/deep_spacr.py,sha256=ASBsN4JpHp_3S-91JUsB34IWTjTGPYI7jKV2qZnUR5M,37005
19
+ spacr/foldseek.py,sha256=YIP1d4Ci6CeA9jSyiv-HTDbNmAmcSM9Y_DaOs7wYzLY,33546
20
+ spacr/get_alfafold_structures.py,sha256=ehx_MQgb12k3hFecP6cYVlm5TLO8iWjgevy8ESyS3cw,3544
21
+ spacr/graph_learning.py,sha256=1tR-ZxvXE3dBz1Saw7BeVFcrsUFu9OlUZeZVifih9eo,13070
22
+ spacr/gui.py,sha256=Cid9nA6OYAlYgcEbGhBuss2Y-vzIHCCDvhRhE46n4ao,8388
23
+ spacr/gui_2.py,sha256=OVRDbyHgoXCqGmTKt0C0ZQrJxTU4i-4eT2uYwk0w7CA,8322
24
+ spacr/gui_annotate.py,sha256=ugBksLGOHdtOLlEuRyyc59TrkYKu3rDf8JxEgiBSVao,6536
25
+ spacr/gui_classify_app.py,sha256=Zi15ryc1ocYitRF4kyxlC27XxGyzfSPdvj2d6ZrSh7E,8446
26
+ spacr/gui_core.py,sha256=ay1IMMjcJLk8GeaXdL5rzu8xkJmpy_5XzqNhET_4SaI,33199
27
+ spacr/gui_elements.py,sha256=yZ9_7-J9FHdkW_wbR7PaczWCGLNDx7jQ1xXr9PRX3AE,79786
28
+ spacr/gui_make_masks_app.py,sha256=tl4M4Q2WQgrrwjRBJVevxJxpNowqzPhWkdCOm2UfRbw,45053
29
+ spacr/gui_make_masks_app_v2.py,sha256=X3izTBXdCZDlkVe-fbG-jmCQtcAbmK0OIivjyWaLhug,30576
30
+ spacr/gui_mask_app.py,sha256=mhTl_XzXLFl8Tx3WYEMpdYB_qw9u5JJa0EdkvlcIzAE,10706
31
+ spacr/gui_measure_app.py,sha256=_C1-XFL5HSquUEEbM_NcxdvHx-socPFCx85MBG4d6xo,10598
32
+ spacr/gui_run.py,sha256=0x85MJqFtREuWuNeIRLB8hFeibKGszfN14POQQWzPDQ,1998
33
+ spacr/gui_sim_app.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
+ spacr/gui_utils.py,sha256=CuGB7rN_VCGu5FP9ZeBTrIYBzqQlylX-uszVyYcF0VM,13899
35
+ spacr/gui_wrappers.py,sha256=-E1SFOmtp7_nfg9QzajI7GJcAcaMug92Pjw7pS1YzjY,4656
36
+ spacr/io.py,sha256=f7cVn48wNUEj6Teky4p3ojoivAdMUmPll2s0MzJkKD0,112068
37
+ spacr/logger.py,sha256=7Zqr3TuuOQLWT32gYr2q1qvv7x0a2JhLANmZcnBXAW8,670
38
+ spacr/make_masks_app.py,sha256=iGaTwhowoe2JMOSOf8bJwQZTooRhLQx7KO0ewnAmqDY,45138
39
+ spacr/make_masks_app_v2.py,sha256=X3izTBXdCZDlkVe-fbG-jmCQtcAbmK0OIivjyWaLhug,30576
40
+ spacr/mask_app.py,sha256=mhTl_XzXLFl8Tx3WYEMpdYB_qw9u5JJa0EdkvlcIzAE,10706
41
+ spacr/measure.py,sha256=RzcD8rsUaOZUYB-zcbaUZcJbrwT0IIW5G7qvb__SO-E,55616
42
+ spacr/measure_app.py,sha256=_C1-XFL5HSquUEEbM_NcxdvHx-socPFCx85MBG4d6xo,10598
43
+ spacr/old_code.py,sha256=jw67DAGoLBd7mWofVzRJSEmCI1Qrff26zIo65SEkV00,13817
44
+ spacr/plot.py,sha256=DYJEoK1kz2ih6ZGvKiA3xTqeIeKQNhuQKwgrscopFxA,69101
45
+ spacr/sequencing.py,sha256=fHZRnoMSxmhMdadkei3lUeBdckqFyptWdQyWsDW3aaU,83304
46
+ spacr/settings.py,sha256=2fAyGl8lzkkpB3MJJoywo0hCEg9CjziLWkXF0Miv3mM,65569
47
+ spacr/sim.py,sha256=FveaVgBi3eypO2oVB5Dx-v0CC1Ny7UPfXkJiiRRodAk,71212
48
+ spacr/sim_app.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
49
+ spacr/test_gui.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
+ spacr/timelapse.py,sha256=KMYCgHzf9LTZe-lWl5mvH2EjbKRE6OhpwdY13wEumGc,39504
51
+ spacr/utils.py,sha256=OQ8sSBH6VWx2xP_vh4ILJT71B46DFFhsq-Y6WxYdGhI,186891
52
+ spacr/version.py,sha256=axH5tnGwtgSnJHb5IDhiu4Zjk5GhLyAEDRe-rnaoFOA,409
53
+ spacr/icons/abort.png,sha256=3Bc1ZyPRDytlSd-i33WSoAVv3bw5lDFmraaB31pAc58,19368
54
+ spacr/icons/abort.svg,sha256=_eJh4Nro9y_2UWQsnHAi4FgSlTnxlikvIWMFX1ClFYg,725
55
+ spacr/icons/download.png,sha256=1nUoWRaTc4vIsK6gompdeqk0cIv2GdH-gCNHaEBX6Mc,20467
56
+ spacr/icons/download.svg,sha256=CHEknYbhCobpqkXLiZL8AOCCZla50DcY_DghU9xCYRw,783
57
+ spacr/icons/download_for_offline_100dp_E8EAED_FILL0_wght100_GRAD-25_opsz48.png,sha256=1nUoWRaTc4vIsK6gompdeqk0cIv2GdH-gCNHaEBX6Mc,20467
58
+ spacr/icons/download_for_offline_100dp_E8EAED_FILL0_wght100_GRAD-25_opsz48.svg,sha256=CHEknYbhCobpqkXLiZL8AOCCZla50DcY_DghU9xCYRw,783
59
+ spacr/icons/logo_spacr.png,sha256=g9y2ZmnV3hab8r1idDfytm8AaHbBiQdu_93Jd7YKzwA,610892
60
+ spacr/icons/make_masks.png,sha256=TU_kBHnEO7f_z1JvDmWjJEiRAMeyXZCqRcmzbgt83Is,16129
61
+ spacr/icons/make_masks.svg,sha256=uUAjnt3FJazbM9-iFptiV6iQkT3ziNgKfqXQ8RGYG9s,1355
62
+ spacr/icons/map_barcodes.png,sha256=ED6yCopk3hP7tICSvT8U_qA1bOOb0WHqmxVkmRxnbtE,7896
63
+ spacr/icons/map_barcodes.svg,sha256=9q3acYeZx9rjMmrNB_KJ4Bda6o63wtuZPxbSD97k1XA,290
64
+ spacr/icons/mask.png,sha256=0EHDSySyQJ22OKl77b2ezLNSuUC5WeIvLKP7uR14PlQ,14352
65
+ spacr/icons/mask.svg,sha256=HJu3T2BVjK8JV9aiJcP0Fey1K6niPY9Z43Y43pkRNbo,630
66
+ spacr/icons/measure.png,sha256=43yFE9WcUuhvgqZau_U5ZmoP5_Abz-bBXqoJ31Em4I0,20620
67
+ spacr/icons/measure.svg,sha256=xRb_SDKCwKVLI4OQioSsstTpcOLtvN9hiIHQk2VP-kc,630
68
+ spacr/icons/play_circle_100dp_E8EAED_FILL0_wght100_GRAD-25_opsz48.png,sha256=KoNhaSHukO4wDyivyYEgSbb5mGj-sAxmhKikLLtNpWs,20341
69
+ spacr/icons/play_circle_100dp_E8EAED_FILL0_wght100_GRAD-25_opsz48.svg,sha256=HJCoq_2QJ7OSE_VF_5QGLMN3m374U-LaR9f5DC8aCsw,726
70
+ spacr/icons/run.png,sha256=KoNhaSHukO4wDyivyYEgSbb5mGj-sAxmhKikLLtNpWs,20341
71
+ spacr/icons/run.svg,sha256=HJCoq_2QJ7OSE_VF_5QGLMN3m374U-LaR9f5DC8aCsw,726
72
+ spacr/icons/sequencing.png,sha256=P9E_Y76ZysWMKst3_hAw-_4F510XPW1l1TsDElVzt4o,17775
73
+ spacr/icons/sequencing.svg,sha256=fEdE8n7H4rdn818m7SZL24Fz9bKiROozFI1cCNDT_QI,853
74
+ spacr/icons/settings.png,sha256=y5Ow5BxJDDsrqom0VNbOMDGGUs6odxbSMDy6y4r_F0w,22269
75
+ spacr/icons/settings.svg,sha256=7H11s2jhauKZPw9lv_oF_lY_ug_HT4vGhLQ-cS-_Pbg,1087
76
+ spacr/icons/settings_100dp_E8EAED_FILL0_wght100_GRAD-25_opsz48.png,sha256=y5Ow5BxJDDsrqom0VNbOMDGGUs6odxbSMDy6y4r_F0w,22269
77
+ spacr/icons/settings_100dp_E8EAED_FILL0_wght100_GRAD-25_opsz48.svg,sha256=7H11s2jhauKZPw9lv_oF_lY_ug_HT4vGhLQ-cS-_Pbg,1087
78
+ spacr/icons/stop_circle_100dp_E8EAED_FILL0_wght100_GRAD-25_opsz48.png,sha256=3Bc1ZyPRDytlSd-i33WSoAVv3bw5lDFmraaB31pAc58,19368
79
+ spacr/icons/stop_circle_100dp_E8EAED_FILL0_wght100_GRAD-25_opsz48.svg,sha256=_eJh4Nro9y_2UWQsnHAi4FgSlTnxlikvIWMFX1ClFYg,725
80
+ spacr/icons/theater_comedy_100dp_E8EAED_FILL0_wght100_GRAD200_opsz48.png,sha256=TU_kBHnEO7f_z1JvDmWjJEiRAMeyXZCqRcmzbgt83Is,16129
81
+ spacr/icons/theater_comedy_100dp_E8EAED_FILL0_wght100_GRAD200_opsz48.svg,sha256=uUAjnt3FJazbM9-iFptiV6iQkT3ziNgKfqXQ8RGYG9s,1355
82
+ spacr/models/cp/toxo_plaque_cyto_e25000_X1120_Y1120.CP_model,sha256=z8BbHWZPRnE9D_BHO0fBREE85c1vkltDs-incs2ytXQ,26566572
83
+ spacr/models/cp/toxo_plaque_cyto_e25000_X1120_Y1120.CP_model_settings.csv,sha256=fBAGuL_B8ERVdVizO3BHozTDSbZUh1yFzsYK3wkQN68,420
84
+ spacr/models/cp/toxo_pv_lumen.CP_model,sha256=2y_CindYhmTvVwBH39SNILF3rI3x9SsRn6qrMxHy3l0,26562451
85
+ spacr/resources/icons/abort.png,sha256=3Bc1ZyPRDytlSd-i33WSoAVv3bw5lDFmraaB31pAc58,19368
86
+ spacr/resources/icons/abort.svg,sha256=_eJh4Nro9y_2UWQsnHAi4FgSlTnxlikvIWMFX1ClFYg,725
87
+ spacr/resources/icons/annotate.png,sha256=GFgh7DiUMwPG_-xE6W1qU8V_qzSwBi1xKenfoaQxeFA,15495
88
+ spacr/resources/icons/annotate.svg,sha256=1UazKLgDsgSNJQsCVET-rrCWh3qvOIIJ85rxkpUUy7w,914
89
+ spacr/resources/icons/cellpose.png,sha256=HVWOIOBF8p3-On-2UahwMyQXp7awsoC5yWExU1ahDag,20271
90
+ spacr/resources/icons/cellpose_masks.png,sha256=HVWOIOBF8p3-On-2UahwMyQXp7awsoC5yWExU1ahDag,20271
91
+ spacr/resources/icons/classify.png,sha256=w-TRmxv37xFviU2xMUcmXRJIMR3QgVm0DyyMb6f6GBg,19129
92
+ spacr/resources/icons/classify.svg,sha256=c1DKluvSTymHbMZmXFDow-h-eU7Fp7XsBYSBiuWZ_ME,790
93
+ spacr/resources/icons/default.png,sha256=KoNhaSHukO4wDyivyYEgSbb5mGj-sAxmhKikLLtNpWs,20341
94
+ spacr/resources/icons/download.png,sha256=1nUoWRaTc4vIsK6gompdeqk0cIv2GdH-gCNHaEBX6Mc,20467
95
+ spacr/resources/icons/download.svg,sha256=CHEknYbhCobpqkXLiZL8AOCCZla50DcY_DghU9xCYRw,783
96
+ spacr/resources/icons/icon.psd,sha256=2_ssRsjibi7mva40G_WPGp9J1XrIYOlf7OFt0AheH68,164400
97
+ spacr/resources/icons/logo_spacr.png,sha256=g9y2ZmnV3hab8r1idDfytm8AaHbBiQdu_93Jd7YKzwA,610892
98
+ spacr/resources/icons/make_masks.png,sha256=ZLAfqEPUZhh1yp9zNnfUpJYmCEaMZJ2hzHKac1_iaxY,17402
99
+ spacr/resources/icons/make_masks.svg,sha256=bDKKHFz-HLX6v-Tb8FJcRwfVWOx2oEeRBtQG7PNcWZM,1022
100
+ spacr/resources/icons/map_barcodes.png,sha256=ED6yCopk3hP7tICSvT8U_qA1bOOb0WHqmxVkmRxnbtE,7896
101
+ spacr/resources/icons/map_barcodes.svg,sha256=9q3acYeZx9rjMmrNB_KJ4Bda6o63wtuZPxbSD97k1XA,290
102
+ spacr/resources/icons/mask.png,sha256=0EHDSySyQJ22OKl77b2ezLNSuUC5WeIvLKP7uR14PlQ,14352
103
+ spacr/resources/icons/mask.svg,sha256=HJu3T2BVjK8JV9aiJcP0Fey1K6niPY9Z43Y43pkRNbo,630
104
+ spacr/resources/icons/measure.png,sha256=43yFE9WcUuhvgqZau_U5ZmoP5_Abz-bBXqoJ31Em4I0,20620
105
+ spacr/resources/icons/measure.svg,sha256=xRb_SDKCwKVLI4OQioSsstTpcOLtvN9hiIHQk2VP-kc,630
106
+ spacr/resources/icons/regression.png,sha256=_XWBGC7MDWoNlm90dPN_s4WGH_xxpC9m5R5Ua3ucXSg,14502
107
+ spacr/resources/icons/run.png,sha256=By3x4bXA1PMakkYfwlD8WcG5EauX0PsDD7_FRRIkwHA,8986
108
+ spacr/resources/icons/run.svg,sha256=lyb8y6V5AD86ncLz3iKIyHPdLiFt5Ch5PjwAQ7hrGAM,190
109
+ spacr/resources/icons/run_2.png,sha256=KoNhaSHukO4wDyivyYEgSbb5mGj-sAxmhKikLLtNpWs,20341
110
+ spacr/resources/icons/run_2.svg,sha256=HJCoq_2QJ7OSE_VF_5QGLMN3m374U-LaR9f5DC8aCsw,726
111
+ spacr/resources/icons/sequencing.png,sha256=P9E_Y76ZysWMKst3_hAw-_4F510XPW1l1TsDElVzt4o,17775
112
+ spacr/resources/icons/sequencing.svg,sha256=fEdE8n7H4rdn818m7SZL24Fz9bKiROozFI1cCNDT_QI,853
113
+ spacr/resources/icons/settings.png,sha256=y5Ow5BxJDDsrqom0VNbOMDGGUs6odxbSMDy6y4r_F0w,22269
114
+ spacr/resources/icons/settings.svg,sha256=7H11s2jhauKZPw9lv_oF_lY_ug_HT4vGhLQ-cS-_Pbg,1087
115
+ spacr/resources/icons/train_cellpose.png,sha256=GAkaWVLkOzaUvJXKIT-hMcI7EFr4Qd18MIPt8YZIIsU,5811
116
+ spacr/resources/icons/train_cellpose.svg,sha256=Qah2_o5NYdmlishzTeZqfy4mYbicKpu6mlrwzIyyQG0,341
117
+ spacr/resources/icons/umap.png,sha256=2XvfWSYvLg85YPuPf3C5o8wNo7_ncg5v_GBsKwzRfCw,11042
118
+ spacr/resources/models/cp/toxo_plaque_cyto_e25000_X1120_Y1120.CP_model,sha256=z8BbHWZPRnE9D_BHO0fBREE85c1vkltDs-incs2ytXQ,26566572
119
+ spacr/resources/models/cp/toxo_plaque_cyto_e25000_X1120_Y1120.CP_model_settings.csv,sha256=fBAGuL_B8ERVdVizO3BHozTDSbZUh1yFzsYK3wkQN68,420
120
+ spacr/resources/models/cp/toxo_pv_lumen.CP_model,sha256=2y_CindYhmTvVwBH39SNILF3rI3x9SsRn6qrMxHy3l0,26562451
121
+ spacr-0.2.0.dist-info/LICENSE,sha256=SR-2MeGc6SCM1UORJYyarSWY_A-JaOMFDj7ReSs9tRM,1083
122
+ spacr-0.2.0.dist-info/METADATA,sha256=P1ZDTEigKdkpiIe0X1epqwtuwG3G5tuw_-B_7AHJ-Ag,5049
123
+ spacr-0.2.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
124
+ spacr-0.2.0.dist-info/entry_points.txt,sha256=BMC0ql9aNNpv8lUZ8sgDLQMsqaVnX5L535gEhKUP5ho,296
125
+ spacr-0.2.0.dist-info/top_level.txt,sha256=GJPU8FgwRXGzKeut6JopsSRY2R8T3i9lDgya42tLInY,6
126
+ spacr-0.2.0.dist-info/RECORD,,
@@ -1,61 +0,0 @@
1
- spacr/__init__.py,sha256=8uhfJ_RcnX4OmvflNRcts4zxnyfML6xiyIeFGZeMpXg,1416
2
- spacr/__main__.py,sha256=bkAJJD2kjIqOP-u1kLvct9jQQCeUXzlEjdgitwi1Lm8,75
3
- spacr/alpha.py,sha256=Y95sLEfpK2OSYKRn3M8eUOU33JJeXfV8zhrC4KnwSTY,35244
4
- spacr/annotate_app.py,sha256=imQ7ZEXDyM6ce1dxZ1xUS1-KequuF_NCI4xCaPLjvco,29275
5
- spacr/annotate_app_v2.py,sha256=imQ7ZEXDyM6ce1dxZ1xUS1-KequuF_NCI4xCaPLjvco,29275
6
- spacr/app_annotate.py,sha256=FhyDBsLdo6etOSvz6et2AhhJn67SwdeYUVDzBJzdw1E,2274
7
- spacr/app_classify.py,sha256=urTP_wlZ58hSyM5a19slYlBxN0PdC-9-ga0hvq8CGWc,165
8
- spacr/app_make_masks.py,sha256=qV3L_2TilGZBAUyBrzaWAayei_tf3XvJdUUDyzEI6hA,1834
9
- spacr/app_make_masks_v2.py,sha256=OkNeskNbgep8wQa4ES3jpJjZLfn4yIkGwQOd9r0spfA,30497
10
- spacr/app_mask.py,sha256=l-dBY8ftzCMdDe6-pXc2Nh_u-idNL9G7UOARiLJBtds,153
11
- spacr/app_measure.py,sha256=_K7APYIeOKpV6e_LcqabBjvEi7mfq9Fch8175x1x0k8,162
12
- spacr/app_sequencing.py,sha256=DjG26jy4cpddnV8WOOAIiExtOe9MleVMY4MFa5uTo5w,157
13
- spacr/app_umap.py,sha256=ZWAmf_OsIKbYvolYuWPMYhdlVe-n2CADoJulAizMiEo,153
14
- spacr/chris.py,sha256=YlBjSgeZaY8HPy6jkrT_ISAnCMAKVfvCxF0I9eAZLFM,2418
15
- spacr/classify_app.py,sha256=Zi15ryc1ocYitRF4kyxlC27XxGyzfSPdvj2d6ZrSh7E,8446
16
- spacr/cli.py,sha256=507jfOOEV8BoL4eeUcblvH-iiDHdBrEVJLu1ghAAPSc,1800
17
- spacr/core.py,sha256=bm1cApGVTE218Ds3FqqWD5TsF5FF8kclHwPlvdOolzc,160216
18
- spacr/deep_spacr.py,sha256=ASBsN4JpHp_3S-91JUsB34IWTjTGPYI7jKV2qZnUR5M,37005
19
- spacr/foldseek.py,sha256=YIP1d4Ci6CeA9jSyiv-HTDbNmAmcSM9Y_DaOs7wYzLY,33546
20
- spacr/get_alfafold_structures.py,sha256=ehx_MQgb12k3hFecP6cYVlm5TLO8iWjgevy8ESyS3cw,3544
21
- spacr/graph_learning.py,sha256=1tR-ZxvXE3dBz1Saw7BeVFcrsUFu9OlUZeZVifih9eo,13070
22
- spacr/gui.py,sha256=1zzB3IKhGh7YYfU4p3vuABFLEn3AI2nLbWJ-CnH7LCk,9734
23
- spacr/gui_2.py,sha256=ZAI5quQYbhQJ40vK0NCqU_UMSPLkpfeQpomBWUSM0fc,6946
24
- spacr/gui_annotate.py,sha256=ugBksLGOHdtOLlEuRyyc59TrkYKu3rDf8JxEgiBSVao,6536
25
- spacr/gui_classify_app.py,sha256=Zi15ryc1ocYitRF4kyxlC27XxGyzfSPdvj2d6ZrSh7E,8446
26
- spacr/gui_core.py,sha256=H_d_WVlGdMigAKlvG4xytFy1j8k7_EJDyR__OdSjBws,31846
27
- spacr/gui_elements.py,sha256=RzHRN_oXoiOWC8t8mYPH9D2eHT0xx7iyebQxJ4dNOjI,75760
28
- spacr/gui_make_masks_app.py,sha256=tl4M4Q2WQgrrwjRBJVevxJxpNowqzPhWkdCOm2UfRbw,45053
29
- spacr/gui_make_masks_app_v2.py,sha256=X3izTBXdCZDlkVe-fbG-jmCQtcAbmK0OIivjyWaLhug,30576
30
- spacr/gui_mask_app.py,sha256=mhTl_XzXLFl8Tx3WYEMpdYB_qw9u5JJa0EdkvlcIzAE,10706
31
- spacr/gui_measure_app.py,sha256=_C1-XFL5HSquUEEbM_NcxdvHx-socPFCx85MBG4d6xo,10598
32
- spacr/gui_run.py,sha256=0x85MJqFtREuWuNeIRLB8hFeibKGszfN14POQQWzPDQ,1998
33
- spacr/gui_sim_app.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
- spacr/gui_utils.py,sha256=W0blyZ6JTCBzlkZwXqJpg_uUv41vvqbKvJGCigCeWG8,13890
35
- spacr/gui_wrappers.py,sha256=-E1SFOmtp7_nfg9QzajI7GJcAcaMug92Pjw7pS1YzjY,4656
36
- spacr/io.py,sha256=f7cVn48wNUEj6Teky4p3ojoivAdMUmPll2s0MzJkKD0,112068
37
- spacr/logger.py,sha256=7Zqr3TuuOQLWT32gYr2q1qvv7x0a2JhLANmZcnBXAW8,670
38
- spacr/make_masks_app.py,sha256=iGaTwhowoe2JMOSOf8bJwQZTooRhLQx7KO0ewnAmqDY,45138
39
- spacr/make_masks_app_v2.py,sha256=X3izTBXdCZDlkVe-fbG-jmCQtcAbmK0OIivjyWaLhug,30576
40
- spacr/mask_app.py,sha256=mhTl_XzXLFl8Tx3WYEMpdYB_qw9u5JJa0EdkvlcIzAE,10706
41
- spacr/measure.py,sha256=RzcD8rsUaOZUYB-zcbaUZcJbrwT0IIW5G7qvb__SO-E,55616
42
- spacr/measure_app.py,sha256=_C1-XFL5HSquUEEbM_NcxdvHx-socPFCx85MBG4d6xo,10598
43
- spacr/old_code.py,sha256=jw67DAGoLBd7mWofVzRJSEmCI1Qrff26zIo65SEkV00,13817
44
- spacr/plot.py,sha256=DYJEoK1kz2ih6ZGvKiA3xTqeIeKQNhuQKwgrscopFxA,69101
45
- spacr/sequencing.py,sha256=fHZRnoMSxmhMdadkei3lUeBdckqFyptWdQyWsDW3aaU,83304
46
- spacr/settings.py,sha256=VkRJHdzDtfGn_F8sJ5rfK80blZhpy21djxLfQcnlhGA,65665
47
- spacr/sim.py,sha256=FveaVgBi3eypO2oVB5Dx-v0CC1Ny7UPfXkJiiRRodAk,71212
48
- spacr/sim_app.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
49
- spacr/test_gui.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
- spacr/timelapse.py,sha256=KMYCgHzf9LTZe-lWl5mvH2EjbKRE6OhpwdY13wEumGc,39504
51
- spacr/utils.py,sha256=OQ8sSBH6VWx2xP_vh4ILJT71B46DFFhsq-Y6WxYdGhI,186891
52
- spacr/version.py,sha256=axH5tnGwtgSnJHb5IDhiu4Zjk5GhLyAEDRe-rnaoFOA,409
53
- spacr/models/cp/toxo_plaque_cyto_e25000_X1120_Y1120.CP_model,sha256=z8BbHWZPRnE9D_BHO0fBREE85c1vkltDs-incs2ytXQ,26566572
54
- spacr/models/cp/toxo_plaque_cyto_e25000_X1120_Y1120.CP_model_settings.csv,sha256=fBAGuL_B8ERVdVizO3BHozTDSbZUh1yFzsYK3wkQN68,420
55
- spacr/models/cp/toxo_pv_lumen.CP_model,sha256=2y_CindYhmTvVwBH39SNILF3rI3x9SsRn6qrMxHy3l0,26562451
56
- spacr-0.1.85.dist-info/LICENSE,sha256=SR-2MeGc6SCM1UORJYyarSWY_A-JaOMFDj7ReSs9tRM,1083
57
- spacr-0.1.85.dist-info/METADATA,sha256=uAffhBMl-ibkrdDHadHFtwmw2MrN1cOHxIoLbe_Rpso,5050
58
- spacr-0.1.85.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
59
- spacr-0.1.85.dist-info/entry_points.txt,sha256=BMC0ql9aNNpv8lUZ8sgDLQMsqaVnX5L535gEhKUP5ho,296
60
- spacr-0.1.85.dist-info/top_level.txt,sha256=GJPU8FgwRXGzKeut6JopsSRY2R8T3i9lDgya42tLInY,6
61
- spacr-0.1.85.dist-info/RECORD,,
File without changes