spacr 0.1.50__py3-none-any.whl → 0.1.61__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- spacr/__init__.py +8 -2
- spacr/app_annotate.py +3 -3
- spacr/app_make_masks.py +3 -6
- spacr/app_make_masks_v2.py +4 -4
- spacr/app_sequencing.py +8 -0
- spacr/app_umap.py +8 -0
- spacr/core.py +9 -7
- spacr/gui.py +12 -6
- spacr/gui_core.py +608 -0
- spacr/gui_elements.py +322 -0
- spacr/gui_run.py +58 -0
- spacr/gui_utils.py +21 -1407
- spacr/gui_wrappers.py +137 -0
- spacr/measure.py +6 -8
- spacr/plot.py +53 -1
- spacr/sequencing.py +1 -17
- spacr/settings.py +428 -4
- spacr/utils.py +19 -11
- {spacr-0.1.50.dist-info → spacr-0.1.61.dist-info}/METADATA +1 -1
- {spacr-0.1.50.dist-info → spacr-0.1.61.dist-info}/RECORD +24 -18
- {spacr-0.1.50.dist-info → spacr-0.1.61.dist-info}/LICENSE +0 -0
- {spacr-0.1.50.dist-info → spacr-0.1.61.dist-info}/WHEEL +0 -0
- {spacr-0.1.50.dist-info → spacr-0.1.61.dist-info}/entry_points.txt +0 -0
- {spacr-0.1.50.dist-info → spacr-0.1.61.dist-info}/top_level.txt +0 -0
spacr/gui_wrappers.py
ADDED
@@ -0,0 +1,137 @@
|
|
1
|
+
import traceback, matplotlib, spacr
|
2
|
+
import matplotlib.pyplot as plt
|
3
|
+
matplotlib.use('Agg')
|
4
|
+
|
5
|
+
fig_queue = None
|
6
|
+
|
7
|
+
def my_show():
|
8
|
+
"""
|
9
|
+
Replacement for plt.show() that queues figures instead of displaying them.
|
10
|
+
"""
|
11
|
+
fig = plt.gcf()
|
12
|
+
fig_queue.put(fig)
|
13
|
+
plt.close(fig)
|
14
|
+
|
15
|
+
def measure_crop_wrapper(settings, q, fig_queue):
|
16
|
+
"""
|
17
|
+
Wraps the measure_crop function to integrate with GUI processes.
|
18
|
+
|
19
|
+
Parameters:
|
20
|
+
- settings: dict, The settings for the measure_crop function.
|
21
|
+
- q: multiprocessing.Queue, Queue for logging messages to the GUI.
|
22
|
+
- fig_queue: multiprocessing.Queue, Queue for sending figures to the GUI.
|
23
|
+
"""
|
24
|
+
|
25
|
+
# Temporarily override plt.show
|
26
|
+
original_show = plt.show
|
27
|
+
plt.show = my_show
|
28
|
+
|
29
|
+
try:
|
30
|
+
print('start')
|
31
|
+
spacr.measure.measure_crop(settings=settings)
|
32
|
+
except Exception as e:
|
33
|
+
errorMessage = f"Error during processing: {e}"
|
34
|
+
q.put(errorMessage)
|
35
|
+
traceback.print_exc()
|
36
|
+
finally:
|
37
|
+
plt.show = original_show
|
38
|
+
|
39
|
+
def preprocess_generate_masks_wrapper(settings, q, fig_queue):
|
40
|
+
"""
|
41
|
+
Wraps the measure_crop function to integrate with GUI processes.
|
42
|
+
|
43
|
+
Parameters:
|
44
|
+
- settings: dict, The settings for the measure_crop function.
|
45
|
+
- q: multiprocessing.Queue, Queue for logging messages to the GUI.
|
46
|
+
- fig_queue: multiprocessing.Queue, Queue for sending figures to the GUI.
|
47
|
+
"""
|
48
|
+
|
49
|
+
# Temporarily override plt.show
|
50
|
+
original_show = plt.show
|
51
|
+
plt.show = my_show
|
52
|
+
|
53
|
+
try:
|
54
|
+
spacr.core.preprocess_generate_masks(src=settings['src'], settings=settings)
|
55
|
+
except Exception as e:
|
56
|
+
errorMessage = f"Error during processing: {e}"
|
57
|
+
q.put(errorMessage)
|
58
|
+
traceback.print_exc()
|
59
|
+
finally:
|
60
|
+
plt.show = original_show
|
61
|
+
|
62
|
+
def sequencing_wrapper(settings, q, fig_queue):
|
63
|
+
|
64
|
+
# Temporarily override plt.show
|
65
|
+
original_show = plt.show
|
66
|
+
plt.show = my_show
|
67
|
+
|
68
|
+
try:
|
69
|
+
spacr.sequencing.analyze_reads(settings=settings)
|
70
|
+
except Exception as e:
|
71
|
+
errorMessage = f"Error during processing: {e}"
|
72
|
+
q.put(errorMessage)
|
73
|
+
traceback.print_exc()
|
74
|
+
finally:
|
75
|
+
plt.show = original_show
|
76
|
+
|
77
|
+
def umap_wrapper(settings, q, fig_queue):
|
78
|
+
|
79
|
+
# Temporarily override plt.show
|
80
|
+
original_show = plt.show
|
81
|
+
plt.show = my_show
|
82
|
+
|
83
|
+
try:
|
84
|
+
spacr.core.generate_image_umap(settings=settings)
|
85
|
+
except Exception as e:
|
86
|
+
errorMessage = f"Error during processing: {e}"
|
87
|
+
q.put(errorMessage)
|
88
|
+
traceback.print_exc()
|
89
|
+
finally:
|
90
|
+
plt.show = original_show
|
91
|
+
|
92
|
+
def train_test_model_wrapper(settings, q, fig_queue):
|
93
|
+
"""
|
94
|
+
Wraps the measure_crop function to integrate with GUI processes.
|
95
|
+
|
96
|
+
Parameters:
|
97
|
+
- settings: dict, The settings for the measure_crop function.
|
98
|
+
- q: multiprocessing.Queue, Queue for logging messages to the GUI.
|
99
|
+
- fig_queue: multiprocessing.Queue, Queue for sending figures to the GUI.
|
100
|
+
"""
|
101
|
+
|
102
|
+
# Temporarily override plt.show
|
103
|
+
original_show = plt.show
|
104
|
+
plt.show = my_show
|
105
|
+
|
106
|
+
try:
|
107
|
+
spacr.core.train_test_model(settings['src'], settings=settings)
|
108
|
+
except Exception as e:
|
109
|
+
errorMessage = f"Error during processing: {e}"
|
110
|
+
q.put(errorMessage) # Send the error message to the GUI via the queue
|
111
|
+
traceback.print_exc()
|
112
|
+
finally:
|
113
|
+
plt.show = original_show # Restore the original plt.show function
|
114
|
+
|
115
|
+
|
116
|
+
def run_multiple_simulations_wrapper(settings, q, fig_queue):
|
117
|
+
"""
|
118
|
+
Wraps the run_multiple_simulations function to integrate with GUI processes.
|
119
|
+
|
120
|
+
Parameters:
|
121
|
+
- settings: dict, The settings for the run_multiple_simulations function.
|
122
|
+
- q: multiprocessing.Queue, Queue for logging messages to the GUI.
|
123
|
+
- fig_queue: multiprocessing.Queue, Queue for sending figures to the GUI.
|
124
|
+
"""
|
125
|
+
|
126
|
+
# Temporarily override plt.show
|
127
|
+
original_show = plt.show
|
128
|
+
plt.show = my_show
|
129
|
+
|
130
|
+
try:
|
131
|
+
spacr.sim.run_multiple_simulations(settings=settings)
|
132
|
+
except Exception as e:
|
133
|
+
errorMessage = f"Error during processing: {e}"
|
134
|
+
q.put(errorMessage) # Send the error message to the GUI via the queue
|
135
|
+
traceback.print_exc()
|
136
|
+
finally:
|
137
|
+
plt.show = original_show # Restore the original plt.show function
|
spacr/measure.py
CHANGED
@@ -16,12 +16,6 @@ from skimage.util import img_as_bool
|
|
16
16
|
|
17
17
|
from .logger import log_function_call
|
18
18
|
|
19
|
-
#from .io import create_database, _save_settings_to_db
|
20
|
-
#from .timelapse import _timelapse_masks_to_gif, _scmovie
|
21
|
-
#from .plot import _plot_cropped_arrays, _save_scimg_plot
|
22
|
-
#from .utils import _merge_overlapping_objects, _filter_object, _relabel_parent_with_child_labels, _exclude_objects
|
23
|
-
#from .utils import _merge_and_save_to_database, _crop_center, _find_bounding_box, _generate_names, _get_percentiles, normalize_to_dtype, _map_wells_png, _list_endpoint_subdirectories, _generate_representative_images
|
24
|
-
|
25
19
|
def get_components(cell_mask, nucleus_mask, pathogen_mask):
|
26
20
|
"""
|
27
21
|
Get the components (nucleus and pathogens) for each cell in the given masks.
|
@@ -626,8 +620,13 @@ def _measure_crop_core(index, time_ls, file, settings):
|
|
626
620
|
|
627
621
|
file_name = os.path.splitext(file)[0]
|
628
622
|
data = np.load(os.path.join(settings['input_folder'], file))
|
629
|
-
|
630
623
|
data_type = data.dtype
|
624
|
+
if data_type not in ['uint8','uint16']:
|
625
|
+
data_type_before = data_type
|
626
|
+
data = data.astype(np.uint16)
|
627
|
+
data_type = data.dtype
|
628
|
+
print(f'Converted data from {data_type_before} to {data_type}')
|
629
|
+
|
631
630
|
if settings['save_measurements']:
|
632
631
|
os.makedirs(source_folder+'/measurements', exist_ok=True)
|
633
632
|
_create_database(source_folder+'/measurements/measurements.db')
|
@@ -832,7 +831,6 @@ def _measure_crop_core(index, time_ls, file, settings):
|
|
832
831
|
png_channels = normalize_to_dtype(png_channels, settings['normalize'][0], settings['normalize'][1], percentile_list=percentile_list)
|
833
832
|
else:
|
834
833
|
png_channels = normalize_to_dtype(png_channels, 0, 100)
|
835
|
-
|
836
834
|
os.makedirs(png_folder, exist_ok=True)
|
837
835
|
|
838
836
|
if png_channels.shape[2] == 2:
|
spacr/plot.py
CHANGED
@@ -1565,4 +1565,56 @@ def plot_feature_importance(feature_importance_df):
|
|
1565
1565
|
ax.set_xlabel('Feature Importance', fontsize=font_size)
|
1566
1566
|
ax.tick_params(axis='both', which='major', labelsize=font_size)
|
1567
1567
|
plt.tight_layout()
|
1568
|
-
return fig
|
1568
|
+
return fig
|
1569
|
+
|
1570
|
+
def read_and_plot__vision_results(base_dir, y_axis='accuracy', name_split='_time', y_lim=[0.8, 0.9]):
|
1571
|
+
# List to store data from all CSV files
|
1572
|
+
data_frames = []
|
1573
|
+
|
1574
|
+
dst = os.path.join(base_dir, 'result')
|
1575
|
+
os.mkdir(dst,exists=True)
|
1576
|
+
|
1577
|
+
# Walk through the directory
|
1578
|
+
for root, dirs, files in os.walk(base_dir):
|
1579
|
+
for file in files:
|
1580
|
+
if file.endswith("_test_result.csv"):
|
1581
|
+
file_path = os.path.join(root, file)
|
1582
|
+
# Extract model information from the file name
|
1583
|
+
file_name = os.path.basename(file_path)
|
1584
|
+
model = file_name.split(f'{name_split}')[0]
|
1585
|
+
|
1586
|
+
# Extract epoch information from the file name
|
1587
|
+
epoch_info = file_name.split('_time')[1]
|
1588
|
+
base_folder = os.path.dirname(file_path)
|
1589
|
+
epoch = os.path.basename(base_folder)
|
1590
|
+
|
1591
|
+
# Read the CSV file
|
1592
|
+
df = pd.read_csv(file_path)
|
1593
|
+
df['model'] = model
|
1594
|
+
df['epoch'] = epoch
|
1595
|
+
|
1596
|
+
# Append the data frame to the list
|
1597
|
+
data_frames.append(df)
|
1598
|
+
|
1599
|
+
# Concatenate all data frames
|
1600
|
+
if data_frames:
|
1601
|
+
result_df = pd.concat(data_frames, ignore_index=True)
|
1602
|
+
|
1603
|
+
# Calculate average y_axis per model
|
1604
|
+
avg_metric = result_df.groupby('model')[y_axis].mean().reset_index()
|
1605
|
+
avg_metric = avg_metric.sort_values(by=y_axis)
|
1606
|
+
print(avg_metric)
|
1607
|
+
|
1608
|
+
# Plotting the results
|
1609
|
+
plt.figure(figsize=(10, 6))
|
1610
|
+
plt.bar(avg_metric['model'], avg_metric[y_axis])
|
1611
|
+
plt.xlabel('Model')
|
1612
|
+
plt.ylabel(f'{y_axis}')
|
1613
|
+
plt.title(f'Average {y_axis.capitalize()} per Model')
|
1614
|
+
plt.xticks(rotation=45)
|
1615
|
+
plt.tight_layout()
|
1616
|
+
if y_lim is not None:
|
1617
|
+
plt.ylim(y_lim)
|
1618
|
+
plt.show()
|
1619
|
+
else:
|
1620
|
+
print("No CSV files found in the specified directory.")
|
spacr/sequencing.py
CHANGED
@@ -37,22 +37,6 @@ def analyze_reads(settings):
|
|
37
37
|
None
|
38
38
|
"""
|
39
39
|
|
40
|
-
def save_chunk_to_hdf5_v1(output_file_path, data_chunk, chunk_counter):
|
41
|
-
"""
|
42
|
-
Save a data chunk to an HDF5 file.
|
43
|
-
|
44
|
-
Parameters:
|
45
|
-
- output_file_path (str): The path to the output HDF5 file.
|
46
|
-
- data_chunk (list): The data chunk to be saved.
|
47
|
-
- chunk_counter (int): The counter for the current chunk.
|
48
|
-
|
49
|
-
Returns:
|
50
|
-
None
|
51
|
-
"""
|
52
|
-
df = pd.DataFrame(data_chunk, columns=['combined_read', 'grna', 'plate_row', 'column', 'sample'])
|
53
|
-
with pd.HDFStore(output_file_path, mode='a', complevel=5, complib='blosc') as store:
|
54
|
-
store.put(f'reads/chunk_{chunk_counter}', df, format='table', append=True)
|
55
|
-
|
56
40
|
def save_chunk_to_hdf5(output_file_path, data_chunk, chunk_counter):
|
57
41
|
"""
|
58
42
|
Save a data chunk to an HDF5 file.
|
@@ -306,7 +290,7 @@ def analyze_reads(settings):
|
|
306
290
|
qc_df = pd.DataFrame([qc])
|
307
291
|
qc_df.to_csv(qc_file_path, index=False)
|
308
292
|
|
309
|
-
from .
|
293
|
+
from .settings import get_analyze_reads_default_settings
|
310
294
|
|
311
295
|
settings = get_analyze_reads_default_settings(settings)
|
312
296
|
|