spacr 0.1.12__py3-none-any.whl → 0.1.50__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- spacr/app_annotate.py +2 -3
- spacr/app_classify.py +5 -198
- spacr/app_make_masks.py +1 -2
- spacr/app_make_masks_v2.py +2 -4
- spacr/app_mask.py +5 -248
- spacr/app_measure.py +5 -245
- spacr/deep_spacr.py +3 -1
- spacr/gui.py +26 -16
- spacr/gui_utils.py +1008 -668
- spacr/measure.py +24 -3
- spacr/settings.py +13 -2
- spacr/utils.py +59 -5
- {spacr-0.1.12.dist-info → spacr-0.1.50.dist-info}/METADATA +13 -26
- {spacr-0.1.12.dist-info → spacr-0.1.50.dist-info}/RECORD +18 -18
- spacr-0.1.50.dist-info/entry_points.txt +8 -0
- spacr-0.1.12.dist-info/entry_points.txt +0 -9
- {spacr-0.1.12.dist-info → spacr-0.1.50.dist-info}/LICENSE +0 -0
- {spacr-0.1.12.dist-info → spacr-0.1.50.dist-info}/WHEEL +0 -0
- {spacr-0.1.12.dist-info → spacr-0.1.50.dist-info}/top_level.txt +0 -0
spacr/gui_utils.py
CHANGED
@@ -1,186 +1,124 @@
|
|
1
|
-
import os, spacr, inspect, traceback, io, sys, ast, ctypes, matplotlib, re, csv, requests
|
1
|
+
import os, spacr, inspect, traceback, io, sys, ast, ctypes, matplotlib, re, csv, requests, ast
|
2
2
|
import matplotlib.pyplot as plt
|
3
3
|
matplotlib.use('Agg')
|
4
4
|
import numpy as np
|
5
5
|
import tkinter as tk
|
6
6
|
from tkinter import ttk, messagebox
|
7
7
|
import tkinter.font as tkFont
|
8
|
+
from tkinter import filedialog
|
9
|
+
from tkinter import Checkbutton
|
10
|
+
from tkinter import font as tkFont
|
8
11
|
from torchvision import models
|
9
|
-
#from ttf_opensans import opensans
|
10
12
|
|
11
|
-
from
|
13
|
+
from multiprocessing import Process, Value, Queue, Manager, set_start_method
|
14
|
+
import multiprocessing as mp
|
12
15
|
|
16
|
+
from tkinter import ttk, scrolledtext
|
17
|
+
from matplotlib.figure import Figure
|
18
|
+
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
|
19
|
+
import time
|
20
|
+
import requests
|
21
|
+
from requests.exceptions import HTTPError, Timeout
|
22
|
+
from huggingface_hub import list_repo_files, hf_hub_download
|
13
23
|
|
14
24
|
from .logger import log_function_call
|
25
|
+
from .settings import set_default_train_test_model, get_measure_crop_settings, set_default_settings_preprocess_generate_masks
|
15
26
|
|
16
27
|
try:
|
17
28
|
ctypes.windll.shcore.SetProcessDpiAwareness(True)
|
18
29
|
except AttributeError:
|
19
30
|
pass
|
20
31
|
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
y = event.y_root + 10
|
32
|
-
self.tooltip_window = tk.Toplevel(self.widget)
|
33
|
-
self.tooltip_window.wm_overrideredirect(True)
|
34
|
-
self.tooltip_window.wm_geometry(f"+{x}+{y}")
|
35
|
-
label = tk.Label(self.tooltip_window, text=self.text, background="yellow", relief='solid', borderwidth=1)
|
36
|
-
label.pack()
|
37
|
-
|
38
|
-
def hide_tooltip(self, event):
|
39
|
-
if self.tooltip_window:
|
40
|
-
self.tooltip_window.destroy()
|
41
|
-
self.tooltip_window = None
|
42
|
-
|
43
|
-
def load_app(root, app_name, app_func):
|
44
|
-
# Cancel all scheduled after tasks
|
45
|
-
if hasattr(root, 'after_tasks'):
|
46
|
-
for task in root.after_tasks:
|
47
|
-
root.after_cancel(task)
|
48
|
-
root.after_tasks = []
|
49
|
-
|
50
|
-
# Exit functionality only for the annotation app
|
51
|
-
if app_name == "Annotate" and hasattr(root, 'current_app_exit_func'):
|
52
|
-
root.current_app_exit_func()
|
53
|
-
|
54
|
-
# Clear the current content frame
|
55
|
-
if hasattr(root, 'content_frame'):
|
56
|
-
for widget in root.content_frame.winfo_children():
|
57
|
-
widget.destroy()
|
58
|
-
else:
|
59
|
-
root.content_frame = tk.Frame(root)
|
60
|
-
root.content_frame.grid(row=1, column=0, sticky="nsew")
|
61
|
-
root.grid_rowconfigure(1, weight=1)
|
62
|
-
root.grid_columnconfigure(0, weight=1)
|
63
|
-
|
64
|
-
# Initialize the new app in the content frame
|
65
|
-
app_func(root.content_frame)
|
66
|
-
|
67
|
-
def create_menu_bar(root):
|
68
|
-
from .app_mask import initiate_mask_root
|
69
|
-
from .app_measure import initiate_measure_root
|
70
|
-
from .app_annotate import initiate_annotation_app_root
|
71
|
-
from .app_make_masks import initiate_mask_app_root
|
72
|
-
from .app_classify import initiate_classify_root
|
73
|
-
|
74
|
-
gui_apps = {
|
75
|
-
"Mask": initiate_mask_root,
|
76
|
-
"Measure": initiate_measure_root,
|
77
|
-
"Annotate": initiate_annotation_app_root,
|
78
|
-
"Make Masks": initiate_mask_app_root,
|
79
|
-
"Classify": initiate_classify_root
|
80
|
-
}
|
81
|
-
|
82
|
-
def load_app_wrapper(app_name, app_func):
|
83
|
-
load_app(root, app_name, app_func)
|
84
|
-
|
85
|
-
# Create the menu bar
|
86
|
-
menu_bar = tk.Menu(root, bg="#008080", fg="white")
|
87
|
-
# Create a "SpaCr Applications" menu
|
88
|
-
app_menu = tk.Menu(menu_bar, tearoff=0, bg="#008080", fg="white")
|
89
|
-
menu_bar.add_cascade(label="SpaCr Applications", menu=app_menu)
|
90
|
-
# Add options to the "SpaCr Applications" menu
|
91
|
-
for app_name, app_func in gui_apps.items():
|
92
|
-
app_menu.add_command(label=app_name, command=lambda app_name=app_name, app_func=app_func: load_app_wrapper(app_name, app_func))
|
93
|
-
# Add a separator and an exit option
|
94
|
-
app_menu.add_separator()
|
95
|
-
app_menu.add_command(label="Exit", command=root.quit)
|
96
|
-
# Configure the menu for the root window
|
97
|
-
root.config(menu=menu_bar)
|
98
|
-
|
99
|
-
def proceed_with_app(root, app_name, app_func):
|
100
|
-
|
101
|
-
from .app_mask import gui_mask
|
102
|
-
from .app_measure import gui_measure
|
103
|
-
from .app_annotate import gui_annotate
|
104
|
-
from .app_make_masks import gui_make_masks
|
105
|
-
from .app_classify import gui_classify
|
106
|
-
from .gui import gui_app
|
107
|
-
|
108
|
-
# Clear the current content frame
|
109
|
-
if hasattr(root, 'content_frame'):
|
110
|
-
for widget in root.content_frame.winfo_children():
|
111
|
-
widget.destroy()
|
112
|
-
else:
|
113
|
-
root.content_frame = tk.Frame(root)
|
114
|
-
root.content_frame.grid(row=1, column=0, sticky="nsew")
|
115
|
-
root.grid_rowconfigure(1, weight=1)
|
116
|
-
root.grid_columnconfigure(0, weight=1)
|
32
|
+
# Define global variables
|
33
|
+
q = None
|
34
|
+
console_output = None
|
35
|
+
parent_frame = None
|
36
|
+
vars_dict = None
|
37
|
+
canvas = None
|
38
|
+
canvas_widget = None
|
39
|
+
scrollable_frame = None
|
40
|
+
progress_label = None
|
41
|
+
fig_queue = None
|
117
42
|
|
118
|
-
|
119
|
-
if app_name == "Main App":
|
120
|
-
root.destroy() # Close the current window
|
121
|
-
gui_app() # Open the main app window
|
122
|
-
elif app_name == "Mask":
|
123
|
-
gui_mask()
|
124
|
-
elif app_name == "Measure":
|
125
|
-
gui_measure()
|
126
|
-
elif app_name == "Annotate":
|
127
|
-
gui_annotate()
|
128
|
-
elif app_name == "Make Masks":
|
129
|
-
gui_make_masks()
|
130
|
-
elif app_name == "Classify":
|
131
|
-
gui_classify()
|
132
|
-
else:
|
133
|
-
raise ValueError(f"Invalid app name: {app_name}")
|
43
|
+
thread_control = {"run_thread": None, "stop_requested": False}
|
134
44
|
|
135
|
-
def
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
45
|
+
def set_dark_style(style):
|
46
|
+
font_style = tkFont.Font(family="Helvetica", size=10)
|
47
|
+
style.configure('TEntry', padding='5 5 5 5', borderwidth=1, relief='solid', fieldbackground='black', foreground='#ffffff', font=font_style) # Entry
|
48
|
+
style.configure('TCombobox', fieldbackground='black', background='black', foreground='#ffffff', font=font_style) # Combobox
|
49
|
+
style.configure('Custom.TButton', background='black', foreground='white', bordercolor='white', focusthickness=3, focuscolor='white', font=('Helvetica', 12))
|
50
|
+
style.map('Custom.TButton',
|
51
|
+
background=[('active', 'teal'), ('!active', 'black')],
|
52
|
+
foreground=[('active', 'white'), ('!active', 'white')],
|
53
|
+
bordercolor=[('active', 'white'), ('!active', 'white')])
|
54
|
+
style.configure('Custom.TLabel', padding='5 5 5 5', borderwidth=1, relief='flat', background='black', foreground='#ffffff', font=font_style) # Custom Label
|
55
|
+
style.configure('TCheckbutton', background='black', foreground='#ffffff', indicatoron=False, relief='flat', font=font_style) # Checkbutton
|
56
|
+
style.map('TCheckbutton', background=[('selected', '#555555'), ('active', '#555555')])
|
57
|
+
style.configure('TLabel', background='black', foreground='#ffffff', font=font_style) # Label
|
58
|
+
style.configure('TFrame', background='black') # Frame
|
59
|
+
style.configure('TPanedwindow', background='black') # PanedWindow
|
60
|
+
style.configure('TNotebook', background='black', tabmargins=[2, 5, 2, 0]) # Notebook
|
61
|
+
style.configure('TNotebook.Tab', background='black', foreground='#ffffff', padding=[5, 5], font=font_style)
|
62
|
+
style.map('TNotebook.Tab', background=[('selected', '#555555'), ('active', '#555555')])
|
63
|
+
style.configure('TButton', background='black', foreground='#ffffff', padding='5 5 5 5', font=font_style) # Button (regular)
|
64
|
+
style.map('TButton', background=[('active', '#555555'), ('disabled', '#333333')])
|
65
|
+
style.configure('Vertical.TScrollbar', background='black', troughcolor='black', bordercolor='black') # Scrollbar
|
66
|
+
style.configure('Horizontal.TScrollbar', background='black', troughcolor='black', bordercolor='black') # Scrollbar
|
67
|
+
|
68
|
+
# Define custom LabelFrame style
|
69
|
+
style.configure('Custom.TLabelFrame', font=('Helvetica', 10, 'bold'), background='black', foreground='white', relief='solid', borderwidth=1)
|
70
|
+
style.configure('Custom.TLabelFrame.Label', background='black', foreground='white') # Style for the Label inside LabelFrame
|
71
|
+
style.configure('Custom.TLabelFrame.Label', font=('Helvetica', 10, 'bold'))
|
141
72
|
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
proceed_with_app(root, app_name, app_func)
|
73
|
+
def set_default_font(root, font_name="Helvetica", size=12):
|
74
|
+
default_font = (font_name, size)
|
75
|
+
root.option_add("*Font", default_font)
|
76
|
+
root.option_add("*TButton.Font", default_font)
|
77
|
+
root.option_add("*TLabel.Font", default_font)
|
78
|
+
root.option_add("*TEntry.Font", default_font)
|
149
79
|
|
80
|
+
class ScrollableFrame(ttk.Frame):
|
81
|
+
def __init__(self, container, width=None, *args, bg='black', **kwargs):
|
82
|
+
super().__init__(container, *args, **kwargs)
|
83
|
+
self.configure(style='TFrame')
|
84
|
+
if width is None:
|
85
|
+
screen_width = self.winfo_screenwidth()
|
86
|
+
width = screen_width // 4
|
87
|
+
canvas = tk.Canvas(self, bg=bg, width=width)
|
88
|
+
scrollbar = ttk.Scrollbar(self, orient="vertical", command=canvas.yview)
|
89
|
+
|
90
|
+
self.scrollable_frame = ttk.Frame(canvas, style='TFrame')
|
91
|
+
self.scrollable_frame.bind(
|
92
|
+
"<Configure>",
|
93
|
+
lambda e: canvas.configure(scrollregion=canvas.bbox("all"))
|
94
|
+
)
|
95
|
+
canvas.create_window((0, 0), window=self.scrollable_frame, anchor="nw")
|
96
|
+
canvas.configure(yscrollcommand=scrollbar.set)
|
97
|
+
|
98
|
+
canvas.grid(row=0, column=0, sticky="nsew")
|
99
|
+
scrollbar.grid(row=0, column=1, sticky="ns")
|
150
100
|
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
from .gui import gui_app
|
101
|
+
self.grid_rowconfigure(0, weight=1)
|
102
|
+
self.grid_columnconfigure(0, weight=1)
|
103
|
+
self.grid_columnconfigure(1, weight=0)
|
104
|
+
|
105
|
+
for child in self.scrollable_frame.winfo_children():
|
106
|
+
child.configure(bg='black')
|
158
107
|
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
"Measure": initiate_measure_root,
|
163
|
-
"Annotate": initiate_annotation_app_root,
|
164
|
-
"Make Masks": initiate_mask_app_root,
|
165
|
-
"Classify": initiate_classify_root
|
166
|
-
}
|
108
|
+
class StdoutRedirector:
|
109
|
+
def __init__(self, text_widget):
|
110
|
+
self.text_widget = text_widget
|
167
111
|
|
168
|
-
def
|
169
|
-
|
112
|
+
def write(self, string):
|
113
|
+
try:
|
114
|
+
if self.text_widget.winfo_exists():
|
115
|
+
self.text_widget.insert(tk.END, string)
|
116
|
+
self.text_widget.see(tk.END)
|
117
|
+
except tk.TclError:
|
118
|
+
pass # Handle or log the error as needed
|
170
119
|
|
171
|
-
|
172
|
-
|
173
|
-
# Create a "SpaCr Applications" menu
|
174
|
-
app_menu = tk.Menu(menu_bar, tearoff=0, bg="#008080", fg="white")
|
175
|
-
menu_bar.add_cascade(label="SpaCr Applications", menu=app_menu)
|
176
|
-
# Add options to the "SpaCr Applications" menu
|
177
|
-
for app_name, app_func in gui_apps.items():
|
178
|
-
app_menu.add_command(label=app_name, command=lambda app_name=app_name, app_func=app_func: load_app_wrapper(app_name, app_func))
|
179
|
-
# Add a separator and an exit option
|
180
|
-
app_menu.add_separator()
|
181
|
-
app_menu.add_command(label="Exit", command=root.destroy) # Use root.destroy instead of root.quit
|
182
|
-
# Configure the menu for the root window
|
183
|
-
root.config(menu=menu_bar)
|
120
|
+
def flush(self):
|
121
|
+
pass
|
184
122
|
|
185
123
|
class CustomButton(tk.Frame):
|
186
124
|
def __init__(self, parent, text="", command=None, font=None, *args, **kwargs):
|
@@ -188,14 +126,19 @@ class CustomButton(tk.Frame):
|
|
188
126
|
self.text = text
|
189
127
|
self.command = command
|
190
128
|
|
191
|
-
|
129
|
+
# Detect screen height and calculate button dimensions
|
130
|
+
screen_height = self.winfo_screenheight()
|
131
|
+
button_height = screen_height // 50
|
132
|
+
button_width = button_height * 3
|
133
|
+
|
134
|
+
self.canvas = tk.Canvas(self, width=button_width, height=button_height, highlightthickness=0, bg="black")
|
192
135
|
self.canvas.grid(row=0, column=0)
|
193
136
|
|
194
|
-
self.button_bg = self.create_rounded_rectangle(0, 0,
|
137
|
+
self.button_bg = self.create_rounded_rectangle(0, 0, button_width, button_height, radius=20, fill="#800080")
|
195
138
|
|
196
139
|
# Use the passed font or default to Helvetica if not provided
|
197
140
|
self.font_style = font if font else tkFont.Font(family="Helvetica", size=12, weight=tkFont.NORMAL)
|
198
|
-
self.button_text = self.canvas.create_text(
|
141
|
+
self.button_text = self.canvas.create_text(button_width // 2, button_height // 2, text=self.text, fill="white", font=self.font_style)
|
199
142
|
|
200
143
|
self.bind("<Enter>", self.on_enter)
|
201
144
|
self.bind("<Leave>", self.on_leave)
|
@@ -325,104 +268,104 @@ class ToggleSwitch(ttk.Frame):
|
|
325
268
|
x1, y1]
|
326
269
|
|
327
270
|
return self.canvas.create_polygon(points, **kwargs, smooth=True)
|
328
|
-
|
329
|
-
def set_default_font(root, font_name="Helvetica", size=12):
|
330
|
-
default_font = (font_name, size)
|
331
|
-
root.option_add("*Font", default_font)
|
332
|
-
root.option_add("*TButton.Font", default_font)
|
333
|
-
root.option_add("*TLabel.Font", default_font)
|
334
|
-
root.option_add("*TEntry.Font", default_font)
|
335
271
|
|
336
|
-
|
337
|
-
|
338
|
-
|
339
|
-
|
340
|
-
|
341
|
-
|
342
|
-
|
343
|
-
|
344
|
-
|
345
|
-
|
346
|
-
|
347
|
-
|
348
|
-
|
349
|
-
|
350
|
-
|
351
|
-
|
352
|
-
|
353
|
-
|
354
|
-
|
355
|
-
|
356
|
-
|
357
|
-
|
358
|
-
|
359
|
-
|
360
|
-
|
361
|
-
|
362
|
-
|
363
|
-
|
364
|
-
|
365
|
-
|
366
|
-
|
367
|
-
|
368
|
-
|
369
|
-
|
370
|
-
|
371
|
-
|
372
|
-
|
373
|
-
#
|
374
|
-
|
375
|
-
|
376
|
-
|
377
|
-
|
378
|
-
|
379
|
-
|
380
|
-
|
381
|
-
|
382
|
-
|
383
|
-
|
384
|
-
|
385
|
-
|
386
|
-
|
387
|
-
|
388
|
-
|
389
|
-
|
390
|
-
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
|
272
|
+
class ToolTip:
|
273
|
+
def __init__(self, widget, text):
|
274
|
+
self.widget = widget
|
275
|
+
self.text = text
|
276
|
+
self.tooltip_window = None
|
277
|
+
widget.bind("<Enter>", self.show_tooltip)
|
278
|
+
widget.bind("<Leave>", self.hide_tooltip)
|
279
|
+
|
280
|
+
def show_tooltip(self, event):
|
281
|
+
x = event.x_root + 20
|
282
|
+
y = event.y_root + 10
|
283
|
+
self.tooltip_window = tk.Toplevel(self.widget)
|
284
|
+
self.tooltip_window.wm_overrideredirect(True)
|
285
|
+
self.tooltip_window.wm_geometry(f"+{x}+{y}")
|
286
|
+
label = tk.Label(self.tooltip_window, text=self.text, background="yellow", relief='solid', borderwidth=1)
|
287
|
+
label.grid(row=0, column=0, padx=5, pady=5)
|
288
|
+
|
289
|
+
def hide_tooltip(self, event):
|
290
|
+
if self.tooltip_window:
|
291
|
+
self.tooltip_window.destroy()
|
292
|
+
self.tooltip_window = None
|
293
|
+
|
294
|
+
def create_menu_bar(root):
|
295
|
+
from .app_annotate import initiate_annotation_app_root
|
296
|
+
from .app_make_masks import initiate_mask_app_root
|
297
|
+
|
298
|
+
gui_apps = {
|
299
|
+
"Mask": 'mask',
|
300
|
+
"Measure": 'measure',
|
301
|
+
"Annotate": initiate_annotation_app_root,
|
302
|
+
"Make Masks": initiate_mask_app_root,
|
303
|
+
"Classify": 'classify'
|
304
|
+
}
|
305
|
+
|
306
|
+
def load_app_wrapper(app_name, app_func):
|
307
|
+
load_app(root, app_name, app_func)
|
308
|
+
|
309
|
+
# Create the menu bar
|
310
|
+
menu_bar = tk.Menu(root, bg="#008080", fg="white")
|
311
|
+
# Create a "SpaCr Applications" menu
|
312
|
+
app_menu = tk.Menu(menu_bar, tearoff=0, bg="#008080", fg="white")
|
313
|
+
menu_bar.add_cascade(label="SpaCr Applications", menu=app_menu)
|
314
|
+
# Add options to the "SpaCr Applications" menu
|
315
|
+
for app_name, app_func in gui_apps.items():
|
316
|
+
app_menu.add_command(label=app_name, command=lambda app_name=app_name, app_func=app_func: load_app_wrapper(app_name, app_func))
|
317
|
+
# Add a separator and an exit option
|
318
|
+
app_menu.add_separator()
|
319
|
+
app_menu.add_command(label="Exit", command=root.quit)
|
320
|
+
# Configure the menu for the root window
|
321
|
+
root.config(menu=menu_bar)
|
322
|
+
|
323
|
+
def proceed_with_app(root, app_name, app_func):
|
324
|
+
from .app_annotate import gui_annotate
|
325
|
+
from .app_make_masks import gui_make_masks
|
326
|
+
from .gui import gui_app
|
327
|
+
|
328
|
+
# Clear the current content frame
|
329
|
+
if hasattr(root, 'content_frame'):
|
330
|
+
for widget in root.content_frame.winfo_children():
|
331
|
+
try:
|
332
|
+
widget.destroy()
|
333
|
+
except tk.TclError as e:
|
334
|
+
print(f"Error destroying widget: {e}")
|
395
335
|
else:
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
def style_text_boxes_v1(style):
|
401
|
-
check_and_download_font()
|
402
|
-
font_style = tkFont.Font(family="Helvetica", size=10) # Define the Helvetica font
|
403
|
-
style.configure('TEntry', padding='5 5 5 5', borderwidth=1, relief='solid', fieldbackground='#000000', foreground='#ffffff', font=font_style)
|
404
|
-
style.configure('TCombobox', fieldbackground='#000000', background='#000000', foreground='#ffffff', font=font_style)
|
405
|
-
style.configure('Custom.TButton', padding='10 10 10 10', borderwidth=1, relief='solid', background='#008080', foreground='#ffffff', font=font_style)
|
406
|
-
style.map('Custom.TButton',
|
407
|
-
background=[('active', '#66b2b2'), ('disabled', '#004d4d'), ('!disabled', '#008080')],
|
408
|
-
foreground=[('active', '#ffffff'), ('disabled', '#888888')])
|
409
|
-
style.configure('Custom.TLabel', padding='5 5 5 5', borderwidth=1, relief='flat', background='#000000', foreground='#ffffff', font=font_style)
|
410
|
-
style.configure('TCheckbutton', background='black', foreground='#ffffff', indicatoron=False, relief='flat', font=font_style)
|
411
|
-
style.map('TCheckbutton', background=[('selected', '#555555'), ('active', '#555555')])
|
336
|
+
root.content_frame = tk.Frame(root)
|
337
|
+
root.content_frame.grid(row=1, column=0, sticky="nsew")
|
338
|
+
root.grid_rowconfigure(1, weight=1)
|
339
|
+
root.grid_columnconfigure(0, weight=1)
|
412
340
|
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
|
417
|
-
|
418
|
-
|
419
|
-
|
420
|
-
|
421
|
-
|
422
|
-
|
423
|
-
|
341
|
+
# Initialize the new app in the content frame
|
342
|
+
if app_name == "Mask":
|
343
|
+
initiate_root(root.content_frame, 'mask')
|
344
|
+
elif app_name == "Measure":
|
345
|
+
initiate_root(root.content_frame, 'measure')
|
346
|
+
elif app_name == "Classify":
|
347
|
+
initiate_root(root.content_frame, 'classify')
|
348
|
+
elif app_name == "Annotate":
|
349
|
+
gui_annotate()
|
350
|
+
elif app_name == "Make Masks":
|
351
|
+
gui_make_masks()
|
352
|
+
else:
|
353
|
+
raise ValueError(f"Invalid app name: {app_name}")
|
424
354
|
|
355
|
+
def load_app(root, app_name, app_func):
|
356
|
+
# Cancel all scheduled after tasks
|
357
|
+
if hasattr(root, 'after_tasks'):
|
358
|
+
for task in root.after_tasks:
|
359
|
+
root.after_cancel(task)
|
360
|
+
root.after_tasks = []
|
425
361
|
|
362
|
+
# Exit functionality only for the annotation app
|
363
|
+
if app_name != "Annotate" and hasattr(root, 'current_app_exit_func'):
|
364
|
+
root.next_app_func = proceed_with_app
|
365
|
+
root.next_app_args = (app_name, app_func) # Ensure correct arguments
|
366
|
+
root.current_app_exit_func()
|
367
|
+
else:
|
368
|
+
proceed_with_app(root, app_name, app_func)
|
426
369
|
|
427
370
|
def read_settings_from_csv(csv_file_path):
|
428
371
|
settings = {}
|
@@ -444,344 +387,321 @@ def update_settings_from_csv(variables, csv_settings):
|
|
444
387
|
new_settings[key] = (var_type, options, value)
|
445
388
|
return new_settings
|
446
389
|
|
447
|
-
def
|
390
|
+
def parse_list(value):
|
448
391
|
try:
|
449
|
-
|
450
|
-
|
451
|
-
|
452
|
-
# If it fails, return the value as it is (a string)
|
453
|
-
return value
|
454
|
-
|
455
|
-
def disable_interactivity(fig):
|
456
|
-
if hasattr(fig.canvas, 'toolbar'):
|
457
|
-
fig.canvas.toolbar.pack_forget()
|
458
|
-
|
459
|
-
event_handlers = fig.canvas.callbacks.callbacks
|
460
|
-
for event, handlers in list(event_handlers.items()):
|
461
|
-
for handler_id in list(handlers.keys()):
|
462
|
-
fig.canvas.mpl_disconnect(handler_id)
|
463
|
-
|
464
|
-
class ScrollableFrame(ttk.Frame):
|
465
|
-
def __init__(self, container, *args, bg='black', **kwargs):
|
466
|
-
super().__init__(container, *args, **kwargs)
|
467
|
-
self.configure(style='TFrame') # Ensure this uses the styled frame from dark mode
|
468
|
-
|
469
|
-
canvas = tk.Canvas(self, bg=bg) # Set canvas background to match dark mode
|
470
|
-
scrollbar = ttk.Scrollbar(self, orient="vertical", command=canvas.yview)
|
471
|
-
|
472
|
-
self.scrollable_frame = ttk.Frame(canvas, style='TFrame') # Ensure it uses the styled frame
|
473
|
-
self.scrollable_frame.bind(
|
474
|
-
"<Configure>",
|
475
|
-
lambda e: canvas.configure(scrollregion=canvas.bbox("all"))
|
476
|
-
)
|
477
|
-
|
478
|
-
canvas.create_window((0, 0), window=self.scrollable_frame, anchor="nw")
|
479
|
-
canvas.configure(yscrollcommand=scrollbar.set)
|
480
|
-
|
481
|
-
canvas.pack(side="left", fill="both", expand=True)
|
482
|
-
scrollbar.pack(side="right", fill="y")
|
483
|
-
|
484
|
-
class StdoutRedirector_v1(object):
|
485
|
-
def __init__(self, text_widget):
|
486
|
-
self.text_widget = text_widget
|
487
|
-
|
488
|
-
def write(self, string):
|
489
|
-
self.text_widget.insert(tk.END, string)
|
490
|
-
self.text_widget.see(tk.END)
|
491
|
-
|
492
|
-
def flush(self):
|
493
|
-
pass
|
494
|
-
|
495
|
-
class StdoutRedirector:
|
496
|
-
def __init__(self, text_widget):
|
497
|
-
self.text_widget = text_widget
|
498
|
-
|
499
|
-
def write(self, string):
|
500
|
-
try:
|
501
|
-
if self.text_widget.winfo_exists():
|
502
|
-
self.text_widget.insert(tk.END, string)
|
503
|
-
self.text_widget.see(tk.END)
|
504
|
-
except tk.TclError:
|
505
|
-
pass # Handle or log the error as needed
|
506
|
-
|
507
|
-
def flush(self):
|
508
|
-
pass
|
509
|
-
|
510
|
-
def check_mask_gui_settings(vars_dict):
|
511
|
-
settings = {}
|
512
|
-
for key, var in vars_dict.items():
|
513
|
-
value = var.get()
|
514
|
-
|
515
|
-
# Handle conversion for specific types if necessary
|
516
|
-
if key in ['channels', 'timelapse_frame_limits']: # Assuming these should be lists
|
517
|
-
try:
|
518
|
-
# Convert string representation of a list into an actual list
|
519
|
-
settings[key] = eval(value)
|
520
|
-
except:
|
521
|
-
messagebox.showerror("Error", f"Invalid format for {key}. Please enter a valid list.")
|
522
|
-
return
|
523
|
-
elif key in ['nucleus_channel', 'cell_channel', 'pathogen_channel', 'examples_to_plot', 'batch_size', 'timelapse_memory', 'workers', 'fps', 'magnification']: # Assuming these should be integers
|
524
|
-
try:
|
525
|
-
settings[key] = int(value) if value else None
|
526
|
-
except ValueError:
|
527
|
-
messagebox.showerror("Error", f"Invalid number for {key}.")
|
528
|
-
return
|
529
|
-
elif key in ['nucleus_background', 'cell_background', 'pathogen_background', 'nucleus_Signal_to_noise', 'cell_Signal_to_noise', 'pathogen_Signal_to_noise', 'nucleus_CP_prob', 'cell_CP_prob', 'pathogen_CP_prob', 'lower_quantile']: # Assuming these should be floats
|
530
|
-
try:
|
531
|
-
settings[key] = float(value) if value else None
|
532
|
-
except ValueError:
|
533
|
-
messagebox.showerror("Error", f"Invalid number for {key}.")
|
534
|
-
return
|
392
|
+
parsed_value = ast.literal_eval(value)
|
393
|
+
if isinstance(parsed_value, list):
|
394
|
+
return parsed_value
|
535
395
|
else:
|
536
|
-
|
537
|
-
|
396
|
+
raise ValueError
|
397
|
+
except (ValueError, SyntaxError):
|
398
|
+
raise ValueError("Invalid format for list")
|
399
|
+
|
538
400
|
|
539
|
-
def
|
401
|
+
def check_settings(vars_dict):
|
402
|
+
global q
|
540
403
|
settings = {}
|
541
|
-
for key,
|
542
|
-
|
404
|
+
# Define the expected types for each key, including None where applicable
|
405
|
+
expected_types = {
|
406
|
+
"src": str,
|
407
|
+
"metadata_type": str,
|
408
|
+
"custom_regex": (str, type(None)),
|
409
|
+
"experiment": str,
|
410
|
+
"channels": list,
|
411
|
+
"magnification": int,
|
412
|
+
"nucleus_channel": (int, type(None)),
|
413
|
+
"nucleus_background": int,
|
414
|
+
"nucleus_Signal_to_noise": float,
|
415
|
+
"nucleus_CP_prob": float,
|
416
|
+
"nucleus_FT": float,
|
417
|
+
"cell_channel": (int, type(None)),
|
418
|
+
"cell_background": (int, float),
|
419
|
+
"cell_Signal_to_noise": (int, float),
|
420
|
+
"cell_CP_prob": (int, float),
|
421
|
+
"cell_FT": (int, float),
|
422
|
+
"pathogen_channel": (int, type(None)),
|
423
|
+
"pathogen_background": (int, float),
|
424
|
+
"pathogen_Signal_to_noise": (int, float),
|
425
|
+
"pathogen_CP_prob": (int, float),
|
426
|
+
"pathogen_FT": (int, float),
|
427
|
+
"preprocess": bool,
|
428
|
+
"masks": bool,
|
429
|
+
"examples_to_plot": int,
|
430
|
+
"randomize": bool,
|
431
|
+
"batch_size": int,
|
432
|
+
"timelapse": bool,
|
433
|
+
"timelapse_displacement": int,
|
434
|
+
"timelapse_memory": int,
|
435
|
+
"timelapse_frame_limits": list, # This can be a list of lists
|
436
|
+
"timelapse_remove_transient": bool,
|
437
|
+
"timelapse_mode": str,
|
438
|
+
"timelapse_objects": list,
|
439
|
+
"fps": int,
|
440
|
+
"remove_background": bool,
|
441
|
+
"lower_percentile": (int, float),
|
442
|
+
"merge_pathogens": bool,
|
443
|
+
"normalize_plots": bool,
|
444
|
+
"all_to_mip": bool,
|
445
|
+
"pick_slice": bool,
|
446
|
+
"skip_mode": str,
|
447
|
+
"save": bool,
|
448
|
+
"plot": bool,
|
449
|
+
"workers": int,
|
450
|
+
"verbose": bool,
|
451
|
+
"input_folder": str,
|
452
|
+
"cell_mask_dim": int,
|
453
|
+
"cell_min_size": int,
|
454
|
+
"cytoplasm_min_size": int,
|
455
|
+
"nucleus_mask_dim": int,
|
456
|
+
"nucleus_min_size": int,
|
457
|
+
"pathogen_mask_dim": int,
|
458
|
+
"pathogen_min_size": int,
|
459
|
+
"save_png": bool,
|
460
|
+
"crop_mode": list,
|
461
|
+
"use_bounding_box": bool,
|
462
|
+
"png_size": list, # This can be a list of lists
|
463
|
+
"normalize": bool,
|
464
|
+
"png_dims": list,
|
465
|
+
"normalize_by": str,
|
466
|
+
"save_measurements": bool,
|
467
|
+
"representative_images": bool,
|
468
|
+
"plot_filtration": bool,
|
469
|
+
"include_uninfected": bool,
|
470
|
+
"dialate_pngs": bool,
|
471
|
+
"dialate_png_ratios": list,
|
472
|
+
"max_workers": int,
|
473
|
+
"cells": list,
|
474
|
+
"cell_loc": list,
|
475
|
+
"pathogens": list,
|
476
|
+
"pathogen_loc": (list, list), # This can be a list of lists
|
477
|
+
"treatments": list,
|
478
|
+
"treatment_loc": (list, list), # This can be a list of lists
|
479
|
+
"channel_of_interest": int,
|
480
|
+
"compartments": list,
|
481
|
+
"measurement": str,
|
482
|
+
"nr_imgs": int,
|
483
|
+
"um_per_pixel": (int, float),
|
484
|
+
# Additional settings based on provided defaults
|
485
|
+
"include_noninfected": bool,
|
486
|
+
"include_multiinfected": bool,
|
487
|
+
"include_multinucleated": bool,
|
488
|
+
"filter_min_max": (list, type(None)),
|
489
|
+
"channel_dims": list,
|
490
|
+
"backgrounds": list,
|
491
|
+
"outline_thickness": int,
|
492
|
+
"outline_color": str,
|
493
|
+
"overlay_chans": list,
|
494
|
+
"overlay": bool,
|
495
|
+
"normalization_percentiles": list,
|
496
|
+
"print_object_number": bool,
|
497
|
+
"nr": int,
|
498
|
+
"figuresize": int,
|
499
|
+
"cmap": str,
|
500
|
+
"test_mode": bool,
|
501
|
+
"test_images": int,
|
502
|
+
"remove_background_cell": bool,
|
503
|
+
"remove_background_nucleus": bool,
|
504
|
+
"remove_background_pathogen": bool,
|
505
|
+
"pathogen_model": (str, type(None)),
|
506
|
+
"filter": bool,
|
507
|
+
"upscale": bool,
|
508
|
+
"upscale_factor": float,
|
509
|
+
"adjust_cells": bool,
|
510
|
+
"row_limit": int,
|
511
|
+
"tables": list,
|
512
|
+
"visualize": str,
|
513
|
+
"image_nr": int,
|
514
|
+
"dot_size": int,
|
515
|
+
"n_neighbors": int,
|
516
|
+
"min_dist": float,
|
517
|
+
"metric": str,
|
518
|
+
"eps": float,
|
519
|
+
"min_samples": int,
|
520
|
+
"filter_by": str,
|
521
|
+
"img_zoom": float,
|
522
|
+
"plot_by_cluster": bool,
|
523
|
+
"plot_cluster_grids": bool,
|
524
|
+
"remove_cluster_noise": bool,
|
525
|
+
"remove_highly_correlated": bool,
|
526
|
+
"log_data": bool,
|
527
|
+
"black_background": bool,
|
528
|
+
"remove_image_canvas": bool,
|
529
|
+
"plot_outlines": bool,
|
530
|
+
"plot_points": bool,
|
531
|
+
"smooth_lines": bool,
|
532
|
+
"clustering": str,
|
533
|
+
"exclude": (str, type(None)),
|
534
|
+
"col_to_compare": str,
|
535
|
+
"pos": str,
|
536
|
+
"neg": str,
|
537
|
+
"embedding_by_controls": bool,
|
538
|
+
"plot_images": bool,
|
539
|
+
"reduction_method": str,
|
540
|
+
"save_figure": bool,
|
541
|
+
"color_by": (str, type(None)),
|
542
|
+
"analyze_clusters": bool,
|
543
|
+
"resnet_features": bool,
|
544
|
+
"test_nr": int,
|
545
|
+
"radial_dist": bool,
|
546
|
+
"calculate_correlation": bool,
|
547
|
+
"manders_thresholds": list,
|
548
|
+
"homogeneity": bool,
|
549
|
+
"homogeneity_distances": list,
|
550
|
+
"save_arrays": bool,
|
551
|
+
"cytoplasm": bool,
|
552
|
+
"merge_edge_pathogen_cells": bool,
|
553
|
+
"cells_per_well": int,
|
554
|
+
"pathogen_size_range": list,
|
555
|
+
"nucleus_size_range": list,
|
556
|
+
"cell_size_range": list,
|
557
|
+
"pathogen_intensity_range": list,
|
558
|
+
"nucleus_intensity_range": list,
|
559
|
+
"cell_intensity_range": list,
|
560
|
+
"target_intensity_min": int,
|
561
|
+
"model_type": str,
|
562
|
+
"heatmap_feature": str,
|
563
|
+
"grouping": str,
|
564
|
+
"min_max": str,
|
565
|
+
"minimum_cell_count": int,
|
566
|
+
"n_estimators": int,
|
567
|
+
"test_size": float,
|
568
|
+
"location_column": str,
|
569
|
+
"positive_control": str,
|
570
|
+
"negative_control": str,
|
571
|
+
"n_repeats": int,
|
572
|
+
"top_features": int,
|
573
|
+
"remove_low_variance_features": bool,
|
574
|
+
"n_jobs": int,
|
575
|
+
"classes": list,
|
576
|
+
"schedule": str,
|
577
|
+
"loss_type": str,
|
578
|
+
"image_size": int,
|
579
|
+
"epochs": int,
|
580
|
+
"val_split": float,
|
581
|
+
"train_mode": str,
|
582
|
+
"learning_rate": float,
|
583
|
+
"weight_decay": float,
|
584
|
+
"dropout_rate": float,
|
585
|
+
"init_weights": bool,
|
586
|
+
"amsgrad": bool,
|
587
|
+
"use_checkpoint": bool,
|
588
|
+
"gradient_accumulation": bool,
|
589
|
+
"gradient_accumulation_steps": int,
|
590
|
+
"intermedeate_save": bool,
|
591
|
+
"pin_memory": bool,
|
592
|
+
"num_workers": int,
|
593
|
+
"augment": bool,
|
594
|
+
"target": str,
|
595
|
+
"cell_types": list,
|
596
|
+
"cell_plate_metadata": (list, type(None)),
|
597
|
+
"pathogen_types": list,
|
598
|
+
"pathogen_plate_metadata": (list, list), # This can be a list of lists
|
599
|
+
"treatment_plate_metadata": (list, list), # This can be a list of lists
|
600
|
+
"metadata_types": list,
|
601
|
+
"cell_chann_dim": int,
|
602
|
+
"nucleus_chann_dim": int,
|
603
|
+
"pathogen_chann_dim": int,
|
604
|
+
"plot_nr": int,
|
605
|
+
"plot_control": bool,
|
606
|
+
"remove_background": bool,
|
607
|
+
"target": str,
|
608
|
+
"upstream": str,
|
609
|
+
"downstream": str,
|
610
|
+
"barecode_length_1": int,
|
611
|
+
"barecode_length_2": int,
|
612
|
+
"chunk_size": int,
|
613
|
+
"grna": str,
|
614
|
+
"barcodes": str,
|
615
|
+
"plate_dict": dict,
|
616
|
+
"pc": str,
|
617
|
+
"pc_loc": str,
|
618
|
+
"nc": str,
|
619
|
+
"nc_loc": str,
|
620
|
+
"dependent_variable": str,
|
621
|
+
"transform": (str, type(None)),
|
622
|
+
"agg_type": str,
|
623
|
+
"min_cell_count": int,
|
624
|
+
"regression_type": str,
|
625
|
+
"remove_row_column_effect": bool,
|
626
|
+
"alpha": float,
|
627
|
+
"fraction_threshold": float,
|
628
|
+
"class_1_threshold": (float, type(None)),
|
629
|
+
"batch_size": int,
|
630
|
+
"CP_prob": float,
|
631
|
+
"flow_threshold": float,
|
632
|
+
"percentiles": (list, type(None)),
|
633
|
+
"circular": bool,
|
634
|
+
"invert": bool,
|
635
|
+
"diameter": int,
|
636
|
+
"grayscale": bool,
|
637
|
+
"resize": bool,
|
638
|
+
"target_height": (int, type(None)),
|
639
|
+
"target_width": (int, type(None)),
|
640
|
+
"rescale": bool,
|
641
|
+
"resample": bool,
|
642
|
+
"model_name": str,
|
643
|
+
"Signal_to_noise": int,
|
644
|
+
"learning_rate": float,
|
645
|
+
"weight_decay": float,
|
646
|
+
"batch_size": int,
|
647
|
+
"n_epochs": int,
|
648
|
+
"from_scratch": bool,
|
649
|
+
"width_height": list,
|
650
|
+
"resize": bool,
|
651
|
+
"gene_weights_csv": str,
|
652
|
+
"fraction_threshold": float,
|
653
|
+
}
|
543
654
|
|
544
|
-
|
545
|
-
|
546
|
-
|
655
|
+
for key, (label, widget, var) in vars_dict.items():
|
656
|
+
if key not in expected_types:
|
657
|
+
if key not in ["General","Nucleus","Cell","Pathogen","Timelapse","Plot","Object Image","Annotate Data","Measurements","Advanced","Miscellaneous","Test"]:
|
547
658
|
|
548
|
-
|
549
|
-
|
550
|
-
settings[key] = [list(map(str, sublist)) for sublist in ast.literal_eval(value)] if value else []
|
551
|
-
|
552
|
-
elif key == 'dialate_png_ratios':
|
553
|
-
settings[key] = [float(num) for num in ast.literal_eval(value)] if value else []
|
554
|
-
|
555
|
-
elif key == 'normalize':
|
556
|
-
settings[key] = [int(num) for num in ast.literal_eval(value)] if value else []
|
557
|
-
|
558
|
-
# Directly assign string values for these specific keys
|
559
|
-
elif key in ['normalize_by', 'experiment', 'measurement', 'input_folder']:
|
560
|
-
settings[key] = value
|
561
|
-
|
562
|
-
elif key == 'png_size':
|
563
|
-
settings[key] = [list(map(int, dim)) for dim in ast.literal_eval(value)] if value else []
|
564
|
-
|
565
|
-
# Ensure these are lists of strings, converting from tuples if necessary
|
566
|
-
elif key in ['timelapse_objects', 'crop_mode', 'cells', 'pathogens', 'treatments']:
|
567
|
-
eval_value = ast.literal_eval(value) if value else []
|
568
|
-
settings[key] = list(map(str, eval_value)) if isinstance(eval_value, (list, tuple)) else [str(eval_value)]
|
569
|
-
|
570
|
-
# Handling for single non-string values (int, float, bool)
|
571
|
-
elif key in ['cell_mask_dim', 'cell_min_size', 'nucleus_mask_dim', 'nucleus_min_size', 'pathogen_mask_dim', 'pathogen_min_size', 'cytoplasm_min_size', 'max_workers', 'channel_of_interest', 'nr_imgs']:
|
572
|
-
settings[key] = int(value) if value else None
|
573
|
-
|
574
|
-
elif key == 'um_per_pixel':
|
575
|
-
settings[key] = float(value) if value else None
|
576
|
-
|
577
|
-
# Handling boolean values based on checkboxes
|
578
|
-
elif key in ['save_png', 'use_bounding_box', 'save_measurements', 'plot', 'plot_filtration', 'include_uninfected', 'dialate_pngs', 'timelapse', 'representative_images']:
|
579
|
-
settings[key] = var.get()
|
580
|
-
|
581
|
-
except SyntaxError as e:
|
582
|
-
print(f"Syntax error processing {key}: {str(e)}")
|
583
|
-
#messagebox.showerror("Error", f"Syntax error processing {key}: {str(e)}")
|
584
|
-
return None
|
585
|
-
except Exception as e:
|
586
|
-
print(f"Error processing {key}: {str(e)}")
|
587
|
-
#messagebox.showerror("Error", f"Error processing {key}: {str(e)}")
|
588
|
-
return None
|
589
|
-
|
590
|
-
return settings
|
591
|
-
|
592
|
-
def check_classify_gui_settings(vars_dict):
|
593
|
-
settings = {}
|
594
|
-
for key, var in vars_dict.items():
|
595
|
-
value = var.get() # This retrieves the string representation for entries or the actual value for checkboxes and combos
|
659
|
+
q.put(f"Key {key} not found in expected types.")
|
660
|
+
continue
|
596
661
|
|
597
|
-
|
598
|
-
|
599
|
-
# Directly assign string values
|
600
|
-
settings[key] = str(value)
|
601
|
-
elif key in ['cell_mask_dim', 'image_size', 'batch_size', 'epochs', 'gradient_accumulation_steps', 'num_workers']:
|
602
|
-
# Convert to integer
|
603
|
-
settings[key] = int(value)
|
604
|
-
elif key in ['val_split', 'learning_rate', 'weight_decay', 'dropout_rate']:
|
605
|
-
# Convert to float
|
606
|
-
settings[key] = float(value)
|
607
|
-
elif key == 'classes':
|
608
|
-
# Evaluate as list
|
609
|
-
settings[key] = ast.literal_eval(value)
|
610
|
-
|
611
|
-
elif key in ['model_type','optimizer_type','schedule','loss_type','train_mode']:
|
612
|
-
settings[key] = value
|
613
|
-
|
614
|
-
elif key in ['gradient_accumulation','normalize','save','plot', 'init_weights','amsgrad','use_checkpoint','intermedeate_save','pin_memory', 'num_workers','verbose']:
|
615
|
-
settings[key] = bool(value)
|
616
|
-
|
617
|
-
except SyntaxError as e:
|
618
|
-
messagebox.showerror("Error", f"Syntax error processing {key}: {str(e)}")
|
619
|
-
return None
|
620
|
-
except Exception as e:
|
621
|
-
messagebox.showerror("Error", f"Error processing {key}: {str(e)}")
|
622
|
-
return None
|
623
|
-
|
624
|
-
return settings
|
625
|
-
|
626
|
-
def check_sim_gui_settings(vars_dict):
|
627
|
-
settings = {}
|
628
|
-
for key, var in vars_dict.items():
|
629
|
-
value = var.get() # This retrieves the string representation for entries or the actual value for checkboxes and combos
|
662
|
+
value = var.get()
|
663
|
+
expected_type = expected_types.get(key, str)
|
630
664
|
|
631
665
|
try:
|
632
|
-
if key in [
|
633
|
-
|
634
|
-
|
635
|
-
|
636
|
-
|
637
|
-
|
638
|
-
|
639
|
-
if len(ls) == 3 and ls[2] > 0:
|
640
|
-
list_of_integers = list(range(ls[0], ls[1], ls[2]))
|
641
|
-
list_of_integers = [num + 1 if num == 0 else num for num in list_of_integers]
|
666
|
+
if key in ["png_size", "pathogen_plate_metadata", "treatment_plate_metadata"]:
|
667
|
+
parsed_value = ast.literal_eval(value) if value else None
|
668
|
+
if isinstance(parsed_value, list):
|
669
|
+
if all(isinstance(i, list) for i in parsed_value) or all(not isinstance(i, list) for i in parsed_value):
|
670
|
+
settings[key] = parsed_value
|
671
|
+
else:
|
672
|
+
raise ValueError("Invalid format: Mixed list and list of lists")
|
642
673
|
else:
|
643
|
-
|
644
|
-
|
645
|
-
|
646
|
-
elif
|
647
|
-
|
648
|
-
|
649
|
-
|
650
|
-
|
651
|
-
|
652
|
-
|
674
|
+
raise ValueError("Invalid format for list or list of lists")
|
675
|
+
elif expected_type == list:
|
676
|
+
settings[key] = parse_list(value) if value else None
|
677
|
+
elif expected_type == bool:
|
678
|
+
settings[key] = value if isinstance(value, bool) else value.lower() in ['true', '1', 't', 'y', 'yes']
|
679
|
+
elif expected_type == (int, type(None)):
|
680
|
+
settings[key] = int(value) if value else None
|
681
|
+
elif expected_type == (float, type(None)):
|
682
|
+
settings[key] = float(value) if value else None
|
683
|
+
elif expected_type == (int, float):
|
684
|
+
settings[key] = float(value) if '.' in value else int(value)
|
685
|
+
elif expected_type == (str, type(None)):
|
686
|
+
settings[key] = str(value) if value else None
|
687
|
+
elif isinstance(expected_type, tuple):
|
688
|
+
for typ in expected_type:
|
689
|
+
try:
|
690
|
+
settings[key] = typ(value) if value else None
|
691
|
+
break
|
692
|
+
except (ValueError, TypeError):
|
693
|
+
continue
|
653
694
|
else:
|
654
|
-
|
655
|
-
|
656
|
-
|
657
|
-
|
658
|
-
|
659
|
-
|
660
|
-
|
661
|
-
elif key in ['number_of_control_genes', 'replicates', 'max_workers']:
|
662
|
-
# Convert to integer
|
663
|
-
settings[key] = int(value)
|
664
|
-
|
665
|
-
except SyntaxError as e:
|
666
|
-
messagebox.showerror("Error", f"Syntax error processing {key}: {str(e)}")
|
667
|
-
return None
|
668
|
-
except Exception as e:
|
669
|
-
messagebox.showerror("Error", f"Error processing {key}: {str(e)}")
|
670
|
-
return None
|
671
|
-
|
672
|
-
return settings
|
673
|
-
|
674
|
-
def sim_variables():
|
675
|
-
variables = {
|
676
|
-
'name':('entry', None, 'plates_2_4_8'),
|
677
|
-
'variable':('entry', None, 'all'),
|
678
|
-
'src':('entry', None, '/home/olafsson/Desktop/simulations'),
|
679
|
-
'number_of_control_genes':('entry', None, 30),
|
680
|
-
'replicates':('entry', None, 4),
|
681
|
-
'max_workers':('entry', None, 1),
|
682
|
-
'plot':('check', None, True),
|
683
|
-
'random_seed':('check', None, True),
|
684
|
-
'nr_plates': ('entry', None, '[8,8,0]'),# '[2,2,8]'
|
685
|
-
'number_of_genes': ('entry', None, '[100, 100, 0]'), #[1384, 1384, 0]
|
686
|
-
'number_of_active_genes': ('entry', None, '[10,10,0]'),
|
687
|
-
'avg_genes_per_well': ('entry', None, '[2, 10, 2]'),
|
688
|
-
'avg_cells_per_well': ('entry', None, '[100, 100, 0]'),
|
689
|
-
'positive_mean': ('entry', None, '[0.8, 0.8, 0]'),
|
690
|
-
'avg_reads_per_gene': ('entry', None, '[1000,1000, 0]'),
|
691
|
-
'sequencing_error': ('entry', None, '[0.01, 0.01, 0]'),
|
692
|
-
'well_ineq_coeff': ('entry', None, '[0.3,0.3,0]'),
|
693
|
-
'gene_ineq_coeff': ('entry', None, '[0.8,0.8,0]'),
|
694
|
-
}
|
695
|
-
return variables
|
695
|
+
raise ValueError
|
696
|
+
else:
|
697
|
+
settings[key] = expected_type(value) if value else None
|
698
|
+
except (ValueError, SyntaxError):
|
699
|
+
expected_type_name = ' or '.join([t.__name__ for t in expected_type]) if isinstance(expected_type, tuple) else expected_type.__name__
|
700
|
+
q.put(f"Error: Invalid format for {key}. Expected type: {expected_type_name}.")
|
701
|
+
return
|
696
702
|
|
697
|
-
def add_measure_gui_defaults(settings):
|
698
|
-
settings['compartments'] = ['pathogen', 'cytoplasm']
|
699
703
|
return settings
|
700
704
|
|
701
|
-
def measure_variables():
|
702
|
-
variables = {
|
703
|
-
'input_folder':('entry', None, '/mnt/data/CellVoyager/40x/einar/mitotrackerHeLaToxoDsRed_20240224_123156/test_gui/merged'),
|
704
|
-
'channels': ('combo', ['[0,1,2,3]','[0,1,2]','[0,1]','[0]'], '[0,1,2,3]'),
|
705
|
-
'cell_mask_dim':('entry', None, 4),
|
706
|
-
'cell_min_size':('entry', None, 0),
|
707
|
-
'cytoplasm_min_size':('entry', None, 0),
|
708
|
-
'nucleus_mask_dim':('entry', None, 5),
|
709
|
-
'nucleus_min_size':('entry', None, 0),
|
710
|
-
'pathogen_mask_dim':('entry', None, 6),
|
711
|
-
'pathogen_min_size':('entry', None, 0),
|
712
|
-
'save_png':('check', None, True),
|
713
|
-
'crop_mode':('entry', None, '["cell"]'),
|
714
|
-
'use_bounding_box':('check', None, True),
|
715
|
-
'png_size': ('entry', None, '[[224,224]]'),
|
716
|
-
'normalize':('entry', None, '[2,98]'),
|
717
|
-
'png_dims':('entry', None, '[1,2,3]'),
|
718
|
-
'normalize_by':('combo', ['fov', 'png'], 'png'),
|
719
|
-
'save_measurements':('check', None, True),
|
720
|
-
'representative_images':('check', None, True),
|
721
|
-
'plot':('check', None, True),
|
722
|
-
'plot_filtration':('check', None, True),
|
723
|
-
'include_uninfected':('check', None, True),
|
724
|
-
'dialate_pngs':('check', None, False),
|
725
|
-
'dialate_png_ratios':('entry', None, '[0.2]'),
|
726
|
-
'timelapse':('check', None, False),
|
727
|
-
'timelapse_objects':('combo', ['["cell"]', '["nucleus"]', '["pathogen"]', '["cytoplasm"]'], '["cell"]'),
|
728
|
-
'max_workers':('entry', None, 30),
|
729
|
-
'experiment':('entry', None, 'experiment name'),
|
730
|
-
'cells':('entry', None, ['HeLa']),
|
731
|
-
'cell_loc': ('entry', None, '[["c1","c2"], ["c3","c4"]]'),
|
732
|
-
'pathogens':('entry', None, '["wt","mutant"]'),
|
733
|
-
'pathogen_loc': ('entry', None, '[["c1","c2"], ["c3","c4"]]'),
|
734
|
-
'treatments': ('entry', None, '["cm","lovastatin_20uM"]'),
|
735
|
-
'treatment_loc': ('entry', None, '[["c1","c2"], ["c3","c4"]]'),
|
736
|
-
'channel_of_interest':('entry', None, 3),
|
737
|
-
'compartments':('entry', None, '["pathogen","cytoplasm"]'),
|
738
|
-
'measurement':('entry', None, 'mean_intensity'),
|
739
|
-
'nr_imgs':('entry', None, 32),
|
740
|
-
'um_per_pixel':('entry', None, 0.1)
|
741
|
-
}
|
742
|
-
return variables
|
743
|
-
|
744
|
-
def classify_variables():
|
745
|
-
|
746
|
-
def get_torchvision_models():
|
747
|
-
# Fetch all public callable attributes from torchvision.models that are functions
|
748
|
-
model_names = [name for name, obj in inspect.getmembers(models)
|
749
|
-
if inspect.isfunction(obj) and not name.startswith("__")]
|
750
|
-
return model_names
|
751
|
-
|
752
|
-
model_names = get_torchvision_models()
|
753
|
-
variables = {
|
754
|
-
'src':('entry', None, '/mnt/data/CellVoyager/40x/einar/mitotrackerHeLaToxoDsRed_20240224_123156/test_gui/merged'),
|
755
|
-
'cell_mask_dim':('entry', None, 4),
|
756
|
-
'classes':('entry', None, '["nc","pc"]'),
|
757
|
-
'measurement':('entry', None, 'mean_intensity'),
|
758
|
-
'model_type': ('combo', model_names, 'resnet50'),
|
759
|
-
'optimizer_type': ('combo', ['adamw','adam'], 'adamw'),
|
760
|
-
'schedule': ('combo', ['reduce_lr_on_plateau','step_lr'], 'reduce_lr_on_plateau'),
|
761
|
-
'loss_type': ('combo', ['focal_loss', 'binary_cross_entropy_with_logits'], 'focal_loss'),
|
762
|
-
'image_size': ('entry', None, 224),
|
763
|
-
'batch_size': ('entry', None, 12),
|
764
|
-
'epochs': ('entry', None, 2),
|
765
|
-
'val_split': ('entry', None, 0.1),
|
766
|
-
'train_mode': ('combo', ['erm', 'irm'], 'erm'),
|
767
|
-
'learning_rate': ('entry', None, 0.0001),
|
768
|
-
'weight_decay': ('entry', None, 0.00001),
|
769
|
-
'dropout_rate': ('entry', None, 0.1),
|
770
|
-
'gradient_accumulation': ('check', None, True),
|
771
|
-
'gradient_accumulation_steps': ('entry', None, 4),
|
772
|
-
'normalize': ('check', None, True),
|
773
|
-
'save': ('check', None, True),
|
774
|
-
'plot': ('check', None, True),
|
775
|
-
'init_weights': ('check', None, True),
|
776
|
-
'amsgrad': ('check', None, True),
|
777
|
-
'use_checkpoint': ('check', None, True),
|
778
|
-
'intermedeate_save': ('check', None, True),
|
779
|
-
'pin_memory': ('check', None, True),
|
780
|
-
'num_workers': ('entry', None, 30),
|
781
|
-
'verbose': ('check', None, True),
|
782
|
-
}
|
783
|
-
return variables
|
784
|
-
|
785
705
|
def create_input_field(frame, label_text, row, var_type='entry', options=None, default_value=None):
|
786
706
|
label = ttk.Label(frame, text=label_text, style='Custom.TLabel') # Apply Custom.TLabel style for labels
|
787
707
|
label.grid(column=0, row=row, sticky=tk.W, padx=5, pady=5)
|
@@ -793,7 +713,7 @@ def create_input_field(frame, label_text, row, var_type='entry', options=None, d
|
|
793
713
|
return (label, entry, var) # Return both the label and the entry, and the variable
|
794
714
|
elif var_type == 'check':
|
795
715
|
var = tk.BooleanVar(value=default_value) # Set default value (True/False)
|
796
|
-
check =
|
716
|
+
check = Checkbutton(frame, text="", variable=var)
|
797
717
|
check.grid(column=1, row=row, sticky=tk.W, padx=5)
|
798
718
|
return (label, check, var) # Return both the label and the checkbutton, and the variable
|
799
719
|
elif var_type == 'combo':
|
@@ -806,75 +726,13 @@ def create_input_field(frame, label_text, row, var_type='entry', options=None, d
|
|
806
726
|
else:
|
807
727
|
var = None # Placeholder in case of an undefined var_type
|
808
728
|
return (label, None, var)
|
809
|
-
|
810
|
-
def mask_variables():
|
811
|
-
variables = {
|
812
|
-
'src': ('entry', None, '/mnt/data/CellVoyager/40x/einar/mitotrackerHeLaToxoDsRed_20240224_123156/test_gui'),
|
813
|
-
'metadata_type': ('combo', ['cellvoyager', 'cq1', 'nikon', 'zeis', 'custom'], 'cellvoyager'),
|
814
|
-
'custom_regex': ('entry', None, None),
|
815
|
-
'experiment': ('entry', None, 'exp'),
|
816
|
-
'channels': ('combo', ['[0,1,2,3]','[0,1,2]','[0,1]','[0]'], '[0,1,2,3]'),
|
817
|
-
'magnification': ('combo', [20, 40, 60,], 40),
|
818
|
-
'nucleus_channel': ('combo', [0,1,2,3, None], 0),
|
819
|
-
'nucleus_background': ('entry', None, 100),
|
820
|
-
'nucleus_Signal_to_noise': ('entry', None, 5),
|
821
|
-
'nucleus_CP_prob': ('entry', None, 0),
|
822
|
-
'cell_channel': ('combo', [0,1,2,3, None], 3),
|
823
|
-
'cell_background': ('entry', None, 100),
|
824
|
-
'cell_Signal_to_noise': ('entry', None, 5),
|
825
|
-
'cell_CP_prob': ('entry', None, 0),
|
826
|
-
'pathogen_channel': ('combo', [0,1,2,3, None], 2),
|
827
|
-
'pathogen_background': ('entry', None, 100),
|
828
|
-
'pathogen_Signal_to_noise': ('entry', None, 3),
|
829
|
-
'pathogen_CP_prob': ('entry', None, 0),
|
830
|
-
'preprocess': ('check', None, True),
|
831
|
-
'masks': ('check', None, True),
|
832
|
-
'examples_to_plot': ('entry', None, 1),
|
833
|
-
'randomize': ('check', None, True),
|
834
|
-
'batch_size': ('entry', None, 50),
|
835
|
-
'timelapse': ('check', None, False),
|
836
|
-
'timelapse_displacement': ('entry', None, None),
|
837
|
-
'timelapse_memory': ('entry', None, 0),
|
838
|
-
'timelapse_frame_limits': ('entry', None, '[0,1000]'),
|
839
|
-
'timelapse_remove_transient': ('check', None, True),
|
840
|
-
'timelapse_mode': ('combo', ['trackpy', 'btrack'], 'trackpy'),
|
841
|
-
'timelapse_objects': ('combo', ['cell','nucleus','pathogen','cytoplasm', None], None),
|
842
|
-
'fps': ('entry', None, 2),
|
843
|
-
'remove_background': ('check', None, True),
|
844
|
-
'lower_quantile': ('entry', None, 0.01),
|
845
|
-
'merge': ('check', None, False),
|
846
|
-
'normalize_plots': ('check', None, True),
|
847
|
-
'all_to_mip': ('check', None, False),
|
848
|
-
'pick_slice': ('check', None, False),
|
849
|
-
'skip_mode': ('entry', None, None),
|
850
|
-
'save': ('check', None, True),
|
851
|
-
'plot': ('check', None, True),
|
852
|
-
'workers': ('entry', None, 30),
|
853
|
-
'verbose': ('check', None, True),
|
854
|
-
}
|
855
|
-
return variables
|
856
|
-
|
857
|
-
def add_mask_gui_defaults(settings):
|
858
|
-
settings['remove_background'] = True
|
859
|
-
settings['fps'] = 2
|
860
|
-
settings['all_to_mip'] = False
|
861
|
-
settings['pick_slice'] = False
|
862
|
-
settings['merge'] = False
|
863
|
-
settings['skip_mode'] = ''
|
864
|
-
settings['verbose'] = False
|
865
|
-
settings['normalize_plots'] = True
|
866
|
-
settings['randomize'] = True
|
867
|
-
settings['preprocess'] = True
|
868
|
-
settings['masks'] = True
|
869
|
-
settings['examples_to_plot'] = 1
|
870
|
-
return settings
|
871
|
-
|
729
|
+
|
872
730
|
def generate_fields(variables, scrollable_frame):
|
731
|
+
row = 1
|
873
732
|
vars_dict = {}
|
874
|
-
row = 0
|
875
733
|
tooltips = {
|
876
734
|
"src": "Path to the folder containing the images.",
|
877
|
-
"metadata_type": "Type of metadata to expect in the images. This will determine how the images are processed. If 'custom' is selected, you can provide a custom regex pattern to extract metadata from the image names",
|
735
|
+
"metadata_type": "Type of metadata to expect in the images. This will determine how the images are processed. If 'custom' is selected, you can provide a custom regex pattern to extract metadata from the image names.",
|
878
736
|
"custom_regex": "Custom regex pattern to extract metadata from the image names. This will only be used if 'custom' is selected for 'metadata_type'.",
|
879
737
|
"experiment": "Name of the experiment. This will be used to name the output files.",
|
880
738
|
"channels": "List of channels to use for the analysis. The first channel is 0, the second is 1, and so on. For example, [0,1,2] will use channels 0, 1, and 2.",
|
@@ -883,17 +741,20 @@ def generate_fields(variables, scrollable_frame):
|
|
883
741
|
"nucleus_background": "The background intensity for the nucleus channel. This will be used to remove background noise.",
|
884
742
|
"nucleus_Signal_to_noise": "The signal-to-noise ratio for the nucleus channel. This will be used to determine the range of intensities to normalize images to for nucleus segmentation.",
|
885
743
|
"nucleus_CP_prob": "The cellpose probability threshold for the nucleus channel. This will be used to segment the nucleus.",
|
744
|
+
"nucleus_FT": "The flow threshold for nucleus objects. This will be used in nuclues segmentation.",
|
886
745
|
"cell_channel": "The channel to use for the cell. If None, the cell will not be segmented.",
|
887
746
|
"cell_background": "The background intensity for the cell channel. This will be used to remove background noise.",
|
888
747
|
"cell_Signal_to_noise": "The signal-to-noise ratio for the cell channel. This will be used to determine the range of intensities to normalize images to for cell segmentation.",
|
889
|
-
"cell_CP_prob": "The cellpose probability threshold for the cell channel. This will be used
|
748
|
+
"cell_CP_prob": "The cellpose probability threshold for the cell channel. This will be used in cell segmentation.",
|
749
|
+
"cell_FT": "The flow threshold for cell objects. This will be used to segment the cells.",
|
890
750
|
"pathogen_channel": "The channel to use for the pathogen. If None, the pathogen will not be segmented.",
|
891
751
|
"pathogen_background": "The background intensity for the pathogen channel. This will be used to remove background noise.",
|
892
752
|
"pathogen_Signal_to_noise": "The signal-to-noise ratio for the pathogen channel. This will be used to determine the range of intensities to normalize images to for pathogen segmentation.",
|
893
753
|
"pathogen_CP_prob": "The cellpose probability threshold for the pathogen channel. This will be used to segment the pathogen.",
|
754
|
+
"pathogen_FT": "The flow threshold for pathogen objects. This will be used in pathogen segmentation.",
|
894
755
|
"preprocess": "Whether to preprocess the images before segmentation. This includes background removal and normalization. Set to False only if this step has already been done.",
|
895
756
|
"masks": "Whether to generate masks for the segmented objects. If True, masks will be generated for the nucleus, cell, and pathogen.",
|
896
|
-
"examples_to_plot": "The number of images to plot for each segmented object. This will be used to visually inspect the segmentation results and normalization
|
757
|
+
"examples_to_plot": "The number of images to plot for each segmented object. This will be used to visually inspect the segmentation results and normalization.",
|
897
758
|
"randomize": "Whether to randomize the order of the images before processing. Recommended to avoid bias in the segmentation.",
|
898
759
|
"batch_size": "The batch size to use for processing the images. This will determine how many images are processed at once. Images are normalized and segmented in batches. Lower if application runs out of RAM or VRAM.",
|
899
760
|
"timelapse": "Whether to process the images as a timelapse.",
|
@@ -905,41 +766,41 @@ def generate_fields(variables, scrollable_frame):
|
|
905
766
|
"timelapse_objects": "The objects to track in the timelapse (cell, nucleus or pathogen). This will determine which objects are tracked over time. If None, all objects will be tracked.",
|
906
767
|
"fps": "Frames per second of the automatically generated timelapse movies.",
|
907
768
|
"remove_background": "Whether to remove background noise from the images. This will help improve the quality of the segmentation.",
|
908
|
-
"
|
909
|
-
"merge_pathogens": "Whether to merge pathogen objects that share more than 75% of their
|
769
|
+
"lower_percentile": "The lower quantile to use for normalizing the images. This will be used to determine the range of intensities to normalize images to.",
|
770
|
+
"merge_pathogens": "Whether to merge pathogen objects that share more than 75% of their perimeter.",
|
910
771
|
"normalize_plots": "Whether to normalize the plots.",
|
911
772
|
"all_to_mip": "Whether to convert all images to maximum intensity projections before processing.",
|
912
773
|
"pick_slice": "Whether to pick a single slice from the z-stack images. If False, the maximum intensity projection will be used.",
|
913
774
|
"skip_mode": "The mode to use for skipping images. This will determine how to handle images that cannot be processed.",
|
914
775
|
"save": "Whether to save the results to disk.",
|
776
|
+
"merge_edge_pathogen_cells": "Whether to merge cells that share pathogen objects.",
|
915
777
|
"plot": "Whether to plot the results.",
|
916
778
|
"workers": "The number of workers to use for processing the images. This will determine how many images are processed in parallel. Increase to speed up processing.",
|
917
779
|
"verbose": "Whether to print verbose output during processing.",
|
918
780
|
"input_folder": "Path to the folder containing the images.",
|
919
781
|
"cell_mask_dim": "The dimension of the array the cell mask is saved in.",
|
920
|
-
"cell_min_size": "The minimum size of cell objects in
|
921
|
-
"
|
782
|
+
"cell_min_size": "The minimum size of cell objects in pixels^2.",
|
783
|
+
"cytoplasm": "Whether to segment the cytoplasm (Cell - Nucleus + Pathogen).",
|
784
|
+
"cytoplasm_min_size": "The minimum size of cytoplasm objects in pixels^2.",
|
922
785
|
"nucleus_mask_dim": "The dimension of the array the nucleus mask is saved in.",
|
923
|
-
"nucleus_min_size": "The minimum size of nucleus objects in
|
786
|
+
"nucleus_min_size": "The minimum size of nucleus objects in pixels^2.",
|
924
787
|
"pathogen_mask_dim": "The dimension of the array the pathogen mask is saved in.",
|
925
|
-
"pathogen_min_size": "The minimum size of pathogen objects in
|
788
|
+
"pathogen_min_size": "The minimum size of pathogen objects in pixels^2.",
|
926
789
|
"save_png": "Whether to save the segmented objects as PNG images.",
|
927
790
|
"crop_mode": "The mode to use for cropping the images. This will determine which objects are cropped from the images (cell, nucleus, pathogen, cytoplasm).",
|
928
791
|
"use_bounding_box": "Whether to use the bounding box of the objects for cropping. If False, only the object itself will be cropped.",
|
929
792
|
"png_size": "The size of the PNG images to save. This will determine the size of the saved images.",
|
930
|
-
"normalize": "The percentiles to use for normalizing the images. This will be used to determine the range of intensities to normalize images to
|
793
|
+
"normalize": "The percentiles to use for normalizing the images. This will be used to determine the range of intensities to normalize images to. If None, no normalization is done.",
|
931
794
|
"png_dims": "The dimensions of the PNG images to save. This will determine the dimensions of the saved images. Maximum of 3 dimensions e.g. [1,2,3].",
|
932
795
|
"normalize_by": "Whether to normalize the images by field of view (fov) or by PNG image (png).",
|
933
796
|
"save_measurements": "Whether to save the measurements to disk.",
|
934
797
|
"representative_images": "Whether to save representative images of the segmented objects (Not working yet).",
|
935
|
-
"plot": "Whether to plot results.",
|
936
798
|
"plot_filtration": "Whether to plot the filtration steps.",
|
937
799
|
"include_uninfected": "Whether to include uninfected cells in the analysis.",
|
938
|
-
"dialate_pngs": "Whether to
|
939
|
-
"dialate_png_ratios": "The ratios to use for
|
940
|
-
"timelapse_objects": "The objects to track in the timelapse (cell, nucleus or pathogen). This will determine which objects are tracked over time. If None, all objects will be tracked.",
|
800
|
+
"dialate_pngs": "Whether to dilate the PNG images before saving.",
|
801
|
+
"dialate_png_ratios": "The ratios to use for dilating the PNG images. This will determine the amount of dilation applied to the images before cropping.",
|
941
802
|
"max_workers": "The number of workers to use for processing the images. This will determine how many images are processed in parallel. Increase to speed up processing.",
|
942
|
-
"cells
|
803
|
+
"cells": "The cell types to include in the analysis.",
|
943
804
|
"cell_loc": "The locations of the cell types in the images.",
|
944
805
|
"pathogens": "The pathogen types to include in the analysis.",
|
945
806
|
"pathogen_loc": "The locations of the pathogen types in the images.",
|
@@ -949,7 +810,7 @@ def generate_fields(variables, scrollable_frame):
|
|
949
810
|
"compartments": "The compartments to measure in the images.",
|
950
811
|
"measurement": "The measurement to use for the analysis.",
|
951
812
|
"nr_imgs": "The number of images to plot.",
|
952
|
-
"um_per_pixel": "The micrometers per pixel for the images."
|
813
|
+
"um_per_pixel": "The micrometers per pixel for the images."
|
953
814
|
}
|
954
815
|
|
955
816
|
for key, (var_type, options, default_value) in variables.items():
|
@@ -959,7 +820,6 @@ def generate_fields(variables, scrollable_frame):
|
|
959
820
|
# Add tooltip to the label if it exists in the tooltips dictionary
|
960
821
|
if key in tooltips:
|
961
822
|
ToolTip(label, tooltips[key])
|
962
|
-
|
963
823
|
row += 1
|
964
824
|
return vars_dict
|
965
825
|
|
@@ -993,12 +853,6 @@ def create_dark_mode(root, style, console_output):
|
|
993
853
|
if console_output != None:
|
994
854
|
console_output.config(bg=dark_bg, fg=light_text, insertbackground=light_text) #, font=("Helvetica", 12)
|
995
855
|
root.configure(bg=dark_bg)
|
996
|
-
|
997
|
-
def set_dark_style(style):
|
998
|
-
style.configure('TFrame', background='black')
|
999
|
-
style.configure('TLabel', background='black', foreground='white')
|
1000
|
-
style.configure('TEntry', background='black', foreground='white')
|
1001
|
-
style.configure('TCheckbutton', background='black', foreground='white')
|
1002
856
|
|
1003
857
|
##@log_function_call
|
1004
858
|
def main_thread_update_function(root, q, fig_queue, canvas_widget, progress_label):
|
@@ -1113,7 +967,7 @@ def preprocess_generate_masks_wrapper(settings, q, fig_queue):
|
|
1113
967
|
plt.show = my_show
|
1114
968
|
|
1115
969
|
try:
|
1116
|
-
spacr.core.preprocess_generate_masks(settings['src'], settings=settings)
|
970
|
+
spacr.core.preprocess_generate_masks(src=settings['src'], settings=settings)
|
1117
971
|
except Exception as e:
|
1118
972
|
errorMessage = f"Error during processing: {e}"
|
1119
973
|
q.put(errorMessage) # Send the error message to the GUI via the queue
|
@@ -1182,4 +1036,490 @@ def run_multiple_simulations_wrapper(settings, q, fig_queue):
|
|
1182
1036
|
q.put(errorMessage) # Send the error message to the GUI via the queue
|
1183
1037
|
traceback.print_exc()
|
1184
1038
|
finally:
|
1185
|
-
plt.show = original_show # Restore the original plt.show function
|
1039
|
+
plt.show = original_show # Restore the original plt.show function
|
1040
|
+
|
1041
|
+
def convert_settings_dict_for_gui(settings):
|
1042
|
+
variables = {}
|
1043
|
+
special_cases = {
|
1044
|
+
'metadata_type': ('combo', ['cellvoyager', 'cq1', 'nikon', 'zeis', 'custom'], 'cellvoyager'),
|
1045
|
+
'channels': ('combo', ['[0,1,2,3]', '[0,1,2]', '[0,1]', '[0]'], '[0,1,2,3]'),
|
1046
|
+
'cell_mask_dim': ('combo', ['0', '1', '2', '3', '4', '5', '6', '7', '8', None], None),
|
1047
|
+
'nucleus_mask_dim': ('combo', ['0', '1', '2', '3', '4', '5', '6', '7', '8', None], None),
|
1048
|
+
'pathogen_mask_dim': ('combo', ['0', '1', '2', '3', '4', '5', '6', '7', '8', None], None),
|
1049
|
+
#'crop_mode': ('combo', ['cell', 'nucleus', 'pathogen', '[cell, nucleus, pathogen]', '[cell,nucleus, pathogen]'], ['cell']),
|
1050
|
+
'magnification': ('combo', [20, 40, 60], 20),
|
1051
|
+
'nucleus_channel': ('combo', [0, 1, 2, 3, None], None),
|
1052
|
+
'cell_channel': ('combo', [0, 1, 2, 3, None], None),
|
1053
|
+
'pathogen_channel': ('combo', [0, 1, 2, 3, None], None),
|
1054
|
+
'timelapse_mode': ('combo', ['trackpy', 'btrack'], 'trackpy'),
|
1055
|
+
'timelapse_objects': ('combo', ['cell', 'nucleus', 'pathogen', 'cytoplasm', None], None),
|
1056
|
+
'model_type': ('combo', ['resnet50', 'other_model'], 'resnet50'),
|
1057
|
+
'optimizer_type': ('combo', ['adamw', 'adam'], 'adamw'),
|
1058
|
+
'schedule': ('combo', ['reduce_lr_on_plateau', 'step_lr'], 'reduce_lr_on_plateau'),
|
1059
|
+
'loss_type': ('combo', ['focal_loss', 'binary_cross_entropy_with_logits'], 'focal_loss'),
|
1060
|
+
'normalize_by': ('combo', ['fov', 'png'], 'png'),
|
1061
|
+
}
|
1062
|
+
|
1063
|
+
for key, value in settings.items():
|
1064
|
+
if key in special_cases:
|
1065
|
+
variables[key] = special_cases[key]
|
1066
|
+
elif isinstance(value, bool):
|
1067
|
+
variables[key] = ('check', None, value)
|
1068
|
+
elif isinstance(value, int) or isinstance(value, float):
|
1069
|
+
variables[key] = ('entry', None, value)
|
1070
|
+
elif isinstance(value, str):
|
1071
|
+
variables[key] = ('entry', None, value)
|
1072
|
+
elif value is None:
|
1073
|
+
variables[key] = ('entry', None, value)
|
1074
|
+
elif isinstance(value, list):
|
1075
|
+
variables[key] = ('entry', None, str(value))
|
1076
|
+
else:
|
1077
|
+
variables[key] = ('entry', None, str(value))
|
1078
|
+
return variables
|
1079
|
+
|
1080
|
+
def setup_settings_panel(vertical_container, settings_type='mask', frame_height=500, frame_width=1000):
|
1081
|
+
global vars_dict, scrollable_frame
|
1082
|
+
from .settings import set_default_settings_preprocess_generate_masks, get_measure_crop_settings, set_default_train_test_model
|
1083
|
+
|
1084
|
+
print("Setting up settings panel")
|
1085
|
+
|
1086
|
+
# Create settings frame
|
1087
|
+
settings_frame = tk.Frame(vertical_container, bg='black', height=frame_height, width=frame_width)
|
1088
|
+
vertical_container.add(settings_frame, stretch="always")
|
1089
|
+
|
1090
|
+
# Add settings label
|
1091
|
+
settings_label = ttk.Label(settings_frame, text="Settings", style="Custom.TLabel", background="black", foreground="white")
|
1092
|
+
settings_label.grid(row=0, column=0, pady=10, padx=10)
|
1093
|
+
|
1094
|
+
# Create a ScrollableFrame inside the settings_frame
|
1095
|
+
scrollable_frame = ScrollableFrame(settings_frame, bg='black', width=frame_width)
|
1096
|
+
scrollable_frame.grid(row=1, column=0, sticky="nsew")
|
1097
|
+
|
1098
|
+
# Configure the weights for resizing
|
1099
|
+
settings_frame.grid_rowconfigure(1, weight=1)
|
1100
|
+
settings_frame.grid_columnconfigure(0, weight=1)
|
1101
|
+
|
1102
|
+
# Load settings based on type
|
1103
|
+
if settings_type == 'mask':
|
1104
|
+
settings = set_default_settings_preprocess_generate_masks(src='path', settings={})
|
1105
|
+
elif settings_type == 'measure':
|
1106
|
+
settings = get_measure_crop_settings(settings={})
|
1107
|
+
elif settings_type == 'classify':
|
1108
|
+
settings = set_default_train_test_model(settings={})
|
1109
|
+
else:
|
1110
|
+
raise ValueError(f"Invalid settings type: {settings_type}")
|
1111
|
+
|
1112
|
+
# Generate fields for settings
|
1113
|
+
variables = convert_settings_dict_for_gui(settings)
|
1114
|
+
vars_dict = generate_fields(variables, scrollable_frame)
|
1115
|
+
|
1116
|
+
print("Settings panel setup complete")
|
1117
|
+
return scrollable_frame, vars_dict
|
1118
|
+
|
1119
|
+
|
1120
|
+
def setup_plot_section(vertical_container):
|
1121
|
+
global canvas, canvas_widget
|
1122
|
+
plot_frame = tk.PanedWindow(vertical_container, orient=tk.VERTICAL)
|
1123
|
+
vertical_container.add(plot_frame, stretch="always")
|
1124
|
+
figure = Figure(figsize=(30, 4), dpi=100, facecolor='black')
|
1125
|
+
plot = figure.add_subplot(111)
|
1126
|
+
plot.plot([], []) # This creates an empty plot.
|
1127
|
+
plot.axis('off')
|
1128
|
+
canvas = FigureCanvasTkAgg(figure, master=plot_frame)
|
1129
|
+
canvas.get_tk_widget().configure(cursor='arrow', background='black', highlightthickness=0)
|
1130
|
+
canvas_widget = canvas.get_tk_widget()
|
1131
|
+
plot_frame.add(canvas_widget, stretch="always")
|
1132
|
+
canvas.draw()
|
1133
|
+
canvas.figure = figure
|
1134
|
+
return canvas, canvas_widget
|
1135
|
+
|
1136
|
+
def download_hug_dataset():
|
1137
|
+
global vars_dict, q
|
1138
|
+
repo_id = "einarolafsson/toxo_mito"
|
1139
|
+
subfolder = "plate1"
|
1140
|
+
local_dir = os.path.join(os.path.expanduser("~"), "datasets") # Set to the home directory
|
1141
|
+
try:
|
1142
|
+
local_path = download_dataset(repo_id, subfolder, local_dir)
|
1143
|
+
if 'src' in vars_dict:
|
1144
|
+
vars_dict['src'][2].set(local_path) # Assuming vars_dict['src'] is a tuple and the 3rd element is a StringVar
|
1145
|
+
q.put(f"Set source path to: {vars_dict['src'][2].get()}\n")
|
1146
|
+
q.put(f"Dataset downloaded to: {local_path}\n")
|
1147
|
+
except Exception as e:
|
1148
|
+
q.put(f"Failed to download dataset: {e}\n")
|
1149
|
+
|
1150
|
+
def download_dataset(repo_id, subfolder, local_dir=None, retries=5, delay=5):
|
1151
|
+
global q
|
1152
|
+
"""
|
1153
|
+
Downloads a dataset from Hugging Face and returns the local path.
|
1154
|
+
|
1155
|
+
Args:
|
1156
|
+
repo_id (str): The repository ID (e.g., 'einarolafsson/toxo_mito').
|
1157
|
+
subfolder (str): The subfolder path within the repository (e.g., 'plate1').
|
1158
|
+
local_dir (str): The local directory where the dataset will be saved. Defaults to the user's home directory.
|
1159
|
+
retries (int): Number of retry attempts in case of failure.
|
1160
|
+
delay (int): Delay in seconds between retries.
|
1161
|
+
|
1162
|
+
Returns:
|
1163
|
+
str: The local path to the downloaded dataset.
|
1164
|
+
"""
|
1165
|
+
if local_dir is None:
|
1166
|
+
local_dir = os.path.join(os.path.expanduser("~"), "datasets")
|
1167
|
+
|
1168
|
+
local_subfolder_dir = os.path.join(local_dir, subfolder)
|
1169
|
+
if not os.path.exists(local_subfolder_dir):
|
1170
|
+
os.makedirs(local_subfolder_dir)
|
1171
|
+
elif len(os.listdir(local_subfolder_dir)) == 40:
|
1172
|
+
q.put(f"Dataset already downloaded to: {local_subfolder_dir}")
|
1173
|
+
return local_subfolder_dir
|
1174
|
+
|
1175
|
+
attempt = 0
|
1176
|
+
while attempt < retries:
|
1177
|
+
try:
|
1178
|
+
files = list_repo_files(repo_id, repo_type="dataset")
|
1179
|
+
subfolder_files = [file for file in files if file.startswith(subfolder)]
|
1180
|
+
|
1181
|
+
for file_name in subfolder_files:
|
1182
|
+
for attempt in range(retries):
|
1183
|
+
try:
|
1184
|
+
url = f"https://huggingface.co/datasets/{repo_id}/resolve/main/{file_name}?download=true"
|
1185
|
+
response = requests.get(url, stream=True)
|
1186
|
+
response.raise_for_status()
|
1187
|
+
|
1188
|
+
local_file_path = os.path.join(local_subfolder_dir, os.path.basename(file_name))
|
1189
|
+
with open(local_file_path, 'wb') as file:
|
1190
|
+
for chunk in response.iter_content(chunk_size=8192):
|
1191
|
+
file.write(chunk)
|
1192
|
+
q.put(f"Downloaded file: {file_name}")
|
1193
|
+
break
|
1194
|
+
except (requests.HTTPError, requests.Timeout) as e:
|
1195
|
+
q.put(f"Error downloading {file_name}: {e}. Retrying in {delay} seconds...")
|
1196
|
+
time.sleep(delay)
|
1197
|
+
else:
|
1198
|
+
raise Exception(f"Failed to download {file_name} after multiple attempts.")
|
1199
|
+
|
1200
|
+
return local_subfolder_dir
|
1201
|
+
|
1202
|
+
except (requests.HTTPError, requests.Timeout) as e:
|
1203
|
+
q.put(f"Error downloading dataset: {e}. Retrying in {delay} seconds...")
|
1204
|
+
attempt += 1
|
1205
|
+
time.sleep(delay)
|
1206
|
+
|
1207
|
+
raise Exception("Failed to download dataset after multiple attempts.")
|
1208
|
+
|
1209
|
+
def setup_button_section(horizontal_container, settings_type='mask', btn_row=1, settings_row=5, run=True, abort=True, download=True, import_btn=True, progress=True):
|
1210
|
+
global button_frame, run_button, abort_button, download_dataset_button, import_button, progress_label, q, fig_queue, vars_dict
|
1211
|
+
|
1212
|
+
button_frame = tk.Frame(horizontal_container, bg='black')
|
1213
|
+
horizontal_container.add(button_frame, stretch="always", sticky="nsew")
|
1214
|
+
button_frame.grid_rowconfigure(0, weight=0)
|
1215
|
+
button_frame.grid_rowconfigure(1, weight=1)
|
1216
|
+
button_frame.grid_columnconfigure(0, weight=1)
|
1217
|
+
|
1218
|
+
categories_label = ttk.Label(button_frame, text="Categories", style="Custom.TLabel", background="black", foreground="white")
|
1219
|
+
categories_label.grid(row=0, column=0, pady=10, padx=10)
|
1220
|
+
|
1221
|
+
button_scrollable_frame = ScrollableFrame(button_frame, bg='black')
|
1222
|
+
button_scrollable_frame.grid(row=1, column=0, sticky="nsew")
|
1223
|
+
|
1224
|
+
button_scrollable_frame.scrollable_frame.grid_columnconfigure(0, weight=1, minsize=100)
|
1225
|
+
button_scrollable_frame.scrollable_frame.grid_columnconfigure(1, weight=1, minsize=100)
|
1226
|
+
button_scrollable_frame.scrollable_frame.grid_columnconfigure(2, weight=1, minsize=100)
|
1227
|
+
|
1228
|
+
if run:
|
1229
|
+
run_button = ttk.Button(button_scrollable_frame.scrollable_frame, text="Run", command=lambda: start_process(q, fig_queue, settings_type), style='Custom.TButton')
|
1230
|
+
run_button.grid(row=btn_row, column=0, pady=5, padx=5, sticky='ew')
|
1231
|
+
if abort:
|
1232
|
+
abort_button = ttk.Button(button_scrollable_frame.scrollable_frame, text="Abort", command=initiate_abort, style='Custom.TButton')
|
1233
|
+
abort_button.grid(row=btn_row, column=1, pady=5, padx=5, sticky='ew')
|
1234
|
+
btn_row += 1
|
1235
|
+
if download:
|
1236
|
+
download_dataset_button = ttk.Button(button_scrollable_frame.scrollable_frame, text="Download", command=download_hug_dataset, style='Custom.TButton')
|
1237
|
+
download_dataset_button.grid(row=btn_row, column=0, pady=5, padx=5, sticky='ew')
|
1238
|
+
if import_btn:
|
1239
|
+
import_button = ttk.Button(button_scrollable_frame.scrollable_frame, text="Import", command=lambda: import_settings(settings_row, settings_type), style='Custom.TButton')
|
1240
|
+
import_button.grid(row=btn_row, column=1, pady=5, padx=5, sticky='ew')
|
1241
|
+
btn_row += 1
|
1242
|
+
if progress:
|
1243
|
+
progress_label = ttk.Label(button_scrollable_frame.scrollable_frame, text="Processing: 0%", background="black", foreground="white")
|
1244
|
+
progress_label.grid(row=btn_row, column=0, columnspan=2, sticky="ew", pady=(5, 0), padx=10)
|
1245
|
+
|
1246
|
+
# Call toggle_settings after vars_dict is initialized
|
1247
|
+
if vars_dict is not None:
|
1248
|
+
toggle_settings(button_scrollable_frame)
|
1249
|
+
|
1250
|
+
return progress_label
|
1251
|
+
|
1252
|
+
|
1253
|
+
def setup_console(vertical_container):
|
1254
|
+
global console_output
|
1255
|
+
print("Setting up console frame")
|
1256
|
+
console_frame = tk.Frame(vertical_container, bg='black')
|
1257
|
+
vertical_container.add(console_frame, stretch="always")
|
1258
|
+
console_label = ttk.Label(console_frame, text="Console", background="black", foreground="white")
|
1259
|
+
console_label.grid(row=0, column=0, pady=10, padx=10)
|
1260
|
+
console_output = scrolledtext.ScrolledText(console_frame, height=10, bg='black', fg='white', insertbackground='white')
|
1261
|
+
console_output.grid(row=1, column=0, sticky="nsew")
|
1262
|
+
console_frame.grid_rowconfigure(1, weight=1)
|
1263
|
+
console_frame.grid_columnconfigure(0, weight=1)
|
1264
|
+
print("Console setup complete")
|
1265
|
+
return console_output
|
1266
|
+
|
1267
|
+
def toggle_test_mode():
|
1268
|
+
global vars_dict, test_mode_button
|
1269
|
+
current_state = vars_dict['test_mode'][2].get()
|
1270
|
+
new_state = not current_state
|
1271
|
+
vars_dict['test_mode'][2].set(new_state)
|
1272
|
+
if new_state:
|
1273
|
+
test_mode_button.config(bg="blue")
|
1274
|
+
else:
|
1275
|
+
test_mode_button.config(bg="gray")
|
1276
|
+
|
1277
|
+
def toggle_settings(button_scrollable_frame):
|
1278
|
+
global vars_dict
|
1279
|
+
|
1280
|
+
if vars_dict is None:
|
1281
|
+
raise ValueError("vars_dict is not initialized.")
|
1282
|
+
|
1283
|
+
categories = {
|
1284
|
+
"General": ["src", "input_folder", "metadata_type", "custom_regex", "experiment", "channels", "magnification"],
|
1285
|
+
"Nucleus": ["nucleus_channel", "nucleus_background", "nucleus_Signal_to_noise", "nucleus_CP_prob", "nucleus_FT", "remove_background_nucleus", "nucleus_min_size", "nucleus_mask_dim", "nucleus_loc"],
|
1286
|
+
"Cell": ["cell_channel", "cell_background", "cell_Signal_to_noise", "cell_CP_prob", "cell_FT", "remove_background_cell", "cell_min_size", "cell_mask_dim", "cytoplasm", "cytoplasm_min_size", "include_uninfected", "merge_edge_pathogen_cells", "adjust_cells"],
|
1287
|
+
"Pathogen": ["pathogen_channel", "pathogen_background", "pathogen_Signal_to_noise", "pathogen_CP_prob", "pathogen_FT", "pathogen_model", "remove_background_pathogen", "pathogen_min_size", "pathogen_mask_dim"],
|
1288
|
+
"Timelapse": ["timelapse", "fps", "timelapse_displacement", "timelapse_memory", "timelapse_frame_limits", "timelapse_remove_transient", "timelapse_mode", "timelapse_objects", "compartments"],
|
1289
|
+
"Plot": ["plot_filtration", "examples_to_plot", "normalize_plots", "normalize", "cmap", "figuresize", "plot"],
|
1290
|
+
"Object Image": ["save_png", "dialate_pngs", "dialate_png_ratios", "png_size", "png_dims", "save_arrays", "normalize_by", "dialate_png_ratios", "crop_mode", "dialate_pngs", "normalize", "use_bounding_box"],
|
1291
|
+
"Annotate Data": ["treatment_loc", "cells", "cell_loc", "pathogens", "pathogen_loc", "channel_of_interest", "measurement", "treatments", "representative_images", "um_per_pixel", "nr_imgs"],
|
1292
|
+
"Measurements": ["homogeneity", "homogeneity_distances", "radial_dist", "calculate_correlation", "manders_thresholds", "save_measurements"],
|
1293
|
+
"Advanced": ["preprocess", "remove_background", "normalize", "lower_percentile", "merge_pathogens", "batch_size", "filter", "save", "masks", "verbose", "randomize", "max_workers", "workers"],
|
1294
|
+
"Miscellaneous": ["all_to_mip", "pick_slice", "skip_mode", "upscale", "upscale_factor"],
|
1295
|
+
"Test": ["test_mode", "test_images", "random_test", "test_nr"]
|
1296
|
+
}
|
1297
|
+
|
1298
|
+
def toggle_category(settings, var):
|
1299
|
+
for setting in settings:
|
1300
|
+
if setting in vars_dict:
|
1301
|
+
label, widget, _ = vars_dict[setting]
|
1302
|
+
if var.get() == 0:
|
1303
|
+
label.grid_remove()
|
1304
|
+
widget.grid_remove()
|
1305
|
+
else:
|
1306
|
+
label.grid()
|
1307
|
+
widget.grid()
|
1308
|
+
|
1309
|
+
row = 1
|
1310
|
+
col = 2 # Start from column 2 to avoid overlap with buttons
|
1311
|
+
category_idx = 0
|
1312
|
+
|
1313
|
+
for category, settings in categories.items():
|
1314
|
+
if any(setting in vars_dict for setting in settings):
|
1315
|
+
category_var = tk.IntVar(value=0)
|
1316
|
+
vars_dict[category] = (None, None, category_var)
|
1317
|
+
toggle = ttk.Checkbutton(
|
1318
|
+
button_scrollable_frame.scrollable_frame,
|
1319
|
+
text=category,
|
1320
|
+
variable=category_var,
|
1321
|
+
command=lambda cat=settings, var=category_var: toggle_category(cat, var),
|
1322
|
+
style='TCheckbutton'
|
1323
|
+
)
|
1324
|
+
toggle.grid(row=row, column=col, sticky="w", pady=2, padx=2)
|
1325
|
+
col += 1
|
1326
|
+
category_idx += 1
|
1327
|
+
|
1328
|
+
if category_idx % 4 == 0:
|
1329
|
+
row += 1
|
1330
|
+
col = 2 # Reset column to 2
|
1331
|
+
|
1332
|
+
for settings in categories.values():
|
1333
|
+
for setting in settings:
|
1334
|
+
if setting in vars_dict:
|
1335
|
+
label, widget, _ = vars_dict[setting]
|
1336
|
+
label.grid_remove()
|
1337
|
+
widget.grid_remove()
|
1338
|
+
|
1339
|
+
def initiate_abort():
|
1340
|
+
global thread_control
|
1341
|
+
if thread_control.get("stop_requested") is not None:
|
1342
|
+
thread_control["stop_requested"].value = 1
|
1343
|
+
|
1344
|
+
if thread_control.get("run_thread") is not None:
|
1345
|
+
thread_control["run_thread"].join(timeout=5)
|
1346
|
+
if thread_control["run_thread"].is_alive():
|
1347
|
+
thread_control["run_thread"].terminate()
|
1348
|
+
thread_control["run_thread"] = None
|
1349
|
+
|
1350
|
+
def run_mask_gui(settings, q, fig_queue, stop_requested):
|
1351
|
+
process_stdout_stderr(q)
|
1352
|
+
try:
|
1353
|
+
preprocess_generate_masks_wrapper(settings, q, fig_queue)
|
1354
|
+
except Exception as e:
|
1355
|
+
q.put(f"Error during processing: {e}")
|
1356
|
+
traceback.print_exc()
|
1357
|
+
finally:
|
1358
|
+
stop_requested.value = 1
|
1359
|
+
|
1360
|
+
def start_process(q, fig_queue, settings_type='mask'):
|
1361
|
+
global thread_control, vars_dict
|
1362
|
+
settings = check_settings(vars_dict)
|
1363
|
+
if thread_control.get("run_thread") is not None:
|
1364
|
+
initiate_abort()
|
1365
|
+
stop_requested = Value('i', 0) # multiprocessing shared value for inter-process communication
|
1366
|
+
thread_control["stop_requested"] = stop_requested
|
1367
|
+
if settings_type == 'mask':
|
1368
|
+
thread_control["run_thread"] = Process(target=run_mask_gui, args=(settings, q, fig_queue, stop_requested))
|
1369
|
+
elif settings_type == 'measure':
|
1370
|
+
thread_control["run_thread"] = Process(target=run_measure_gui, args=(settings, q, fig_queue, stop_requested))
|
1371
|
+
elif settings_type == 'classify':
|
1372
|
+
thread_control["run_thread"] = Process(target=run_classify_gui, args=(settings, q, fig_queue, stop_requested))
|
1373
|
+
thread_control["run_thread"].start()
|
1374
|
+
|
1375
|
+
def import_settings(settings_type='mask'):
|
1376
|
+
global vars_dict, scrollable_frame
|
1377
|
+
csv_file_path = filedialog.askopenfilename(filetypes=[("CSV files", "*.csv")])
|
1378
|
+
csv_settings = read_settings_from_csv(csv_file_path)
|
1379
|
+
if settings_type == 'mask':
|
1380
|
+
settings = set_default_settings_preprocess_generate_masks(src='path', settings={})
|
1381
|
+
elif settings_type == 'measure':
|
1382
|
+
settings = get_measure_crop_settings(settings={})
|
1383
|
+
elif settings_type == 'classify':
|
1384
|
+
settings = set_default_train_test_model(settings={})
|
1385
|
+
else:
|
1386
|
+
raise ValueError(f"Invalid settings type: {settings_type}")
|
1387
|
+
|
1388
|
+
variables = convert_settings_dict_for_gui(settings)
|
1389
|
+
new_settings = update_settings_from_csv(variables, csv_settings)
|
1390
|
+
vars_dict = generate_fields(new_settings, scrollable_frame)
|
1391
|
+
|
1392
|
+
def process_fig_queue():
|
1393
|
+
global canvas, fig_queue, canvas_widget, parent_frame
|
1394
|
+
try:
|
1395
|
+
while not fig_queue.empty():
|
1396
|
+
clear_canvas(canvas)
|
1397
|
+
fig = fig_queue.get_nowait()
|
1398
|
+
for ax in fig.get_axes():
|
1399
|
+
ax.set_xticks([]) # Remove x-axis ticks
|
1400
|
+
ax.set_yticks([]) # Remove y-axis ticks
|
1401
|
+
ax.xaxis.set_visible(False) # Hide the x-axis
|
1402
|
+
ax.yaxis.set_visible(False) # Hide the y-axis
|
1403
|
+
fig.tight_layout()
|
1404
|
+
fig.set_facecolor('black')
|
1405
|
+
canvas.figure = fig
|
1406
|
+
fig_width, fig_height = canvas_widget.winfo_width(), canvas_widget.winfo_height()
|
1407
|
+
fig.set_size_inches(fig_width / fig.dpi, fig_height / fig.dpi, forward=True)
|
1408
|
+
canvas.draw_idle()
|
1409
|
+
except Exception as e:
|
1410
|
+
traceback.print_exc()
|
1411
|
+
finally:
|
1412
|
+
after_id = canvas_widget.after(100, process_fig_queue)
|
1413
|
+
parent_frame.after_tasks.append(after_id)
|
1414
|
+
|
1415
|
+
def process_console_queue():
|
1416
|
+
global q, console_output, parent_frame
|
1417
|
+
while not q.empty():
|
1418
|
+
message = q.get_nowait()
|
1419
|
+
console_output.insert(tk.END, message)
|
1420
|
+
console_output.see(tk.END)
|
1421
|
+
after_id = console_output.after(100, process_console_queue)
|
1422
|
+
parent_frame.after_tasks.append(after_id)
|
1423
|
+
|
1424
|
+
def setup_frame(parent_frame):
|
1425
|
+
style = ttk.Style(parent_frame)
|
1426
|
+
set_dark_style(style)
|
1427
|
+
set_default_font(parent_frame, font_name="Helvetica", size=8)
|
1428
|
+
parent_frame.configure(bg='black')
|
1429
|
+
parent_frame.grid_rowconfigure(0, weight=1)
|
1430
|
+
parent_frame.grid_columnconfigure(0, weight=1)
|
1431
|
+
vertical_container = tk.PanedWindow(parent_frame, orient=tk.VERTICAL, bg='black')
|
1432
|
+
vertical_container.grid(row=0, column=0, sticky=tk.NSEW)
|
1433
|
+
horizontal_container = tk.PanedWindow(vertical_container, orient=tk.HORIZONTAL, bg='black')
|
1434
|
+
vertical_container.add(horizontal_container, stretch="always")
|
1435
|
+
horizontal_container.grid_columnconfigure(0, weight=1)
|
1436
|
+
horizontal_container.grid_columnconfigure(1, weight=1)
|
1437
|
+
settings_frame = tk.Frame(horizontal_container, bg='black')
|
1438
|
+
settings_frame.grid_rowconfigure(0, weight=0)
|
1439
|
+
settings_frame.grid_rowconfigure(1, weight=1)
|
1440
|
+
settings_frame.grid_columnconfigure(0, weight=1)
|
1441
|
+
horizontal_container.add(settings_frame, stretch="always", sticky="nsew")
|
1442
|
+
return parent_frame, vertical_container, horizontal_container
|
1443
|
+
|
1444
|
+
def run_measure_gui(settings, q, fig_queue, stop_requested):
|
1445
|
+
process_stdout_stderr(q)
|
1446
|
+
try:
|
1447
|
+
settings['input_folder'] = settings['src']
|
1448
|
+
measure_crop_wrapper(settings=settings, q=q, fig_queue=fig_queue)
|
1449
|
+
except Exception as e:
|
1450
|
+
q.put(f"Error during processing: {e}")
|
1451
|
+
traceback.print_exc()
|
1452
|
+
finally:
|
1453
|
+
stop_requested.value = 1
|
1454
|
+
|
1455
|
+
def run_classify_gui(settings, q, fig_queue, stop_requested):
|
1456
|
+
process_stdout_stderr(q)
|
1457
|
+
try:
|
1458
|
+
train_test_model_wrapper(settings['src'], settings)
|
1459
|
+
except Exception as e:
|
1460
|
+
q.put(f"Error during processing: {e}")
|
1461
|
+
traceback.print_exc()
|
1462
|
+
finally:
|
1463
|
+
stop_requested.value = 1
|
1464
|
+
|
1465
|
+
def set_globals(q_var, console_output_var, parent_frame_var, vars_dict_var, canvas_var, canvas_widget_var, scrollable_frame_var, progress_label_var, fig_queue_var):
|
1466
|
+
global q, console_output, parent_frame, vars_dict, canvas, canvas_widget, scrollable_frame, progress_label, fig_queue
|
1467
|
+
q = q_var
|
1468
|
+
console_output = console_output_var
|
1469
|
+
parent_frame = parent_frame_var
|
1470
|
+
vars_dict = vars_dict_var
|
1471
|
+
canvas = canvas_var
|
1472
|
+
canvas_widget = canvas_widget_var
|
1473
|
+
scrollable_frame = scrollable_frame_var
|
1474
|
+
progress_label = progress_label_var
|
1475
|
+
fig_queue = fig_queue_var
|
1476
|
+
|
1477
|
+
def initiate_root(parent, settings_type='mask'):
|
1478
|
+
global q, fig_queue, parent_frame, scrollable_frame, button_frame, vars_dict, canvas, canvas_widget, progress_label
|
1479
|
+
print("Initializing root with settings_type:", settings_type)
|
1480
|
+
parent_frame = parent
|
1481
|
+
|
1482
|
+
if not hasattr(parent_frame, 'after_tasks'):
|
1483
|
+
parent_frame.after_tasks = []
|
1484
|
+
|
1485
|
+
for widget in parent_frame.winfo_children():
|
1486
|
+
if widget.winfo_exists():
|
1487
|
+
try:
|
1488
|
+
widget.destroy()
|
1489
|
+
except tk.TclError as e:
|
1490
|
+
print(f"Error destroying widget: {e}")
|
1491
|
+
|
1492
|
+
q = Queue()
|
1493
|
+
fig_queue = Queue()
|
1494
|
+
parent_frame, vertical_container, horizontal_container = setup_frame(parent_frame)
|
1495
|
+
scrollable_frame, vars_dict = setup_settings_panel(horizontal_container, settings_type) # Adjust height and width as needed
|
1496
|
+
progress_label = setup_button_section(horizontal_container, settings_type)
|
1497
|
+
canvas, canvas_widget = setup_plot_section(vertical_container)
|
1498
|
+
console_output = setup_console(vertical_container)
|
1499
|
+
set_globals(q, console_output, parent_frame, vars_dict, canvas, canvas_widget, scrollable_frame, progress_label, fig_queue)
|
1500
|
+
process_console_queue()
|
1501
|
+
process_fig_queue()
|
1502
|
+
after_id = parent_frame.after(100, lambda: main_thread_update_function(parent_frame, q, fig_queue, canvas_widget, progress_label))
|
1503
|
+
parent_frame.after_tasks.append(after_id)
|
1504
|
+
print("Root initialization complete")
|
1505
|
+
return parent_frame, vars_dict
|
1506
|
+
|
1507
|
+
|
1508
|
+
def cancel_after_tasks(frame):
|
1509
|
+
if hasattr(frame, 'after_tasks'):
|
1510
|
+
for task in frame.after_tasks:
|
1511
|
+
frame.after_cancel(task)
|
1512
|
+
frame.after_tasks.clear()
|
1513
|
+
|
1514
|
+
def start_gui_app(settings_type='mask'):
|
1515
|
+
global q, fig_queue, parent_frame, scrollable_frame, vars_dict, canvas, canvas_widget, progress_label
|
1516
|
+
root = tk.Tk()
|
1517
|
+
width = root.winfo_screenwidth()
|
1518
|
+
height = root.winfo_screenheight()
|
1519
|
+
root.geometry(f"{width}x{height}")
|
1520
|
+
root.title(f"SpaCr: {settings_type.capitalize()}")
|
1521
|
+
root.content_frame = tk.Frame(root)
|
1522
|
+
print("Starting GUI app with settings_type:", settings_type)
|
1523
|
+
initiate_root(root.content_frame, settings_type)
|
1524
|
+
create_menu_bar(root)
|
1525
|
+
root.mainloop()
|