sonusai 0.15.9__py3-none-any.whl → 0.16.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (49) hide show
  1. sonusai/__init__.py +36 -4
  2. sonusai/audiofe.py +111 -106
  3. sonusai/calc_metric_spenh.py +38 -22
  4. sonusai/genft.py +15 -6
  5. sonusai/genmix.py +14 -6
  6. sonusai/genmixdb.py +15 -7
  7. sonusai/gentcst.py +13 -6
  8. sonusai/lsdb.py +15 -5
  9. sonusai/main.py +58 -61
  10. sonusai/mixture/__init__.py +1 -0
  11. sonusai/mixture/config.py +1 -2
  12. sonusai/mkmanifest.py +43 -8
  13. sonusai/mkwav.py +15 -6
  14. sonusai/onnx_predict.py +16 -6
  15. sonusai/plot.py +16 -6
  16. sonusai/post_spenh_targetf.py +13 -6
  17. sonusai/summarize_metric_spenh.py +71 -0
  18. sonusai/tplot.py +14 -6
  19. sonusai/utils/__init__.py +4 -7
  20. sonusai/utils/asl_p56.py +3 -3
  21. sonusai/utils/asr.py +35 -8
  22. sonusai/utils/asr_functions/__init__.py +0 -5
  23. sonusai/utils/asr_functions/aaware_whisper.py +2 -2
  24. sonusai/utils/asr_manifest_functions/__init__.py +1 -0
  25. sonusai/utils/asr_manifest_functions/mcgill_speech.py +29 -0
  26. sonusai/utils/{trim_docstring.py → docstring.py} +20 -0
  27. sonusai/utils/model_utils.py +30 -0
  28. sonusai/utils/onnx_utils.py +19 -45
  29. {sonusai-0.15.9.dist-info → sonusai-0.16.1.dist-info}/METADATA +7 -25
  30. {sonusai-0.15.9.dist-info → sonusai-0.16.1.dist-info}/RECORD +32 -46
  31. sonusai/data_generator/__init__.py +0 -5
  32. sonusai/data_generator/dataset_from_mixdb.py +0 -143
  33. sonusai/data_generator/keras_from_mixdb.py +0 -169
  34. sonusai/data_generator/torch_from_mixdb.py +0 -122
  35. sonusai/keras_onnx.py +0 -86
  36. sonusai/keras_predict.py +0 -231
  37. sonusai/keras_train.py +0 -334
  38. sonusai/torchl_onnx.py +0 -216
  39. sonusai/torchl_predict.py +0 -542
  40. sonusai/torchl_train.py +0 -223
  41. sonusai/utils/asr_functions/aixplain_whisper.py +0 -59
  42. sonusai/utils/asr_functions/data.py +0 -16
  43. sonusai/utils/asr_functions/deepgram.py +0 -97
  44. sonusai/utils/asr_functions/fastwhisper.py +0 -90
  45. sonusai/utils/asr_functions/google.py +0 -95
  46. sonusai/utils/asr_functions/whisper.py +0 -49
  47. sonusai/utils/keras_utils.py +0 -226
  48. {sonusai-0.15.9.dist-info → sonusai-0.16.1.dist-info}/WHEEL +0 -0
  49. {sonusai-0.15.9.dist-info → sonusai-0.16.1.dist-info}/entry_points.txt +0 -0
sonusai/__init__.py CHANGED
@@ -5,6 +5,25 @@ from os.path import dirname
5
5
  __version__ = metadata.version(__package__)
6
6
  BASEDIR = dirname(__file__)
7
7
 
8
+ commands_doc = """
9
+ audiofe Audio front end
10
+ calc_metric_spenh Run speech enhancement and analysis
11
+ doc Documentation
12
+ genft Generate feature and truth data
13
+ genmix Generate mixture and truth data
14
+ genmixdb Generate a mixture database
15
+ gentcst Generate target configuration from a subdirectory tree
16
+ lsdb List information about a mixture database
17
+ mkmanifest Make ASR manifest JSON file
18
+ mkwav Make WAV files from a mixture database
19
+ onnx_predict Run ONNX predict on a trained model
20
+ plot Plot mixture data
21
+ post_spenh_targetf Run post-processing for speech enhancement targetf data
22
+ summarize_metric_spenh Summarize speech enhancement and analysis results
23
+ tplot Plot truth data
24
+ vars List custom SonusAI variables
25
+ """
26
+
8
27
  # create logger
9
28
  logger = logging.getLogger('sonusai')
10
29
  logger.setLevel(logging.DEBUG)
@@ -21,7 +40,7 @@ class SonusAIError(Exception):
21
40
 
22
41
 
23
42
  # create file handler
24
- def create_file_handler(filename: str):
43
+ def create_file_handler(filename: str) -> None:
25
44
  fh = logging.FileHandler(filename=filename, mode='w')
26
45
  fh.setLevel(logging.DEBUG)
27
46
  fh.setFormatter(formatter)
@@ -29,7 +48,7 @@ def create_file_handler(filename: str):
29
48
 
30
49
 
31
50
  # update console handler
32
- def update_console_handler(verbose: bool):
51
+ def update_console_handler(verbose: bool) -> None:
33
52
  if not verbose:
34
53
  logger.removeHandler(console_handler)
35
54
  console_handler.setLevel(logging.INFO)
@@ -37,14 +56,17 @@ def update_console_handler(verbose: bool):
37
56
 
38
57
 
39
58
  # write initial log message
40
- def initial_log_messages(name: str):
59
+ def initial_log_messages(name: str, subprocess: str = None) -> None:
41
60
  from datetime import datetime
42
61
  from getpass import getuser
43
62
  from os import getcwd
44
63
  from socket import gethostname
45
64
  from sys import argv
46
65
 
47
- logger.info(f'SonusAI {__version__}')
66
+ if subprocess is None:
67
+ logger.info(f'SonusAI {__version__}')
68
+ else:
69
+ logger.info(f'SonusAI {subprocess}')
48
70
  logger.info(f'{name}')
49
71
  logger.info('')
50
72
  logger.debug(f'Host: {gethostname()}')
@@ -53,3 +75,13 @@ def initial_log_messages(name: str):
53
75
  logger.debug(f'Date: {datetime.now()}')
54
76
  logger.debug(f'Command: {" ".join(argv)}')
55
77
  logger.debug('')
78
+
79
+
80
+ def commands_list(doc: str = commands_doc) -> list[str]:
81
+ lines = doc.split('\n')
82
+ commands = []
83
+ for line in lines:
84
+ command = line.strip().split(' ').pop(0)
85
+ if command:
86
+ commands.append(command)
87
+ return commands
sonusai/audiofe.py CHANGED
@@ -24,6 +24,10 @@ audiofe_capture_<TIMESTAMP>.wav.
24
24
  If a model is specified, run prediction on audio data from this model. Then compute the inverse transform of the
25
25
  prediction result and save to audiofe_predict_<TIMESTAMP>.wav.
26
26
 
27
+ Also, if a model is specified, save plots of the capture data (time-domain signal and feature) to
28
+ audiofe_capture_<TIMESTAMP>.png and predict data (time-domain signal and feature) to
29
+ audiofe_predict_<TIMESTAMP>.png.
30
+
27
31
  If an ASR is specified, run ASR on the captured audio and print the results. In addition, if a model was also specified,
28
32
  run ASR on the predict audio and print the results.
29
33
 
@@ -31,41 +35,32 @@ If the debug option is enabled, write capture audio, feature, reconstruct audio,
31
35
  audiofe_<TIMESTAMP>.h5.
32
36
 
33
37
  """
34
- from os.path import exists
35
- from select import select
36
- from sys import stdin
37
- from typing import Any
38
+ import signal
38
39
 
39
- import h5py
40
40
  import numpy as np
41
- import pyaudio
42
- import torch
43
- from docopt import docopt
44
- from docopt import printable_usage
45
-
46
- import sonusai
47
- from sonusai import create_file_handler
48
- from sonusai import initial_log_messages
49
- from sonusai import logger
50
- from sonusai import update_console_handler
41
+
51
42
  from sonusai.mixture import AudioT
52
- from sonusai.mixture import CHANNEL_COUNT
53
- from sonusai.mixture import SAMPLE_RATE
54
- from sonusai.mixture import get_audio_from_feature
55
- from sonusai.mixture import get_feature_from_audio
56
- from sonusai.mixture import read_audio
57
- from sonusai.utils import calc_asr
58
- from sonusai.utils import create_timestamp
59
- from sonusai.utils import get_input_device_index_by_name
60
- from sonusai.utils import get_input_devices
61
- from sonusai.utils import import_keras_model
62
- from sonusai.utils import trim_docstring
63
- from sonusai.utils import write_wav
43
+
44
+
45
+ def signal_handler(_sig, _frame):
46
+ import sys
47
+
48
+ from sonusai import logger
49
+
50
+ logger.info('Canceled due to keyboard interrupt')
51
+ sys.exit(1)
52
+
53
+
54
+ signal.signal(signal.SIGINT, signal_handler)
64
55
 
65
56
 
66
57
  def main() -> None:
58
+ from docopt import docopt
59
+
60
+ import sonusai
61
+ from sonusai.utils import trim_docstring
62
+
67
63
  args = docopt(trim_docstring(__doc__), version=sonusai.__version__, options_first=True)
68
- ts = create_timestamp()
69
64
 
70
65
  verbose = args['--verbose']
71
66
  length = float(args['--length'])
@@ -77,8 +72,34 @@ def main() -> None:
77
72
  debug = args['--debug']
78
73
  show = args['--show']
79
74
 
80
- capture_name = f'audiofe_capture_{ts}.wav'
81
- predict_name = f'audiofe_predict_{ts}.wav'
75
+ from os.path import exists
76
+
77
+ import h5py
78
+ import pyaudio
79
+ import torch
80
+ from docopt import printable_usage
81
+ from sonusai_torchl.utils import load_torchl_ckpt_model
82
+
83
+ from sonusai import create_file_handler
84
+ from sonusai import initial_log_messages
85
+ from sonusai import logger
86
+ from sonusai import update_console_handler
87
+ from sonusai.mixture import SAMPLE_RATE
88
+ from sonusai.mixture import get_audio_from_feature
89
+ from sonusai.mixture import get_feature_from_audio
90
+ from sonusai.utils import calc_asr
91
+ from sonusai.utils import create_timestamp
92
+ from sonusai.utils import get_input_devices
93
+ from sonusai.utils import trim_docstring
94
+ from sonusai.utils import write_wav
95
+
96
+ ts = create_timestamp()
97
+ capture_name = f'audiofe_capture_{ts}'
98
+ capture_wav = capture_name + '.wav'
99
+ capture_png = capture_name + '.png'
100
+ predict_name = f'audiofe_predict_{ts}'
101
+ predict_wav = predict_name + '.wav'
102
+ predict_png = predict_name + '.png'
82
103
  h5_name = f'audiofe_{ts}.h5'
83
104
 
84
105
  if model_name is not None and ckpt_name is None:
@@ -109,9 +130,9 @@ def main() -> None:
109
130
  logger.exception(e)
110
131
  return
111
132
 
112
- write_wav(capture_name, capture_audio, SAMPLE_RATE)
133
+ write_wav(capture_wav, capture_audio, SAMPLE_RATE)
113
134
  logger.info('')
114
- logger.info(f'Wrote capture audio with shape {capture_audio.shape} to {capture_name}')
135
+ logger.info(f'Wrote capture audio with shape {capture_audio.shape} to {capture_wav}')
115
136
  if debug:
116
137
  with h5py.File(h5_name, 'a') as f:
117
138
  if 'capture_audio' in f:
@@ -124,9 +145,13 @@ def main() -> None:
124
145
  logger.info(f'Capture audio ASR: {capture_asr}')
125
146
 
126
147
  if model_name is not None:
127
- model = load_model(model_name=model_name, ckpt_name=ckpt_name)
148
+ model = load_torchl_ckpt_model(model_name=model_name, ckpt_name=ckpt_name)
149
+ model.eval()
128
150
 
129
151
  feature = get_feature_from_audio(audio=capture_audio, feature_mode=model.hparams.feature)
152
+ save_figure(capture_png, capture_audio, feature)
153
+ logger.info(f'Wrote capture plots to {capture_png}')
154
+
130
155
  if debug:
131
156
  with h5py.File(h5_name, 'a') as f:
132
157
  if 'feature' in f:
@@ -134,22 +159,9 @@ def main() -> None:
134
159
  f.create_dataset('feature', data=feature)
135
160
  logger.info(f'Wrote feature with shape {feature.shape} to {h5_name}')
136
161
 
137
- # if debug:
138
- # reconstruct_name = f'audiofe_reconstruct_{ts}.wav'
139
- # reconstruct_audio = get_audio_from_feature(feature=feature, feature_mode=model.hparams.feature)
140
- # samples = min(len(capture_audio), len(reconstruct_audio))
141
- # max_err = np.max(np.abs(capture_audio[:samples] - reconstruct_audio[:samples]))
142
- # logger.info(f'Maximum error between capture and reconstruct: {max_err}')
143
- # write_wav(reconstruct_name, reconstruct_audio, SAMPLE_RATE)
144
- # logger.info(f'Wrote reconstruct audio with shape {reconstruct_audio.shape} to {reconstruct_name}')
145
- # with h5py.File(h5_name, 'a') as f:
146
- # if 'reconstruct_audio' in f:
147
- # del f['reconstruct_audio']
148
- # f.create_dataset('reconstruct_audio', data=reconstruct_audio)
149
- # logger.info(f'Wrote reconstruct audio with shape {reconstruct_audio.shape} to {h5_name}')
150
-
151
162
  with torch.no_grad():
152
- predict = model(torch.tensor(feature))
163
+ # model wants batch x timesteps x feature_parameters
164
+ predict = model(torch.tensor(feature).permute((1, 0, 2))).permute(1, 0, 2).numpy()
153
165
  if debug:
154
166
  with h5py.File(h5_name, 'a') as f:
155
167
  if 'predict' in f:
@@ -157,9 +169,9 @@ def main() -> None:
157
169
  f.create_dataset('predict', data=predict)
158
170
  logger.info(f'Wrote predict with shape {predict.shape} to {h5_name}')
159
171
 
160
- predict_audio = get_audio_from_feature(feature=predict.numpy(), feature_mode=model.hparams.feature)
161
- write_wav(predict_name, predict_audio, SAMPLE_RATE)
162
- logger.info(f'Wrote predict audio with shape {predict_audio.shape} to {predict_name}')
172
+ predict_audio = get_audio_from_feature(feature=predict, feature_mode=model.hparams.feature)
173
+ write_wav(predict_wav, predict_audio, SAMPLE_RATE)
174
+ logger.info(f'Wrote predict audio with shape {predict_audio.shape} to {predict_wav}')
163
175
  if debug:
164
176
  with h5py.File(h5_name, 'a') as f:
165
177
  if 'predict_audio' in f:
@@ -167,69 +179,26 @@ def main() -> None:
167
179
  f.create_dataset('predict_audio', data=predict_audio)
168
180
  logger.info(f'Wrote predict audio with shape {predict_audio.shape} to {h5_name}')
169
181
 
182
+ save_figure(predict_png, predict_audio, predict)
183
+ logger.info(f'Wrote predict plots to {predict_png}')
184
+
170
185
  if asr_name is not None:
171
186
  predict_asr = calc_asr(predict_audio, engine=asr_name, whisper_model_name=whisper_name).text
172
187
  logger.info(f'Predict audio ASR: {predict_asr}')
173
188
 
174
189
 
175
- def load_model(model_name: str, ckpt_name: str) -> Any:
176
- batch_size = 1
177
- timesteps = 0
178
-
179
- # Load checkpoint first to get hparams if available
180
- try:
181
- checkpoint = torch.load(ckpt_name, map_location=lambda storage, loc: storage)
182
- except Exception as e:
183
- logger.exception(f'Error: could not load checkpoint from {ckpt_name}: {e}')
184
- raise SystemExit(1)
185
-
186
- # Import model definition file
187
- logger.info(f'Importing {model_name}')
188
- litemodule = import_keras_model(model_name)
189
-
190
- if 'hyper_parameters' in checkpoint:
191
- logger.info(f'Found checkpoint file with hyper-parameters')
192
- hparams = checkpoint['hyper_parameters']
193
- if hparams['batch_size'] != batch_size:
194
- logger.info(
195
- f'Overriding model default batch_size of {hparams["batch_size"]} with batch_size of {batch_size}')
196
- hparams["batch_size"] = batch_size
197
-
198
- if hparams['timesteps'] != 0 and timesteps == 0:
199
- timesteps = hparams['timesteps']
200
- logger.warning(f'Using model default timesteps of {timesteps}')
201
-
202
- logger.info(f'Building model with {len(hparams)} total hparams')
203
- try:
204
- model = litemodule.MyHyperModel(**hparams)
205
- except Exception as e:
206
- logger.exception(f'Error: model build (MyHyperModel) in {model_name} failed: {e}')
207
- raise SystemExit(1)
208
- else:
209
- logger.info(f'Found checkpoint file with no hyper-parameters')
210
- logger.info(f'Building model with defaults')
211
- try:
212
- tmp = litemodule.MyHyperModel()
213
- except Exception as e:
214
- logger.exception(f'Error: model build (MyHyperModel) in {model_name} failed: {e}')
215
- raise SystemExit(1)
216
-
217
- if tmp.batch_size != batch_size:
218
- logger.info(f'Overriding model default batch_size of {tmp.batch_size} with batch_size of {batch_size}')
219
-
220
- if tmp.timesteps != 0 and timesteps == 0:
221
- timesteps = tmp.timesteps
222
- logger.warning(f'Using model default timesteps of {timesteps}')
223
-
224
- model = litemodule.MyHyperModel(timesteps=timesteps, batch_size=batch_size)
190
+ def get_frames_from_device(input_name: str | None, length: float, chunk: int = 1024) -> AudioT:
191
+ from select import select
192
+ from sys import stdin
225
193
 
226
- logger.info(f'Loading weights from {ckpt_name}')
227
- model.load_state_dict(checkpoint["state_dict"])
228
- model.eval()
229
- return model
194
+ import pyaudio
230
195
 
196
+ from sonusai import logger
197
+ from sonusai.mixture import CHANNEL_COUNT
198
+ from sonusai.mixture import SAMPLE_RATE
199
+ from sonusai.utils import get_input_device_index_by_name
200
+ from sonusai.utils import get_input_devices
231
201
 
232
- def get_frames_from_device(input_name: str | None, length: float, chunk: int = 1024) -> AudioT:
233
202
  p = pyaudio.PyAudio()
234
203
 
235
204
  input_devices = get_input_devices(p)
@@ -280,6 +249,10 @@ def get_frames_from_device(input_name: str | None, length: float, chunk: int = 1
280
249
 
281
250
 
282
251
  def get_frames_from_file(input_name: str, length: float) -> AudioT:
252
+ from sonusai import logger
253
+ from sonusai.mixture import SAMPLE_RATE
254
+ from sonusai.mixture import read_audio
255
+
283
256
  logger.info(f'Capturing from {input_name}')
284
257
  frames = read_audio(input_name)
285
258
  if length != -1:
@@ -289,5 +262,37 @@ def get_frames_from_file(input_name: str, length: float) -> AudioT:
289
262
  return frames
290
263
 
291
264
 
265
+ def save_figure(name: str, audio: np.ndarray, feature: np.ndarray) -> None:
266
+ import matplotlib.pyplot as plt
267
+ from scipy.interpolate import CubicSpline
268
+
269
+ from sonusai.mixture import SAMPLE_RATE
270
+ from sonusai.utils import unstack_complex
271
+
272
+ spectrum = 20 * np.log(np.abs(np.squeeze(unstack_complex(feature)).transpose()))
273
+ frames = spectrum.shape[1]
274
+ samples = (len(audio) // frames) * frames
275
+ length_in_s = samples / SAMPLE_RATE
276
+ interp = samples // frames
277
+
278
+ ts = np.arange(0.0, length_in_s, interp / SAMPLE_RATE)
279
+ t = np.arange(0.0, length_in_s, 1 / SAMPLE_RATE)
280
+
281
+ spectrum = CubicSpline(ts, spectrum, axis=-1)(t)
282
+
283
+ fig, (ax1, ax2) = plt.subplots(nrows=2)
284
+ ax1.set_title(name)
285
+ ax1.plot(t, audio[:samples])
286
+ ax1.set_ylabel('Signal')
287
+ ax1.set_xlim(0, length_in_s)
288
+ ax1.set_ylim(-1, 1)
289
+
290
+ ax2.imshow(spectrum, origin='lower', aspect='auto')
291
+ ax2.set_xticks([])
292
+ ax2.set_ylabel('Feature')
293
+
294
+ plt.savefig(name, dpi=300)
295
+
296
+
292
297
  if __name__ == '__main__':
293
298
  main()
@@ -60,6 +60,7 @@ Metric and extraction data are written into prediction location PLOC as separate
60
60
  Inputs:
61
61
 
62
62
  """
63
+ import signal
63
64
  from dataclasses import dataclass
64
65
  from typing import Optional
65
66
 
@@ -67,14 +68,24 @@ import matplotlib
67
68
  import matplotlib.pyplot as plt
68
69
  import numpy as np
69
70
  import pandas as pd
70
-
71
- from sonusai import logger
72
71
  from sonusai.mixture import AudioF
73
72
  from sonusai.mixture import AudioT
74
73
  from sonusai.mixture import Feature
75
74
  from sonusai.mixture import MixtureDatabase
76
75
  from sonusai.mixture import Predict
77
76
 
77
+
78
+ def signal_handler(_sig, _frame):
79
+ import sys
80
+
81
+ from sonusai import logger
82
+
83
+ logger.info('Canceled due to keyboard interrupt')
84
+ sys.exit(1)
85
+
86
+
87
+ signal.signal(signal.SIGINT, signal_handler)
88
+
78
89
  matplotlib.use('SVG')
79
90
 
80
91
 
@@ -758,13 +769,18 @@ def _process_mixture(mixid: int) -> tuple[pd.DataFrame, pd.DataFrame]:
758
769
  predict = stack_complex(predict)
759
770
 
760
771
  # 2) Collect true target, noise, mixture data, trim to predict size if needed
761
- target = mixdb.mixture_target(mixid)
762
- target_f = mixdb.mixture_target_f(mixid, target=target)
763
- noise = mixdb.mixture_noise(mixid)
764
- noise_f = mixdb.mixture_noise_f(mixid, noise=noise)
765
- mixture = mixdb.mixture_mixture(mixid, target=target, noise=noise)
772
+ tmp = mixdb.mixture_targets(mixid) # targets is list of pre-IR and pre-specaugment targets
773
+ target_f = mixdb.mixture_targets_f(mixid, targets=tmp)[0]
774
+ target = tmp[0]
775
+ mixture = mixdb.mixture_mixture(mixid) # note: gives full reverberated/distorted target, but no specaugment
776
+ # noise_wodist = mixdb.mixture_noise(mixid) # noise without specaugment and distortion
777
+ # noise_wodist_f = mixdb.mixture_noise_f(mixid, noise=noise_wodist)
778
+ noise = mixture - target # has time-domain distortion (ir,etc.) but does not have specaugment
779
+ # noise_f = mixdb.mixture_noise_f(mixid, noise=noise)
780
+ segsnr_f = mixdb.mixture_segsnr(mixid, target=target, noise=noise) # note: uses pre-IR, pre-specaug audio
766
781
  mixture_f = mixdb.mixture_mixture_f(mixid, mixture=mixture)
767
- segsnr_f = mixdb.mixture_segsnr(mixid, target=target, noise=noise)
782
+ noise_f = mixture_f - target_f # true noise in freq domain includes specaugment and time-domain ir,distortions
783
+ # segsnr_f = mixdb.mixture_segsnr(mixid, target=target, noise=noise)
768
784
  segsnr_f[segsnr_f == inf] = 7.944e8 # 99db
769
785
  segsnr_f[segsnr_f == -inf] = 1.258e-10 # -99db
770
786
  # need to use inv-tf to match #samples & latency shift properties of predict inv tf
@@ -920,8 +936,9 @@ def _process_mixture(mixid: int) -> tuple[pd.DataFrame, pd.DataFrame]:
920
936
  'NLERR': lerr_n_frame,
921
937
  'SPD': phd_frame})
922
938
  metr2 = metr2.describe() # Use pandas stat function
923
- metr2['SSNR'][1:] = metr2['SSNR'][1:].apply(
924
- lambda x: 10 * np.log10(x + 1.01e-10)) # Change SSNR stats to dB, except count
939
+ # Change SSNR stats to dB, except count. SSNR is index 0, pandas requires using iloc
940
+ # metr2['SSNR'][1:] = metr2['SSNR'][1:].apply(lambda x: 10 * np.log10(x + 1.01e-10))
941
+ metr2.iloc[1:, 0] = metr2['SSNR'][1:].apply(lambda x: 10 * np.log10(x + 1.01e-10))
925
942
  # create a single row in multi-column header
926
943
  new_labels = pd.MultiIndex.from_product([metr2.columns,
927
944
  ['Avg', 'Min', 'Med', 'Max', 'Std']],
@@ -978,11 +995,11 @@ def _process_mixture(mixid: int) -> tuple[pd.DataFrame, pd.DataFrame]:
978
995
  plot_fname = base_name + '_metric_spenh.pdf'
979
996
 
980
997
  # Reshape feature to eliminate overlap redundancy for easier to understand spectrogram view
981
- # Original size (frames, stride, feature_parameters), decimates in stride dimension only if step is > 1
982
- # Reshape to get frames*decimated_stride, feature_parameters
998
+ # Original size (frames, stride, num_bands), decimates in stride dimension only if step is > 1
999
+ # Reshape to get frames*decimated_stride, num_bands
983
1000
  step = int(mixdb.feature_samples / mixdb.feature_step_samples)
984
1001
  if feature.ndim != 3:
985
- raise SonusAIError(f'feature does not have 3 dimensions: frames, stride, feature_parameters')
1002
+ raise SonusAIError(f'feature does not have 3 dimensions: frames, stride, num_bands')
986
1003
 
987
1004
  # for feature cn*00n**
988
1005
  feat_sgram = unstack_complex(feature)
@@ -1166,7 +1183,7 @@ def main():
1166
1183
  # Individual mixtures use pandas print, set precision to 2 decimal places
1167
1184
  # pd.set_option('float_format', '{:.2f}'.format)
1168
1185
  progress = tqdm(total=len(mixids), desc='calc_metric_spenh')
1169
- all_metrics_tables = pp_tqdm_imap(_process_mixture, mixids, progress=progress, num_cpus=None)
1186
+ all_metrics_tables = pp_tqdm_imap(_process_mixture, mixids, progress=progress, num_cpus=8)
1170
1187
  progress.close()
1171
1188
 
1172
1189
  all_metrics_table_1 = pd.concat([item[0] for item in all_metrics_tables])
@@ -1192,6 +1209,7 @@ def main():
1192
1209
  if ~np.isnan(tmp.iloc[0].to_numpy()[0]).any():
1193
1210
  mtab_snr_summary_em = pd.concat([mtab_snr_summary_em, tmp])
1194
1211
 
1212
+ mtab_snr_summary = mtab_snr_summary.sort_values(by=['MXSNR'], ascending=False)
1195
1213
  # Correct percentages in snr summary table
1196
1214
  mtab_snr_summary['PESQi%'] = 100 * (mtab_snr_summary['PESQ'] - mtab_snr_summary['MXPESQ']) / np.maximum(
1197
1215
  mtab_snr_summary['MXPESQ'], 0.01)
@@ -1202,9 +1220,11 @@ def main():
1202
1220
  else:
1203
1221
  mtab_snr_summary['WERi%'].iloc[i] = -999.0
1204
1222
  else:
1205
- mtab_snr_summary['WERi%'].iloc[i] = 100 * (mtab_snr_summary['MXWER'].iloc[i] -
1206
- mtab_snr_summary['WER'].iloc[i]) / \
1207
- mtab_snr_summary['MXWER'].iloc[i]
1223
+ if ~np.isnan(mtab_snr_summary['WER'].iloc[i]) and ~np.isnan(mtab_snr_summary['MXWER'].iloc[i]):
1224
+ # update WERi% in 6th col
1225
+ mtab_snr_summary.iloc[i, 6] = 100 * (mtab_snr_summary['MXWER'].iloc[i] -
1226
+ mtab_snr_summary['WER'].iloc[i]) / \
1227
+ mtab_snr_summary['MXWER'].iloc[i]
1208
1228
 
1209
1229
  # Calculate avg metrics over all mixtures except -99
1210
1230
  all_mtab1_sorted_nom99 = all_mtab1_sorted[all_mtab1_sorted.MXSNR != -99]
@@ -1317,8 +1337,4 @@ def main():
1317
1337
 
1318
1338
 
1319
1339
  if __name__ == '__main__':
1320
- try:
1321
- main()
1322
- except KeyboardInterrupt:
1323
- logger.info('Canceled due to keyboard interrupt')
1324
- exit()
1340
+ main()
sonusai/genft.py CHANGED
@@ -23,14 +23,26 @@ Outputs the following to the mixture database directory:
23
23
  genft.log
24
24
 
25
25
  """
26
+ import signal
26
27
  from dataclasses import dataclass
27
28
 
28
- from sonusai import logger
29
29
  from sonusai.mixture import GenFTData
30
30
  from sonusai.mixture import GeneralizedIDs
31
31
  from sonusai.mixture import MixtureDatabase
32
32
 
33
33
 
34
+ def signal_handler(_sig, _frame):
35
+ import sys
36
+
37
+ from sonusai import logger
38
+
39
+ logger.info('Canceled due to keyboard interrupt')
40
+ sys.exit(1)
41
+
42
+
43
+ signal.signal(signal.SIGINT, signal_handler)
44
+
45
+
34
46
  @dataclass
35
47
  class MPGlobal:
36
48
  mixdb: MixtureDatabase = None
@@ -123,6 +135,7 @@ def main() -> None:
123
135
 
124
136
  from sonusai import create_file_handler
125
137
  from sonusai import initial_log_messages
138
+ from sonusai import logger
126
139
  from sonusai import update_console_handler
127
140
  from sonusai.mixture import check_audio_files_exist
128
141
  from sonusai.utils import human_readable_size
@@ -177,8 +190,4 @@ def main() -> None:
177
190
 
178
191
 
179
192
  if __name__ == '__main__':
180
- try:
181
- main()
182
- except KeyboardInterrupt:
183
- logger.info('Canceled due to keyboard interrupt')
184
- raise SystemExit(0)
193
+ main()
sonusai/genmix.py CHANGED
@@ -27,14 +27,26 @@ Outputs the following to the mixture database directory:
27
27
  <id>.txt
28
28
  genmix.log
29
29
  """
30
+ import signal
30
31
  from dataclasses import dataclass
31
32
 
32
- from sonusai import logger
33
33
  from sonusai.mixture import GenMixData
34
34
  from sonusai.mixture import GeneralizedIDs
35
35
  from sonusai.mixture import MixtureDatabase
36
36
 
37
37
 
38
+ def signal_handler(_sig, _frame):
39
+ import sys
40
+
41
+ from sonusai import logger
42
+
43
+ logger.info('Canceled due to keyboard interrupt')
44
+ sys.exit(1)
45
+
46
+
47
+ signal.signal(signal.SIGINT, signal_handler)
48
+
49
+
38
50
  @dataclass
39
51
  class MPGlobal:
40
52
  mixdb: MixtureDatabase = None
@@ -210,8 +222,4 @@ def main() -> None:
210
222
 
211
223
 
212
224
  if __name__ == '__main__':
213
- try:
214
- main()
215
- except KeyboardInterrupt:
216
- logger.info('Canceled due to keyboard interrupt')
217
- raise SystemExit(0)
225
+ main()
sonusai/genmixdb.py CHANGED
@@ -112,13 +112,25 @@ targets:
112
112
  will find all .wav files in the specified directories and process them as targets.
113
113
 
114
114
  """
115
+ import signal
115
116
  from dataclasses import dataclass
116
117
 
117
- from sonusai import logger
118
118
  from sonusai.mixture import Mixture
119
119
  from sonusai.mixture import MixtureDatabase
120
120
 
121
121
 
122
+ def signal_handler(_sig, _frame):
123
+ import sys
124
+
125
+ from sonusai import logger
126
+
127
+ logger.info('Canceled due to keyboard interrupt')
128
+ sys.exit(1)
129
+
130
+
131
+ signal.signal(signal.SIGINT, signal_handler)
132
+
133
+
122
134
  @dataclass
123
135
  class MPGlobal:
124
136
  mixdb: MixtureDatabase = None
@@ -225,7 +237,7 @@ def genmixdb(location: str,
225
237
  if logging:
226
238
  logger.info('Collecting impulse responses')
227
239
 
228
- impulse_response_files = get_impulse_response_files(config, show_progress=show_progress)
240
+ impulse_response_files = get_impulse_response_files(config)
229
241
 
230
242
  populate_impulse_response_file_table(location, impulse_response_files, test)
231
243
 
@@ -509,8 +521,4 @@ def main() -> None:
509
521
 
510
522
 
511
523
  if __name__ == '__main__':
512
- try:
513
- main()
514
- except KeyboardInterrupt:
515
- logger.info('Canceled due to keyboard interrupt')
516
- raise SystemExit(0)
524
+ main()
sonusai/gentcst.py CHANGED
@@ -44,10 +44,21 @@ Outputs:
44
44
  gentcst.log
45
45
 
46
46
  """
47
+ import signal
47
48
  from dataclasses import dataclass
48
49
  from typing import Optional
49
50
 
50
- from sonusai import logger
51
+
52
+ def signal_handler(_sig, _frame):
53
+ import sys
54
+
55
+ from sonusai import logger
56
+
57
+ logger.info('Canceled due to keyboard interrupt')
58
+ sys.exit(1)
59
+
60
+
61
+ signal.signal(signal.SIGINT, signal_handler)
51
62
 
52
63
  CONFIG_FILE = 'config.yml'
53
64
 
@@ -621,8 +632,4 @@ def main() -> None:
621
632
 
622
633
 
623
634
  if __name__ == '__main__':
624
- try:
625
- main()
626
- except KeyboardInterrupt:
627
- logger.info('Canceled due to keyboard interrupt')
628
- raise SystemExit(0)
635
+ main()