solana-agent 20.1.2__py3-none-any.whl → 31.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- solana_agent/__init__.py +10 -5
- solana_agent/adapters/ffmpeg_transcoder.py +375 -0
- solana_agent/adapters/mongodb_adapter.py +15 -2
- solana_agent/adapters/openai_adapter.py +679 -0
- solana_agent/adapters/openai_realtime_ws.py +1813 -0
- solana_agent/adapters/pinecone_adapter.py +543 -0
- solana_agent/cli.py +128 -0
- solana_agent/client/solana_agent.py +180 -20
- solana_agent/domains/agent.py +13 -13
- solana_agent/domains/routing.py +18 -8
- solana_agent/factories/agent_factory.py +239 -38
- solana_agent/guardrails/pii.py +107 -0
- solana_agent/interfaces/client/client.py +95 -12
- solana_agent/interfaces/guardrails/guardrails.py +26 -0
- solana_agent/interfaces/plugins/plugins.py +2 -1
- solana_agent/interfaces/providers/__init__.py +0 -0
- solana_agent/interfaces/providers/audio.py +40 -0
- solana_agent/interfaces/providers/data_storage.py +9 -2
- solana_agent/interfaces/providers/llm.py +86 -9
- solana_agent/interfaces/providers/memory.py +13 -1
- solana_agent/interfaces/providers/realtime.py +212 -0
- solana_agent/interfaces/providers/vector_storage.py +53 -0
- solana_agent/interfaces/services/agent.py +27 -12
- solana_agent/interfaces/services/knowledge_base.py +59 -0
- solana_agent/interfaces/services/query.py +41 -8
- solana_agent/interfaces/services/routing.py +0 -1
- solana_agent/plugins/manager.py +37 -16
- solana_agent/plugins/registry.py +34 -19
- solana_agent/plugins/tools/__init__.py +0 -5
- solana_agent/plugins/tools/auto_tool.py +1 -0
- solana_agent/repositories/memory.py +332 -111
- solana_agent/services/__init__.py +1 -1
- solana_agent/services/agent.py +390 -241
- solana_agent/services/knowledge_base.py +768 -0
- solana_agent/services/query.py +1858 -153
- solana_agent/services/realtime.py +626 -0
- solana_agent/services/routing.py +104 -51
- solana_agent-31.4.0.dist-info/METADATA +1070 -0
- solana_agent-31.4.0.dist-info/RECORD +49 -0
- {solana_agent-20.1.2.dist-info → solana_agent-31.4.0.dist-info}/WHEEL +1 -1
- solana_agent-31.4.0.dist-info/entry_points.txt +3 -0
- solana_agent/adapters/llm_adapter.py +0 -160
- solana_agent-20.1.2.dist-info/METADATA +0 -464
- solana_agent-20.1.2.dist-info/RECORD +0 -35
- {solana_agent-20.1.2.dist-info → solana_agent-31.4.0.dist-info/licenses}/LICENSE +0 -0
|
@@ -0,0 +1,1070 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: solana-agent
|
|
3
|
+
Version: 31.4.0
|
|
4
|
+
Summary: AI Agents for Solana
|
|
5
|
+
License: MIT
|
|
6
|
+
License-File: LICENSE
|
|
7
|
+
Keywords: solana,solana ai,solana agent,ai,ai agent,ai agents
|
|
8
|
+
Author: Bevan Hunt
|
|
9
|
+
Author-email: bevan@bevanhunt.com
|
|
10
|
+
Requires-Python: >=3.12,<4.0
|
|
11
|
+
Classifier: Development Status :: 5 - Production/Stable
|
|
12
|
+
Classifier: Intended Audience :: Developers
|
|
13
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
14
|
+
Classifier: Programming Language :: Python :: 3
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.14
|
|
18
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
19
|
+
Requires-Dist: instructor (==1.13.0)
|
|
20
|
+
Requires-Dist: llama-index-core (==0.14.8)
|
|
21
|
+
Requires-Dist: llama-index-embeddings-openai (==0.5.1)
|
|
22
|
+
Requires-Dist: logfire (==4.15.1)
|
|
23
|
+
Requires-Dist: openai (==2.8.1)
|
|
24
|
+
Requires-Dist: pillow (==12.0.0)
|
|
25
|
+
Requires-Dist: pinecone[asyncio] (==8.0.0)
|
|
26
|
+
Requires-Dist: pydantic (>=2)
|
|
27
|
+
Requires-Dist: pymongo (==4.15.4)
|
|
28
|
+
Requires-Dist: pypdf (==6.4.0)
|
|
29
|
+
Requires-Dist: rich (>=13,<14.0)
|
|
30
|
+
Requires-Dist: scrubadub (==2.0.1)
|
|
31
|
+
Requires-Dist: typer (==0.20.0)
|
|
32
|
+
Requires-Dist: websockets (>=13,<16)
|
|
33
|
+
Requires-Dist: zep-cloud (==3.13.0)
|
|
34
|
+
Project-URL: Documentation, https://docs.solana-agent.com
|
|
35
|
+
Project-URL: Homepage, https://solana-agent.com
|
|
36
|
+
Project-URL: Repository, https://github.com/truemagic-coder/solana-agent
|
|
37
|
+
Description-Content-Type: text/markdown
|
|
38
|
+
|
|
39
|
+
# Solana Agent
|
|
40
|
+
|
|
41
|
+
[](https://pypi.org/project/solana-agent/)
|
|
42
|
+
[](https://www.python.org/downloads/)
|
|
43
|
+
[](https://pypi.org/project/solana-agent/)
|
|
44
|
+
[](https://opensource.org/licenses/MIT)
|
|
45
|
+
[](https://codecov.io/gh/truemagic-coder/solana-agent)
|
|
46
|
+
[](https://github.com/truemagic-coder/solana-agent/actions/workflows/ci.yml)
|
|
47
|
+
[](https://github.com/astral-sh/ruff)
|
|
48
|
+
|
|
49
|
+

|
|
50
|
+
|
|
51
|
+
## AI Agents for Solana
|
|
52
|
+
|
|
53
|
+
Build your AI agents in three lines of code!
|
|
54
|
+
|
|
55
|
+
## Why?
|
|
56
|
+
* Three lines of code setup
|
|
57
|
+
* Simple Agent Definition
|
|
58
|
+
* Streaming or Realtime Responses
|
|
59
|
+
* Solana Integration
|
|
60
|
+
* Multi-Agent Swarm
|
|
61
|
+
* Multi-Modal (Images & Audio & Text)
|
|
62
|
+
* Conversational Memory & History
|
|
63
|
+
* Internet Search
|
|
64
|
+
* Intelligent Routing
|
|
65
|
+
* Business Alignment
|
|
66
|
+
* Extensible Tooling
|
|
67
|
+
* Autonomous Operation
|
|
68
|
+
* Smart Workflows
|
|
69
|
+
* Agentic Forms
|
|
70
|
+
* Knowledge Base
|
|
71
|
+
* MCP Support
|
|
72
|
+
* Guardrails
|
|
73
|
+
* Image Generation
|
|
74
|
+
* Pydantic Logfire
|
|
75
|
+
* Tested & Secure
|
|
76
|
+
* Built in Python
|
|
77
|
+
* Powers [CometHeart](https://cometheart.com)
|
|
78
|
+
|
|
79
|
+
## Unique Selling Proposition (USP) - Smart Workflows
|
|
80
|
+
|
|
81
|
+
Solana Agent is the first AI agent framework to deliver truly intelligent, dynamic workflows.
|
|
82
|
+
|
|
83
|
+
With Solana Agent, you can seamlessly define and integrate tools — such as Zapier MCP (for sending emails via Mailgun) and the Solana Balance tool — directly into your agent’s capabilities.
|
|
84
|
+
|
|
85
|
+
Then prompt your agent with natural language, for example:
|
|
86
|
+
“Get my balances for my Solana wallet and then email them to me.”
|
|
87
|
+
|
|
88
|
+
Solana Agent will automatically orchestrate the workflow:
|
|
89
|
+
It will first use the Solana Balance tool to retrieve your balances, then invoke the Zapier MCP tool to send the results via email — all without manual intervention or brittle, hardcoded logic.
|
|
90
|
+
|
|
91
|
+
You can also chain tool outputs (structured or unstructured) as inputs for subsequent tasks, enabling complex, multi-step automations with ease.
|
|
92
|
+
|
|
93
|
+
**The result?**
|
|
94
|
+
A framework that is both powerful and simple — eliminating the need for static, fragile workflow definitions.
|
|
95
|
+
Smart workflows are as easy as combining your tools and prompts.
|
|
96
|
+
|
|
97
|
+
## Features
|
|
98
|
+
|
|
99
|
+
* Easy three lines of code setup
|
|
100
|
+
* Simple agent definition using JSON
|
|
101
|
+
* Designed for a multi-agent swarm
|
|
102
|
+
* Fast multi-modal processing of text, audio, and images
|
|
103
|
+
* Dual modality realtime streaming with simultaneous audio and text output
|
|
104
|
+
* Smart workflows that keep flows simple and smart
|
|
105
|
+
* Interact with the Solana blockchain with many useful tools
|
|
106
|
+
* MCP tool usage with first-class support for [Zapier](https://zapier.com/mcp)
|
|
107
|
+
* Integrated observability and tracing via [Pydantic Logfire](https://pydantic.dev/logfire)
|
|
108
|
+
* Persistent memory that preserves context across all agent interactions
|
|
109
|
+
* Quick Internet search to answer users' queries
|
|
110
|
+
* Streamlined message history for all agent interactions
|
|
111
|
+
* Intelligent query routing to agents with optimal domain expertise or your own custom routing
|
|
112
|
+
* Unified value system ensuring brand-aligned agent responses
|
|
113
|
+
* Powerful tool integration using standard Python packages and/or inline tools
|
|
114
|
+
* Assigned tools are utilized by agents automatically and effectively
|
|
115
|
+
* Integrated Knowledge Base with semantic search and automatic PDF chunking
|
|
116
|
+
* Input and output guardrails for content filtering, safety, and data sanitization
|
|
117
|
+
* Generate custom images based on text prompts with storage on S3 compatible services
|
|
118
|
+
* Deterministic agentic form filling in natural conversation
|
|
119
|
+
* Combine with event-driven systems to create autonomous agents
|
|
120
|
+
|
|
121
|
+
## Stack
|
|
122
|
+
|
|
123
|
+
### Tech
|
|
124
|
+
|
|
125
|
+
* [Python](https://python.org) - Programming Language
|
|
126
|
+
* [OpenAI](https://openai.com) - AI Model Provider
|
|
127
|
+
* [Grok](https://x.ai) - Alternative AI Model Provider (optional)
|
|
128
|
+
* [MongoDB](https://mongodb.com) - Conversational History (optional)
|
|
129
|
+
* [Zep Cloud](https://getzep.com) - Conversational Memory (optional)
|
|
130
|
+
* [Pinecone](https://pinecone.io) - Knowledge Base (optional)
|
|
131
|
+
* [Zapier](https://zapier.com) - App Integrations (optional)
|
|
132
|
+
* [Pydantic Logfire](https://pydantic.dev/logfire) - Observability and Tracing (optional)
|
|
133
|
+
|
|
134
|
+
### AI Models Used
|
|
135
|
+
|
|
136
|
+
**OpenAI**
|
|
137
|
+
* [gpt-4.1](https://platform.openai.com/docs/models/gpt-4.1) (agent & router)
|
|
138
|
+
* [text-embedding-3-large](https://platform.openai.com/docs/models/text-embedding-3-large) (embedding)
|
|
139
|
+
* [gpt-realtime](https://platform.openai.com/docs/models/gpt-realtime) (realtime audio agent with dual modality support)
|
|
140
|
+
* [tts-1](https://platform.openai.com/docs/models/tts-1) (audio TTS)
|
|
141
|
+
* [gpt-4o-mini-transcribe](https://platform.openai.com/docs/models/gpt-4o-mini-transcribe) (audio transcription)
|
|
142
|
+
|
|
143
|
+
## Installation
|
|
144
|
+
|
|
145
|
+
You can install Solana Agent using pip:
|
|
146
|
+
|
|
147
|
+
`pip install solana-agent`
|
|
148
|
+
|
|
149
|
+
## Flows
|
|
150
|
+
|
|
151
|
+
In both flows of single and multiple agents - it is one user query to one agent using one or many tools (if needed).
|
|
152
|
+
|
|
153
|
+
An agent can have multiple tools and will choose the best ones to fulfill the user's query.
|
|
154
|
+
|
|
155
|
+
Routing is determined by optimal domain expertise of the agent for the user's query.
|
|
156
|
+
|
|
157
|
+
When the agent uses tools it feeds the tools output back to itself to generate the final response.
|
|
158
|
+
|
|
159
|
+
This is important as tools generally output unstructured and unformatted data that the agent needs to prepare for the user.
|
|
160
|
+
|
|
161
|
+
Keep this in mind while designing your agentic systems using Solana Agent.
|
|
162
|
+
|
|
163
|
+
```ascii
|
|
164
|
+
Single Agent
|
|
165
|
+
|
|
166
|
+
┌────────┐ ┌─────────┐ ┌────────-┐
|
|
167
|
+
│ │ │ │ │ │
|
|
168
|
+
│ │ │ │ │ │
|
|
169
|
+
│ User │◄──────►│ Agent │◄──────►│ Tools │
|
|
170
|
+
│ │ │ │ │ │
|
|
171
|
+
│ │ │ │ │ │
|
|
172
|
+
└────────┘ └─────────┘ └────────-┘
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
|
|
178
|
+
Multiple Agents
|
|
179
|
+
|
|
180
|
+
┌────────┐ ┌──────────┐ ┌─────────┐ ┌────────-┐
|
|
181
|
+
│ │ │ │ │ │ │ │
|
|
182
|
+
│ │ │ │ │ │ │ │
|
|
183
|
+
┌───►│ User ├───────►│ Router ├───────►│ Agent │◄──────►│ Tools │
|
|
184
|
+
│ │ │ │ │ │ │ │ │
|
|
185
|
+
│ │ │ │ │ │ │ │ │
|
|
186
|
+
│ └────────┘ └──────────┘ └────┬────┘ └────────-┘
|
|
187
|
+
│ │
|
|
188
|
+
│ │
|
|
189
|
+
│ │
|
|
190
|
+
│ │
|
|
191
|
+
└───────────────────────────────────────────────┘
|
|
192
|
+
```
|
|
193
|
+
|
|
194
|
+
## Usage
|
|
195
|
+
|
|
196
|
+
### Text/Text Streaming
|
|
197
|
+
|
|
198
|
+
```python
|
|
199
|
+
from solana_agent import SolanaAgent
|
|
200
|
+
|
|
201
|
+
config = {
|
|
202
|
+
"openai": {
|
|
203
|
+
"api_key": "your-openai-api-key",
|
|
204
|
+
},
|
|
205
|
+
"agents": [
|
|
206
|
+
{
|
|
207
|
+
"name": "research_specialist",
|
|
208
|
+
"instructions": "You are an expert researcher who synthesizes complex information clearly.",
|
|
209
|
+
"specialization": "Research and knowledge synthesis",
|
|
210
|
+
},
|
|
211
|
+
{
|
|
212
|
+
"name": "customer_support",
|
|
213
|
+
"instructions": "You provide friendly, helpful customer support responses.",
|
|
214
|
+
"specialization": "Customer inquiries",
|
|
215
|
+
}
|
|
216
|
+
],
|
|
217
|
+
}
|
|
218
|
+
|
|
219
|
+
solana_agent = SolanaAgent(config=config)
|
|
220
|
+
|
|
221
|
+
async for response in solana_agent.process("user123", "What are the latest AI developments?"):
|
|
222
|
+
print(response, end="")
|
|
223
|
+
```
|
|
224
|
+
|
|
225
|
+
### Audio/Audio Streaming
|
|
226
|
+
|
|
227
|
+
```python
|
|
228
|
+
from solana_agent import SolanaAgent
|
|
229
|
+
|
|
230
|
+
config = {
|
|
231
|
+
"openai": {
|
|
232
|
+
"api_key": "your-openai-api-key",
|
|
233
|
+
},
|
|
234
|
+
"agents": [
|
|
235
|
+
{
|
|
236
|
+
"name": "research_specialist",
|
|
237
|
+
"instructions": "You are an expert researcher who synthesizes complex information clearly.",
|
|
238
|
+
"specialization": "Research and knowledge synthesis",
|
|
239
|
+
},
|
|
240
|
+
{
|
|
241
|
+
"name": "customer_support",
|
|
242
|
+
"instructions": "You provide friendly, helpful customer support responses.",
|
|
243
|
+
"specialization": "Customer inquiries",
|
|
244
|
+
}
|
|
245
|
+
],
|
|
246
|
+
}
|
|
247
|
+
|
|
248
|
+
solana_agent = SolanaAgent(config=config)
|
|
249
|
+
|
|
250
|
+
audio_content = await audio_file.read()
|
|
251
|
+
|
|
252
|
+
async for response in solana_agent.process("user123", audio_content, output_format="audio", audio_voice="nova", audio_input_format="webm", audio_output_format="aac"):
|
|
253
|
+
print(response, end="")
|
|
254
|
+
```
|
|
255
|
+
|
|
256
|
+
### Text/Audio Streaming
|
|
257
|
+
|
|
258
|
+
```python
|
|
259
|
+
from solana_agent import SolanaAgent
|
|
260
|
+
|
|
261
|
+
config = {
|
|
262
|
+
"openai": {
|
|
263
|
+
"api_key": "your-openai-api-key",
|
|
264
|
+
},
|
|
265
|
+
"agents": [
|
|
266
|
+
{
|
|
267
|
+
"name": "research_specialist",
|
|
268
|
+
"instructions": "You are an expert researcher who synthesizes complex information clearly.",
|
|
269
|
+
"specialization": "Research and knowledge synthesis",
|
|
270
|
+
},
|
|
271
|
+
{
|
|
272
|
+
"name": "customer_support",
|
|
273
|
+
"instructions": "You provide friendly, helpful customer support responses.",
|
|
274
|
+
"specialization": "Customer inquiries",
|
|
275
|
+
}
|
|
276
|
+
],
|
|
277
|
+
}
|
|
278
|
+
|
|
279
|
+
solana_agent = SolanaAgent(config=config)
|
|
280
|
+
|
|
281
|
+
async for response in solana_agent.process("user123", "What is the latest news on Elon Musk?", output_format="audio", audio_voice="nova", audio_output_format="aac"):
|
|
282
|
+
print(response, end="")
|
|
283
|
+
```
|
|
284
|
+
|
|
285
|
+
### Audio/Text Streaming
|
|
286
|
+
|
|
287
|
+
```python
|
|
288
|
+
## Realtime Usage
|
|
289
|
+
from solana_agent import SolanaAgent
|
|
290
|
+
|
|
291
|
+
config = {
|
|
292
|
+
"openai": {
|
|
293
|
+
"api_key": "your-openai-api-key",
|
|
294
|
+
},
|
|
295
|
+
"agents": [
|
|
296
|
+
{
|
|
297
|
+
"name": "research_specialist",
|
|
298
|
+
"instructions": "You are an expert researcher who synthesizes complex information clearly.",
|
|
299
|
+
"specialization": "Research and knowledge synthesis",
|
|
300
|
+
},
|
|
301
|
+
{
|
|
302
|
+
"name": "customer_support",
|
|
303
|
+
"instructions": "You provide friendly, helpful customer support responses.",
|
|
304
|
+
"specialization": "Customer inquiries",
|
|
305
|
+
}
|
|
306
|
+
],
|
|
307
|
+
}
|
|
308
|
+
|
|
309
|
+
solana_agent = SolanaAgent(config=config)
|
|
310
|
+
|
|
311
|
+
audio_content = await audio_file.read()
|
|
312
|
+
|
|
313
|
+
async for response in solana_agent.process("user123", audio_content, audio_input_format="aac"):
|
|
314
|
+
print(response, end="")
|
|
315
|
+
```
|
|
316
|
+
|
|
317
|
+
### Realtime Audio Streaming
|
|
318
|
+
|
|
319
|
+
If input and/or output is encoded (compressed) like mp4/mp3 then you must have `ffmpeg` installed.
|
|
320
|
+
|
|
321
|
+
Due to the overhead of the router (API call) - realtime only supports a single agent setup.
|
|
322
|
+
|
|
323
|
+
Realtime uses MongoDB for memory so Zep is not needed.
|
|
324
|
+
|
|
325
|
+
By default, when `realtime=True` and you supply raw/encoded audio bytes as input, the system **always skips the HTTP transcription (STT) path** and relies solely on the realtime websocket session for input transcription. If you don't specify `rt_transcription_model`, a sensible default (`gpt-4o-mini-transcribe`) is auto-selected so you still receive input transcript events with minimal latency.
|
|
326
|
+
|
|
327
|
+
Implications:
|
|
328
|
+
- `llm_provider.transcribe_audio` is never invoked for realtime turns.
|
|
329
|
+
- Lower end-to-end latency (no duplicate network round trip for STT).
|
|
330
|
+
- Unified transcript sourcing from realtime events.
|
|
331
|
+
- If you explicitly want to disable transcription altogether, send text (not audio bytes) or ignore transcript events client-side.
|
|
332
|
+
|
|
333
|
+
This example will work using expo-audio on Android and iOS.
|
|
334
|
+
|
|
335
|
+
```python
|
|
336
|
+
from solana_agent import SolanaAgent
|
|
337
|
+
|
|
338
|
+
solana_agent = SolanaAgent(config=config)
|
|
339
|
+
user_id="user123",
|
|
340
|
+
message=audio_content,
|
|
341
|
+
realtime=True,
|
|
342
|
+
rt_encode_input=True,
|
|
343
|
+
rt_encode_output=True,
|
|
344
|
+
rt_output_modalities=["audio"],
|
|
345
|
+
rt_voice="marin",
|
|
346
|
+
output_format="audio",
|
|
347
|
+
audio_output_format="mp3",
|
|
348
|
+
audio_input_format="mp4",
|
|
349
|
+
):
|
|
350
|
+
yield chunk
|
|
351
|
+
|
|
352
|
+
return StreamingResponse(
|
|
353
|
+
content=generate(),
|
|
354
|
+
media_type="audio/mp3",
|
|
355
|
+
headers={
|
|
356
|
+
"Cache-Control": "no-store",
|
|
357
|
+
"Pragma": "no-cache",
|
|
358
|
+
"Content-Disposition": "inline; filename=stream.mp3",
|
|
359
|
+
"X-Accel-Buffering": "no",
|
|
360
|
+
},
|
|
361
|
+
)
|
|
362
|
+
```
|
|
363
|
+
|
|
364
|
+
### Realtime Text Streaming
|
|
365
|
+
|
|
366
|
+
Due to the overhead of the router (API call) - realtime only supports a single agent setup.
|
|
367
|
+
|
|
368
|
+
Realtime uses MongoDB for memory so Zep is not needed.
|
|
369
|
+
|
|
370
|
+
When using realtime with text input, no audio transcription is needed. The same bypass rules apply—HTTP STT is never called in realtime mode.
|
|
371
|
+
|
|
372
|
+
```python
|
|
373
|
+
from solana_agent import SolanaAgent
|
|
374
|
+
|
|
375
|
+
solana_agent = SolanaAgent(config=config)
|
|
376
|
+
|
|
377
|
+
async def generate():
|
|
378
|
+
async for chunk in solana_agent.process(
|
|
379
|
+
user_id="user123",
|
|
380
|
+
message="What is the latest news on Solana?",
|
|
381
|
+
realtime=True,
|
|
382
|
+
rt_output_modalities=["text"],
|
|
383
|
+
):
|
|
384
|
+
yield chunk
|
|
385
|
+
```
|
|
386
|
+
|
|
387
|
+
### Dual Modality Realtime Streaming
|
|
388
|
+
|
|
389
|
+
Solana Agent supports **dual modality realtime streaming**, allowing you to stream both audio and text simultaneously from a single realtime session. This enables rich conversational experiences where users can receive both voice responses and text transcripts in real-time.
|
|
390
|
+
|
|
391
|
+
#### Features
|
|
392
|
+
- **Simultaneous Audio & Text**: Stream both modalities from the same conversation
|
|
393
|
+
- **Flexible Output**: Choose audio-only, text-only, or both modalities
|
|
394
|
+
- **Real-time Demuxing**: Automatically separate audio and text streams
|
|
395
|
+
- **Mobile Optimized**: Works seamlessly with compressed audio formats (MP4/AAC)
|
|
396
|
+
- **Memory Efficient**: Smart buffering and streaming for optimal performance
|
|
397
|
+
|
|
398
|
+
#### Mobile App Integration Example
|
|
399
|
+
|
|
400
|
+
```python
|
|
401
|
+
from fastapi import UploadFile
|
|
402
|
+
from fastapi.responses import StreamingResponse
|
|
403
|
+
from solana_agent import SolanaAgent
|
|
404
|
+
from solana_agent.interfaces.providers.realtime import RealtimeChunk
|
|
405
|
+
import base64
|
|
406
|
+
|
|
407
|
+
solana_agent = SolanaAgent(config=config)
|
|
408
|
+
|
|
409
|
+
@app.post("/realtime/dual")
|
|
410
|
+
async def realtime_dual_endpoint(audio_file: UploadFile):
|
|
411
|
+
"""
|
|
412
|
+
Dual modality (audio + text) realtime endpoint using Server-Sent Events (SSE).
|
|
413
|
+
Emits:
|
|
414
|
+
event: audio (base64 encoded audio frames)
|
|
415
|
+
event: transcript (incremental text)
|
|
416
|
+
Notes:
|
|
417
|
+
- Do NOT set output_format when using both modalities.
|
|
418
|
+
- If only one modality is requested, plain str (text) or raw audio bytes may be yielded instead of RealtimeChunk.
|
|
419
|
+
"""
|
|
420
|
+
audio_content = await audio_file.read()
|
|
421
|
+
|
|
422
|
+
async def event_stream():
|
|
423
|
+
async for chunk in solana_agent.process(
|
|
424
|
+
user_id="mobile_user",
|
|
425
|
+
message=audio_content,
|
|
426
|
+
realtime=True,
|
|
427
|
+
rt_encode_input=True,
|
|
428
|
+
rt_encode_output=True,
|
|
429
|
+
rt_output_modalities=["audio", "text"],
|
|
430
|
+
rt_voice="marin",
|
|
431
|
+
audio_input_format="mp4",
|
|
432
|
+
audio_output_format="mp3",
|
|
433
|
+
# Optionally lock transcription model (otherwise default is auto-selected):
|
|
434
|
+
# rt_transcription_model="gpt-4o-mini-transcribe",
|
|
435
|
+
):
|
|
436
|
+
if isinstance(chunk, RealtimeChunk):
|
|
437
|
+
if chunk.is_audio and chunk.audio_data:
|
|
438
|
+
b64 = base64.b64encode(chunk.audio_data).decode("ascii")
|
|
439
|
+
yield f"event: audio\ndata: {b64}\n\n"
|
|
440
|
+
elif chunk.is_text and chunk.text_data:
|
|
441
|
+
# Incremental transcript (not duplicated at finalize)
|
|
442
|
+
yield f"event: transcript\ndata: {chunk.text_data}\n\n"
|
|
443
|
+
continue
|
|
444
|
+
# (Defensive) fallback: if something else appears
|
|
445
|
+
if isinstance(chunk, bytes):
|
|
446
|
+
b64 = base64.b64encode(chunk).decode("ascii")
|
|
447
|
+
yield f"event: audio\ndata: {b64}\n\n"
|
|
448
|
+
elif isinstance(chunk, str):
|
|
449
|
+
yield f"event: transcript\ndata: {chunk}\n\n"
|
|
450
|
+
|
|
451
|
+
yield "event: done\ndata: end\n\n"
|
|
452
|
+
|
|
453
|
+
return StreamingResponse(
|
|
454
|
+
event_stream(),
|
|
455
|
+
media_type="text/event-stream",
|
|
456
|
+
headers={
|
|
457
|
+
"Cache-Control": "no-store",
|
|
458
|
+
"Access-Control-Allow-Origin": "*",
|
|
459
|
+
},
|
|
460
|
+
)
|
|
461
|
+
```
|
|
462
|
+
|
|
463
|
+
### Image/Text Streaming
|
|
464
|
+
|
|
465
|
+
```python
|
|
466
|
+
from solana_agent import SolanaAgent
|
|
467
|
+
|
|
468
|
+
config = {
|
|
469
|
+
"openai": {
|
|
470
|
+
"api_key": "your-openai-api-key",
|
|
471
|
+
},
|
|
472
|
+
"agents": [
|
|
473
|
+
{
|
|
474
|
+
"name": "vision_expert",
|
|
475
|
+
"instructions": "You are an expert at analyzing images and answering questions about them.",
|
|
476
|
+
"specialization": "Image analysis",
|
|
477
|
+
}
|
|
478
|
+
],
|
|
479
|
+
}
|
|
480
|
+
|
|
481
|
+
solana_agent = SolanaAgent(config=config)
|
|
482
|
+
|
|
483
|
+
# Example with an image URL
|
|
484
|
+
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
|
485
|
+
|
|
486
|
+
# Example reading image bytes from a file
|
|
487
|
+
image_bytes = await image_file.read()
|
|
488
|
+
|
|
489
|
+
# You can mix URLs and bytes in the list
|
|
490
|
+
images_to_process = [
|
|
491
|
+
image_url,
|
|
492
|
+
image_bytes,
|
|
493
|
+
]
|
|
494
|
+
|
|
495
|
+
async for response in solana_agent.process("user123", "What is in this image? Describe the scene.", images=images_to_process):
|
|
496
|
+
print(response, end="")
|
|
497
|
+
```
|
|
498
|
+
|
|
499
|
+
### Agentic Forms
|
|
500
|
+
|
|
501
|
+
You can attach a JSON Schema to any agent in your config so it can collect structured data conversationally.
|
|
502
|
+
|
|
503
|
+
```python
|
|
504
|
+
from solana_agent import SolanaAgent
|
|
505
|
+
|
|
506
|
+
config = {
|
|
507
|
+
"openai": {
|
|
508
|
+
"api_key": "your-openai-api-key",
|
|
509
|
+
},
|
|
510
|
+
"agents": [
|
|
511
|
+
{
|
|
512
|
+
"name": "customer_support",
|
|
513
|
+
"instructions": "You provide friendly, helpful customer support responses.",
|
|
514
|
+
"specialization": "Customer inquiries",
|
|
515
|
+
"capture_name": "contact_info",
|
|
516
|
+
"capture_schema": {
|
|
517
|
+
"type": "object",
|
|
518
|
+
"properties": {
|
|
519
|
+
"email": { "type": "string" },
|
|
520
|
+
"phone": { "type": "string" },
|
|
521
|
+
"newsletter_subscribe": { "type": "boolean" }
|
|
522
|
+
},
|
|
523
|
+
"required": ["email"]
|
|
524
|
+
}
|
|
525
|
+
}
|
|
526
|
+
]
|
|
527
|
+
}
|
|
528
|
+
|
|
529
|
+
solana_agent = SolanaAgent(config=config)
|
|
530
|
+
|
|
531
|
+
async for response in solana_agent.process("user123", "What are the latest AI developments?"):
|
|
532
|
+
print(response, end="")
|
|
533
|
+
```
|
|
534
|
+
|
|
535
|
+
### Command Line Interface (CLI)
|
|
536
|
+
|
|
537
|
+
Solana Agent includes a command-line interface (CLI) for text-based chat using a configuration file.
|
|
538
|
+
|
|
539
|
+
Ensure you have a valid configuration file (e.g., `config.json`) containing at least your OpenAI API key and agent definitions.
|
|
540
|
+
|
|
541
|
+
**./config.json**
|
|
542
|
+
```json
|
|
543
|
+
{
|
|
544
|
+
"openai": {
|
|
545
|
+
"api_key": "your-openai-api-key"
|
|
546
|
+
},
|
|
547
|
+
"agents": [
|
|
548
|
+
{
|
|
549
|
+
"name": "default_agent",
|
|
550
|
+
"instructions": "You are a helpful AI assistant.",
|
|
551
|
+
"specialization": "general"
|
|
552
|
+
}
|
|
553
|
+
]
|
|
554
|
+
}
|
|
555
|
+
```
|
|
556
|
+
|
|
557
|
+
Also ensure that you have `pip install uv` to call `uvx`.
|
|
558
|
+
|
|
559
|
+
```bash
|
|
560
|
+
uvx solana-agent [OPTIONS]
|
|
561
|
+
|
|
562
|
+
Options:
|
|
563
|
+
|
|
564
|
+
--user-id TEXT: The user ID for the conversation (default: cli_user).
|
|
565
|
+
--config TEXT: Path to the configuration JSON file (default: config.json).
|
|
566
|
+
--prompt TEXT: Optional system prompt override for the agent.
|
|
567
|
+
--help: Show help message and exit.
|
|
568
|
+
|
|
569
|
+
# Using default config.json and user_id
|
|
570
|
+
uvx solana-agent
|
|
571
|
+
|
|
572
|
+
# Specifying user ID and config path
|
|
573
|
+
uvx solana-agent --user-id my_cli_session --config ./my_agent_config.json
|
|
574
|
+
```
|
|
575
|
+
|
|
576
|
+
## Optional Feature Configs
|
|
577
|
+
|
|
578
|
+
### Grok
|
|
579
|
+
|
|
580
|
+
Solana Agent supports using Grok from xAI as an alternative to OpenAI. When Grok is configured, it will be used for all LLM operations except embeddings, TTS, and STT (which still require OpenAI).
|
|
581
|
+
|
|
582
|
+
**Note:** Grok configuration takes priority over OpenAI. If both are present, Grok will be used.
|
|
583
|
+
|
|
584
|
+
```python
|
|
585
|
+
config = {
|
|
586
|
+
"grok": {
|
|
587
|
+
"api_key": "your-grok-api-key",
|
|
588
|
+
"base_url": "https://api.x.ai/v1", # Optional, defaults to https://api.x.ai/v1
|
|
589
|
+
"model": "grok-4-1-fast-non-reasoning" # Optional, defaults to grok-4-1-fast-non-reasoning
|
|
590
|
+
},
|
|
591
|
+
# You can still include OpenAI for embeddings, TTS, and STT
|
|
592
|
+
"openai": {
|
|
593
|
+
"api_key": "your-openai-api-key"
|
|
594
|
+
},
|
|
595
|
+
"agents": [
|
|
596
|
+
{
|
|
597
|
+
"name": "research_specialist",
|
|
598
|
+
"instructions": "You are an expert researcher.",
|
|
599
|
+
"specialization": "Research",
|
|
600
|
+
}
|
|
601
|
+
],
|
|
602
|
+
}
|
|
603
|
+
```
|
|
604
|
+
|
|
605
|
+
**Verified Capabilities:**
|
|
606
|
+
- ✅ Chat completions
|
|
607
|
+
- ✅ Streaming responses
|
|
608
|
+
- ✅ Function calling/Tool usage
|
|
609
|
+
- ✅ Structured outputs (via Instructor TOOLS_STRICT and JSON modes)
|
|
610
|
+
- ✅ Native JSON mode
|
|
611
|
+
|
|
612
|
+
### Business Alignment
|
|
613
|
+
|
|
614
|
+
```python
|
|
615
|
+
config = {
|
|
616
|
+
"business": {
|
|
617
|
+
"mission": "To provide users with a one-stop shop for their queries.",
|
|
618
|
+
"values": {
|
|
619
|
+
"Friendliness": "Users must be treated fairly, openly, and with friendliness.",
|
|
620
|
+
"Ethical": "Agents must use a strong ethical framework in their interactions with users.",
|
|
621
|
+
},
|
|
622
|
+
"goals": [
|
|
623
|
+
"Empower users with great answers to their queries.",
|
|
624
|
+
],
|
|
625
|
+
"voice": "The voice of the brand is that of a research business."
|
|
626
|
+
},
|
|
627
|
+
}
|
|
628
|
+
```
|
|
629
|
+
|
|
630
|
+
### Conversational History
|
|
631
|
+
|
|
632
|
+
```python
|
|
633
|
+
config = {
|
|
634
|
+
"mongo": {
|
|
635
|
+
"connection_string": "your-mongo-connection-string",
|
|
636
|
+
"database": "your-database-name"
|
|
637
|
+
},
|
|
638
|
+
}
|
|
639
|
+
```
|
|
640
|
+
|
|
641
|
+
### Conversational Memory
|
|
642
|
+
|
|
643
|
+
```python
|
|
644
|
+
config = {
|
|
645
|
+
"zep": {
|
|
646
|
+
"api_key": "your-zep-cloud-api-key",
|
|
647
|
+
},
|
|
648
|
+
}
|
|
649
|
+
```
|
|
650
|
+
|
|
651
|
+
### Observability and Tracing
|
|
652
|
+
|
|
653
|
+
```python
|
|
654
|
+
config = {
|
|
655
|
+
"logfire": {
|
|
656
|
+
"api_key": "your-logfire-write-token",
|
|
657
|
+
},
|
|
658
|
+
}
|
|
659
|
+
```
|
|
660
|
+
|
|
661
|
+
### Knowledge Base
|
|
662
|
+
|
|
663
|
+
The Knowledge Base (KB) is meant to store text values and/or PDFs (extracts text) - can handle very large PDFs.
|
|
664
|
+
|
|
665
|
+
```python
|
|
666
|
+
config = {
|
|
667
|
+
"knowledge_base": {
|
|
668
|
+
"pinecone": {
|
|
669
|
+
"api_key": "your-pinecone-api-key",
|
|
670
|
+
"index_name": "your-pinecone-index-name",
|
|
671
|
+
}
|
|
672
|
+
},
|
|
673
|
+
"mongo": {
|
|
674
|
+
"connection_string": "your-mongo-connection-string",
|
|
675
|
+
"database": "your-database-name"
|
|
676
|
+
},
|
|
677
|
+
}
|
|
678
|
+
```
|
|
679
|
+
|
|
680
|
+
#### Example for KB (text)
|
|
681
|
+
|
|
682
|
+
```python
|
|
683
|
+
from solana_agent import SolanaAgent
|
|
684
|
+
|
|
685
|
+
config = {
|
|
686
|
+
"openai": {
|
|
687
|
+
"api_key": "your-openai-api-key",
|
|
688
|
+
},
|
|
689
|
+
"knowledge_base": {
|
|
690
|
+
"pinecone": {
|
|
691
|
+
"api_key": "your-pinecone-api-key",
|
|
692
|
+
"index_name": "your-pinecone-index-name",
|
|
693
|
+
}
|
|
694
|
+
},
|
|
695
|
+
"mongo": {
|
|
696
|
+
"connection_string": "your-mongo-connection-string",
|
|
697
|
+
"database": "your-database-name"
|
|
698
|
+
},
|
|
699
|
+
"agents": [
|
|
700
|
+
{
|
|
701
|
+
"name": "kb_expert",
|
|
702
|
+
"instructions": "You answer questions based on the provided knowledge base documents.",
|
|
703
|
+
"specialization": "Company Knowledge",
|
|
704
|
+
}
|
|
705
|
+
]
|
|
706
|
+
}
|
|
707
|
+
|
|
708
|
+
solana_agent = SolanaAgent(config=config)
|
|
709
|
+
|
|
710
|
+
doc_text = "Solana Agent is a Python framework for building multi-agent AI systems."
|
|
711
|
+
doc_metadata = {
|
|
712
|
+
"source": "internal_docs",
|
|
713
|
+
"version": "1.0",
|
|
714
|
+
"tags": ["framework", "python", "ai"]
|
|
715
|
+
}
|
|
716
|
+
await solana_agent.kb_add_document(text=doc_text, metadata=doc_metadata)
|
|
717
|
+
|
|
718
|
+
async for response in solana_agent.process("user123", "What is Solana Agent?"):
|
|
719
|
+
print(response, end="")
|
|
720
|
+
```
|
|
721
|
+
|
|
722
|
+
#### Example for KB (pdf)
|
|
723
|
+
|
|
724
|
+
```python
|
|
725
|
+
from solana_agent import SolanaAgent
|
|
726
|
+
|
|
727
|
+
config = {
|
|
728
|
+
"openai": {
|
|
729
|
+
"api_key": "your-openai-api-key",
|
|
730
|
+
},
|
|
731
|
+
"knowledge_base": {
|
|
732
|
+
"pinecone": {
|
|
733
|
+
"api_key": "your-pinecone-api-key",
|
|
734
|
+
"index_name": "your-pinecone-index-name",
|
|
735
|
+
}
|
|
736
|
+
},
|
|
737
|
+
"mongo": {
|
|
738
|
+
"connection_string": "your-mongo-connection-string",
|
|
739
|
+
"database": "your-database-name"
|
|
740
|
+
},
|
|
741
|
+
"agents": [
|
|
742
|
+
{
|
|
743
|
+
"name": "kb_expert",
|
|
744
|
+
"instructions": "You answer questions based on the provided knowledge base documents.",
|
|
745
|
+
"specialization": "Company Knowledge",
|
|
746
|
+
}
|
|
747
|
+
]
|
|
748
|
+
}
|
|
749
|
+
|
|
750
|
+
solana_agent = SolanaAgent(config=config)
|
|
751
|
+
|
|
752
|
+
pdf_bytes = await pdf_file.read()
|
|
753
|
+
|
|
754
|
+
pdf_metadata = {
|
|
755
|
+
"source": "annual_report_2024.pdf",
|
|
756
|
+
"year": 2024,
|
|
757
|
+
"tags": ["finance", "report"]
|
|
758
|
+
}
|
|
759
|
+
|
|
760
|
+
await solana_agent.kb_add_pdf_document(
|
|
761
|
+
pdf_data=pdf_bytes,
|
|
762
|
+
metadata=pdf_metadata,
|
|
763
|
+
)
|
|
764
|
+
|
|
765
|
+
async for response in solana_agent.process("user123", "Summarize the annual report for 2024."):
|
|
766
|
+
print(response, end="")
|
|
767
|
+
```
|
|
768
|
+
|
|
769
|
+
### Guardrails
|
|
770
|
+
|
|
771
|
+
Guardrails allow you to process and potentially modify user input before it reaches the agent (Input Guardrails) and agent output before it's sent back to the user (Output Guardrails). This is useful for implementing safety checks, content moderation, data sanitization, or custom transformations.
|
|
772
|
+
|
|
773
|
+
Guardrails don't work with structured outputs.
|
|
774
|
+
|
|
775
|
+
Solana Agent provides a built-in PII scrubber based on [scrubadub](https://github.com/LeapBeyond/scrubadub).
|
|
776
|
+
|
|
777
|
+
```python
|
|
778
|
+
from solana_agent import SolanaAgent
|
|
779
|
+
|
|
780
|
+
config = {
|
|
781
|
+
"guardrails": {
|
|
782
|
+
"input": [
|
|
783
|
+
# Example using a custom input guardrail
|
|
784
|
+
{
|
|
785
|
+
"class": "MyInputGuardrail",
|
|
786
|
+
"config": {"setting1": "value1"}
|
|
787
|
+
},
|
|
788
|
+
# Example using the built-in PII guardrail for input
|
|
789
|
+
{
|
|
790
|
+
"class": "solana_agent.guardrails.pii.PII",
|
|
791
|
+
"config": {
|
|
792
|
+
"locale": "en_GB", # Optional: Specify locale (default: en_US)
|
|
793
|
+
"replacement": "[REDACTED]" # Optional: Custom replacement format
|
|
794
|
+
}
|
|
795
|
+
}
|
|
796
|
+
],
|
|
797
|
+
"output": [
|
|
798
|
+
# Example using a custom output guardrail
|
|
799
|
+
{
|
|
800
|
+
"class": "MyOutputGuardrail",
|
|
801
|
+
"config": {"filter_level": "high"}
|
|
802
|
+
},
|
|
803
|
+
# Example using the built-in PII guardrail for output (with defaults)
|
|
804
|
+
{
|
|
805
|
+
"class": "solana_agent.guardrails.pii.PII"
|
|
806
|
+
# No config needed to use defaults
|
|
807
|
+
}
|
|
808
|
+
]
|
|
809
|
+
},
|
|
810
|
+
}
|
|
811
|
+
```
|
|
812
|
+
|
|
813
|
+
#### Example Custom Guardrails
|
|
814
|
+
|
|
815
|
+
Guardrails don't work with structured outputs.
|
|
816
|
+
|
|
817
|
+
```python
|
|
818
|
+
from solana_agent import InputGuardrail, OutputGuardrail
|
|
819
|
+
import logging
|
|
820
|
+
|
|
821
|
+
logger = logging.getLogger(__name__)
|
|
822
|
+
|
|
823
|
+
class MyInputGuardrail(InputGuardrail):
|
|
824
|
+
def __init__(self, config=None):
|
|
825
|
+
super().__init__(config)
|
|
826
|
+
self.setting1 = self.config.get("setting1", "default_value")
|
|
827
|
+
logger.info(f"MyInputGuardrail initialized with setting1: {self.setting1}")
|
|
828
|
+
|
|
829
|
+
async def process(self, text: str) -> str:
|
|
830
|
+
# Example: Convert input to lowercase
|
|
831
|
+
processed_text = text.lower()
|
|
832
|
+
logger.debug(f"Input Guardrail processed: {text} -> {processed_text}")
|
|
833
|
+
return processed_text
|
|
834
|
+
|
|
835
|
+
class MyOutputGuardrail(OutputGuardrail):
|
|
836
|
+
def __init__(self, config=None):
|
|
837
|
+
super().__init__(config)
|
|
838
|
+
self.filter_level = self.config.get("filter_level", "low")
|
|
839
|
+
logger.info(f"MyOutputGuardrail initialized with filter_level: {self.filter_level}")
|
|
840
|
+
|
|
841
|
+
async def process(self, text: str) -> str:
|
|
842
|
+
# Example: Basic profanity filtering (replace with a real library)
|
|
843
|
+
if self.filter_level == "high" and "badword" in text:
|
|
844
|
+
processed_text = text.replace("badword", "*******")
|
|
845
|
+
logger.warning(f"Output Guardrail filtered content.")
|
|
846
|
+
return processed_text
|
|
847
|
+
logger.debug("Output Guardrail passed text through.")
|
|
848
|
+
return text
|
|
849
|
+
```
|
|
850
|
+
|
|
851
|
+
## Tools
|
|
852
|
+
|
|
853
|
+
Tools empower agents to interact with external systems, fetch data, or perform actions. They can be used reactively within a user conversation or proactively when an agent is triggered autonomously.
|
|
854
|
+
|
|
855
|
+
Tools can be used from plugins like Solana Agent Kit (sakit) or via inline tools. Tools available via plugins integrate automatically with Solana Agent.
|
|
856
|
+
|
|
857
|
+
### Solana Agent Kit
|
|
858
|
+
|
|
859
|
+
[Solana Agent Kit](https://github.com/truemagic-coder/solana-agent-kit)
|
|
860
|
+
|
|
861
|
+
```bash
|
|
862
|
+
pip install sakit
|
|
863
|
+
```
|
|
864
|
+
|
|
865
|
+
### Inline Tool Example
|
|
866
|
+
|
|
867
|
+
```python
|
|
868
|
+
from solana_agent import SolanaAgent, Tool
|
|
869
|
+
|
|
870
|
+
class TestTool(Tool):
|
|
871
|
+
def __init__(self):
|
|
872
|
+
# your tool initialization - delete the following pass
|
|
873
|
+
pass
|
|
874
|
+
|
|
875
|
+
@property
|
|
876
|
+
def name(self) -> str:
|
|
877
|
+
return "test_function"
|
|
878
|
+
|
|
879
|
+
@property
|
|
880
|
+
def description(self) -> str:
|
|
881
|
+
return "Test function for Solana Agent"
|
|
882
|
+
|
|
883
|
+
def configure(self, config: Dict[str, Any]) -> None:
|
|
884
|
+
"""Configure with all possible API key locations."""
|
|
885
|
+
super().configure(config)
|
|
886
|
+
|
|
887
|
+
# read your config values - delete the following pass
|
|
888
|
+
pass
|
|
889
|
+
|
|
890
|
+
def get_schema(self) -> Dict[str, Any]:
|
|
891
|
+
# this is an example schema
|
|
892
|
+
return {
|
|
893
|
+
"type": "object",
|
|
894
|
+
"properties": {
|
|
895
|
+
"query": {"type": "string", "description": "Search query text"},
|
|
896
|
+
"user_id": {"type": "string", "description": "User ID for the search session"}
|
|
897
|
+
},
|
|
898
|
+
"required": ["query", "user_id"],
|
|
899
|
+
"additionalProperties": False,
|
|
900
|
+
}
|
|
901
|
+
|
|
902
|
+
async def execute(self, **params) -> Dict[str, Any]:
|
|
903
|
+
try:
|
|
904
|
+
# your tool logic
|
|
905
|
+
result = "Your tool results"
|
|
906
|
+
|
|
907
|
+
return {
|
|
908
|
+
"status": "success",
|
|
909
|
+
"result": result,
|
|
910
|
+
}
|
|
911
|
+
except Exception as e:
|
|
912
|
+
return {
|
|
913
|
+
"status": "error",
|
|
914
|
+
"message": f"Error: {str(e)}",
|
|
915
|
+
}
|
|
916
|
+
|
|
917
|
+
config = {
|
|
918
|
+
"openai": {
|
|
919
|
+
"api_key": "your-openai-api-key",
|
|
920
|
+
},
|
|
921
|
+
"agents": [
|
|
922
|
+
{
|
|
923
|
+
"name": "research_specialist",
|
|
924
|
+
"instructions": "You are an expert researcher who synthesizes complex information clearly.",
|
|
925
|
+
"specialization": "Research and knowledge synthesis",
|
|
926
|
+
},
|
|
927
|
+
{
|
|
928
|
+
"name": "customer_support",
|
|
929
|
+
"instructions": "You provide friendly, helpful customer support responses.",
|
|
930
|
+
"specialization": "Customer inquiries",
|
|
931
|
+
}
|
|
932
|
+
],
|
|
933
|
+
}
|
|
934
|
+
|
|
935
|
+
solana_agent = SolanaAgent(config=config)
|
|
936
|
+
|
|
937
|
+
test_tool = TestTool()
|
|
938
|
+
|
|
939
|
+
solana_agent.register_tool("customer_support", test_tool)
|
|
940
|
+
|
|
941
|
+
async for response in solana_agent.process("user123", "What are the latest AI developments?"):
|
|
942
|
+
print(response, end="")
|
|
943
|
+
```
|
|
944
|
+
|
|
945
|
+
## Autonomous Operation & Event-Driven Agents
|
|
946
|
+
|
|
947
|
+
While Solana Agent facilitates request-response interactions, the underlying architecture supports building autonomous agents. You can achieve autonomy by orchestrating calls based on external triggers rather than direct user input.
|
|
948
|
+
|
|
949
|
+
**Key Concepts:**
|
|
950
|
+
|
|
951
|
+
* **External Triggers:** Use schedulers like cron, message queues (RabbitMQ, Kafka), monitoring systems, webhooks, or other event sources to initiate agent actions.
|
|
952
|
+
* **Programmatic Calls:** Instead of a user typing a message, your triggering system calls with a specific message (acting as instructions or data for the task) and potentially a dedicated user representing the autonomous process.
|
|
953
|
+
* **Tool-Centric Tasks:** Autonomous agents often focus on executing specific tools. The prompt can instruct the agent to use a particular tool with given parameters derived from the triggering event.
|
|
954
|
+
* **Example Scenario:** An agent could be triggered hourly by a scheduler. The `message` could be "Check the SOL balance for wallet X using the `solana` tool." The agent executes the tool, and the result could be logged or trigger another tool (e.g., using `mcp` to send an alert if the balance is low).
|
|
955
|
+
|
|
956
|
+
By combining Solana Agent's agent definitions, tool integration, and routing with external orchestration, you can create sophisticated autonomous systems.
|
|
957
|
+
|
|
958
|
+
## Advanced Customization
|
|
959
|
+
|
|
960
|
+
### Runtime Prompt Injection
|
|
961
|
+
|
|
962
|
+
```python
|
|
963
|
+
from solana_agent import SolanaAgent
|
|
964
|
+
|
|
965
|
+
config = {
|
|
966
|
+
"openai": {
|
|
967
|
+
"api_key": "your-openai-api-key",
|
|
968
|
+
},
|
|
969
|
+
"agents": [
|
|
970
|
+
{
|
|
971
|
+
"name": "customer_support",
|
|
972
|
+
"instructions": "You provide friendly, helpful customer support responses.",
|
|
973
|
+
"specialization": "Customer inquiries",
|
|
974
|
+
}
|
|
975
|
+
],
|
|
976
|
+
}
|
|
977
|
+
|
|
978
|
+
solana_agent = SolanaAgent(config=config)
|
|
979
|
+
|
|
980
|
+
async for response in solana_agent.process("user123", "How do replace the latch on my dishwasher?", "This is my corporate appliance fixing FAQ"):
|
|
981
|
+
print(response, end="")
|
|
982
|
+
```
|
|
983
|
+
|
|
984
|
+
### Custom Routing
|
|
985
|
+
|
|
986
|
+
In advanced cases like implementing a ticketing system on-top of Solana Agent - you can use your own router.
|
|
987
|
+
|
|
988
|
+
```python
|
|
989
|
+
from solana_agent import SolanaAgent
|
|
990
|
+
from solana_agent.interfaces.services.routing import RoutingService as RoutingServiceInterface
|
|
991
|
+
|
|
992
|
+
config = {
|
|
993
|
+
"openai": {
|
|
994
|
+
"api_key": "your-openai-api-key",
|
|
995
|
+
},
|
|
996
|
+
"agents": [
|
|
997
|
+
{
|
|
998
|
+
"name": "research_specialist",
|
|
999
|
+
"instructions": "You are an expert researcher who synthesizes complex information clearly.",
|
|
1000
|
+
"specialization": "Research and knowledge synthesis",
|
|
1001
|
+
},
|
|
1002
|
+
{
|
|
1003
|
+
"name": "customer_support",
|
|
1004
|
+
"instructions": "You provide friendly, helpful customer support responses.",
|
|
1005
|
+
"specialization": "Customer inquiries",
|
|
1006
|
+
}
|
|
1007
|
+
],
|
|
1008
|
+
}
|
|
1009
|
+
|
|
1010
|
+
class Router(RoutingServiceInterface)
|
|
1011
|
+
def __init__(self):
|
|
1012
|
+
# your router initialization - delete the following pass
|
|
1013
|
+
pass
|
|
1014
|
+
|
|
1015
|
+
async def route_query(self, query: str) -> str:
|
|
1016
|
+
# a simple example to route always to customer_support agent
|
|
1017
|
+
return "customer_support"
|
|
1018
|
+
|
|
1019
|
+
router = Router()
|
|
1020
|
+
|
|
1021
|
+
solana_agent = SolanaAgent(config=config)
|
|
1022
|
+
|
|
1023
|
+
async for response in solana_agent.process("user123", "What are the latest AI developments?", router=router):
|
|
1024
|
+
print(response, end="")
|
|
1025
|
+
```
|
|
1026
|
+
|
|
1027
|
+
## API Documentation
|
|
1028
|
+
|
|
1029
|
+
The official up-to-date documentation site
|
|
1030
|
+
|
|
1031
|
+
[Solana Agent Documentation Site](https://docs.solana-agent.com)
|
|
1032
|
+
|
|
1033
|
+
## Official Tools
|
|
1034
|
+
|
|
1035
|
+
The official collection of tools in one plugin
|
|
1036
|
+
|
|
1037
|
+
[Solana Agent Kit](https://github.com/truemagic-coder/solana-agent-kit)
|
|
1038
|
+
|
|
1039
|
+
## Example App
|
|
1040
|
+
|
|
1041
|
+
The official example app written in FastAPI and Next.js
|
|
1042
|
+
|
|
1043
|
+
[Solana Agent Example App](https://github.com/truemagic-coder/solana-agent-app)
|
|
1044
|
+
|
|
1045
|
+
## Demo App
|
|
1046
|
+
|
|
1047
|
+
The official demo app written in FastAPI and Next.js
|
|
1048
|
+
|
|
1049
|
+
[Solana Agent Demo App](https://demo.solana-agent.com)
|
|
1050
|
+
|
|
1051
|
+
## Agent Framework Comparisons
|
|
1052
|
+
|
|
1053
|
+
[Compare Python Agent Frameworks](https://github.com/truemagic-coder/solana-agent/wiki/Agent-Framework-Comparisons)
|
|
1054
|
+
|
|
1055
|
+
## Contributing
|
|
1056
|
+
|
|
1057
|
+
If you have a question, feedback, or feature request - please open a GitHub discussion.
|
|
1058
|
+
|
|
1059
|
+
If you find a bug - please open a GitHub issue.
|
|
1060
|
+
|
|
1061
|
+
We are currently accepting PRs if approved in discussions. Make sure all tests pass and the README & docs are updated.
|
|
1062
|
+
|
|
1063
|
+
To run the documentation site locally run `make livehtml` in the root directory.
|
|
1064
|
+
|
|
1065
|
+
To run the test suite locally run `poetry run pytest --cov=solana_agent --cov-report=html` in the root directory.
|
|
1066
|
+
|
|
1067
|
+
## License
|
|
1068
|
+
|
|
1069
|
+
This project is licensed under the MIT License - see the LICENSE file for details.
|
|
1070
|
+
|