snowpark-connect 0.28.1__py3-none-any.whl → 0.29.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of snowpark-connect might be problematic. Click here for more details.

Files changed (28) hide show
  1. snowflake/snowpark_connect/config.py +11 -2
  2. snowflake/snowpark_connect/expression/map_unresolved_function.py +172 -210
  3. snowflake/snowpark_connect/relation/io_utils.py +21 -1
  4. snowflake/snowpark_connect/relation/map_extension.py +21 -4
  5. snowflake/snowpark_connect/relation/map_map_partitions.py +7 -8
  6. snowflake/snowpark_connect/relation/map_relation.py +1 -3
  7. snowflake/snowpark_connect/relation/read/map_read.py +22 -3
  8. snowflake/snowpark_connect/relation/read/map_read_csv.py +105 -26
  9. snowflake/snowpark_connect/relation/read/map_read_json.py +45 -34
  10. snowflake/snowpark_connect/relation/read/map_read_text.py +6 -1
  11. snowflake/snowpark_connect/relation/stage_locator.py +85 -53
  12. snowflake/snowpark_connect/relation/write/map_write.py +38 -4
  13. snowflake/snowpark_connect/server.py +18 -13
  14. snowflake/snowpark_connect/utils/context.py +0 -14
  15. snowflake/snowpark_connect/utils/io_utils.py +36 -0
  16. snowflake/snowpark_connect/utils/session.py +3 -0
  17. snowflake/snowpark_connect/utils/udf_cache.py +37 -7
  18. snowflake/snowpark_connect/version.py +1 -1
  19. {snowpark_connect-0.28.1.dist-info → snowpark_connect-0.29.0.dist-info}/METADATA +3 -2
  20. {snowpark_connect-0.28.1.dist-info → snowpark_connect-0.29.0.dist-info}/RECORD +28 -28
  21. {snowpark_connect-0.28.1.data → snowpark_connect-0.29.0.data}/scripts/snowpark-connect +0 -0
  22. {snowpark_connect-0.28.1.data → snowpark_connect-0.29.0.data}/scripts/snowpark-session +0 -0
  23. {snowpark_connect-0.28.1.data → snowpark_connect-0.29.0.data}/scripts/snowpark-submit +0 -0
  24. {snowpark_connect-0.28.1.dist-info → snowpark_connect-0.29.0.dist-info}/WHEEL +0 -0
  25. {snowpark_connect-0.28.1.dist-info → snowpark_connect-0.29.0.dist-info}/licenses/LICENSE-binary +0 -0
  26. {snowpark_connect-0.28.1.dist-info → snowpark_connect-0.29.0.dist-info}/licenses/LICENSE.txt +0 -0
  27. {snowpark_connect-0.28.1.dist-info → snowpark_connect-0.29.0.dist-info}/licenses/NOTICE-binary +0 -0
  28. {snowpark_connect-0.28.1.dist-info → snowpark_connect-0.29.0.dist-info}/top_level.txt +0 -0
@@ -345,7 +345,7 @@ def map_aggregate(
345
345
  return new_names[0], snowpark_column
346
346
 
347
347
  raw_groupings: list[tuple[str, TypedColumn]] = []
348
- raw_aggregations: list[tuple[str, TypedColumn]] = []
348
+ raw_aggregations: list[tuple[str, TypedColumn, list[str]]] = []
349
349
 
350
350
  if not is_group_by_all:
351
351
  raw_groupings = [_map_column(exp) for exp in aggregate.grouping_expressions]
@@ -375,10 +375,21 @@ def map_aggregate(
375
375
  # Note: We don't clear the map here to preserve any parent context aliases
376
376
  from snowflake.snowpark_connect.utils.context import register_lca_alias
377
377
 
378
+ # If it's an unresolved attribute when its in aggregate.aggregate_expressions, we know it came from the parent map straight away
379
+ # in this case, we should see if the parent map has a qualifier for it and propagate that here, in case the order by references it in
380
+ # a qualified way later.
378
381
  agg_count = get_sql_aggregate_function_count()
379
382
  for exp in aggregate.aggregate_expressions:
380
383
  col = _map_column(exp)
381
- raw_aggregations.append(col)
384
+ if exp.WhichOneof("expr_type") == "unresolved_attribute":
385
+ spark_name = col[0]
386
+ qualifiers = input_container.column_map.get_qualifier_for_spark_column(
387
+ spark_name
388
+ )
389
+ else:
390
+ qualifiers = []
391
+
392
+ raw_aggregations.append((col[0], col[1], qualifiers))
382
393
 
383
394
  # If this is an alias, register it in the LCA map for subsequent expressions
384
395
  if (
@@ -409,18 +420,20 @@ def map_aggregate(
409
420
  spark_columns: list[str] = []
410
421
  snowpark_columns: list[str] = []
411
422
  snowpark_column_types: list[snowpark_types.DataType] = []
423
+ all_qualifiers: list[list[str]] = []
412
424
 
413
425
  # Use grouping columns directly without aliases
414
426
  groupings = [col.col for _, col in raw_groupings]
415
427
 
416
428
  # Create aliases only for aggregation columns
417
429
  aggregations = []
418
- for i, (spark_name, snowpark_column) in enumerate(raw_aggregations):
430
+ for i, (spark_name, snowpark_column, qualifiers) in enumerate(raw_aggregations):
419
431
  alias = make_column_names_snowpark_compatible([spark_name], plan_id, i)[0]
420
432
 
421
433
  spark_columns.append(spark_name)
422
434
  snowpark_columns.append(alias)
423
435
  snowpark_column_types.append(snowpark_column.typ)
436
+ all_qualifiers.append(qualifiers)
424
437
 
425
438
  aggregations.append(snowpark_column.col.alias(alias))
426
439
 
@@ -483,6 +496,7 @@ def map_aggregate(
483
496
  spark_column_names=spark_columns,
484
497
  snowpark_column_names=snowpark_columns,
485
498
  snowpark_column_types=snowpark_column_types,
499
+ column_qualifiers=all_qualifiers,
486
500
  ).column_map
487
501
 
488
502
  # Create hybrid column map that can resolve both input and aggregate contexts
@@ -494,7 +508,9 @@ def map_aggregate(
494
508
  aggregate_expressions=list(aggregate.aggregate_expressions),
495
509
  grouping_expressions=list(aggregate.grouping_expressions),
496
510
  spark_columns=spark_columns,
497
- raw_aggregations=raw_aggregations,
511
+ raw_aggregations=[
512
+ (spark_name, col) for spark_name, col, _ in raw_aggregations
513
+ ],
498
514
  )
499
515
 
500
516
  # Map the HAVING condition using hybrid resolution
@@ -515,4 +531,5 @@ def map_aggregate(
515
531
  snowpark_column_names=snowpark_columns,
516
532
  snowpark_column_types=snowpark_column_types,
517
533
  parent_column_name_map=input_df._column_map,
534
+ column_qualifiers=all_qualifiers,
518
535
  )
@@ -12,7 +12,6 @@ from snowflake.snowpark_connect.constants import MAP_IN_ARROW_EVAL_TYPE
12
12
  from snowflake.snowpark_connect.dataframe_container import DataFrameContainer
13
13
  from snowflake.snowpark_connect.relation.map_relation import map_relation
14
14
  from snowflake.snowpark_connect.type_mapping import proto_to_snowpark_type
15
- from snowflake.snowpark_connect.utils.context import map_partitions_depth
16
15
  from snowflake.snowpark_connect.utils.pandas_udtf_utils import (
17
16
  create_pandas_udtf,
18
17
  create_pandas_udtf_with_arrow,
@@ -53,18 +52,18 @@ def _call_udtf(
53
52
  ).cast("int"),
54
53
  )
55
54
 
56
- udtf_columns = input_df.columns + [snowpark_fn.col("_DUMMY_PARTITION_KEY")]
55
+ udtf_columns = [f"snowflake_jtf_{column}" for column in input_df.columns] + [
56
+ "_DUMMY_PARTITION_KEY"
57
+ ]
57
58
 
58
59
  tfc = snowpark_fn.call_table_function(udtf_name, *udtf_columns).over(
59
60
  partition_by=[snowpark_fn.col("_DUMMY_PARTITION_KEY")]
60
61
  )
61
62
 
62
- # Use map_partitions_depth only when mapping non nested map_partitions
63
- # When mapping chained functions additional column casting is necessary
64
- if map_partitions_depth() == 1:
65
- result_df_with_dummy = input_df_with_dummy.join_table_function(tfc)
66
- else:
67
- result_df_with_dummy = input_df_with_dummy.select(tfc)
63
+ # Overwrite the input_df columns to prevent name conflicts with UDTF output columns
64
+ result_df_with_dummy = input_df_with_dummy.to_df(udtf_columns).join_table_function(
65
+ tfc
66
+ )
68
67
 
69
68
  output_cols = [field.name for field in return_type.fields]
70
69
 
@@ -16,7 +16,6 @@ from snowflake.snowpark_connect.utils.context import (
16
16
  get_plan_id_map,
17
17
  get_session_id,
18
18
  not_resolving_fun_args,
19
- push_map_partitions,
20
19
  push_operation_scope,
21
20
  set_is_aggregate_function,
22
21
  set_plan_id_map,
@@ -185,8 +184,7 @@ def map_relation(
185
184
  )
186
185
  return cached_df
187
186
  case "map_partitions":
188
- with push_map_partitions():
189
- result = map_map_partitions.map_map_partitions(rel)
187
+ result = map_map_partitions.map_map_partitions(rel)
190
188
  case "offset":
191
189
  result = map_row_ops.map_offset(rel)
192
190
  case "project":
@@ -46,6 +46,9 @@ def map_read(
46
46
 
47
47
  Currently, the supported read formats are `csv`, `json` and `parquet`.
48
48
  """
49
+
50
+ materialize_df = True
51
+
49
52
  match rel.read.WhichOneof("read_type"):
50
53
  case "named_table":
51
54
  return map_read_table_or_file(rel)
@@ -99,6 +102,10 @@ def map_read(
99
102
  for path in rel.read.data_source.paths
100
103
  ]
101
104
 
105
+ # JSON already materializes the table internally
106
+ if read_format == "json":
107
+ materialize_df = False
108
+
102
109
  result = _read_file(
103
110
  clean_source_paths, options, read_format, rel, schema, session
104
111
  )
@@ -159,7 +166,9 @@ def map_read(
159
166
  raise SnowparkConnectNotImplementedError(f"Unsupported read type: {other}")
160
167
 
161
168
  return df_cache_map_put_if_absent(
162
- (get_session_id(), rel.common.plan_id), lambda: result, materialize=True
169
+ (get_session_id(), rel.common.plan_id),
170
+ lambda: result,
171
+ materialize=materialize_df,
163
172
  )
164
173
 
165
174
 
@@ -205,6 +214,15 @@ def _get_supported_read_file_format(unparsed_identifier: str) -> str | None:
205
214
  return None
206
215
 
207
216
 
217
+ def _quote_stage_path(stage_path: str) -> str:
218
+ """
219
+ Quote stage paths to escape any special characters.
220
+ """
221
+ if stage_path.startswith("@"):
222
+ return f"'{stage_path}'"
223
+ return stage_path
224
+
225
+
208
226
  def _read_file(
209
227
  clean_source_paths: list[str],
210
228
  options: dict,
@@ -218,6 +236,7 @@ def _read_file(
218
236
  session,
219
237
  )
220
238
  upload_files_if_needed(paths, clean_source_paths, session, read_format)
239
+ paths = [_quote_stage_path(path) for path in paths]
221
240
  match read_format:
222
241
  case "csv":
223
242
  from snowflake.snowpark_connect.relation.read.map_read_csv import (
@@ -285,8 +304,8 @@ def upload_files_if_needed(
285
304
 
286
305
  def _upload_dir(target: str, source: str) -> None:
287
306
  # overwrite=True will not remove all stale files in the target prefix
288
-
289
- remove_command = f"REMOVE {target}/"
307
+ # Quote the target path to allow special characters.
308
+ remove_command = f"REMOVE '{target}/'"
290
309
  assert (
291
310
  "//" not in remove_command
292
311
  ), f"Remove command {remove_command} contains double slash"
@@ -3,6 +3,7 @@
3
3
  #
4
4
 
5
5
  import copy
6
+ from typing import Any
6
7
 
7
8
  import pyspark.sql.connect.proto.relations_pb2 as relation_proto
8
9
 
@@ -16,6 +17,7 @@ from snowflake.snowpark_connect.relation.read.utils import (
16
17
  get_spark_column_names_from_snowpark_columns,
17
18
  rename_columns_as_snowflake_standard,
18
19
  )
20
+ from snowflake.snowpark_connect.utils.io_utils import cached_file_format
19
21
  from snowflake.snowpark_connect.utils.telemetry import (
20
22
  SnowparkConnectNotImplementedError,
21
23
  )
@@ -42,21 +44,34 @@ def map_read_csv(
42
44
  )
43
45
  else:
44
46
  snowpark_options = options.convert_to_snowpark_args()
47
+ parse_header = snowpark_options.get("PARSE_HEADER", False)
48
+ file_format_options = _parse_csv_snowpark_options(snowpark_options)
49
+ file_format = cached_file_format(session, "csv", file_format_options)
50
+
51
+ snowpark_read_options = dict()
52
+ snowpark_read_options["FORMAT_NAME"] = file_format
53
+ snowpark_read_options["ENFORCE_EXISTING_FILE_FORMAT"] = True
54
+ snowpark_read_options["INFER_SCHEMA"] = snowpark_options.get(
55
+ "INFER_SCHEMA", False
56
+ )
57
+ snowpark_read_options["PATTERN"] = snowpark_options.get("PATTERN", None)
58
+
45
59
  raw_options = rel.read.data_source.options
46
60
  if schema is None or (
47
- snowpark_options.get("PARSE_HEADER", False)
48
- and raw_options.get("enforceSchema", "True").lower() == "false"
61
+ parse_header and raw_options.get("enforceSchema", "True").lower() == "false"
49
62
  ): # Schema has to equals to header's format
50
- reader = session.read.options(snowpark_options)
63
+ reader = session.read.options(snowpark_read_options)
51
64
  else:
52
- reader = session.read.options(snowpark_options).schema(schema)
65
+ reader = session.read.options(snowpark_read_options).schema(schema)
53
66
  df = read_data(
54
67
  reader,
55
68
  schema,
56
69
  session,
57
70
  paths[0],
58
- snowpark_options,
71
+ file_format_options,
72
+ snowpark_read_options,
59
73
  raw_options,
74
+ parse_header,
60
75
  )
61
76
  if len(paths) > 1:
62
77
  # TODO: figure out if this is what Spark does.
@@ -81,15 +96,65 @@ def map_read_csv(
81
96
  )
82
97
 
83
98
 
99
+ _csv_file_format_allowed_options = {
100
+ "COMPRESSION",
101
+ "RECORD_DELIMITER",
102
+ "FIELD_DELIMITER",
103
+ "MULTI_LINE",
104
+ "FILE_EXTENSION",
105
+ "PARSE_HEADER",
106
+ "SKIP_HEADER",
107
+ "SKIP_BLANK_LINES",
108
+ "DATE_FORMAT",
109
+ "TIME_FORMAT",
110
+ "TIMESTAMP_FORMAT",
111
+ "BINARY_FORMAT",
112
+ "ESCAPE",
113
+ "ESCAPE_UNENCLOSED_FIELD",
114
+ "TRIM_SPACE",
115
+ "FIELD_OPTIONALLY_ENCLOSED_BY",
116
+ "NULL_IF",
117
+ "ERROR_ON_COLUMN_COUNT_MISMATCH",
118
+ "REPLACE_INVALID_CHARACTERS",
119
+ "EMPTY_FIELD_AS_NULL",
120
+ "SKIP_BYTE_ORDER_MARK",
121
+ "ENCODING",
122
+ }
123
+
124
+
125
+ def _parse_csv_snowpark_options(snowpark_options: dict[str, Any]) -> dict[str, Any]:
126
+ file_format_options = dict()
127
+ for key, value in snowpark_options.items():
128
+ upper_key = key.upper()
129
+ if upper_key in _csv_file_format_allowed_options:
130
+ file_format_options[upper_key] = value
131
+
132
+ # This option has to be removed, because we cannot use at the same time predefined file format and parse_header option
133
+ # Such combination causes snowpark to raise SQL compilation error: Invalid file format "PARSE_HEADER" is only allowed for CSV INFER_SCHEMA and MATCH_BY_COLUMN_NAME
134
+ parse_header = file_format_options.get("PARSE_HEADER", False)
135
+ if parse_header:
136
+ file_format_options["SKIP_HEADER"] = 1
137
+ del file_format_options["PARSE_HEADER"]
138
+
139
+ return file_format_options
140
+
141
+
84
142
  def get_header_names(
85
143
  session: snowpark.Session,
86
144
  path: list[str],
87
- snowpark_options: dict,
145
+ file_format_options: dict,
146
+ snowpark_read_options: dict,
88
147
  ) -> list[str]:
89
- snowpark_options_no_header = copy.copy(snowpark_options)
90
- snowpark_options_no_header["PARSE_HEADER"] = False
148
+ no_header_file_format_options = copy.copy(file_format_options)
149
+ no_header_file_format_options["PARSE_HEADER"] = False
150
+ no_header_file_format_options.pop("SKIP_HEADER", None)
151
+
152
+ file_format = cached_file_format(session, "csv", no_header_file_format_options)
153
+ no_header_snowpark_read_options = copy.copy(snowpark_read_options)
154
+ no_header_snowpark_read_options["FORMAT_NAME"] = file_format
155
+ no_header_snowpark_read_options.pop("INFER_SCHEMA", None)
91
156
 
92
- header_df = session.read.options(snowpark_options_no_header).csv(path).limit(1)
157
+ header_df = session.read.options(no_header_snowpark_read_options).csv(path).limit(1)
93
158
  header_data = header_df.collect()[0]
94
159
  return [
95
160
  f'"{header_data[i]}"'
@@ -103,8 +168,10 @@ def read_data(
103
168
  schema: snowpark.types.StructType | None,
104
169
  session: snowpark.Session,
105
170
  path: list[str],
106
- snowpark_options: dict,
171
+ file_format_options: dict,
172
+ snowpark_read_options: dict,
107
173
  raw_options: dict,
174
+ parse_header: bool,
108
175
  ) -> snowpark.DataFrame:
109
176
  df = reader.csv(path)
110
177
  filename = path.strip("/").split("/")[-1]
@@ -120,23 +187,35 @@ def read_data(
120
187
  raise Exception("CSV header does not conform to the schema")
121
188
  return df
122
189
 
123
- headers = get_header_names(session, path, snowpark_options)
124
-
190
+ headers = get_header_names(
191
+ session, path, file_format_options, snowpark_read_options
192
+ )
193
+
194
+ df_schema_fields = df.schema.fields
195
+ if len(headers) == len(df_schema_fields) and parse_header:
196
+ return df.select(
197
+ [
198
+ snowpark_fn.col(df_schema_fields[i].name).alias(headers[i])
199
+ for i in range(len(headers))
200
+ ]
201
+ )
125
202
  # Handle mismatch in column count between header and data
126
- if (
127
- len(df.schema.fields) == 1
128
- and df.schema.fields[0].name.upper() == "C1"
129
- and snowpark_options.get("PARSE_HEADER") is True
130
- and len(headers) != len(df.schema.fields)
203
+ elif (
204
+ len(df_schema_fields) == 1
205
+ and df_schema_fields[0].name.upper() == "C1"
206
+ and parse_header
207
+ and len(headers) != len(df_schema_fields)
131
208
  ):
132
- df = (
133
- session.read.options(snowpark_options)
134
- .schema(StructType([StructField(h, StringType(), True) for h in headers]))
135
- .csv(path)
209
+ df = reader.schema(
210
+ StructType([StructField(h, StringType(), True) for h in headers])
211
+ ).csv(path)
212
+ elif not parse_header and len(headers) != len(df_schema_fields):
213
+ return df.select([df_schema_fields[i].name for i in range(len(headers))])
214
+ elif parse_header and len(headers) != len(df_schema_fields):
215
+ return df.select(
216
+ [
217
+ snowpark_fn.col(df_schema_fields[i].name).alias(headers[i])
218
+ for i in range(len(headers))
219
+ ]
136
220
  )
137
- elif snowpark_options.get("PARSE_HEADER") is False and len(headers) != len(
138
- df.schema.fields
139
- ):
140
- return df.select([df.schema.fields[i].name for i in range(len(headers))])
141
-
142
221
  return df
@@ -2,9 +2,12 @@
2
2
  # Copyright (c) 2012-2025 Snowflake Computing Inc. All rights reserved.
3
3
  #
4
4
 
5
+ import concurrent.futures
5
6
  import copy
6
7
  import json
8
+ import os
7
9
  import typing
10
+ import uuid
8
11
  from contextlib import suppress
9
12
  from datetime import datetime
10
13
 
@@ -253,20 +256,20 @@ def merge_row_schema(
253
256
  return schema
254
257
 
255
258
 
256
- def union_data_into_df(
257
- result_df: snowpark.DataFrame,
258
- data: typing.List[Row],
259
- schema: StructType,
259
+ def insert_data_chunk(
260
260
  session: snowpark.Session,
261
- ) -> snowpark.DataFrame:
262
- current_df = session.create_dataframe(
261
+ data: list[Row],
262
+ schema: StructType,
263
+ table_name: str,
264
+ ) -> None:
265
+ df = session.create_dataframe(
263
266
  data=data,
264
267
  schema=schema,
265
268
  )
266
- if result_df is None:
267
- return current_df
268
269
 
269
- return result_df.union(current_df)
270
+ df.write.mode("append").save_as_table(
271
+ table_name, table_type="temp", table_exists=True
272
+ )
270
273
 
271
274
 
272
275
  def construct_dataframe_by_schema(
@@ -276,39 +279,47 @@ def construct_dataframe_by_schema(
276
279
  snowpark_options: dict,
277
280
  batch_size: int = 1000,
278
281
  ) -> snowpark.DataFrame:
279
- result = None
282
+ table_name = "__sas_json_read_temp_" + uuid.uuid4().hex
283
+
284
+ # We can have more workers than CPU count, this is an IO-intensive task
285
+ max_workers = min(16, os.cpu_count() * 2)
280
286
 
281
287
  current_data = []
282
288
  progress = 0
283
- for row in rows:
284
- current_data.append(construct_row_by_schema(row, schema, snowpark_options))
285
- if len(current_data) >= batch_size:
289
+
290
+ # Initialize the temp table
291
+ session.create_dataframe([], schema=schema).write.mode("append").save_as_table(
292
+ table_name, table_type="temp", table_exists=False
293
+ )
294
+
295
+ with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as exc:
296
+ for row in rows:
297
+ current_data.append(construct_row_by_schema(row, schema, snowpark_options))
298
+ if len(current_data) >= batch_size:
299
+ progress += len(current_data)
300
+ exc.submit(
301
+ insert_data_chunk,
302
+ session,
303
+ copy.deepcopy(current_data),
304
+ schema,
305
+ table_name,
306
+ )
307
+
308
+ logger.info(f"JSON reader: finished processing {progress} rows")
309
+ current_data.clear()
310
+
311
+ if len(current_data) > 0:
286
312
  progress += len(current_data)
287
- result = union_data_into_df(
288
- result,
289
- current_data,
290
- schema,
313
+ exc.submit(
314
+ insert_data_chunk,
291
315
  session,
316
+ copy.deepcopy(current_data),
317
+ schema,
318
+ table_name,
292
319
  )
293
-
294
320
  logger.info(f"JSON reader: finished processing {progress} rows")
295
- current_data = []
296
-
297
- if len(current_data) > 0:
298
- progress += len(current_data)
299
- result = union_data_into_df(
300
- result,
301
- current_data,
302
- schema,
303
- session,
304
- )
305
-
306
- logger.info(f"JSON reader: finished processing {progress} rows")
307
- current_data = []
308
321
 
309
- if result is None:
310
- raise ValueError("Dataframe cannot be empty")
311
- return result
322
+ return session.table(table_name)
312
323
 
313
324
 
314
325
  def construct_row_by_schema(
@@ -43,7 +43,12 @@ def read_text(
43
43
  ) -> snowpark.DataFrame:
44
44
  # TODO: handle stage name with double quotes
45
45
  files_paths = get_file_paths_from_stage(path, session)
46
- stage_name = path.split("/")[0]
46
+ # Remove matching quotes from both ends of the path to get the stage name, if present.
47
+ if path and len(path) > 1 and path[0] == path[-1] and path[0] in ('"', "'"):
48
+ unquoted_path = path[1:-1]
49
+ else:
50
+ unquoted_path = path
51
+ stage_name = unquoted_path.split("/")[0]
47
52
  line_sep = options.get("lineSep") or "\n"
48
53
  column_name = (
49
54
  schema[0].name if schema is not None and len(schema.fields) > 0 else '"value"'