snowpark-connect 0.23.0__py3-none-any.whl → 0.25.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of snowpark-connect might be problematic. Click here for more details.

Files changed (476) hide show
  1. snowflake/snowpark_connect/column_name_handler.py +116 -4
  2. snowflake/snowpark_connect/config.py +13 -0
  3. snowflake/snowpark_connect/constants.py +0 -29
  4. snowflake/snowpark_connect/dataframe_container.py +6 -0
  5. snowflake/snowpark_connect/execute_plan/map_execution_command.py +56 -1
  6. snowflake/snowpark_connect/expression/function_defaults.py +207 -0
  7. snowflake/snowpark_connect/expression/literal.py +18 -2
  8. snowflake/snowpark_connect/expression/map_cast.py +5 -8
  9. snowflake/snowpark_connect/expression/map_expression.py +10 -1
  10. snowflake/snowpark_connect/expression/map_extension.py +12 -2
  11. snowflake/snowpark_connect/expression/map_sql_expression.py +23 -1
  12. snowflake/snowpark_connect/expression/map_udf.py +26 -8
  13. snowflake/snowpark_connect/expression/map_unresolved_attribute.py +199 -15
  14. snowflake/snowpark_connect/expression/map_unresolved_extract_value.py +44 -16
  15. snowflake/snowpark_connect/expression/map_unresolved_function.py +836 -365
  16. snowflake/snowpark_connect/expression/map_unresolved_star.py +3 -2
  17. snowflake/snowpark_connect/hidden_column.py +39 -0
  18. snowflake/snowpark_connect/includes/jars/hadoop-client-api-trimmed-3.3.4.jar +0 -0
  19. snowflake/snowpark_connect/includes/jars/{hadoop-client-api-3.3.4.jar → spark-connect-client-jvm_2.12-3.5.6.jar} +0 -0
  20. snowflake/snowpark_connect/relation/map_column_ops.py +18 -36
  21. snowflake/snowpark_connect/relation/map_extension.py +56 -15
  22. snowflake/snowpark_connect/relation/map_join.py +258 -62
  23. snowflake/snowpark_connect/relation/map_row_ops.py +2 -29
  24. snowflake/snowpark_connect/relation/map_sql.py +88 -11
  25. snowflake/snowpark_connect/relation/map_udtf.py +4 -2
  26. snowflake/snowpark_connect/relation/read/map_read.py +3 -3
  27. snowflake/snowpark_connect/relation/read/map_read_jdbc.py +1 -1
  28. snowflake/snowpark_connect/relation/read/map_read_json.py +8 -1
  29. snowflake/snowpark_connect/relation/read/map_read_table.py +1 -9
  30. snowflake/snowpark_connect/relation/read/reader_config.py +3 -1
  31. snowflake/snowpark_connect/relation/read/utils.py +6 -7
  32. snowflake/snowpark_connect/relation/utils.py +1 -170
  33. snowflake/snowpark_connect/relation/write/map_write.py +62 -53
  34. snowflake/snowpark_connect/resources_initializer.py +29 -1
  35. snowflake/snowpark_connect/server.py +18 -3
  36. snowflake/snowpark_connect/type_mapping.py +29 -25
  37. snowflake/snowpark_connect/typed_column.py +14 -0
  38. snowflake/snowpark_connect/utils/artifacts.py +23 -0
  39. snowflake/snowpark_connect/utils/context.py +6 -1
  40. snowflake/snowpark_connect/utils/scala_udf_utils.py +588 -0
  41. snowflake/snowpark_connect/utils/telemetry.py +6 -17
  42. snowflake/snowpark_connect/utils/udf_helper.py +2 -0
  43. snowflake/snowpark_connect/utils/udf_utils.py +38 -7
  44. snowflake/snowpark_connect/utils/udtf_utils.py +17 -3
  45. snowflake/snowpark_connect/version.py +1 -1
  46. {snowpark_connect-0.23.0.dist-info → snowpark_connect-0.25.0.dist-info}/METADATA +1 -1
  47. snowpark_connect-0.25.0.dist-info/RECORD +477 -0
  48. snowflake/snowpark_connect/includes/jars/scala-compiler-2.12.18.jar +0 -0
  49. snowflake/snowpark_connect/includes/jars/spark-kubernetes_2.12-3.5.6.jar +0 -0
  50. snowflake/snowpark_connect/includes/jars/spark-mllib_2.12-3.5.6.jar +0 -0
  51. snowflake/snowpark_connect/includes/jars/spark-streaming_2.12-3.5.6.jar +0 -0
  52. snowflake/snowpark_connect/includes/python/pyspark/errors/tests/__init__.py +0 -16
  53. snowflake/snowpark_connect/includes/python/pyspark/errors/tests/test_errors.py +0 -60
  54. snowflake/snowpark_connect/includes/python/pyspark/ml/deepspeed/tests/test_deepspeed_distributor.py +0 -306
  55. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/__init__.py +0 -16
  56. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/connect/test_connect_classification.py +0 -53
  57. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/connect/test_connect_evaluation.py +0 -50
  58. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/connect/test_connect_feature.py +0 -43
  59. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/connect/test_connect_function.py +0 -114
  60. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/connect/test_connect_pipeline.py +0 -47
  61. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/connect/test_connect_summarizer.py +0 -43
  62. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/connect/test_connect_tuning.py +0 -46
  63. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/connect/test_legacy_mode_classification.py +0 -238
  64. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/connect/test_legacy_mode_evaluation.py +0 -194
  65. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/connect/test_legacy_mode_feature.py +0 -156
  66. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/connect/test_legacy_mode_pipeline.py +0 -184
  67. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/connect/test_legacy_mode_summarizer.py +0 -78
  68. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/connect/test_legacy_mode_tuning.py +0 -292
  69. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/connect/test_parity_torch_data_loader.py +0 -50
  70. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/connect/test_parity_torch_distributor.py +0 -152
  71. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/test_algorithms.py +0 -456
  72. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/test_base.py +0 -96
  73. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/test_dl_util.py +0 -186
  74. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/test_evaluation.py +0 -77
  75. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/test_feature.py +0 -401
  76. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/test_functions.py +0 -528
  77. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/test_image.py +0 -82
  78. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/test_linalg.py +0 -409
  79. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/test_model_cache.py +0 -55
  80. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/test_param.py +0 -441
  81. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/test_persistence.py +0 -546
  82. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/test_pipeline.py +0 -71
  83. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/test_stat.py +0 -52
  84. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/test_training_summary.py +0 -494
  85. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/test_util.py +0 -85
  86. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/test_wrapper.py +0 -138
  87. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/tuning/__init__.py +0 -16
  88. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/tuning/test_cv_io_basic.py +0 -151
  89. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/tuning/test_cv_io_nested.py +0 -97
  90. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/tuning/test_cv_io_pipeline.py +0 -143
  91. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/tuning/test_tuning.py +0 -551
  92. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/tuning/test_tvs_io_basic.py +0 -137
  93. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/tuning/test_tvs_io_nested.py +0 -96
  94. snowflake/snowpark_connect/includes/python/pyspark/ml/tests/tuning/test_tvs_io_pipeline.py +0 -142
  95. snowflake/snowpark_connect/includes/python/pyspark/ml/torch/tests/__init__.py +0 -16
  96. snowflake/snowpark_connect/includes/python/pyspark/ml/torch/tests/test_data_loader.py +0 -137
  97. snowflake/snowpark_connect/includes/python/pyspark/ml/torch/tests/test_distributor.py +0 -561
  98. snowflake/snowpark_connect/includes/python/pyspark/ml/torch/tests/test_log_communication.py +0 -172
  99. snowflake/snowpark_connect/includes/python/pyspark/mllib/tests/__init__.py +0 -16
  100. snowflake/snowpark_connect/includes/python/pyspark/mllib/tests/test_algorithms.py +0 -353
  101. snowflake/snowpark_connect/includes/python/pyspark/mllib/tests/test_feature.py +0 -192
  102. snowflake/snowpark_connect/includes/python/pyspark/mllib/tests/test_linalg.py +0 -680
  103. snowflake/snowpark_connect/includes/python/pyspark/mllib/tests/test_stat.py +0 -206
  104. snowflake/snowpark_connect/includes/python/pyspark/mllib/tests/test_streaming_algorithms.py +0 -471
  105. snowflake/snowpark_connect/includes/python/pyspark/mllib/tests/test_util.py +0 -108
  106. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/__init__.py +0 -16
  107. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/computation/__init__.py +0 -16
  108. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/computation/test_any_all.py +0 -177
  109. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/computation/test_apply_func.py +0 -575
  110. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/computation/test_binary_ops.py +0 -235
  111. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/computation/test_combine.py +0 -653
  112. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/computation/test_compute.py +0 -463
  113. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/computation/test_corrwith.py +0 -86
  114. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/computation/test_cov.py +0 -151
  115. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/computation/test_cumulative.py +0 -139
  116. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/computation/test_describe.py +0 -458
  117. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/computation/test_eval.py +0 -86
  118. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/computation/test_melt.py +0 -202
  119. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/computation/test_missing_data.py +0 -520
  120. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/computation/test_pivot.py +0 -361
  121. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/__init__.py +0 -16
  122. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/computation/__init__.py +0 -16
  123. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/computation/test_parity_any_all.py +0 -40
  124. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/computation/test_parity_apply_func.py +0 -42
  125. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/computation/test_parity_binary_ops.py +0 -40
  126. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/computation/test_parity_combine.py +0 -37
  127. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/computation/test_parity_compute.py +0 -60
  128. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/computation/test_parity_corrwith.py +0 -40
  129. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/computation/test_parity_cov.py +0 -40
  130. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/computation/test_parity_cumulative.py +0 -90
  131. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/computation/test_parity_describe.py +0 -40
  132. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/computation/test_parity_eval.py +0 -40
  133. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/computation/test_parity_melt.py +0 -40
  134. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/computation/test_parity_missing_data.py +0 -42
  135. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/computation/test_parity_pivot.py +0 -37
  136. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/data_type_ops/__init__.py +0 -16
  137. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/data_type_ops/test_parity_base.py +0 -36
  138. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/data_type_ops/test_parity_binary_ops.py +0 -42
  139. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/data_type_ops/test_parity_boolean_ops.py +0 -47
  140. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/data_type_ops/test_parity_categorical_ops.py +0 -55
  141. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/data_type_ops/test_parity_complex_ops.py +0 -40
  142. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/data_type_ops/test_parity_date_ops.py +0 -47
  143. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/data_type_ops/test_parity_datetime_ops.py +0 -47
  144. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/data_type_ops/test_parity_null_ops.py +0 -42
  145. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/data_type_ops/test_parity_num_arithmetic.py +0 -43
  146. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/data_type_ops/test_parity_num_ops.py +0 -47
  147. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/data_type_ops/test_parity_num_reverse.py +0 -43
  148. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/data_type_ops/test_parity_string_ops.py +0 -47
  149. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/data_type_ops/test_parity_timedelta_ops.py +0 -47
  150. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/data_type_ops/test_parity_udt_ops.py +0 -40
  151. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/data_type_ops/testing_utils.py +0 -226
  152. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/diff_frames_ops/__init__.py +0 -16
  153. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/diff_frames_ops/test_parity_align.py +0 -39
  154. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/diff_frames_ops/test_parity_basic_slow.py +0 -55
  155. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/diff_frames_ops/test_parity_cov_corrwith.py +0 -39
  156. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/diff_frames_ops/test_parity_dot_frame.py +0 -39
  157. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/diff_frames_ops/test_parity_dot_series.py +0 -39
  158. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/diff_frames_ops/test_parity_index.py +0 -39
  159. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/diff_frames_ops/test_parity_series.py +0 -39
  160. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/diff_frames_ops/test_parity_setitem_frame.py +0 -43
  161. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/diff_frames_ops/test_parity_setitem_series.py +0 -43
  162. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/frame/__init__.py +0 -16
  163. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/frame/test_parity_attrs.py +0 -40
  164. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/frame/test_parity_constructor.py +0 -39
  165. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/frame/test_parity_conversion.py +0 -42
  166. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/frame/test_parity_reindexing.py +0 -42
  167. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/frame/test_parity_reshaping.py +0 -37
  168. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/frame/test_parity_spark.py +0 -40
  169. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/frame/test_parity_take.py +0 -42
  170. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/frame/test_parity_time_series.py +0 -48
  171. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/frame/test_parity_truncate.py +0 -40
  172. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/groupby/__init__.py +0 -16
  173. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/groupby/test_parity_aggregate.py +0 -40
  174. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/groupby/test_parity_apply_func.py +0 -41
  175. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/groupby/test_parity_cumulative.py +0 -67
  176. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/groupby/test_parity_describe.py +0 -40
  177. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/groupby/test_parity_groupby.py +0 -55
  178. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/groupby/test_parity_head_tail.py +0 -40
  179. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/groupby/test_parity_index.py +0 -38
  180. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/groupby/test_parity_missing_data.py +0 -55
  181. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/groupby/test_parity_split_apply.py +0 -39
  182. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/groupby/test_parity_stat.py +0 -38
  183. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/indexes/__init__.py +0 -16
  184. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/indexes/test_parity_align.py +0 -40
  185. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/indexes/test_parity_base.py +0 -50
  186. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/indexes/test_parity_category.py +0 -73
  187. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/indexes/test_parity_datetime.py +0 -39
  188. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/indexes/test_parity_indexing.py +0 -40
  189. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/indexes/test_parity_reindex.py +0 -40
  190. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/indexes/test_parity_rename.py +0 -40
  191. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/indexes/test_parity_reset_index.py +0 -48
  192. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/indexes/test_parity_timedelta.py +0 -39
  193. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/io/__init__.py +0 -16
  194. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/io/test_parity_io.py +0 -40
  195. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/plot/__init__.py +0 -16
  196. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/plot/test_parity_frame_plot.py +0 -45
  197. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/plot/test_parity_frame_plot_matplotlib.py +0 -45
  198. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/plot/test_parity_frame_plot_plotly.py +0 -49
  199. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/plot/test_parity_series_plot.py +0 -37
  200. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/plot/test_parity_series_plot_matplotlib.py +0 -53
  201. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/plot/test_parity_series_plot_plotly.py +0 -45
  202. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/series/__init__.py +0 -16
  203. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/series/test_parity_all_any.py +0 -38
  204. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/series/test_parity_arg_ops.py +0 -37
  205. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/series/test_parity_as_of.py +0 -37
  206. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/series/test_parity_as_type.py +0 -38
  207. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/series/test_parity_compute.py +0 -37
  208. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/series/test_parity_conversion.py +0 -40
  209. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/series/test_parity_cumulative.py +0 -40
  210. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/series/test_parity_index.py +0 -38
  211. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/series/test_parity_missing_data.py +0 -40
  212. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/series/test_parity_series.py +0 -37
  213. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/series/test_parity_sort.py +0 -38
  214. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/series/test_parity_stat.py +0 -38
  215. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_categorical.py +0 -66
  216. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_config.py +0 -37
  217. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_csv.py +0 -37
  218. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_dataframe_conversion.py +0 -42
  219. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_dataframe_spark_io.py +0 -39
  220. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_default_index.py +0 -49
  221. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_ewm.py +0 -37
  222. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_expanding.py +0 -39
  223. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_extension.py +0 -49
  224. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_frame_spark.py +0 -53
  225. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_generic_functions.py +0 -43
  226. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_indexing.py +0 -49
  227. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_indexops_spark.py +0 -39
  228. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_internal.py +0 -41
  229. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_namespace.py +0 -39
  230. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_numpy_compat.py +0 -60
  231. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_ops_on_diff_frames.py +0 -48
  232. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_ops_on_diff_frames_groupby.py +0 -39
  233. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_ops_on_diff_frames_groupby_expanding.py +0 -44
  234. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_ops_on_diff_frames_groupby_rolling.py +0 -84
  235. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_repr.py +0 -37
  236. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_resample.py +0 -45
  237. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_reshape.py +0 -39
  238. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_rolling.py +0 -39
  239. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_scalars.py +0 -37
  240. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_series_conversion.py +0 -39
  241. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_series_datetime.py +0 -39
  242. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_series_string.py +0 -39
  243. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_spark_functions.py +0 -39
  244. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_sql.py +0 -43
  245. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_stats.py +0 -37
  246. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_typedef.py +0 -36
  247. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_utils.py +0 -37
  248. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/connect/test_parity_window.py +0 -39
  249. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/data_type_ops/__init__.py +0 -16
  250. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/data_type_ops/test_base.py +0 -107
  251. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/data_type_ops/test_binary_ops.py +0 -224
  252. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/data_type_ops/test_boolean_ops.py +0 -825
  253. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/data_type_ops/test_categorical_ops.py +0 -562
  254. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/data_type_ops/test_complex_ops.py +0 -368
  255. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/data_type_ops/test_date_ops.py +0 -257
  256. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/data_type_ops/test_datetime_ops.py +0 -260
  257. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/data_type_ops/test_null_ops.py +0 -178
  258. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/data_type_ops/test_num_arithmetic.py +0 -184
  259. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/data_type_ops/test_num_ops.py +0 -497
  260. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/data_type_ops/test_num_reverse.py +0 -140
  261. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/data_type_ops/test_string_ops.py +0 -354
  262. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/data_type_ops/test_timedelta_ops.py +0 -219
  263. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/data_type_ops/test_udt_ops.py +0 -192
  264. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/data_type_ops/testing_utils.py +0 -228
  265. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/diff_frames_ops/__init__.py +0 -16
  266. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/diff_frames_ops/test_align.py +0 -118
  267. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/diff_frames_ops/test_basic_slow.py +0 -198
  268. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/diff_frames_ops/test_cov_corrwith.py +0 -181
  269. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/diff_frames_ops/test_dot_frame.py +0 -103
  270. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/diff_frames_ops/test_dot_series.py +0 -141
  271. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/diff_frames_ops/test_index.py +0 -109
  272. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/diff_frames_ops/test_series.py +0 -136
  273. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/diff_frames_ops/test_setitem_frame.py +0 -125
  274. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/diff_frames_ops/test_setitem_series.py +0 -217
  275. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/frame/__init__.py +0 -16
  276. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/frame/test_attrs.py +0 -384
  277. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/frame/test_constructor.py +0 -598
  278. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/frame/test_conversion.py +0 -73
  279. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/frame/test_reindexing.py +0 -869
  280. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/frame/test_reshaping.py +0 -487
  281. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/frame/test_spark.py +0 -309
  282. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/frame/test_take.py +0 -156
  283. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/frame/test_time_series.py +0 -149
  284. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/frame/test_truncate.py +0 -163
  285. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/groupby/__init__.py +0 -16
  286. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/groupby/test_aggregate.py +0 -311
  287. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/groupby/test_apply_func.py +0 -524
  288. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/groupby/test_cumulative.py +0 -419
  289. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/groupby/test_describe.py +0 -144
  290. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/groupby/test_groupby.py +0 -979
  291. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/groupby/test_head_tail.py +0 -234
  292. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/groupby/test_index.py +0 -206
  293. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/groupby/test_missing_data.py +0 -421
  294. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/groupby/test_split_apply.py +0 -187
  295. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/groupby/test_stat.py +0 -397
  296. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/indexes/__init__.py +0 -16
  297. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/indexes/test_align.py +0 -100
  298. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/indexes/test_base.py +0 -2743
  299. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/indexes/test_category.py +0 -484
  300. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/indexes/test_datetime.py +0 -276
  301. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/indexes/test_indexing.py +0 -432
  302. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/indexes/test_reindex.py +0 -310
  303. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/indexes/test_rename.py +0 -257
  304. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/indexes/test_reset_index.py +0 -160
  305. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/indexes/test_timedelta.py +0 -128
  306. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/io/__init__.py +0 -16
  307. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/io/test_io.py +0 -137
  308. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/plot/__init__.py +0 -16
  309. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/plot/test_frame_plot.py +0 -170
  310. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/plot/test_frame_plot_matplotlib.py +0 -547
  311. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/plot/test_frame_plot_plotly.py +0 -285
  312. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/plot/test_series_plot.py +0 -106
  313. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/plot/test_series_plot_matplotlib.py +0 -409
  314. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/plot/test_series_plot_plotly.py +0 -247
  315. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/series/__init__.py +0 -16
  316. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/series/test_all_any.py +0 -105
  317. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/series/test_arg_ops.py +0 -197
  318. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/series/test_as_of.py +0 -137
  319. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/series/test_as_type.py +0 -227
  320. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/series/test_compute.py +0 -634
  321. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/series/test_conversion.py +0 -88
  322. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/series/test_cumulative.py +0 -139
  323. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/series/test_index.py +0 -475
  324. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/series/test_missing_data.py +0 -265
  325. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/series/test_series.py +0 -818
  326. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/series/test_sort.py +0 -162
  327. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/series/test_stat.py +0 -780
  328. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_categorical.py +0 -741
  329. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_config.py +0 -160
  330. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_csv.py +0 -453
  331. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_dataframe_conversion.py +0 -281
  332. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_dataframe_spark_io.py +0 -487
  333. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_default_index.py +0 -109
  334. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_ewm.py +0 -434
  335. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_expanding.py +0 -253
  336. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_extension.py +0 -152
  337. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_frame_spark.py +0 -162
  338. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_generic_functions.py +0 -234
  339. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_indexing.py +0 -1339
  340. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_indexops_spark.py +0 -82
  341. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_internal.py +0 -124
  342. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_namespace.py +0 -638
  343. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_numpy_compat.py +0 -200
  344. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_ops_on_diff_frames.py +0 -1355
  345. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_ops_on_diff_frames_groupby.py +0 -655
  346. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_ops_on_diff_frames_groupby_expanding.py +0 -113
  347. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_ops_on_diff_frames_groupby_rolling.py +0 -118
  348. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_repr.py +0 -192
  349. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_resample.py +0 -346
  350. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_reshape.py +0 -495
  351. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_rolling.py +0 -263
  352. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_scalars.py +0 -59
  353. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_series_conversion.py +0 -85
  354. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_series_datetime.py +0 -364
  355. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_series_string.py +0 -362
  356. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_spark_functions.py +0 -46
  357. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_sql.py +0 -123
  358. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_stats.py +0 -581
  359. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_typedef.py +0 -447
  360. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_utils.py +0 -301
  361. snowflake/snowpark_connect/includes/python/pyspark/pandas/tests/test_window.py +0 -465
  362. snowflake/snowpark_connect/includes/python/pyspark/resource/tests/__init__.py +0 -16
  363. snowflake/snowpark_connect/includes/python/pyspark/resource/tests/test_resources.py +0 -83
  364. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/__init__.py +0 -16
  365. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/__init__.py +0 -16
  366. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/client/__init__.py +0 -16
  367. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/client/test_artifact.py +0 -420
  368. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/client/test_client.py +0 -358
  369. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/streaming/__init__.py +0 -16
  370. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/streaming/test_parity_foreach.py +0 -36
  371. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/streaming/test_parity_foreach_batch.py +0 -44
  372. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/streaming/test_parity_listener.py +0 -116
  373. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/streaming/test_parity_streaming.py +0 -35
  374. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_connect_basic.py +0 -3612
  375. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_connect_column.py +0 -1042
  376. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_connect_function.py +0 -2381
  377. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_connect_plan.py +0 -1060
  378. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_arrow.py +0 -163
  379. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_arrow_map.py +0 -38
  380. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_arrow_python_udf.py +0 -48
  381. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_catalog.py +0 -36
  382. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_column.py +0 -55
  383. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_conf.py +0 -36
  384. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_dataframe.py +0 -96
  385. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_datasources.py +0 -44
  386. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_errors.py +0 -36
  387. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_functions.py +0 -59
  388. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_group.py +0 -36
  389. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_pandas_cogrouped_map.py +0 -59
  390. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_pandas_grouped_map.py +0 -74
  391. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_pandas_grouped_map_with_state.py +0 -62
  392. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_pandas_map.py +0 -58
  393. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_pandas_udf.py +0 -70
  394. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_pandas_udf_grouped_agg.py +0 -50
  395. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_pandas_udf_scalar.py +0 -68
  396. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_pandas_udf_window.py +0 -40
  397. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_readwriter.py +0 -46
  398. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_serde.py +0 -44
  399. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_types.py +0 -100
  400. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_udf.py +0 -100
  401. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_parity_udtf.py +0 -163
  402. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_session.py +0 -181
  403. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/connect/test_utils.py +0 -42
  404. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/pandas/__init__.py +0 -16
  405. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/pandas/test_pandas_cogrouped_map.py +0 -623
  406. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/pandas/test_pandas_grouped_map.py +0 -869
  407. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/pandas/test_pandas_grouped_map_with_state.py +0 -342
  408. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/pandas/test_pandas_map.py +0 -436
  409. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/pandas/test_pandas_udf.py +0 -363
  410. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/pandas/test_pandas_udf_grouped_agg.py +0 -592
  411. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/pandas/test_pandas_udf_scalar.py +0 -1503
  412. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/pandas/test_pandas_udf_typehints.py +0 -392
  413. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/pandas/test_pandas_udf_typehints_with_future_annotations.py +0 -375
  414. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/pandas/test_pandas_udf_window.py +0 -411
  415. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/streaming/__init__.py +0 -16
  416. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/streaming/test_streaming.py +0 -401
  417. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/streaming/test_streaming_foreach.py +0 -295
  418. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/streaming/test_streaming_foreach_batch.py +0 -106
  419. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/streaming/test_streaming_listener.py +0 -558
  420. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_arrow.py +0 -1346
  421. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_arrow_map.py +0 -182
  422. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_arrow_python_udf.py +0 -202
  423. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_catalog.py +0 -503
  424. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_column.py +0 -225
  425. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_conf.py +0 -83
  426. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_context.py +0 -201
  427. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_dataframe.py +0 -1931
  428. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_datasources.py +0 -256
  429. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_errors.py +0 -69
  430. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_functions.py +0 -1349
  431. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_group.py +0 -53
  432. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_pandas_sqlmetrics.py +0 -68
  433. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_readwriter.py +0 -283
  434. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_serde.py +0 -155
  435. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_session.py +0 -412
  436. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_types.py +0 -1581
  437. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_udf.py +0 -961
  438. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_udf_profiler.py +0 -165
  439. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_udtf.py +0 -1456
  440. snowflake/snowpark_connect/includes/python/pyspark/sql/tests/test_utils.py +0 -1686
  441. snowflake/snowpark_connect/includes/python/pyspark/streaming/tests/__init__.py +0 -16
  442. snowflake/snowpark_connect/includes/python/pyspark/streaming/tests/test_context.py +0 -184
  443. snowflake/snowpark_connect/includes/python/pyspark/streaming/tests/test_dstream.py +0 -706
  444. snowflake/snowpark_connect/includes/python/pyspark/streaming/tests/test_kinesis.py +0 -118
  445. snowflake/snowpark_connect/includes/python/pyspark/streaming/tests/test_listener.py +0 -160
  446. snowflake/snowpark_connect/includes/python/pyspark/tests/__init__.py +0 -16
  447. snowflake/snowpark_connect/includes/python/pyspark/tests/test_appsubmit.py +0 -306
  448. snowflake/snowpark_connect/includes/python/pyspark/tests/test_broadcast.py +0 -196
  449. snowflake/snowpark_connect/includes/python/pyspark/tests/test_conf.py +0 -44
  450. snowflake/snowpark_connect/includes/python/pyspark/tests/test_context.py +0 -346
  451. snowflake/snowpark_connect/includes/python/pyspark/tests/test_daemon.py +0 -89
  452. snowflake/snowpark_connect/includes/python/pyspark/tests/test_install_spark.py +0 -124
  453. snowflake/snowpark_connect/includes/python/pyspark/tests/test_join.py +0 -69
  454. snowflake/snowpark_connect/includes/python/pyspark/tests/test_memory_profiler.py +0 -167
  455. snowflake/snowpark_connect/includes/python/pyspark/tests/test_pin_thread.py +0 -194
  456. snowflake/snowpark_connect/includes/python/pyspark/tests/test_profiler.py +0 -168
  457. snowflake/snowpark_connect/includes/python/pyspark/tests/test_rdd.py +0 -939
  458. snowflake/snowpark_connect/includes/python/pyspark/tests/test_rddbarrier.py +0 -52
  459. snowflake/snowpark_connect/includes/python/pyspark/tests/test_rddsampler.py +0 -66
  460. snowflake/snowpark_connect/includes/python/pyspark/tests/test_readwrite.py +0 -368
  461. snowflake/snowpark_connect/includes/python/pyspark/tests/test_serializers.py +0 -257
  462. snowflake/snowpark_connect/includes/python/pyspark/tests/test_shuffle.py +0 -267
  463. snowflake/snowpark_connect/includes/python/pyspark/tests/test_stage_sched.py +0 -153
  464. snowflake/snowpark_connect/includes/python/pyspark/tests/test_statcounter.py +0 -130
  465. snowflake/snowpark_connect/includes/python/pyspark/tests/test_taskcontext.py +0 -350
  466. snowflake/snowpark_connect/includes/python/pyspark/tests/test_util.py +0 -97
  467. snowflake/snowpark_connect/includes/python/pyspark/tests/test_worker.py +0 -271
  468. snowpark_connect-0.23.0.dist-info/RECORD +0 -893
  469. {snowpark_connect-0.23.0.data → snowpark_connect-0.25.0.data}/scripts/snowpark-connect +0 -0
  470. {snowpark_connect-0.23.0.data → snowpark_connect-0.25.0.data}/scripts/snowpark-session +0 -0
  471. {snowpark_connect-0.23.0.data → snowpark_connect-0.25.0.data}/scripts/snowpark-submit +0 -0
  472. {snowpark_connect-0.23.0.dist-info → snowpark_connect-0.25.0.dist-info}/WHEEL +0 -0
  473. {snowpark_connect-0.23.0.dist-info → snowpark_connect-0.25.0.dist-info}/licenses/LICENSE-binary +0 -0
  474. {snowpark_connect-0.23.0.dist-info → snowpark_connect-0.25.0.dist-info}/licenses/LICENSE.txt +0 -0
  475. {snowpark_connect-0.23.0.dist-info → snowpark_connect-0.25.0.dist-info}/licenses/NOTICE-binary +0 -0
  476. {snowpark_connect-0.23.0.dist-info → snowpark_connect-0.25.0.dist-info}/top_level.txt +0 -0
@@ -1,1503 +0,0 @@
1
- #
2
- # Licensed to the Apache Software Foundation (ASF) under one or more
3
- # contributor license agreements. See the NOTICE file distributed with
4
- # this work for additional information regarding copyright ownership.
5
- # The ASF licenses this file to You under the Apache License, Version 2.0
6
- # (the "License"); you may not use this file except in compliance with
7
- # the License. You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
- #
17
- import os
18
- import random
19
- import shutil
20
- import tempfile
21
- import time
22
- import unittest
23
- from datetime import date, datetime
24
- from decimal import Decimal
25
- from distutils.version import LooseVersion
26
- from typing import cast
27
-
28
- from pyspark import TaskContext
29
- from pyspark.rdd import PythonEvalType
30
- from pyspark.sql import Column
31
- from pyspark.sql.functions import array, col, expr, lit, sum, struct, udf, pandas_udf, PandasUDFType
32
- from pyspark.sql.pandas.utils import pyarrow_version_less_than_minimum
33
- from pyspark.sql.types import (
34
- IntegerType,
35
- ByteType,
36
- StructType,
37
- ShortType,
38
- BooleanType,
39
- LongType,
40
- FloatType,
41
- DoubleType,
42
- DecimalType,
43
- StringType,
44
- ArrayType,
45
- StructField,
46
- Row,
47
- TimestampType,
48
- MapType,
49
- DateType,
50
- BinaryType,
51
- YearMonthIntervalType,
52
- )
53
- from pyspark.errors import AnalysisException
54
- from pyspark.testing.sqlutils import (
55
- ReusedSQLTestCase,
56
- test_compiled,
57
- test_not_compiled_message,
58
- have_pandas,
59
- have_pyarrow,
60
- pandas_requirement_message,
61
- pyarrow_requirement_message,
62
- )
63
- from pyspark.testing.utils import QuietTest, assertDataFrameEqual
64
-
65
- if have_pandas:
66
- import pandas as pd
67
-
68
- if have_pyarrow:
69
- import pyarrow as pa # noqa: F401
70
-
71
-
72
- @unittest.skipIf(
73
- not have_pandas or not have_pyarrow,
74
- cast(str, pandas_requirement_message or pyarrow_requirement_message),
75
- )
76
- class ScalarPandasUDFTestsMixin:
77
- @property
78
- def nondeterministic_vectorized_udf(self):
79
- import numpy as np
80
-
81
- @pandas_udf("double")
82
- def random_udf(v):
83
- return pd.Series(np.random.random(len(v)))
84
-
85
- random_udf = random_udf.asNondeterministic()
86
- return random_udf
87
-
88
- @property
89
- def nondeterministic_vectorized_iter_udf(self):
90
- import numpy as np
91
-
92
- @pandas_udf("double", PandasUDFType.SCALAR_ITER)
93
- def random_udf(it):
94
- for v in it:
95
- yield pd.Series(np.random.random(len(v)))
96
-
97
- random_udf = random_udf.asNondeterministic()
98
- return random_udf
99
-
100
- @property
101
- def df_with_nested_structs(self):
102
- schema = StructType(
103
- [
104
- StructField("id", IntegerType(), False),
105
- StructField(
106
- "info",
107
- StructType(
108
- [
109
- StructField("name", StringType(), False),
110
- StructField("age", IntegerType(), False),
111
- StructField(
112
- "details",
113
- StructType(
114
- [
115
- StructField("field1", StringType(), False),
116
- StructField("field2", IntegerType(), False),
117
- ]
118
- ),
119
- False,
120
- ),
121
- ]
122
- ),
123
- False,
124
- ),
125
- ]
126
- )
127
- data = [(1, ("John", 30, ("Value1", 10)))]
128
- df = self.spark.createDataFrame(data, schema)
129
- struct_df = df.select(struct(df.columns).alias("struct"))
130
- # struct_df.dtype:
131
- # [(
132
- # 'struct',
133
- # 'struct<id:int,info:
134
- # struct<name:string,age:int,details:
135
- # struct<field1:string, field2:int>>>'
136
- # )]
137
- return struct_df
138
-
139
- @property
140
- def df_with_nested_maps(self):
141
- schema = StructType(
142
- [
143
- StructField("id", StringType(), True),
144
- StructField(
145
- "attributes", MapType(StringType(), MapType(StringType(), StringType())), True
146
- ),
147
- ]
148
- )
149
- data = [("1", {"personal": {"name": "John", "city": "New York"}})]
150
- return self.spark.createDataFrame(data, schema)
151
-
152
- @property
153
- def df_with_nested_arrays(self):
154
- schema = StructType(
155
- [
156
- StructField("id", IntegerType(), nullable=False),
157
- StructField("nested_array", ArrayType(ArrayType(IntegerType())), nullable=False),
158
- ]
159
- )
160
- data = [(1, [[1, 2, 3], [4, 5]])]
161
- return self.spark.createDataFrame(data, schema)
162
-
163
- def test_pandas_udf_tokenize(self):
164
- tokenize = pandas_udf(
165
- lambda s: s.apply(lambda str: str.split(" ")), ArrayType(StringType())
166
- )
167
- self.assertEqual(tokenize.returnType, ArrayType(StringType()))
168
- df = self.spark.createDataFrame([("hi boo",), ("bye boo",)], ["vals"])
169
- result = df.select(tokenize("vals").alias("hi"))
170
- self.assertEqual([Row(hi=["hi", "boo"]), Row(hi=["bye", "boo"])], result.collect())
171
-
172
- def test_pandas_udf_nested_arrays(self):
173
- tokenize = pandas_udf(
174
- lambda s: s.apply(lambda str: [str.split(" ")]), ArrayType(ArrayType(StringType()))
175
- )
176
- self.assertEqual(tokenize.returnType, ArrayType(ArrayType(StringType())))
177
- df = self.spark.createDataFrame([("hi boo",), ("bye boo",)], ["vals"])
178
- result = df.select(tokenize("vals").alias("hi"))
179
- self.assertEqual([Row(hi=[["hi", "boo"]]), Row(hi=[["bye", "boo"]])], result.collect())
180
-
181
- def test_input_nested_structs(self):
182
- df = self.df_with_nested_structs
183
-
184
- mirror = pandas_udf(lambda s: s, df.dtypes[0][1])
185
-
186
- self.assertEquals(
187
- df.select(mirror(df.struct).alias("res")).first(),
188
- Row(
189
- res=Row(
190
- id=1, info=Row(name="John", age=30, details=Row(field1="Value1", field2=10))
191
- )
192
- ),
193
- )
194
-
195
- def test_input_nested_maps(self):
196
- df = self.df_with_nested_maps
197
-
198
- str_repr = pandas_udf(lambda s: s.astype(str), StringType())
199
- self.assertEquals(
200
- df.select(str_repr(df.attributes).alias("res")).first(),
201
- Row(res="{'personal': {'name': 'John', 'city': 'New York'}}"),
202
- )
203
-
204
- extract_name = pandas_udf(lambda s: s.apply(lambda x: x["personal"]["name"]), StringType())
205
- self.assertEquals(
206
- df.select(extract_name(df.attributes).alias("res")).first(),
207
- Row(res="John"),
208
- )
209
-
210
- def test_input_nested_arrays(self):
211
- df = self.df_with_nested_arrays
212
-
213
- str_repr = pandas_udf(lambda s: s.astype(str), StringType())
214
- self.assertEquals(
215
- df.select(str_repr(df.nested_array).alias("res")).first(),
216
- Row(res="[array([1, 2, 3], dtype=int32) array([4, 5], dtype=int32)]"),
217
- )
218
-
219
- @unittest.skipIf(
220
- pyarrow_version_less_than_minimum("2.0.0"),
221
- "Pyarrow version must be 2.0.0 or higher",
222
- )
223
- def test_pandas_array_struct(self):
224
- # SPARK-38098: Support Array of Struct for Pandas UDFs and toPandas
225
- import numpy as np
226
-
227
- @pandas_udf("Array<struct<col1:string, col2:long, col3:double>>")
228
- def return_cols(cols):
229
- assert type(cols) == pd.Series
230
- assert type(cols[0]) == np.ndarray
231
- assert type(cols[0][0]) == dict
232
- return cols
233
-
234
- df = self.spark.createDataFrame(
235
- [[[("a", 2, 3.0), ("a", 2, 3.0)]], [[("b", 5, 6.0), ("b", 5, 6.0)]]],
236
- "array_struct_col Array<struct<col1:string, col2:long, col3:double>>",
237
- )
238
- result = df.select(return_cols("array_struct_col"))
239
- self.assertEqual(
240
- [
241
- Row(output=[Row(col1="a", col2=2, col3=3.0), Row(col1="a", col2=2, col3=3.0)]),
242
- Row(output=[Row(col1="b", col2=5, col3=6.0), Row(col1="b", col2=5, col3=6.0)]),
243
- ],
244
- result.collect(),
245
- )
246
-
247
- def test_vectorized_udf_basic(self):
248
- df = self.spark.range(10).select(
249
- col("id").cast("string").alias("str"),
250
- col("id").cast("int").alias("int"),
251
- col("id").alias("long"),
252
- col("id").cast("float").alias("float"),
253
- col("id").cast("double").alias("double"),
254
- col("id").cast("decimal").alias("decimal"),
255
- col("id").cast("boolean").alias("bool"),
256
- array(col("id")).alias("array_long"),
257
- )
258
-
259
- def f(x):
260
- return x
261
-
262
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
263
- str_f = pandas_udf(f, StringType(), udf_type)
264
- int_f = pandas_udf(f, IntegerType(), udf_type)
265
- long_f = pandas_udf(f, LongType(), udf_type)
266
- float_f = pandas_udf(f, FloatType(), udf_type)
267
- double_f = pandas_udf(f, DoubleType(), udf_type)
268
- decimal_f = pandas_udf(f, DecimalType(), udf_type)
269
- bool_f = pandas_udf(f, BooleanType(), udf_type)
270
- array_long_f = pandas_udf(f, ArrayType(LongType()), udf_type)
271
- res = df.select(
272
- str_f(col("str")),
273
- int_f(col("int")),
274
- long_f(col("long")),
275
- float_f(col("float")),
276
- double_f(col("double")),
277
- decimal_f("decimal"),
278
- bool_f(col("bool")),
279
- array_long_f("array_long"),
280
- )
281
- self.assertEqual(df.collect(), res.collect())
282
-
283
- def test_register_nondeterministic_vectorized_udf_basic(self):
284
- random_pandas_udf = pandas_udf(
285
- lambda x: random.randint(6, 6) + x, IntegerType()
286
- ).asNondeterministic()
287
- self.assertEqual(random_pandas_udf.deterministic, False)
288
- self.assertEqual(random_pandas_udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF)
289
- nondeterministic_pandas_udf = self.spark.catalog.registerFunction(
290
- "randomPandasUDF", random_pandas_udf
291
- )
292
- self.assertEqual(nondeterministic_pandas_udf.deterministic, False)
293
- self.assertEqual(nondeterministic_pandas_udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF)
294
- [row] = self.spark.sql("SELECT randomPandasUDF(1)").collect()
295
- self.assertEqual(row[0], 7)
296
-
297
- def random_iter_udf(it):
298
- for i in it:
299
- yield random.randint(6, 6) + i
300
-
301
- random_pandas_iter_udf = pandas_udf(
302
- random_iter_udf, IntegerType(), PandasUDFType.SCALAR_ITER
303
- ).asNondeterministic()
304
- self.assertEqual(random_pandas_iter_udf.deterministic, False)
305
- self.assertEqual(random_pandas_iter_udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF)
306
- nondeterministic_pandas_iter_udf = self.spark.catalog.registerFunction(
307
- "randomPandasIterUDF", random_pandas_iter_udf
308
- )
309
- self.assertEqual(nondeterministic_pandas_iter_udf.deterministic, False)
310
- self.assertEqual(
311
- nondeterministic_pandas_iter_udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF
312
- )
313
- [row] = self.spark.sql("SELECT randomPandasIterUDF(1)").collect()
314
- self.assertEqual(row[0], 7)
315
-
316
- def test_vectorized_udf_null_boolean(self):
317
- data = [(True,), (True,), (None,), (False,)]
318
- schema = StructType().add("bool", BooleanType())
319
- df = self.spark.createDataFrame(data, schema)
320
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
321
- bool_f = pandas_udf(lambda x: x, BooleanType(), udf_type)
322
- res = df.select(bool_f(col("bool")))
323
- self.assertEqual(df.collect(), res.collect())
324
-
325
- def test_vectorized_udf_null_byte(self):
326
- data = [(None,), (2,), (3,), (4,)]
327
- schema = StructType().add("byte", ByteType())
328
- df = self.spark.createDataFrame(data, schema)
329
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
330
- byte_f = pandas_udf(lambda x: x, ByteType(), udf_type)
331
- res = df.select(byte_f(col("byte")))
332
- self.assertEqual(df.collect(), res.collect())
333
-
334
- def test_vectorized_udf_null_short(self):
335
- data = [(None,), (2,), (3,), (4,)]
336
- schema = StructType().add("short", ShortType())
337
- df = self.spark.createDataFrame(data, schema)
338
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
339
- short_f = pandas_udf(lambda x: x, ShortType(), udf_type)
340
- res = df.select(short_f(col("short")))
341
- self.assertEqual(df.collect(), res.collect())
342
-
343
- def test_vectorized_udf_null_int(self):
344
- data = [(None,), (2,), (3,), (4,)]
345
- schema = StructType().add("int", IntegerType())
346
- df = self.spark.createDataFrame(data, schema)
347
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
348
- int_f = pandas_udf(lambda x: x, IntegerType(), udf_type)
349
- res = df.select(int_f(col("int")))
350
- self.assertEqual(df.collect(), res.collect())
351
-
352
- def test_vectorized_udf_null_long(self):
353
- data = [(None,), (2,), (3,), (4,)]
354
- schema = StructType().add("long", LongType())
355
- df = self.spark.createDataFrame(data, schema)
356
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
357
- long_f = pandas_udf(lambda x: x, LongType(), udf_type)
358
- res = df.select(long_f(col("long")))
359
- self.assertEqual(df.collect(), res.collect())
360
-
361
- def test_vectorized_udf_null_float(self):
362
- data = [(3.0,), (5.0,), (-1.0,), (None,)]
363
- schema = StructType().add("float", FloatType())
364
- df = self.spark.createDataFrame(data, schema)
365
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
366
- float_f = pandas_udf(lambda x: x, FloatType(), udf_type)
367
- res = df.select(float_f(col("float")))
368
- self.assertEqual(df.collect(), res.collect())
369
-
370
- def test_vectorized_udf_null_double(self):
371
- data = [(3.0,), (5.0,), (-1.0,), (None,)]
372
- schema = StructType().add("double", DoubleType())
373
- df = self.spark.createDataFrame(data, schema)
374
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
375
- double_f = pandas_udf(lambda x: x, DoubleType(), udf_type)
376
- res = df.select(double_f(col("double")))
377
- self.assertEqual(df.collect(), res.collect())
378
-
379
- def test_vectorized_udf_null_decimal(self):
380
- data = [(Decimal(3.0),), (Decimal(5.0),), (Decimal(-1.0),), (None,)]
381
- schema = StructType().add("decimal", DecimalType(38, 18))
382
- df = self.spark.createDataFrame(data, schema)
383
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
384
- decimal_f = pandas_udf(lambda x: x, DecimalType(38, 18), udf_type)
385
- res = df.select(decimal_f(col("decimal")))
386
- self.assertEqual(df.collect(), res.collect())
387
-
388
- def test_vectorized_udf_null_string(self):
389
- data = [("foo",), (None,), ("bar",), ("bar",)]
390
- schema = StructType().add("str", StringType())
391
- df = self.spark.createDataFrame(data, schema)
392
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
393
- str_f = pandas_udf(lambda x: x, StringType(), udf_type)
394
- res = df.select(str_f(col("str")))
395
- self.assertEqual(df.collect(), res.collect())
396
-
397
- def test_vectorized_udf_string_in_udf(self):
398
- df = self.spark.range(10)
399
-
400
- def scalar_f(x):
401
- return pd.Series(map(str, x))
402
-
403
- def iter_f(it):
404
- for i in it:
405
- yield scalar_f(i)
406
-
407
- for f, udf_type in [(scalar_f, PandasUDFType.SCALAR), (iter_f, PandasUDFType.SCALAR_ITER)]:
408
- str_f = pandas_udf(f, StringType(), udf_type)
409
- actual = df.select(str_f(col("id")))
410
- expected = df.select(col("id").cast("string"))
411
- self.assertEqual(expected.collect(), actual.collect())
412
-
413
- def test_vectorized_udf_datatype_string(self):
414
- df = self.spark.range(10).select(
415
- col("id").cast("string").alias("str"),
416
- col("id").cast("int").alias("int"),
417
- col("id").alias("long"),
418
- col("id").cast("float").alias("float"),
419
- col("id").cast("double").alias("double"),
420
- col("id").cast("decimal").alias("decimal"),
421
- col("id").cast("boolean").alias("bool"),
422
- )
423
-
424
- def f(x):
425
- return x
426
-
427
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
428
- str_f = pandas_udf(f, "string", udf_type)
429
- int_f = pandas_udf(f, "integer", udf_type)
430
- long_f = pandas_udf(f, "long", udf_type)
431
- float_f = pandas_udf(f, "float", udf_type)
432
- double_f = pandas_udf(f, "double", udf_type)
433
- decimal_f = pandas_udf(f, "decimal(38, 18)", udf_type)
434
- bool_f = pandas_udf(f, "boolean", udf_type)
435
- res = df.select(
436
- str_f(col("str")),
437
- int_f(col("int")),
438
- long_f(col("long")),
439
- float_f(col("float")),
440
- double_f(col("double")),
441
- decimal_f("decimal"),
442
- bool_f(col("bool")),
443
- )
444
- self.assertEqual(df.collect(), res.collect())
445
-
446
- def test_vectorized_udf_null_binary(self):
447
- data = [(bytearray(b"a"),), (None,), (bytearray(b"bb"),), (bytearray(b"ccc"),)]
448
- schema = StructType().add("binary", BinaryType())
449
- df = self.spark.createDataFrame(data, schema)
450
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
451
- str_f = pandas_udf(lambda x: x, BinaryType(), udf_type)
452
- res = df.select(str_f(col("binary")))
453
- self.assertEqual(df.collect(), res.collect())
454
-
455
- def test_vectorized_udf_array_type(self):
456
- data = [([1, 2],), ([3, 4],)]
457
- array_schema = StructType([StructField("array", ArrayType(IntegerType()))])
458
- df = self.spark.createDataFrame(data, schema=array_schema)
459
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
460
- array_f = pandas_udf(lambda x: x, ArrayType(IntegerType()), udf_type)
461
- result = df.select(array_f(col("array")))
462
- self.assertEqual(df.collect(), result.collect())
463
-
464
- def test_vectorized_udf_null_array(self):
465
- data = [([1, 2],), (None,), (None,), ([3, 4],), (None,)]
466
- array_schema = StructType([StructField("array", ArrayType(IntegerType()))])
467
- df = self.spark.createDataFrame(data, schema=array_schema)
468
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
469
- array_f = pandas_udf(lambda x: x, ArrayType(IntegerType()), udf_type)
470
- result = df.select(array_f(col("array")))
471
- self.assertEqual(df.collect(), result.collect())
472
-
473
- def test_vectorized_udf_struct_type(self):
474
- df = self.spark.range(10)
475
- return_type = StructType([StructField("id", LongType()), StructField("str", StringType())])
476
-
477
- def scalar_func(id):
478
- return pd.DataFrame({"id": id, "str": id.apply(str)})
479
-
480
- def iter_func(it):
481
- for id in it:
482
- yield scalar_func(id)
483
-
484
- for func, udf_type in [
485
- (scalar_func, PandasUDFType.SCALAR),
486
- (iter_func, PandasUDFType.SCALAR_ITER),
487
- ]:
488
- f = pandas_udf(func, returnType=return_type, functionType=udf_type)
489
-
490
- expected = df.select(
491
- struct(col("id"), col("id").cast("string").alias("str")).alias("struct")
492
- ).collect()
493
-
494
- actual = df.select(f(col("id")).alias("struct")).collect()
495
- self.assertEqual(expected, actual)
496
-
497
- g = pandas_udf(func, "id: long, str: string", functionType=udf_type)
498
- actual = df.select(g(col("id")).alias("struct")).collect()
499
- self.assertEqual(expected, actual)
500
-
501
- struct_f = pandas_udf(lambda x: x, return_type, functionType=udf_type)
502
- actual = df.select(struct_f(struct(col("id"), col("id").cast("string").alias("str"))))
503
- self.assertEqual(expected, actual.collect())
504
-
505
- def test_vectorized_udf_struct_complex(self):
506
- df = self.spark.range(10)
507
- return_type = StructType(
508
- [StructField("ts", TimestampType()), StructField("arr", ArrayType(LongType()))]
509
- )
510
-
511
- def _scalar_f(id):
512
- return pd.DataFrame(
513
- {"ts": id.apply(lambda i: pd.Timestamp(i)), "arr": id.apply(lambda i: [i, i + 1])}
514
- )
515
-
516
- scalar_f = pandas_udf(_scalar_f, returnType=return_type)
517
-
518
- @pandas_udf(returnType=return_type, functionType=PandasUDFType.SCALAR_ITER)
519
- def iter_f(it):
520
- for id in it:
521
- yield _scalar_f(id)
522
-
523
- for f, udf_type in [(scalar_f, PandasUDFType.SCALAR), (iter_f, PandasUDFType.SCALAR_ITER)]:
524
- actual = df.withColumn("f", f(col("id"))).collect()
525
- for i, row in enumerate(actual):
526
- id, f = row
527
- self.assertEqual(i, id)
528
- self.assertEqual(pd.Timestamp(i).to_pydatetime(), f[0])
529
- self.assertListEqual([i, i + 1], f[1])
530
-
531
- def test_vectorized_udf_struct_empty(self):
532
- df = self.spark.range(3)
533
- return_type = StructType()
534
-
535
- def _scalar_f(id):
536
- return pd.DataFrame(index=id)
537
-
538
- scalar_f = pandas_udf(_scalar_f, returnType=return_type)
539
-
540
- @pandas_udf(returnType=return_type, functionType=PandasUDFType.SCALAR_ITER)
541
- def iter_f(it):
542
- for id in it:
543
- yield _scalar_f(id)
544
-
545
- for f, udf_type in [(scalar_f, "SCALAR"), (iter_f, "SCALAR_ITER")]:
546
- with self.subTest(udf_type=udf_type):
547
- assertDataFrameEqual(
548
- df.withColumn("f", f(col("id"))),
549
- [Row(id=0, f=Row()), Row(id=1, f=Row()), Row(id=2, f=Row())],
550
- )
551
-
552
- def test_vectorized_udf_nested_struct(self):
553
- with QuietTest(self.sc):
554
- self.check_vectorized_udf_nested_struct()
555
-
556
- def check_vectorized_udf_nested_struct(self):
557
- df = self.spark.range(2)
558
-
559
- nested_type = StructType(
560
- [
561
- StructField("id", IntegerType()),
562
- StructField(
563
- "nested",
564
- StructType([StructField("foo", StringType()), StructField("bar", FloatType())]),
565
- ),
566
- ]
567
- )
568
-
569
- def func_dict(pser: pd.Series) -> pd.DataFrame:
570
- return pd.DataFrame(
571
- {"id": pser, "nested": pser.apply(lambda x: {"foo": str(x), "bar": float(x)})}
572
- )
573
-
574
- def func_row(pser: pd.Series) -> pd.DataFrame:
575
- return pd.DataFrame(
576
- {"id": pser, "nested": pser.apply(lambda x: Row(foo=str(x), bar=float(x)))}
577
- )
578
-
579
- expected = [
580
- Row(udf=Row(id=0, nested=Row(foo="0", bar=0.0))),
581
- Row(udf=Row(id=1, nested=Row(foo="1", bar=1.0))),
582
- ]
583
-
584
- for f in [func_dict, func_row]:
585
- for udf_type, func in [
586
- (PandasUDFType.SCALAR, f),
587
- (PandasUDFType.SCALAR_ITER, lambda iter: (f(pser) for pser in iter)),
588
- ]:
589
- with self.subTest(udf_type=udf_type, udf=f.__name__):
590
- result = df.select(
591
- pandas_udf(func, returnType=nested_type, functionType=udf_type)(
592
- col("id")
593
- ).alias("udf")
594
- ).collect()
595
- self.assertEqual(result, expected)
596
-
597
- def test_vectorized_udf_map_type(self):
598
- data = [({},), ({"a": 1},), ({"a": 1, "b": 2},), ({"a": 1, "b": 2, "c": 3},)]
599
- schema = StructType([StructField("map", MapType(StringType(), LongType()))])
600
- df = self.spark.createDataFrame(data, schema=schema)
601
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
602
- if LooseVersion(pa.__version__) < LooseVersion("2.0.0"):
603
- with QuietTest(self.sc):
604
- with self.assertRaisesRegex(Exception, "MapType.*not supported"):
605
- pandas_udf(lambda x: x, MapType(StringType(), LongType()), udf_type)
606
- else:
607
- map_f = pandas_udf(lambda x: x, MapType(StringType(), LongType()), udf_type)
608
- result = df.select(map_f(col("map")))
609
- self.assertEqual(df.collect(), result.collect())
610
-
611
- def test_vectorized_udf_complex(self):
612
- df = self.spark.range(10).select(
613
- col("id").cast("int").alias("a"),
614
- col("id").cast("int").alias("b"),
615
- col("id").cast("double").alias("c"),
616
- )
617
- scalar_add = pandas_udf(lambda x, y: x + y, IntegerType())
618
- scalar_power2 = pandas_udf(lambda x: 2**x, IntegerType())
619
- scalar_mul = pandas_udf(lambda x, y: x * y, DoubleType())
620
-
621
- @pandas_udf(IntegerType(), PandasUDFType.SCALAR_ITER)
622
- def iter_add(it):
623
- for x, y in it:
624
- yield x + y
625
-
626
- @pandas_udf(IntegerType(), PandasUDFType.SCALAR_ITER)
627
- def iter_power2(it):
628
- for x in it:
629
- yield 2**x
630
-
631
- @pandas_udf(DoubleType(), PandasUDFType.SCALAR_ITER)
632
- def iter_mul(it):
633
- for x, y in it:
634
- yield x * y
635
-
636
- for add, power2, mul in [
637
- (scalar_add, scalar_power2, scalar_mul),
638
- (iter_add, iter_power2, iter_mul),
639
- ]:
640
- res = df.select(add(col("a"), col("b")), power2(col("a")), mul(col("b"), col("c")))
641
- expected = df.select(expr("a + b"), expr("power(2, a)"), expr("b * c"))
642
- self.assertEqual(expected.collect(), res.collect())
643
-
644
- def test_vectorized_udf_exception(self):
645
- with QuietTest(self.sc):
646
- self.check_vectorized_udf_exception()
647
-
648
- def check_vectorized_udf_exception(self):
649
- df = self.spark.range(10)
650
- scalar_raise_exception = pandas_udf(lambda x: x * (1 / 0), LongType())
651
-
652
- @pandas_udf(LongType(), PandasUDFType.SCALAR_ITER)
653
- def iter_raise_exception(it):
654
- for x in it:
655
- yield x * (1 / 0)
656
-
657
- for raise_exception in [scalar_raise_exception, iter_raise_exception]:
658
- with self.assertRaisesRegex(Exception, "division( or modulo)? by zero"):
659
- df.select(raise_exception(col("id"))).collect()
660
-
661
- def test_vectorized_udf_invalid_length(self):
662
- with QuietTest(self.sc):
663
- self.check_vectorized_udf_invalid_length()
664
-
665
- def check_vectorized_udf_invalid_length(self):
666
- df = self.spark.range(10)
667
- raise_exception = pandas_udf(lambda _: pd.Series(1), LongType())
668
- with self.assertRaisesRegex(
669
- Exception, "Result vector from pandas_udf was not the required length"
670
- ):
671
- df.select(raise_exception(col("id"))).collect()
672
-
673
- @pandas_udf(LongType(), PandasUDFType.SCALAR_ITER)
674
- def iter_udf_wong_output_size(it):
675
- for _ in it:
676
- yield pd.Series(1)
677
-
678
- with self.assertRaisesRegex(
679
- Exception, "The length of output in Scalar iterator.*" "the length of output was 1"
680
- ):
681
- df.select(iter_udf_wong_output_size(col("id"))).collect()
682
-
683
- @pandas_udf(LongType(), PandasUDFType.SCALAR_ITER)
684
- def iter_udf_not_reading_all_input(it):
685
- for batch in it:
686
- batch_len = len(batch)
687
- yield pd.Series([1] * batch_len)
688
- break
689
-
690
- with self.sql_conf({"spark.sql.execution.arrow.maxRecordsPerBatch": 3}):
691
- df1 = self.spark.range(10).repartition(1)
692
- with self.assertRaisesRegex(Exception, "pandas iterator UDF should exhaust"):
693
- df1.select(iter_udf_not_reading_all_input(col("id"))).collect()
694
-
695
- def test_vectorized_udf_chained(self):
696
- df = self.spark.range(10)
697
- scalar_f = pandas_udf(lambda x: x + 1, LongType())
698
- scalar_g = pandas_udf(lambda x: x - 1, LongType())
699
-
700
- iter_f = pandas_udf(
701
- lambda it: map(lambda x: x + 1, it), LongType(), PandasUDFType.SCALAR_ITER
702
- )
703
- iter_g = pandas_udf(
704
- lambda it: map(lambda x: x - 1, it), LongType(), PandasUDFType.SCALAR_ITER
705
- )
706
-
707
- for f, g in [(scalar_f, scalar_g), (iter_f, iter_g)]:
708
- res = df.select(g(f(col("id"))))
709
- self.assertEqual(df.collect(), res.collect())
710
-
711
- def test_vectorized_udf_chained_struct_type(self):
712
- df = self.spark.range(10)
713
- return_type = StructType([StructField("id", LongType()), StructField("str", StringType())])
714
-
715
- @pandas_udf(return_type)
716
- def scalar_f(id):
717
- return pd.DataFrame({"id": id, "str": id.apply(str)})
718
-
719
- scalar_g = pandas_udf(lambda x: x, return_type)
720
-
721
- @pandas_udf(return_type, PandasUDFType.SCALAR_ITER)
722
- def iter_f(it):
723
- for id in it:
724
- yield pd.DataFrame({"id": id, "str": id.apply(str)})
725
-
726
- iter_g = pandas_udf(lambda x: x, return_type, PandasUDFType.SCALAR_ITER)
727
-
728
- expected = df.select(
729
- struct(col("id"), col("id").cast("string").alias("str")).alias("struct")
730
- ).collect()
731
-
732
- for f, g in [(scalar_f, scalar_g), (iter_f, iter_g)]:
733
- actual = df.select(g(f(col("id"))).alias("struct")).collect()
734
- self.assertEqual(expected, actual)
735
-
736
- def test_vectorized_udf_wrong_return_type(self):
737
- with QuietTest(self.sc):
738
- self.check_vectorized_udf_wrong_return_type()
739
-
740
- def check_vectorized_udf_wrong_return_type(self):
741
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
742
- with self.assertRaisesRegex(
743
- NotImplementedError,
744
- "Invalid return type.*scalar Pandas UDF.*ArrayType.*YearMonthIntervalType",
745
- ):
746
- pandas_udf(lambda x: x, ArrayType(YearMonthIntervalType()), udf_type)
747
-
748
- def test_vectorized_udf_return_scalar(self):
749
- with QuietTest(self.sc):
750
- self.check_vectorized_udf_return_scalar()
751
-
752
- def check_vectorized_udf_return_scalar(self):
753
- df = self.spark.range(10)
754
- scalar_f = pandas_udf(lambda x: 1.0, DoubleType())
755
- iter_f = pandas_udf(
756
- lambda it: map(lambda x: 1.0, it), DoubleType(), PandasUDFType.SCALAR_ITER
757
- )
758
- for f in [scalar_f, iter_f]:
759
- with self.assertRaisesRegex(Exception, "Return.*type.*Series"):
760
- df.select(f(col("id"))).collect()
761
-
762
- def test_vectorized_udf_decorator(self):
763
- df = self.spark.range(10)
764
-
765
- @pandas_udf(returnType=LongType())
766
- def scalar_identity(x):
767
- return x
768
-
769
- @pandas_udf(returnType=LongType(), functionType=PandasUDFType.SCALAR_ITER)
770
- def iter_identity(x):
771
- return x
772
-
773
- for identity in [scalar_identity, iter_identity]:
774
- res = df.select(identity(col("id")))
775
- self.assertEqual(df.collect(), res.collect())
776
-
777
- def test_vectorized_udf_empty_partition(self):
778
- df = self.spark.createDataFrame(self.sc.parallelize([Row(id=1)], 2))
779
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
780
- f = pandas_udf(lambda x: x, LongType(), udf_type)
781
- res = df.select(f(col("id")))
782
- self.assertEqual(df.collect(), res.collect())
783
-
784
- def test_vectorized_udf_struct_with_empty_partition(self):
785
- df = self.spark.createDataFrame(self.sc.parallelize([Row(id=1)], 2)).withColumn(
786
- "name", lit("John Doe")
787
- )
788
-
789
- @pandas_udf("first string, last string")
790
- def scalar_split_expand(n):
791
- return n.str.split(expand=True)
792
-
793
- @pandas_udf("first string, last string", PandasUDFType.SCALAR_ITER)
794
- def iter_split_expand(it):
795
- for n in it:
796
- yield n.str.split(expand=True)
797
-
798
- for split_expand in [scalar_split_expand, iter_split_expand]:
799
- result = df.select(split_expand("name")).collect()
800
- self.assertEqual(1, len(result))
801
- row = result[0]
802
- self.assertEqual("John", row[0]["first"])
803
- self.assertEqual("Doe", row[0]["last"])
804
-
805
- def test_vectorized_udf_varargs(self):
806
- df = self.spark.range(start=1, end=2)
807
- scalar_f = pandas_udf(lambda *v: v[0], LongType())
808
-
809
- @pandas_udf(LongType(), PandasUDFType.SCALAR_ITER)
810
- def iter_f(it):
811
- for v in it:
812
- yield v[0]
813
-
814
- for f in [scalar_f, iter_f]:
815
- res = df.select(f(col("id"), col("id")))
816
- self.assertEqual(df.collect(), res.collect())
817
-
818
- def test_vectorized_udf_dates(self):
819
- schema = StructType().add("idx", LongType()).add("date", DateType())
820
- data = [
821
- (
822
- 0,
823
- date(1969, 1, 1),
824
- ),
825
- (
826
- 1,
827
- date(2012, 2, 2),
828
- ),
829
- (
830
- 2,
831
- None,
832
- ),
833
- (
834
- 3,
835
- date(2100, 4, 4),
836
- ),
837
- (
838
- 4,
839
- date(2262, 4, 12),
840
- ),
841
- ]
842
- df = self.spark.createDataFrame(data, schema=schema)
843
-
844
- def scalar_check_data(idx, date, date_copy):
845
- msgs = []
846
- is_equal = date.isnull()
847
- for i in range(len(idx)):
848
- if (is_equal[i] and data[idx[i]][1] is None) or date[i] == data[idx[i]][1]:
849
- msgs.append(None)
850
- else:
851
- msgs.append(
852
- "date values are not equal (date='%s': data[%d][1]='%s')"
853
- % (date[i], idx[i], data[idx[i]][1])
854
- )
855
- return pd.Series(msgs)
856
-
857
- def iter_check_data(it):
858
- for idx, test_date, date_copy in it:
859
- yield scalar_check_data(idx, test_date, date_copy)
860
-
861
- pandas_scalar_check_data = pandas_udf(scalar_check_data, StringType())
862
- pandas_iter_check_data = pandas_udf(
863
- iter_check_data, StringType(), PandasUDFType.SCALAR_ITER
864
- )
865
-
866
- for check_data, udf_type in [
867
- (pandas_scalar_check_data, PandasUDFType.SCALAR),
868
- (pandas_iter_check_data, PandasUDFType.SCALAR_ITER),
869
- ]:
870
- date_copy = pandas_udf(lambda t: t, returnType=DateType(), functionType=udf_type)
871
- df = df.withColumn("date_copy", date_copy(col("date")))
872
- result = df.withColumn(
873
- "check_data", check_data(col("idx"), col("date"), col("date_copy"))
874
- ).collect()
875
-
876
- self.assertEqual(len(data), len(result))
877
- for i in range(len(result)):
878
- self.assertEqual(data[i][1], result[i][1]) # "date" col
879
- self.assertEqual(data[i][1], result[i][2]) # "date_copy" col
880
- self.assertIsNone(result[i][3]) # "check_data" col
881
-
882
- def test_vectorized_udf_timestamps(self):
883
- schema = StructType(
884
- [StructField("idx", LongType(), True), StructField("timestamp", TimestampType(), True)]
885
- )
886
- data = [
887
- (0, datetime(1969, 1, 1, 1, 1, 1)),
888
- (1, datetime(2012, 2, 2, 2, 2, 2)),
889
- (2, None),
890
- (3, datetime(2100, 3, 3, 3, 3, 3)),
891
- ]
892
-
893
- df = self.spark.createDataFrame(data, schema=schema)
894
-
895
- def scalar_check_data(idx, timestamp, timestamp_copy):
896
- msgs = []
897
- is_equal = timestamp.isnull() # use this array to check values are equal
898
- for i in range(len(idx)):
899
- # Check that timestamps are as expected in the UDF
900
- if (is_equal[i] and data[idx[i]][1] is None) or timestamp[
901
- i
902
- ].to_pydatetime() == data[idx[i]][1]:
903
- msgs.append(None)
904
- else:
905
- msgs.append(
906
- "timestamp values are not equal (timestamp='%s': data[%d][1]='%s')"
907
- % (timestamp[i], idx[i], data[idx[i]][1])
908
- )
909
- return pd.Series(msgs)
910
-
911
- def iter_check_data(it):
912
- for idx, timestamp, timestamp_copy in it:
913
- yield scalar_check_data(idx, timestamp, timestamp_copy)
914
-
915
- pandas_scalar_check_data = pandas_udf(scalar_check_data, StringType())
916
- pandas_iter_check_data = pandas_udf(
917
- iter_check_data, StringType(), PandasUDFType.SCALAR_ITER
918
- )
919
-
920
- for check_data, udf_type in [
921
- (pandas_scalar_check_data, PandasUDFType.SCALAR),
922
- (pandas_iter_check_data, PandasUDFType.SCALAR_ITER),
923
- ]:
924
- # Check that a timestamp passed through a pandas_udf will not be altered by timezone
925
- # calc
926
- f_timestamp_copy = pandas_udf(
927
- lambda t: t, returnType=TimestampType(), functionType=udf_type
928
- )
929
- df = df.withColumn("timestamp_copy", f_timestamp_copy(col("timestamp")))
930
- result = df.withColumn(
931
- "check_data", check_data(col("idx"), col("timestamp"), col("timestamp_copy"))
932
- ).collect()
933
- # Check that collection values are correct
934
- self.assertEqual(len(data), len(result))
935
- for i in range(len(result)):
936
- self.assertEqual(data[i][1], result[i][1]) # "timestamp" col
937
- self.assertEqual(data[i][1], result[i][2]) # "timestamp_copy" col
938
- self.assertIsNone(result[i][3]) # "check_data" col
939
-
940
- def test_vectorized_udf_return_timestamp_tz(self):
941
- df = self.spark.range(10)
942
-
943
- @pandas_udf(returnType=TimestampType())
944
- def scalar_gen_timestamps(id):
945
- ts = [pd.Timestamp(i, unit="D", tz="America/Los_Angeles") for i in id]
946
- return pd.Series(ts)
947
-
948
- @pandas_udf(returnType=TimestampType(), functionType=PandasUDFType.SCALAR_ITER)
949
- def iter_gen_timestamps(it):
950
- for id in it:
951
- ts = [pd.Timestamp(i, unit="D", tz="America/Los_Angeles") for i in id]
952
- yield pd.Series(ts)
953
-
954
- for gen_timestamps in [scalar_gen_timestamps, iter_gen_timestamps]:
955
- result = df.withColumn("ts", gen_timestamps(col("id"))).collect()
956
- spark_ts_t = TimestampType()
957
- for r in result:
958
- i, ts = r
959
- ts_tz = pd.Timestamp(i, unit="D", tz="America/Los_Angeles").to_pydatetime()
960
- expected = spark_ts_t.fromInternal(spark_ts_t.toInternal(ts_tz))
961
- self.assertEqual(expected, ts)
962
-
963
- def test_vectorized_udf_check_config(self):
964
- with self.sql_conf({"spark.sql.execution.arrow.maxRecordsPerBatch": 3}):
965
- df = self.spark.range(10, numPartitions=1)
966
-
967
- @pandas_udf(returnType=LongType())
968
- def scalar_check_records_per_batch(x):
969
- return pd.Series(x.size).repeat(x.size)
970
-
971
- @pandas_udf(returnType=LongType(), functionType=PandasUDFType.SCALAR_ITER)
972
- def iter_check_records_per_batch(it):
973
- for x in it:
974
- yield pd.Series(x.size).repeat(x.size)
975
-
976
- for check_records_per_batch in [
977
- scalar_check_records_per_batch,
978
- iter_check_records_per_batch,
979
- ]:
980
- result = df.select(check_records_per_batch(col("id"))).collect()
981
- for (r,) in result:
982
- self.assertTrue(r <= 3)
983
-
984
- def test_vectorized_udf_timestamps_respect_session_timezone(self):
985
- schema = StructType(
986
- [StructField("idx", LongType(), True), StructField("timestamp", TimestampType(), True)]
987
- )
988
- data = [
989
- (1, datetime(1969, 1, 1, 1, 1, 1)),
990
- (2, datetime(2012, 2, 2, 2, 2, 2)),
991
- (3, None),
992
- (4, datetime(2100, 3, 3, 3, 3, 3)),
993
- ]
994
- df = self.spark.createDataFrame(data, schema=schema)
995
-
996
- scalar_internal_value = pandas_udf(
997
- lambda ts: ts.apply(lambda ts: ts.value if ts is not pd.NaT else None), LongType()
998
- )
999
-
1000
- @pandas_udf(LongType(), PandasUDFType.SCALAR_ITER)
1001
- def iter_internal_value(it):
1002
- for ts in it:
1003
- yield ts.apply(lambda ts: ts.value if ts is not pd.NaT else None)
1004
-
1005
- for internal_value, udf_type in [
1006
- (scalar_internal_value, PandasUDFType.SCALAR),
1007
- (iter_internal_value, PandasUDFType.SCALAR_ITER),
1008
- ]:
1009
- f_timestamp_copy = pandas_udf(lambda ts: ts, TimestampType(), udf_type)
1010
- timezone = "America/Los_Angeles"
1011
- with self.sql_conf({"spark.sql.session.timeZone": timezone}):
1012
- df_la = df.withColumn("tscopy", f_timestamp_copy(col("timestamp"))).withColumn(
1013
- "internal_value", internal_value(col("timestamp"))
1014
- )
1015
- result_la = df_la.select(col("idx"), col("internal_value")).collect()
1016
- # Correct result_la by adjusting 3 hours difference between Los Angeles and New York
1017
- diff = 3 * 60 * 60 * 1000 * 1000 * 1000
1018
- result_la_corrected = df_la.select(
1019
- col("idx"), col("tscopy"), col("internal_value") + diff
1020
- ).collect()
1021
-
1022
- timezone = "America/New_York"
1023
- with self.sql_conf({"spark.sql.session.timeZone": timezone}):
1024
- df_ny = df.withColumn("tscopy", f_timestamp_copy(col("timestamp"))).withColumn(
1025
- "internal_value", internal_value(col("timestamp"))
1026
- )
1027
- result_ny = df_ny.select(col("idx"), col("tscopy"), col("internal_value")).collect()
1028
-
1029
- self.assertNotEqual(result_ny, result_la)
1030
- self.assertEqual(result_ny, result_la_corrected)
1031
-
1032
- def test_nondeterministic_vectorized_udf(self):
1033
- # Test that nondeterministic UDFs are evaluated only once in chained UDF evaluations
1034
- @pandas_udf("double")
1035
- def scalar_plus_ten(v):
1036
- return v + 10
1037
-
1038
- @pandas_udf("double", PandasUDFType.SCALAR_ITER)
1039
- def iter_plus_ten(it):
1040
- for v in it:
1041
- yield v + 10
1042
-
1043
- for plus_ten in [scalar_plus_ten, iter_plus_ten]:
1044
- random_udf = self.nondeterministic_vectorized_udf
1045
-
1046
- df = self.spark.range(10).withColumn("rand", random_udf(col("id")))
1047
- result1 = df.withColumn("plus_ten(rand)", plus_ten(df["rand"])).toPandas()
1048
-
1049
- self.assertEqual(random_udf.deterministic, False)
1050
- self.assertTrue(result1["plus_ten(rand)"].equals(result1["rand"] + 10))
1051
-
1052
- def test_nondeterministic_vectorized_udf_in_aggregate(self):
1053
- with QuietTest(self.sc):
1054
- self.check_nondeterministic_analysis_exception()
1055
-
1056
- def check_nondeterministic_analysis_exception(self):
1057
- df = self.spark.range(10)
1058
- for random_udf in [
1059
- self.nondeterministic_vectorized_udf,
1060
- self.nondeterministic_vectorized_iter_udf,
1061
- ]:
1062
- with self.assertRaisesRegex(AnalysisException, "Non-deterministic"):
1063
- df.groupby(df.id).agg(sum(random_udf(df.id))).collect()
1064
- with self.assertRaisesRegex(AnalysisException, "Non-deterministic"):
1065
- df.agg(sum(random_udf(df.id))).collect()
1066
-
1067
- def test_register_vectorized_udf_basic(self):
1068
- df = self.spark.range(10).select(
1069
- col("id").cast("int").alias("a"), col("id").cast("int").alias("b")
1070
- )
1071
- scalar_original_add = pandas_udf(lambda x, y: x + y, IntegerType())
1072
- self.assertEqual(scalar_original_add.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF)
1073
-
1074
- @pandas_udf(IntegerType(), PandasUDFType.SCALAR_ITER)
1075
- def iter_original_add(it):
1076
- for x, y in it:
1077
- yield x + y
1078
-
1079
- self.assertEqual(iter_original_add.evalType, PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF)
1080
-
1081
- for original_add in [scalar_original_add, iter_original_add]:
1082
- self.assertEqual(original_add.deterministic, True)
1083
- new_add = self.spark.catalog.registerFunction("add1", original_add)
1084
- res1 = df.select(new_add(col("a"), col("b")))
1085
- res2 = self.spark.sql(
1086
- "SELECT add1(t.a, t.b) FROM (SELECT id as a, id as b FROM range(10)) t"
1087
- )
1088
- expected = df.select(expr("a + b"))
1089
- self.assertEqual(expected.collect(), res1.collect())
1090
- self.assertEqual(expected.collect(), res2.collect())
1091
-
1092
- def test_scalar_iter_udf_init(self):
1093
- import numpy as np
1094
-
1095
- @pandas_udf("int", PandasUDFType.SCALAR_ITER)
1096
- def rng(batch_iter):
1097
- context = TaskContext.get()
1098
- part = context.partitionId()
1099
- np.random.seed(part)
1100
- for batch in batch_iter:
1101
- yield pd.Series(np.random.randint(100, size=len(batch)))
1102
-
1103
- with self.sql_conf({"spark.sql.execution.arrow.maxRecordsPerBatch": 2}):
1104
- df = self.spark.range(10, numPartitions=2).select(rng(col("id").alias("v")))
1105
- result1 = df.collect()
1106
- result2 = df.collect()
1107
- self.assertEqual(
1108
- result1,
1109
- result2,
1110
- "SCALAR ITER UDF can initialize state and produce deterministic RNG",
1111
- )
1112
-
1113
- def test_scalar_iter_udf_close(self):
1114
- with QuietTest(self.sc):
1115
- self.check_scalar_iter_udf_close()
1116
-
1117
- def check_scalar_iter_udf_close(self):
1118
- @pandas_udf("int", PandasUDFType.SCALAR_ITER)
1119
- def test_close(batch_iter):
1120
- try:
1121
- for batch in batch_iter:
1122
- yield batch
1123
- finally:
1124
- raise RuntimeError("reached finally block")
1125
-
1126
- with self.assertRaisesRegex(Exception, "reached finally block"):
1127
- self.spark.range(1).select(test_close(col("id"))).collect()
1128
-
1129
- @unittest.skip("LimitPushDown should push limits through Python UDFs so this won't occur")
1130
- def test_scalar_iter_udf_close_early(self):
1131
- tmp_dir = tempfile.mkdtemp()
1132
- try:
1133
- tmp_file = tmp_dir + "/reach_finally_block"
1134
-
1135
- @pandas_udf("int", PandasUDFType.SCALAR_ITER)
1136
- def test_close(batch_iter):
1137
- generator_exit_caught = False
1138
- try:
1139
- for batch in batch_iter:
1140
- yield batch
1141
- time.sleep(1.0) # avoid the function finish too fast.
1142
- except GeneratorExit as ge:
1143
- generator_exit_caught = True
1144
- raise ge
1145
- finally:
1146
- assert generator_exit_caught, "Generator exit exception was not caught."
1147
- open(tmp_file, "a").close()
1148
-
1149
- with QuietTest(self.sc):
1150
- with self.sql_conf(
1151
- {
1152
- "spark.sql.execution.arrow.maxRecordsPerBatch": 1,
1153
- "spark.sql.execution.pandas.udf.buffer.size": 4,
1154
- }
1155
- ):
1156
- self.spark.range(10).repartition(1).select(test_close(col("id"))).limit(
1157
- 2
1158
- ).collect()
1159
- # wait here because python udf worker will take some time to detect
1160
- # jvm side socket closed and then will trigger `GenerateExit` raised.
1161
- # wait timeout is 10s.
1162
- for i in range(100):
1163
- time.sleep(0.1)
1164
- if os.path.exists(tmp_file):
1165
- break
1166
-
1167
- assert os.path.exists(tmp_file), "finally block not reached."
1168
-
1169
- finally:
1170
- shutil.rmtree(tmp_dir)
1171
-
1172
- # Regression test for SPARK-23314
1173
- def test_timestamp_dst(self):
1174
- # Daylight saving time for Los Angeles for 2015 is Sun, Nov 1 at 2:00 am
1175
- dt = [
1176
- datetime(2015, 11, 1, 0, 30),
1177
- datetime(2015, 11, 1, 1, 30),
1178
- datetime(2015, 11, 1, 2, 30),
1179
- ]
1180
- df = self.spark.createDataFrame(dt, "timestamp").toDF("time")
1181
-
1182
- for udf_type in [PandasUDFType.SCALAR, PandasUDFType.SCALAR_ITER]:
1183
- foo_udf = pandas_udf(lambda x: x, "timestamp", udf_type)
1184
- result = df.withColumn("time", foo_udf(df.time))
1185
- self.assertEqual(df.collect(), result.collect())
1186
-
1187
- def test_udf_category_type(self):
1188
- @pandas_udf("string")
1189
- def to_category_func(x):
1190
- return x.astype("category")
1191
-
1192
- pdf = pd.DataFrame({"A": ["a", "b", "c", "a"]})
1193
- df = self.spark.createDataFrame(pdf)
1194
- df = df.withColumn("B", to_category_func(df["A"]))
1195
- result_spark = df.toPandas()
1196
-
1197
- spark_type = df.dtypes[1][1]
1198
- # spark data frame and arrow execution mode enabled data frame type must match pandas
1199
- self.assertEqual(spark_type, "string")
1200
-
1201
- # Check result of column 'B' must be equal to column 'A' in type and values
1202
- pd.testing.assert_series_equal(result_spark["A"], result_spark["B"], check_names=False)
1203
-
1204
- def test_type_annotation(self):
1205
- # Regression test to check if type hints can be used. See SPARK-23569.
1206
- def noop(col: pd.Series) -> pd.Series:
1207
- return col
1208
-
1209
- df = self.spark.range(1).select(pandas_udf(f=noop, returnType="bigint")("id"))
1210
- self.assertEqual(df.first()[0], 0)
1211
-
1212
- def test_mixed_udf(self):
1213
- df = self.spark.range(0, 1).toDF("v")
1214
-
1215
- # Test mixture of multiple UDFs and Pandas UDFs.
1216
-
1217
- @udf("int")
1218
- def f1(x):
1219
- assert type(x) == int
1220
- return x + 1
1221
-
1222
- @pandas_udf("int")
1223
- def f2_scalar(x):
1224
- assert type(x) == pd.Series
1225
- return x + 10
1226
-
1227
- @pandas_udf("int", PandasUDFType.SCALAR_ITER)
1228
- def f2_iter(it):
1229
- for x in it:
1230
- assert type(x) == pd.Series
1231
- yield x + 10
1232
-
1233
- @udf("int")
1234
- def f3(x):
1235
- assert type(x) == int
1236
- return x + 100
1237
-
1238
- @pandas_udf("int")
1239
- def f4_scalar(x):
1240
- assert type(x) == pd.Series
1241
- return x + 1000
1242
-
1243
- @pandas_udf("int", PandasUDFType.SCALAR_ITER)
1244
- def f4_iter(it):
1245
- for x in it:
1246
- assert type(x) == pd.Series
1247
- yield x + 1000
1248
-
1249
- expected_chained_1 = df.withColumn("f2_f1", df["v"] + 11).collect()
1250
- expected_chained_2 = df.withColumn("f3_f2_f1", df["v"] + 111).collect()
1251
- expected_chained_3 = df.withColumn("f4_f3_f2_f1", df["v"] + 1111).collect()
1252
- expected_chained_4 = df.withColumn("f4_f2_f1", df["v"] + 1011).collect()
1253
- expected_chained_5 = df.withColumn("f4_f3_f1", df["v"] + 1101).collect()
1254
-
1255
- expected_multi = (
1256
- df.withColumn("f1", df["v"] + 1)
1257
- .withColumn("f2", df["v"] + 10)
1258
- .withColumn("f3", df["v"] + 100)
1259
- .withColumn("f4", df["v"] + 1000)
1260
- .withColumn("f2_f1", df["v"] + 11)
1261
- .withColumn("f3_f1", df["v"] + 101)
1262
- .withColumn("f4_f1", df["v"] + 1001)
1263
- .withColumn("f3_f2", df["v"] + 110)
1264
- .withColumn("f4_f2", df["v"] + 1010)
1265
- .withColumn("f4_f3", df["v"] + 1100)
1266
- .withColumn("f3_f2_f1", df["v"] + 111)
1267
- .withColumn("f4_f2_f1", df["v"] + 1011)
1268
- .withColumn("f4_f3_f1", df["v"] + 1101)
1269
- .withColumn("f4_f3_f2", df["v"] + 1110)
1270
- .withColumn("f4_f3_f2_f1", df["v"] + 1111)
1271
- .collect()
1272
- )
1273
-
1274
- for f2, f4 in [
1275
- (f2_scalar, f4_scalar),
1276
- (f2_scalar, f4_iter),
1277
- (f2_iter, f4_scalar),
1278
- (f2_iter, f4_iter),
1279
- ]:
1280
- # Test single expression with chained UDFs
1281
- df_chained_1 = df.withColumn("f2_f1", f2(f1(df["v"])))
1282
- df_chained_2 = df.withColumn("f3_f2_f1", f3(f2(f1(df["v"]))))
1283
- df_chained_3 = df.withColumn("f4_f3_f2_f1", f4(f3(f2(f1(df["v"])))))
1284
- df_chained_4 = df.withColumn("f4_f2_f1", f4(f2(f1(df["v"]))))
1285
- df_chained_5 = df.withColumn("f4_f3_f1", f4(f3(f1(df["v"]))))
1286
-
1287
- self.assertEqual(expected_chained_1, df_chained_1.collect())
1288
- self.assertEqual(expected_chained_2, df_chained_2.collect())
1289
- self.assertEqual(expected_chained_3, df_chained_3.collect())
1290
- self.assertEqual(expected_chained_4, df_chained_4.collect())
1291
- self.assertEqual(expected_chained_5, df_chained_5.collect())
1292
-
1293
- # Test multiple mixed UDF expressions in a single projection
1294
- df_multi_1 = (
1295
- df.withColumn("f1", f1(col("v")))
1296
- .withColumn("f2", f2(col("v")))
1297
- .withColumn("f3", f3(col("v")))
1298
- .withColumn("f4", f4(col("v")))
1299
- .withColumn("f2_f1", f2(col("f1")))
1300
- .withColumn("f3_f1", f3(col("f1")))
1301
- .withColumn("f4_f1", f4(col("f1")))
1302
- .withColumn("f3_f2", f3(col("f2")))
1303
- .withColumn("f4_f2", f4(col("f2")))
1304
- .withColumn("f4_f3", f4(col("f3")))
1305
- .withColumn("f3_f2_f1", f3(col("f2_f1")))
1306
- .withColumn("f4_f2_f1", f4(col("f2_f1")))
1307
- .withColumn("f4_f3_f1", f4(col("f3_f1")))
1308
- .withColumn("f4_f3_f2", f4(col("f3_f2")))
1309
- .withColumn("f4_f3_f2_f1", f4(col("f3_f2_f1")))
1310
- )
1311
-
1312
- # Test mixed udfs in a single expression
1313
- df_multi_2 = (
1314
- df.withColumn("f1", f1(col("v")))
1315
- .withColumn("f2", f2(col("v")))
1316
- .withColumn("f3", f3(col("v")))
1317
- .withColumn("f4", f4(col("v")))
1318
- .withColumn("f2_f1", f2(f1(col("v"))))
1319
- .withColumn("f3_f1", f3(f1(col("v"))))
1320
- .withColumn("f4_f1", f4(f1(col("v"))))
1321
- .withColumn("f3_f2", f3(f2(col("v"))))
1322
- .withColumn("f4_f2", f4(f2(col("v"))))
1323
- .withColumn("f4_f3", f4(f3(col("v"))))
1324
- .withColumn("f3_f2_f1", f3(f2(f1(col("v")))))
1325
- .withColumn("f4_f2_f1", f4(f2(f1(col("v")))))
1326
- .withColumn("f4_f3_f1", f4(f3(f1(col("v")))))
1327
- .withColumn("f4_f3_f2", f4(f3(f2(col("v")))))
1328
- .withColumn("f4_f3_f2_f1", f4(f3(f2(f1(col("v"))))))
1329
- )
1330
-
1331
- self.assertEqual(expected_multi, df_multi_1.collect())
1332
- self.assertEqual(expected_multi, df_multi_2.collect())
1333
-
1334
- def test_mixed_udf_and_sql(self):
1335
- from pyspark.sql.connect.column import Column as ConnectColumn
1336
-
1337
- df = self.spark.range(0, 1).toDF("v")
1338
-
1339
- # Test mixture of UDFs, Pandas UDFs and SQL expression.
1340
-
1341
- @udf("int")
1342
- def f1(x):
1343
- assert type(x) == int
1344
- return x + 1
1345
-
1346
- def f2(x):
1347
- assert type(x) in (Column, ConnectColumn)
1348
- return x + 10
1349
-
1350
- @pandas_udf("int")
1351
- def f3s(x):
1352
- assert type(x) == pd.Series
1353
- return x + 100
1354
-
1355
- @pandas_udf("int", PandasUDFType.SCALAR_ITER)
1356
- def f3i(it):
1357
- for x in it:
1358
- assert type(x) == pd.Series
1359
- yield x + 100
1360
-
1361
- expected = (
1362
- df.withColumn("f1", df["v"] + 1)
1363
- .withColumn("f2", df["v"] + 10)
1364
- .withColumn("f3", df["v"] + 100)
1365
- .withColumn("f1_f2", df["v"] + 11)
1366
- .withColumn("f1_f3", df["v"] + 101)
1367
- .withColumn("f2_f1", df["v"] + 11)
1368
- .withColumn("f2_f3", df["v"] + 110)
1369
- .withColumn("f3_f1", df["v"] + 101)
1370
- .withColumn("f3_f2", df["v"] + 110)
1371
- .withColumn("f1_f2_f3", df["v"] + 111)
1372
- .withColumn("f1_f3_f2", df["v"] + 111)
1373
- .withColumn("f2_f1_f3", df["v"] + 111)
1374
- .withColumn("f2_f3_f1", df["v"] + 111)
1375
- .withColumn("f3_f1_f2", df["v"] + 111)
1376
- .withColumn("f3_f2_f1", df["v"] + 111)
1377
- .collect()
1378
- )
1379
-
1380
- for f3 in [f3s, f3i]:
1381
- df1 = (
1382
- df.withColumn("f1", f1(df["v"]))
1383
- .withColumn("f2", f2(df["v"]))
1384
- .withColumn("f3", f3(df["v"]))
1385
- .withColumn("f1_f2", f1(f2(df["v"])))
1386
- .withColumn("f1_f3", f1(f3(df["v"])))
1387
- .withColumn("f2_f1", f2(f1(df["v"])))
1388
- .withColumn("f2_f3", f2(f3(df["v"])))
1389
- .withColumn("f3_f1", f3(f1(df["v"])))
1390
- .withColumn("f3_f2", f3(f2(df["v"])))
1391
- .withColumn("f1_f2_f3", f1(f2(f3(df["v"]))))
1392
- .withColumn("f1_f3_f2", f1(f3(f2(df["v"]))))
1393
- .withColumn("f2_f1_f3", f2(f1(f3(df["v"]))))
1394
- .withColumn("f2_f3_f1", f2(f3(f1(df["v"]))))
1395
- .withColumn("f3_f1_f2", f3(f1(f2(df["v"]))))
1396
- .withColumn("f3_f2_f1", f3(f2(f1(df["v"]))))
1397
- )
1398
-
1399
- self.assertEqual(expected, df1.collect())
1400
-
1401
- # SPARK-24721
1402
- @unittest.skipIf(not test_compiled, test_not_compiled_message) # type: ignore
1403
- def test_datasource_with_udf(self):
1404
- # Same as SQLTests.test_datasource_with_udf, but with Pandas UDF
1405
- # This needs to a separate test because Arrow dependency is optional
1406
- import numpy as np
1407
-
1408
- path = tempfile.mkdtemp()
1409
- shutil.rmtree(path)
1410
-
1411
- try:
1412
- self.spark.range(1).write.mode("overwrite").format("csv").save(path)
1413
- filesource_df = self.spark.read.option("inferSchema", True).csv(path).toDF("i")
1414
- datasource_df = (
1415
- self.spark.read.format("org.apache.spark.sql.sources.SimpleScanSource")
1416
- .option("from", 0)
1417
- .option("to", 1)
1418
- .load()
1419
- .toDF("i")
1420
- )
1421
- datasource_v2_df = (
1422
- self.spark.read.format("org.apache.spark.sql.connector.SimpleDataSourceV2")
1423
- .load()
1424
- .toDF("i", "j")
1425
- )
1426
-
1427
- c1 = pandas_udf(lambda x: x + 1, "int")(lit(1))
1428
- c2 = pandas_udf(lambda x: x + 1, "int")(col("i"))
1429
-
1430
- f1 = pandas_udf(lambda x: pd.Series(np.repeat(False, len(x))), "boolean")(lit(1))
1431
- f2 = pandas_udf(lambda x: pd.Series(np.repeat(False, len(x))), "boolean")(col("i"))
1432
-
1433
- for df in [filesource_df, datasource_df, datasource_v2_df]:
1434
- result = df.withColumn("c", c1)
1435
- expected = df.withColumn("c", lit(2))
1436
- self.assertEqual(expected.collect(), result.collect())
1437
-
1438
- for df in [filesource_df, datasource_df, datasource_v2_df]:
1439
- result = df.withColumn("c", c2)
1440
- expected = df.withColumn("c", col("i") + 1)
1441
- self.assertEqual(expected.collect(), result.collect())
1442
-
1443
- for df in [filesource_df, datasource_df, datasource_v2_df]:
1444
- for f in [f1, f2]:
1445
- result = df.filter(f)
1446
- self.assertEqual(0, result.count())
1447
- finally:
1448
- shutil.rmtree(path)
1449
-
1450
- # SPARK-33277
1451
- def test_pandas_udf_with_column_vector(self):
1452
- path = tempfile.mkdtemp()
1453
- shutil.rmtree(path)
1454
-
1455
- try:
1456
- self.spark.range(0, 200000, 1, 1).write.parquet(path)
1457
-
1458
- @pandas_udf(LongType())
1459
- def udf(x):
1460
- return pd.Series([0] * len(x))
1461
-
1462
- for offheap in ["true", "false"]:
1463
- with self.sql_conf({"spark.sql.columnVector.offheap.enabled": offheap}):
1464
- self.assertEquals(
1465
- self.spark.read.parquet(path).select(udf("id")).head(), Row(0)
1466
- )
1467
- finally:
1468
- shutil.rmtree(path)
1469
-
1470
-
1471
- class ScalarPandasUDFTests(ScalarPandasUDFTestsMixin, ReusedSQLTestCase):
1472
- @classmethod
1473
- def setUpClass(cls):
1474
- ReusedSQLTestCase.setUpClass()
1475
-
1476
- # Synchronize default timezone between Python and Java
1477
- cls.tz_prev = os.environ.get("TZ", None) # save current tz if set
1478
- tz = "America/Los_Angeles"
1479
- os.environ["TZ"] = tz
1480
- time.tzset()
1481
-
1482
- cls.sc.environment["TZ"] = tz
1483
- cls.spark.conf.set("spark.sql.session.timeZone", tz)
1484
-
1485
- @classmethod
1486
- def tearDownClass(cls):
1487
- del os.environ["TZ"]
1488
- if cls.tz_prev is not None:
1489
- os.environ["TZ"] = cls.tz_prev
1490
- time.tzset()
1491
- ReusedSQLTestCase.tearDownClass()
1492
-
1493
-
1494
- if __name__ == "__main__":
1495
- from pyspark.sql.tests.pandas.test_pandas_udf_scalar import * # noqa: F401
1496
-
1497
- try:
1498
- import xmlrunner
1499
-
1500
- testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
1501
- except ImportError:
1502
- testRunner = None
1503
- unittest.main(testRunner=testRunner, verbosity=2)